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Abstract We consider the task of design optimization where the constraint is a state
equation that can only be solved by a typically rather slowly converging fixed point
solver. This process can be augmented by a corresponding adjoint solver and based
on the resulting approximate reduced derivatives also an optimization iteration which
actually changes the design. To coordinate the three iterative processes, we use an
exact penalty function of doubly augmented Lagrangian type. The main issue here is
how to derive a design space preconditioner for the approximated reduced gradient
which ensures a consistent reduction of the employed penalty function as well as sig-
nificant design corrections. Some numerical experiments for an alternating approach
where any combination and sequencing of steps are used to improve feasibility and
optimality done on a variant of the Bratu problem are presented.

Keywords Simultaneous analysis and design · Preconditioning · Augmented
Lagrangian · Exact penalty function · Global convergence

1 Introduction

Design optimization problems are distinguished from general nonlinear programming
problems (NLP) by the fact that the vector of variables is partitioned into a state
vector and design variables. For applications of this scenario in Computational Fluid
Dynamics (CFD), see for example [15, 16]. In this paper, we are interested in solving
a design optimization problem where the constraint is a state equation

(P) min
y,u

f (y,u) s.t. c(y,u) = 0.
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Here, y ∈ Y denotes the state and u ∈ U the design variable. For simplicity, we as-
sume that not only Y but also U and thus their Cartesian product X = Y × U are
Hilbert spaces. c : X −→ Y is called the state equation and f : X −→ R the ob-
jective function. Besides, when Y and U have finite dimensions n = dim(Y ) and
m = dim(U), their elements may be identified from coordinate vectors in R

n and
R

m with respect to suitable Hilbert bases. This convention allows us to write duals as
transposed vectors and inner products as the usual scalar products in Euclidean space.
In addition, we suppose that non physical designs u or states y are indicated by a very
large value of the objective function f such that the optimization automatically stays
in a region where u and y have reasonable values.

Furthermore, we assume that the state c(y,u) = 0 can be transformed into a fixed
point equation y = G(y,u) where the Jacobian Gy = ∂G/∂y is supposed to have a
spectral radius ρ < 1 at all points of interest. Therefore, feasible solutions y = y(u)

can be computed from the iteration yk+1 = G(yk,u).
In the literature, the problem of augmenting fixed point solvers for PDEs with

sensitivity and optimization has been already considered by various authors during
the last few years, see [9–12]. In [9], the author used One-Shot technique to solve a
constrained optimization problem. It is a technique that aims at attaining feasibility
and optimality simultaneously. Actually, within one step the primal, dual and design
variables are updated simultaneously. Moreover, employing Automatic Differentia-
tion (AD) this requires only one simultaneous evaluation of the function with normal
and adjoint derivatives. Based on a preconditioned design update, the focus in [9] was
to define a suitable preconditioner which ensures local convergence of the considered
coupled full step iteration. From the analysis of eigenvalues associated to the obtained
Jacobian, the author derived a preconditioner that corresponds to a necessary but not
sufficient condition to bound eigenvalues below 1 in modulus.

Deriving a preconditioner that ensures even local convergence of the coupled full
step iteration relative to the One-Shot technique has been proved to be quite difficult.
Instead of that, we studied in [13] the introduction of an exact penalty function of
doubly augmented Lagrangian type (see [18, 19]) which enables to coordinate the
coupled iteration in order to improve feasibility and optimality. This function is de-
fined from weighted primal and dual residuals added to the Lagrangian associated
to the constrained optimization problem (P). Here, we use the already introduced
penalty function in [13] and analyze an alternating approach which allows any com-
bination and sequencing of steps to improve primal, dual feasibility and optimality.
The paper is organized as follows: Section 2 is reserved to recall constructive con-
ditions on the choice of the weighting coefficients involved in the employed penalty
function and prove under reasonable assumptions that all its level sets are bounded.
We also describe in this section an economical computation of its gradient using
Automatic Differentiation (AD) tools, see [6, 7]. In Sect. 3, we derive a suitable pre-
conditioner, investigate its relation to the Hessian of the used penalty function with
respect to the design and define optimal weighting coefficients that are independent
of all linear transformation in the design space. Section 4 is devoted to establish an
algorithm summarizing the required steps while employing the alternating approach
and elaborate two backtracking line search procedures based on two slightly differ-
ent quadratic forms. The focus in Sect. 5 is to prove under reasonable assumptions
global convergence of the proposed optimization approach. Some numerical experi-
ments done on a variant of the Bratu problem are presented in Sect. 6.
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1.1 Problem statement

In this paper, we are interested in solving an equality constrained optimization prob-
lem that takes the form

(PG) min
y,u

f (y,u) s.t. y = G(y,u),

where we assume

lim‖y‖+‖u‖→∞f (y,u) = +∞, (1)

which implies that all level sets of the objective function f are bounded. In addition,
on some convex neighborhood M of a bounded level set of f , we assume that f ,
G are C2,1 and a uniform contraction factor for the iteration function G with respect
to its first variable holds, i.e.

‖Gy(y,u)‖ = ‖G�
y (y,u)‖ ≤ ρ < 1

�⇒ ‖G(y1, u) − G(y2, u)‖ ≤ ρ‖y1 − y2‖. (2)

The above implication follows from the mean value theorem on any convex subdo-
main of Y . The key assumption here is that the spectral radius of Gy is less than one
which implies (2) for a suitable inner product norm that we will simply denote by ‖.‖.
Therefore, by Banach fixed point theorem, for fixed u the sequence yk+1 = G(yk,u)

converges to a unique limit y∗ = y∗(u). Furthermore, the Lagrangian associated to
the constrained optimization problem (PG) is defined as follows:

L(y, ȳ, u) = f (y,u) + (G(y,u) − y)�ȳ = N(y, ȳ, u) − y�ȳ,

where N is the shifted Lagrangian

N(y, ȳ, u) := f (y,u) + G(y,u)�ȳ. (3)

As discussed in [10], ȳ does not need to be the exact adjoint of y but may represent
an approximation of it. Besides, according to the first order necessary condition (see
[1, 2]) a KKT point (y∗, ȳ∗, u∗) of the problem (PG) must satisfy

y∗ = G(y∗, u∗),

ȳ∗ = Ny(y
∗, ȳ∗, u∗)� = fy(y

∗, u∗)� + Gy(y
∗, u∗)�ȳ∗, (4)

0 = Nu(y
∗, ȳ∗, u∗)� = fu(y

∗, u∗)� + Gu(y
∗, u∗)�ȳ∗.

Let F denote the feasible set: F := {(y,u) ∈ M s.t. y = G(y,u)}. Then, as a
consequence of the contractivity assumption (2) and the Perturbation Lemma [20],
I − Gy is an invertible matrix. Thus, the set F is a smooth manifold of dimension
dim(u) = m with tangent space spanned by the columns of

Z =
[
(I − Gy)

−1Gu

I

]
. (5)
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Furthermore, in view of the second order necessary condition, the reduced Hessian

H = Z�NxxZ where Nxx =
[
Nyy Nyu

Nuy Nuu

]
, (6)

must be positive semi-definite at a local minimizer. In the remainder, we will make
the slightly stronger assumption that second order sufficiency is satisfied, i.e. H is
positive definite.

One can use the following coupled full step iteration, called One-Shot strategy, to
reach a KKT point of the problem (PG) (see [5, 9, 11]):

yk+1 = G(yk,uk),

ȳk+1 = Ny(yk, ȳk, uk)
�, (7)

uk+1 = uk − B−1
k Nu(yk, ȳk, uk)

�,

where Bk is the design space preconditioner which must be selected as a symmetric
positive definite m × m matrix. Moreover, the contractivity assumption (2) ensures
that the first equation of the coupled full step (7) converges ρ-linearly for fixed u.
Although the second equation exhibits a certain time-lag, it converges with the same
asymptotic R-factor (see [4, 12]). As far as the convergence of the coupled full step
iteration (7) is concerned, the aim is to define a design space preconditioner which in
turn influences the spectral radius of the coupled iteration (7) to stay below 1 and as
close as possible to ρ.

Furthermore, the asymptotic rate of convergence to a limit point (y∗, ȳ∗, u∗) of the
coupled full step iteration (7) is determined by the associated Jacobian which takes
the following 3 × 3 block form:

J ∗ = ∂(yk+1, ȳk+1, uk+1)

∂(yk, ȳk, uk)

∣∣∣∣
(y∗,ȳ∗,u∗)

=
⎡
⎣ Gy 0 Gu

Nyy G�
y Nyu

−B−1Nuy −B−1G�
u I − B−1Nuu

⎤
⎦ . (8)

Actually, the local convergence of (7) is ensured by the condition ρ̂(J ∗) < 1 where
ρ̂(J ∗) denotes the spectral radius of the Jacobian J ∗. In [9], the author proved that
unless they happen to coincide with those of Gy , the eigenvalues of J ∗ solve the
following nonlinear eigenvalues problem:

det[(λ − 1)B + H(λ)] = 0, (9)

where

H(λ) = Z(λ)�NxxZ(λ) and Z(λ) =
[
(λI − Gy)

−1Gu

I

]
. (10)

We find H = H(1) and Z = Z(1) where H and Z are the terms involved in the sec-
ond order optimality condition introduced in (5), (6). Furthermore, as discussed in
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[9], although the conditions B = B� � 0 and B � 1
2H(−1) ensure that eigenvalues

of J ∗ stay less than 1, they are just necessary but not sufficient to exclude eigen-
values less than −1. In addition, no constructive condition to also bound complex
eigenvalues below 1 in modulus has been found. Therefore, deriving a design space
preconditioner which ensures even local convergence of the coupled full step iteration
(7) seems to be quite difficult. Here, we analyze the introduction of a penalty function
which enables to coordinate the coupled iteration in order to improve feasibility and
optimality.

2 Exact penalty function

2.1 Definition and constructive conditions

As introduced in [13], we aim to solve the equality constrained optimization problem
(PG) by looking for descent on the penalty function of doubly augmented Lagrangian
type defined as follows:

La(y, ȳ, u) = α

2
‖G(y,u) − y‖2 + β

2
‖Ny(y, ȳ, u)� − ȳ‖2 + N(y, ȳ, u) − ȳ�y,

(11)

where the weighting coefficients α and β are strictly positive real numbers. In [13],
we proved that La is an exact penalty function (see [3]) where the so-called corre-
spondence condition

αβ�G�
y �Gy � I + βNyy with �Gy = I − Gy, (12)

holds. Actually, the inequality in (12) implies that all stationary points of the con-
strained optimization problem (PG) are also stationary points of the penalty function
La and the Hessian of La at a stationary point of (PG) is positive definite if and
only if the reduced Hessian H introduced in (6) is positive definite. Furthermore, we
proved that the step increment vector

s(y, ȳ, u) :=
⎡
⎢⎣

�y = G(y,u) − y

�ȳ = Ny(y, ȳ, u)� − ȳ

�u = −B−1Nu(y, ȳ, u)�

⎤
⎥⎦ , (13)

associated to the coupled full step iteration (7) yields descent on La for all large
positive preconditioner B where the slightly stronger condition

αβ�Ḡy �
(

I + β

2
Nyy

)
(�Ḡy)

−1
(

I + β

2
Nyy

)
with �Ḡy = 1

2
(�Gy + �Gy

�),

(14)

is satisfied. Therefore, the following choice for the weighting coefficients α and β:

√
αβ(1 − ρ) > 1 + β

2
θ where θ = ‖Nyy‖, (15)
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ensures that both inequalities (12) and (14) are satisfied. That implies La is an exact
penalty function on which the increment vector s yields descent for all sufficiently
large preconditioner B . In the remainder of this paper, we use the following notations:

�y = G(y,u) − y, �ȳ = Ny(y, ȳ, u)� − ȳ and
(16)

�u = −B−1Nu(y, ȳ, u)�.

2.2 Bounded level sets of La

In order to establish later in this paper global convergence result, we need to prove
the following theorem which shows under some reasonable assumptions that all level
sets of the doubly augmented Lagrangian function La are bounded.

Theorem 2.1 If f ∈ C1,1(Y × U), lim‖y‖+‖u‖→∞ f (y,u) = +∞ and

lim inf‖y‖+‖u‖→∞
f

‖∇yf ‖2
> 0, (17)

then, there exists always (α,β) fulfilling (15) such that

lim‖y‖+‖ȳ‖+‖u‖→∞La(y, ȳ, u) = +∞. (18)

Furthermore, if the limit in (17) is equal to infinity, the assertion (18) holds without
any additional restriction on (α,β).

Proof Let f �
y = ∇yf , c(y,u) = G(y,u) − y and �Gy = I − Gy . Then, from (11)

we obtain

La(y, ȳ, u) = α

2
c�c + β

2
(f �

y − �G�
y ȳ)�(f �

y − �G�
y ȳ) + f + c�ȳ

= β

2
ȳ��Gy�Gy

�ȳ + (c� − βfy�Gy
�)ȳ + α

2
c�c + β

2
‖fy‖2 + f.

(19)

Moreover, as �Gy is an invertible matrix, the right-hand side in (19) is a positive
quadratic form in ȳ. Furthermore, we have

∂ȳL
a = βȳ��Gy�Gy

� + c� − βfy�Gy
�.

Let ȳ∗ be such that

∂ȳL
a(y, ȳ∗, u) = 0 ⇐⇒ ȳ∗ = 1

β
�Gy

−��Gy
−1(β�Gyf

�
y − c).

Then, substituting ȳ by ȳ∗ in (19) leads to

La(y, ȳ∗, u) = α

2
cT c − 1

2β
c��Gy

−��Gy
−1c + fy�Gy

−1c + f.
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Therefore, we have La(y, ȳ, u) ≥ La(y, ȳ∗, u) and thus

La(y, ȳ, u) ≥ α

2
c�

(
I − 1

αβ
�Gy

−��Gy
−1

)
c + fy�Gy

−1c + f. (20)

Since the couple (α,β) fulfills (15), we have I − (1/αβ)�Gy
−��Gy

−1 � 0. Then,
the right-hand side in (20) is a positive quadratic form in c which reaches its minimum
at c = c∗ such that

c∗ = − 1

α
A−1�Gy

−�f �
y where A = I − 1

αβ
�Gy

−��Gy
−1. (21)

Furthermore, substituting c by c∗ in the right-hand side of (20) leads to

La(y, ȳ, u) ≥ f − 1

2α
fy�Gy

−1A−1�Gy
−�f �

y . (22)

In addition, we have

fy�Gy
−1A−1�Gy

−�f �
y ≤ λmax(A

−1)‖fy�Gy
−1‖2. (23)

Thus, using the Perturbation Lemma [20] and in view of (2), we find

‖�Gy
−1‖ ≤ 1

1 − ρ
�⇒ fy�Gy

−1A−1�Gy
−�f �

y ≤ λmax(A
−1)

(1 − ρ)2
‖fy‖2. (24)

Moreover, since for all v ∈ R
n\{0} we have

v�Av = v�v − 1

αβ
v��Gy

−��G−1
y v

≥ ‖v‖2(1 − 1

αβ(1 − ρ)2
) > 0, (25)

where A is the symmetric matrix introduced in (21), then we obtain

λmin(A) ≥ 1 − 1

αβ(1 − ρ)2

�⇒ λmax(A
−1) = 1

λmin(A)
≤ αβ(1 − ρ)2

αβ(1 − ρ)2 − 1
> 0. (26)

Therefore, using (24) and (26) to bound below the right-hand side in (22), we get

La(y, ȳ, u) ≥ f − β

2(αβ(1 − ρ)2 − 1)
‖fy‖2. (27)

Since (17) holds, let 	 be such that

lim‖y‖+‖u‖→∞ inf
f

‖fy‖2
= 	 > 0.
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Then, for ε > 0 there exists ‖y‖ + ‖u‖ sufficiently large for which we have

‖fy‖2 ≤ 1

	 − ε
f �⇒ La(y, ȳ, u) ≥

(
1 − β

2(	 − ε)(αβ(1 − ρ)2 − 1)

)
f. (28)

Furthermore, using large value for α and/or small value for β , we can always find
(α,β) fulfilling the main condition (15) and such that

1 − β

2(	 − ε)(αβ(1 − ρ)2 − 1)
> 0.

Hence, for ‖y‖+‖ȳ‖+‖u‖ → ∞, we have either ‖y‖+‖u‖ → ∞ and then accord-
ing to the assumption (1), we obtain from (28)

lim‖y‖+‖ȳ‖+‖u‖→∞La(y, ȳ, u) = +∞, (29)

or ‖y‖ and ‖u‖ are bounded whereas ‖ȳ‖ → ∞. In this last case, since La is a
positive quadratic form in ȳ, then (29) holds. That ends the proof. �

Note that the assumption (17) requires that f grows quadratically or slower as a
function of ‖y‖ + ‖u‖. To give an impression about that, we consider the case where
f is a positive quadratic form

f (x) = 1

2
x�Fx + bx where F ∈ R

n,n, F� = F � 0, (b�, x) ∈ (Rn)2.

Therefore, we have

lim‖x‖−→∞
f (x)

‖∇f (x)‖2
= 1

2
lim‖x‖−→∞

x�Fx

‖Fx‖2

≥ λmin(F )

2‖F‖2
2

= λmin(F )

2λ2
max(F )

> 0, (30)

where λmin(F ) and λmax(F ) are respectively the smallest and the biggest eigenvalues
of the symmetric matrix F .

2.3 Computation of ∇La

It is a well known difficulty of using exact penalty functions that they increase the
level of required derivatives at least by one. In our case, the gradient Ny has became
part of the employed exact penalty function La . Therefore, we have

∇yL
a = α�y�(Gy − I ) + �ȳ�(I + βNyy),

∇ȳL
a = β�ȳ�(Gy − I ) + �y�, (31)

∇uL
a = α�y�Gu + β�ȳ�Nyu + Nu,

and thus ∇La involves vector derivatives as well as matrix derivatives where the com-
plexity of their computations may grow with respect to the dimension of u. To avoid
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that dependence, we propose an economical computation of ∇La using Automatic
Differentiation (AD) borrowing heavily from A. Griewank’s “Evaluating Derivatives,
Principles and Techniques of Algorithmic Differentiation” [7]. Actually, to compute
vector derivatives we can use the reverse mode of the package ADOL-C developed
at Dresden University of Technology [8]. However, we present two options to com-
pute terms in ∇La involving matrix derivatives namely �ȳ�Nyy and �ȳ�Nyu. The
first option consists on using one reverse sweep of Second Order Adjoint (SOA) by
employing some (AD) tools, like ADOL-C [7] that ensures a cost proportional to the
cost of (f,G) evaluation and independent of dimensions. Whereas the second option
consists on simply using the definition

∂

∂t
(Nx(y + t�ȳ, ȳ, u))

∣∣∣∣
t=0

= Nxy(y, ȳ, u)�ȳ, (32)

to approximate �ȳ�Nxy where x = (y,u). In fact, for t �= 0, we have

�ȳ�Nxy(y, ȳ, u) = Nx(y + t�ȳ, ȳ, u)� − Nx(y, ȳ, u)�

t
+ o(t), (33)

and thus terms �ȳ�Nyy and �ȳ�Nyu can be approximated using (33).

3 Search for B

Here, we assume that the weighting coefficients α, β are chosen such that (15) holds
and focus on deriving a suitable design space preconditioner B which in turn influ-
ences the search direction s introduced in (13) to yield descent on the employed exact
penalty function La .

3.1 Explicit condition on B

In this subsection, we derive an explicit condition that leads to define a first choice
for the design space preconditioner. To this end, according to (11) we find

∇La(y, ȳ, u) = −Ms(y, ȳ, u) where M =
⎡
⎢⎣

α�G�
y −I − βNyy 0

−I β�Gy 0

−αG�
u −βN�

yu B

⎤
⎥⎦ , (34)

s is the step increment vector introduced in (13) and �Gy is the invertible matrix
defined in (12). Furthermore, since s�Ms = 1

2 s�(M + M�)s, we denote MS the
symmetric matrix defined as follows:

MS = 1

2
(M� + M) =

⎡
⎢⎢⎣

α�Ḡy −I − β
2 Nyy −α

2 Gu

−I − β
2 Nyy β�Ḡy −β

2 Nyu

−α
2 G�

u −β
2 N�

yu B

⎤
⎥⎥⎦ , (35)
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where �Ḡy is the symmetric matrix given in (14). Therefore, we obtain

s�∇La = −s�MSs. (36)

Moreover, by rescaling u = B− 1
2 ũ with B

1
2 is a Cholesky factor of B , we find a result

similar to (35) involving s̃ and M̃S where s̃ is obtained from the increment vector s

by replacing its third component �u = −B−1Nu
� by �ũ = B

1
2 �u = −B− �

2 Nu
� =

−Nũ
�. Whereas the matrix M̃S is derived from MS by substituting B with I and

all derivatives with respect to the design u with Gũ = GuB
− 1

2 , Nũ = NuB
− 1

2 and

Nyũ = NyuB
− 1

2 . Thus, we get

M̃S =

⎡
⎢⎢⎣

α�Ḡy −I − β
2 Nyy −α

2 Gũ

−I − β
2 Nyy β�Ḡy −β

2 Nyũ

−α
2 G�

ũ
−β

2 N�
yũ

I

⎤
⎥⎥⎦ . (37)

Note that M̃S is obtained from the matrix MS as follows:

M̃S = diag(I, I,B− �
2 )MS diag(I, I,B− 1

2 ). (38)

The aim now is to derive explicit conditions on B that ensure the positive definiteness
of the matrix M̃S which in view of (36) and (38) implies that the increment vector s

introduced in (13) yields descent on the exact penalty function La . To this end, we
start by proving the following proposition:

Proposition 3.1 Let θ = ‖Nyy‖ and DC be the real 3 × 3 matrix defined by

DC =

⎡
⎢⎢⎣

α(1 − ρ) −1 − β
2 θ −α

2 ‖Gũ‖
−1 − β

2 θ β(1 − ρ) −β
2 ‖Nyũ‖

−α
2 ‖Gũ‖ −β

2 ‖Nyũ‖ 1

⎤
⎥⎥⎦ . (39)

Then, we have for all (v1, v2) ∈ (Rn)2 and v3 ∈ R
m,

⎡
⎣v1

v2

v3

⎤
⎦

�

M̃S

⎡
⎣v1

v2

v3

⎤
⎦ ≥

⎡
⎣‖v1‖

‖v2‖
‖v3‖

⎤
⎦

�

DC

⎡
⎣‖v1‖

‖v2‖
‖v3‖

⎤
⎦ .

Proof Let (v1, v2) ∈ (Rn)2 and v3 ∈ R
m. In view of (37), we find

⎡
⎣v1

v2

v3

⎤
⎦

�

M̃S

⎡
⎣v1

v2

v3

⎤
⎦ = αv�

1 �Ḡyv1 + βv�
2 �Ḡyv2 + v�

3 v3

− 2v�
1

(
I + β

2
Nyy

)
v2 − αv�

1 Gũv3 − βv�
2 Nyũv3
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≥ αλmin(�Ḡy)‖v1‖2 + βλmin(�Ḡy)‖v2‖2 + ‖v3‖2

− 2‖v1‖‖v2‖
∥∥∥∥I + β

2
Nyy

∥∥∥∥
− α‖v1‖‖v3‖‖Gũ‖ − β‖v2‖‖v3‖‖Nyũ‖,

where λmin(�Ḡy) is the smallest eigenvalue of the symmetric matrix �Ḡy . Further-
more, from (14) and according to (2), we have

�Ḡy = I − 1

2
(Gy + Gy

�) and ‖Gy + Gy
�‖ ≤ 2ρ.

Let λ be an eigenvalue of �Ḡy associated to an eigenvector v. Then,

λ‖v‖2 = (�Ḡyv)�v = ‖v‖2 − 1

2
((Gy + Gy

�)v)�v

≥
(

1 − 1

2
‖Gy + Gy

�‖
)

‖v‖2 ≥ (1 − ρ)‖v‖2,

and thus λmin(�Ḡy) ≥ 1−ρ. Moreover, using this last inequality to bound below the
right-hand side of (40) leads to

⎡
⎣v1

v2
v3

⎤
⎦

�
M̃S

⎡
⎣v1

v2
v3

⎤
⎦ ≥ α(1 − ρ)‖v1‖2 + β(1 − ρ)‖v2‖2 + ‖v3‖2

− 2‖v1‖‖v2‖
(

1 + β

2
θ

)

− α‖v1‖‖v3‖‖Gũ‖ − β‖v2‖‖v3‖‖Nyũ‖,

=
⎡
⎣‖v1‖

‖v2‖
‖v3‖

⎤
⎦

�
DC

⎡
⎣‖v1‖

‖v2‖
‖v3‖

⎤
⎦ ,

where DC is the real 3 × 3 matrix introduced in (39). That ends the proof. �

Therefore, in view of Proposition 3.1 and according to (36), (38) the increment
vector s introduced in (13) yields descent on the exact penalty function La where
the matrix DC given in (39) is positive definite. In the remainder of this subsection,
we prove the following proposition which leads to an explicit condition on B that
ensures the positive definiteness of the matrix DC :

Proposition 3.2 Let θ = ‖Nyy‖ and α, β be two weighting coefficients fulfilling (15).
If we have

(√
α

2
‖Gũ‖ +

√
β

2
‖Nyũ‖

)2

≤ (1 − ρ) − (1 + θ
2 β)2

αβ(1 − ρ)
, (40)

then DC introduced in (39) is a positive definite matrix.
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Proof Let δ = 1 + β
2 θ and D, d be such that

D =
[

α(1 − ρ) −δ

−δ β(1 − ρ)

]
, d =

[
α
2 ‖Gũ‖
β
2 ‖Nyũ‖

]
.

Then, since α and β satisfy (15), we find

det(D) = αβ(1 − ρ)2 − δ2 > 0. (41)

As the trace of the matrix D is (1−ρ)(α+β) > 0, then in view of (41) we get D � 0.
Furthermore, by rewriting the matrix DC defined in (39) as

DC =
[

D −d

−d� 1

]
,

we obtain[
I 0

d�D−1 1

][
D −d

−d� 1

][
I D−1d

0 1

]
=

[
D 0

0 1 − d�D−1d

]
,

and thus,

DC � 0 ⇐⇒ 1 − d�D−1d > 0. (42)

Furthermore, from a simple computation we find

D−1 = 1

det(D)

[
β(1 − ρ) δ

δ α(1 − ρ)

]
,

which leads to

d�D−1d = αβ(1 − ρ)

4 det(D)

(
α‖Gũ‖2 + 2δ

1 − ρ
‖Gũ‖‖Nyũ‖ + β‖Nyũ‖2

)
. (43)

Hence, according to (43), the inequality 1 − d�D−1d > 0 is equivalent to

α

4
‖Gũ‖2 + δ

2(1 − ρ)
‖Gũ‖‖Nyũ‖ + β

4
‖Nyũ‖2

<
det(D)

αβ(1 − ρ)
= (1 − ρ) − δ2

αβ(1 − ρ)
. (44)

Besides, we have

α

4
‖Gũ‖2 + δ

2(1 − ρ)
‖Gũ‖‖Nyũ‖ + β

4
‖Nyũ‖2

=
(√

α

2
‖Gũ‖ +

√
β

2
‖Nyũ‖

)2

+ �‖Gũ‖‖Nyũ‖ (45)
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where

� = δ

2(1 − ρ)
−

√
αβ

2
= 1

2(1 − ρ)
(δ − √

αβ(1 − ρ)) < 0.

� < 0 follows from the main condition (15). Therefore, in view of (45) and since
� < 0, we obtain

α

4
‖Gũ‖2 + δ

2(1 − ρ)
‖Gũ‖‖Nyũ‖ + β

4
‖Nyũ‖2 <

(√
α

2
‖Gũ‖ +

√
β

2
‖Nyũ‖

)2

. (46)

Thus, according to (42) and in view of (44), (46) a sufficient condition to ensure the
positive definiteness of the matrix DC is to fulfill the following inequality:

(√
α

2
‖Gũ‖ +

√
β

2
‖Nyũ‖

)2

≤ (1 − ρ) − δ2

αβ(1 − ρ)
. (47)

This is the announced condition in (40). �

Here, we aim to derive explicit conditions on B that ensure (40) and thus imply
the positive definiteness of the matrix DC . To reach this goal, we start by writing

1

2
(
√

α‖Gũ‖ + √
β‖Nyũ‖) ≤ max{√α‖Gũ‖,

√
β‖Nyũ‖}

≤
∥∥∥∥

√
αGũ√
βNyũ

∥∥∥∥
2
=

∥∥∥∥∥
( √

αGu√
βNyu

)
B− 1

2

∥∥∥∥∥
2

. (48)

Then, using the QR decomposition
( √

αGu√
βNyu

)
= QR, (49)

we find
∥∥∥∥∥
( √

αGu√
βNyu

)
B− 1

2

∥∥∥∥∥
2

2

= ‖RB− 1
2 ‖2

2 = ‖RB−1R�‖2. (50)

As design corrections expressed by the third component of the increment vector s

introduced in (13) involve the inverse of the used preconditioner B , the aim is to
derive B−1 as large as possible. Furthermore, the largest B−1

0 for which ‖RB−1
0 R�‖2

is equal to some σ > 0 is simply

RB−1
0 R� = σI ⇐⇒ B0 = 1

σ
R�R = 1

σ
(αG�

u Gu + βNyu
�Nyu). (51)

Here, σ must be chosen such that Proposition 3.2 applies, i.e.

σ = 1 − ρ − (1 + θ
2 β)2

αβ(1 − ρ)
> 0. (52)
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Note that according to (48), all design space preconditioner B such that

B = B� � B0 = 1

σ
(αG�

u Gu + βNyu
�Nyu), (53)

implies that DC � 0 and thus the increment vector s yields descent on La .

3.2 Particular choice of weighting coefficients

In this subsection, we aim to define weighting coefficients α, β fulfilling (15) and
independent of all linear transformation in the design space. To this end, we assume
the rectangular matrix Gu ∈ R

n,m to be full column rank and denote C a Cholesky
factor such that G�

u Gu = C�C � 0. Let ψ be the positive function defined for all α

and β satisfying (15) by

ψ(α,β) = 1 − ρ − (1 + θ
2 β)2

αβ(1 − ρ)
> 0. (54)

Then, in view of (51) and (52) we have

C−�B0C
−1 = 1

ψ(α,β)
C−�(αC�C + βN�

yuNyu)C
−1, (55)

which leads to

‖C−�B0C
−1‖ ≤ ϕ(α,β) := α + qβ

ψ(α,β)
, (56)

where

q = ‖C−�N�
yuNyuC

−1‖2 = ‖NyuC
−�‖2

2

= max
0�=v∈U

‖NyuC
−�v‖2

2

‖v‖2
2

= max
0�=z∈U

‖Nyuz‖2
2

‖C�z‖2
2

= max
0�=z∈U

‖Nyuz‖2
2

‖G�
u z‖2

2

. (57)

Here, the ratio q quantifies the perturbation of the adjoint equation Ny = 0 caused by
a design variation z relative to that in the primal equation G − y = 0. Furthermore,
since the aim is to maximize the inverse of the used preconditioner in order to make
significant design corrections, we define optimal penalty weights as coefficients α, β

which satisfy (15) and realize a minimum of the function ϕ occurring in (56).

Proposition 3.3 The function ϕ defined for all α and β fulfilling (15) by

ϕ(α,β) = α + qβ

ψ(α,β)
, (58)



Reduced quasi-Newton method for simultaneous design and optimization 535

where ψ > 0 introduced in (54) and q a real positive number, reaches its minimum
for

β = 3√
θ2 + 3q(1 − ρ)2 + θ

2

and α = q
β(1 + θ

2 β)

1 − θ
2 β

. (59)

Proof See the appendix. �

In the case where q = 0, using the value of β introduced in (59), we get

1 − θ

2
β = 1 − 3

2
√

1 + 3q

θ2 (1 − ρ)2 + 1
=

√
1 + 3q

θ2 (1 − ρ)2 − 1√
1 + 3q

θ2 (1 − ρ)2 + 1
2

= 3q(1 − ρ)2

θ2(

√
1 + 3q

θ2 (1 − ρ)2 + 1
2 )(

√
1 + 3q

θ2 (1 − ρ)2 + 1)

. (60)

And thus, substituting in α given in (59) 1 − (θ/2)β by its value derived in (60), we
find

α =
θ2β(1 + θ

2 β)(

√
1 + 3q

θ2 (1 − ρ)2 + 1
2 )(

√
1 + 3q

θ2 (1 − ρ)2 + 1)

3(1 − ρ)2
. (61)

Therefore, setting q = 0 in (61) and using β = 2/θ , we obtain

α = 4θ

(1 − ρ)2
. (62)

3.3 Suitable B and relation to ∇uuL
a

Here, using B0 derived in (51) we define a suitable design space preconditioner B

and establish its relation to the Hessian of La with respect to the design. To this end,
we consider �u such that

min
�u

La(y + �y, ȳ + �ȳ,u + �u). (63)

Using a quadratic approximation of La , (63) is rewritten as

min
�u

s�∇La(y, ȳ, u) + 1

2
s�∇2La(y, ȳ, u)s, (64)

here s is the increment vector introduced in (13). Furthermore, (64) leads to

min
�u

E(�u), (65)
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where E denotes the quadratic form introduced by

E(�u) = �u�(∇uL
a + ∇uyL

a�y + ∇uȳL
a�ȳ) + 1

2
�u�∇uuL

a�u

≈ �u�∇uL
a(y + �y, ȳ + �ȳ,u) + 1

2
�u�∇uuL

a�u. (66)

Then, assuming ∇uuL
a to be positive definite, the minimizer of E is given by

�u = −∇−1
uu La(y, ȳ, u)∇uL

a(y + �y, ȳ + �ȳ,u). (67)

Since we use �u = −B−1N�
u , then assuming Nuu � 0 we define a suitable design

space preconditioner B from (51) and (52) such that

B = B0 + 1

σ
Nuu �⇒ B = 1

σ

(
αG�

u Gu + βN�
yuNyu + Nuu

)
. (68)

Therefore, in view of (53) the increment vector s obtained using the preconditioner
B introduced in (68) yields descent on La . In addition, we have B ≈ ∇uuL

a . This
approximation turns to an equality at primal and dual feasibility. Besides, as La is an
exact penalty function, we have ∇2La � 0 in a neighborhood of a local minimizer
and then in particular ∇uuL

a = B � 0.

3.4 BFGS update to an approximation of B

As the suitable preconditioner B derived in (68) involves matrix derivatives which
may be costly evaluated, numerically we use the BFGS method to update its ap-
proximation Hk rather than computing it for each iteration. Therefore, in view of the
relation B ≈ ∇uuL

a established in the previous subsection, we employ

B�u = ∇uL
a(y, ȳ, u + �u) − ∇uL

a(y, ȳ, u), (69)

as a secant equation in the update of Hk namely

Hk+1Rk = �uk where Rk := ∇uL
a(yk, ȳk, uk + �uk) − ∇uL

a(yk, ȳk, uk). (70)

However, we have to ensure the curvature condition

Rk
��uk > 0. (71)

One could enforce (71) by imposing restrictions on the line search procedure [17].
Actually, imposing to the step multiplier η to satisfy the second Wolfe’s condition

�uk
�∇uL

a(yk, ȳk, uk + η�uk) ≥ c2�uk
�∇uL

a(yk, ȳk, uk) where

c2 ∈ [0,1], (72)

leads to

�uk
�Rk ≥ (c2 − 1)�uk

�∇uL
a(yk, ȳk, uk). (73)
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And thus, since Hk � 0 and �uk = −Hk∇uL
a(yk, ȳk, uk), the right-hand side in

(73) is positive which implies (71). A simpler procedure could be to skip the update
whenever (71) does not hold by either setting Hk+1 to identity or to the previous
iterate Hk . Provided (71) holds, we use

Hk+1 = (I − rk�ukRk
�)Hk(I − rkRk�uk

�) + rk�uk�uk
� where

rk = 1

Rk
��uk

. (74)

4 Alternating approach

In view of the secant equation (70), one sees that each BFGS update of Hk needs to
make a pure design step (step with fixed primal and dual variables) in order to com-
pute the coefficient Rk . That leads to achieve the minimization of the employed exact
penalty function La using some alternating between pure design and pure feasibility
steps.

For several applications such as shape optimization for example, design correc-
tions may be costly evaluated especially where each design update implies a modi-
fication of the geometry which requires to remesh and update the data structure (see
[15, 16]). Therefore, the Alternating approach could be more convenient for such
kind of applications since it saves the optimization cost namely by accepting only sig-
nificant design corrections otherwise, we continue to improve feasibility with fixed
design. Actually, we accept a design correction only if

�u�∇uL
a < 0 and τ�u�∇uL

a < �y�∇yL
a + �ȳ�∇ȳL

a, (75)

where τ ∈]0,1] is a percent which may be fixed by the user. We suppose there exists
B̄ such that for all iteration k we have

B(y, ȳ, u) ≤ Bk ≤ B̄ for all (y, ȳ, u) ∈ N0, (76)

where N0 is a level set of La . And thus ‖Bk‖ is finite for all iterations. Here, we
present an algorithm describing the Alternating approach.

Begin

Initialize y0, ȳ0, u0, H0 = I , τ and ε. Set k = 0.

Repeat

• Compute �yk , �ȳk using (17) and then ∇La(yk, ȳk, uk).
• Compute σ from (52) and set �uk = −σHkNu(yk, ȳk, uk)

�.
• Test: � If (75) holds, do a pure design step:

◦ Compute the stepsize multiplier ηD and do

yk+1 = yk,

ȳk+1 = ȳk,

uk+1 = uk + ηD�uk.
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◦ Compute ∇uL
a(yk, ȳk, uk +�uk) and update Rk from (70).

◦ Test: -If (71) holds, update Hk+1 using (74).
-Else, set Hk+1 = Hk .

� Else, do a pure feasibility step:

◦ Compute the stepsize multiplier ηF and do

yk+1 = yk + ηF �yk,

ȳk+1 = ȳk + ηF �ȳk,

uk+1 = uk.

until (α‖�yk‖2 + β‖�ȳk‖2 + ‖�uk‖2 ≤ ε)

End

4.1 Line search procedures

On the basis of the suitable preconditioner B derived in (68), we expect full step
convergence near a local minimizer of La . However, we need to apply a line search
procedure in order to enforce convergence in the earlier stage of iterations. Here, we
use two backtracking line search procedures based on two slightly different quadratic
forms. Actually, the first procedure consists in applying a standard backtracking line
search on a conventional quadratic interpolation of La (see [1, 2]). Whereas the sec-
ond procedure uses a quadratic form that does not require the computation of ∇La

which may save the calculation cost.

4.1.1 First procedure, parabolic backtracking

Let Q be a conventional quadratic interpolation of the exact penalty function La

Q(η) = ξ2η
2 + ξ1η + ξ0 for η ∈ [0, ηc],

where ηc is a strictly positive real number and

ξ0 = La(yk, ȳk, uk),

ξ1 = ∇La(yk, ȳk, uk)
�sk < 0, (77)

ξ2 = 1

ηc
2
(La(yk + ηc�yk, ȳk + ηc�ȳk, uk + ηc�uk) − ξ1ηc − ξ0).

Here, ξ1 < 0 is implied by the fact that the increment vector s introduced in (13)
yields descent on La since Bk satisfies (76). Then, we apply a standard backtracking
line search procedure on the quadratic form Q in order to compute the step multiplier.

4.1.2 Second procedure, vector interpolation

The second procedure uses a slightly different quadratic form based on linear inter-
polations of primal and dual residuals with a conventional quadratic interpolation of
the unpenalized Lagrangian.
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We start with a tentative step multiplier ηc > 0 which enables to go from the base
point (yk, ȳk, uk) to the current one (yk + ηc�yk, ȳk + ηc�ȳk, uk + ηc�uk). Let
Pk,Dk and P c

k ,Dc
k denote the primal, dual residuals at the base and current points.

Therefore, we have Pk = G(yk,uk) − yk , Dk = Ny(yk, ȳk, uk)
� − ȳk and

P c
k = G(yk + ηc�yk,uk + ηc�uk) − (yk + ηc�yk),

Dc
k = Ny(yk + ηc�yk, ȳk + ηc�ȳk, uk + ηc�uk) − (ȳk + ηc�ȳk).

Besides, we denote P , D the linear interpolations of the primal and dual residuals

P(η) = Pk + η

ηc

(P c
k − Pk), D(η) = Dk + η

ηc

(Dc
k − Dk) for η ∈ [0, ηc].

For the unpenalized Lagrangian N(y, ȳ, u) − ȳ�y, we use a convential parabolic
interpolation q based on the initial descent and two function values. Thus, q(η) =
ν2η

2 + ν1η + ν0 where the coefficients ν0, ν1 and ν2 satisfy

ν0 = q(0) = N(yk, ȳk, uk) − ȳ�
k yk,

q(ηc) = N(yk + ηc�yk, ȳk + ηc�ȳk, uk + ηc�uk)

− (ȳk + ηc�ȳk)
�(yk + ηc�yk), (78)

ν1 = q ′(0) = ∇N(yk, ȳk, uk)
�sk − �ȳ�

k yk − ȳ�
k �yk

= 2�ȳ�
k �yk + Nu(yk, ȳk, uk)�uk.

Then, we use the quadratic form

Q̃(η) = α

2
‖P(η)‖2

2 + β

2
‖D(η)‖2

2 + q(η), (79)

as an approximation of the exact penalty function La in [0, ηc]. Let η∗ be such that

η∗ = −
α
ηc

(P c
k − Pk)

�Pk + β
ηc

(Dc
k − Dk)

�Dk + ν1

| α

η2
c
‖P c

k − Pk‖2
2 + β

η2
c
‖Dc

k − Dk‖2
2 + 2ν2|

. (80)

Here, η∗ is the stationary point of the quadratic form Q̃ introduced in (79) multiplied
by the sign of its second order term. We accept ηc as a step multiplier if η∗ does not
deviate too much from it. More specifically, we accept ηc only if η∗ ≥ 2

3ηc which

actually ensures Q̃(ηc) < Q̃(0) and thus

La(yk + ηc�yk, ȳk + ηc�ȳk, uk + ηc�uk) < La(yk, ȳk, uk).

As long as η∗ ≥ 2
3ηc is violated, we set ηc = sign(η∗)max{0.2|ηc|,min{0.8|ηc|, |η∗|}}

and recompute η∗ from (80). For the acceptance of the initial step multiplier ηc = 1,
we also require η∗ ≤ 4

3ηc. Failing this, ηc is once increased to ηc = η∗ and then al-
ways reduced until the main condition η∗ ≥ 2

3ηc is fulfilled. We summarize this line
search procedure by the following algorithm:
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Begin

1 • set ηc ← 1 and compute η∗.
2 • if η∗

ηc
> 4

3 , set ηc ← η∗ and compute η∗.

3 • � if η∗
ηc

≥ 2
3 , goto End.

� else: set ηc ← sign(η∗)max{0.2|ηc|,min{0.8|ηc|, |η∗|}}.
compute η∗ and goto 3.

End

Here, we investigate whether the established line search procedure always terminates.
To this end, using twice the Hopital theorem we find

lim
ηc→0

η∗ = − lim
ηc→0

α
∂P c

k

∂ηc

�
Pk + β

∂Dc
k

∂ηc

�
Dk + ν1∣∣α‖ ∂P c

k

∂ηc
‖2

2 + β‖ ∂Dc
k

∂ηc
‖2

2 + q
′′
(ηc)

∣∣ ,

= − lim
ηc→0

∇La(yk, ȳk, uk)
�sk∣∣α‖ ∂P c

k

∂ηc
‖2

2 + β‖ ∂Dc
k

∂ηc
‖2

2 + 2ν2
∣∣ . (81)

where sk is the increment vector s introduced in (13) evaluated at the base point
(yk, ȳk, uk). Furthermore, in view of (76), sk yields descent on the exact penalty func-
tion La which implies

∇La(yk, ȳk, uk)
�
sk < 0.

Therefore, the limit in (81) is either + infinity or a strictly positive real number. In
both cases, η∗

ηc
≥ 2

3 finishes always by be fulfilled and thus the line search procedure
terminates always.

5 Global convergence

In this section, we prove under reasonable assumptions global convergence of the
proposed optimization approach. In [14], a similar coupled iteration is shown to con-
verge globally for SQP cases where the cross term, Nyu in our notation, vanishes. Let
(y0, ȳ0, u0) denote a starting iterate and N0 the level set of La defined by

N0 := {(y, ȳ, u) such that La(y, ȳ, u) ≤ La(y0, ȳ0, u0)}. (82)

Provided Theorem 2.1 applies and the line search procedure ensures a monotonic
decrease of the doubly augmented Lagrangian La , all iterates during the optimization
process lie in the bounded level set N0 of La .

Let N be a level set of La and γ be the angle between the steepest descent
−∇La(y, ȳ, u) and the search direction s(y, ȳ, u) for (y, ȳ, u) ∈ N . In the follow-
ing proposition, we prove that the angle γ is always bounded away from π/2:
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Proposition 5.1 If Theorem 2.1 applies and Nuu � 0, then there exists C > 0 such
that

cosγ = − s�∇La

‖∇La‖‖s‖ ≥ C > 0 for all (y, ȳ, u) ∈ N , (83)

where s is the step increment vector computed with the preconditioner B introduced
in (68).

Proof According to (36), we have s�∇La = −s�MSs which leads to

cosγ = − s�∇La

‖∇La‖‖s‖ = s�Ms

‖∇La‖‖s‖ = s�MSs

‖∇La‖‖s‖ . (84)

Furthermore, as Nuu � 0, the preconditioner B derived in (68) fulfills (53) which
implies that MS � 0. Therefore, we have

0 < λmin(MS)‖s‖2 ≤ s�MSs, (85)

where λmin(MS) is the smallest eigenvalue of the symmetric matrix MS introduced
in (35). Then, from (84) and (85) we find

cosγ ≥ λmin(MS)‖s‖2

‖∇La‖‖s‖ ≥ λmin(MS)

‖M‖2
.

Since Theorem 2.1 applies, all level sets of La are bounded. Therefore, in view of the
already mentioned smoothness assumptions on f and G, the application that given
(y, ȳ, u) in a level set N of La associate λmin(MS)/‖M‖2 is a continuous function
on the compact set N . Then, it reaches a minimum C > 0 and thus we obtain

cosγ ≥ λmin(MS)

‖M‖2
≥ C > 0, ∀(y, ȳ, u) ∈ N . �

Note that the alternating approach namely the partitioning into pure design and
pure feasibility steps does not affect the gradient relatedness result given in (83).
Actually, we employ a pure design step only if (75) holds and thus

−�u�∇uL
a ≥ − 1

(1 + τ)
s�∇La �⇒ −�u�∇uL

a

‖∇La‖‖�u‖ ≥ 1

(1 + τ)

−s�∇La

‖∇La‖‖s‖ .

Furthermore, we use a pure feasibility step if τ�u�∇uL
a ≥ �y�∇yL

a +�ȳ�∇ȳL
a

which leads to

−(�y�∇yL
a + �ȳ�∇ȳL

a) ≥ − τ

(1 + τ)
s�∇La.

In addition, since Theorem 2.1 applies all level sets of the continuous function
La are bounded which implies that La is bounded below. Therefore, using the well
known effectiveness of the line search procedure based on a standard backtracking
[1] and the gradient relatedness result established in Proposition 5.1, we obtain

lim
k→∞‖∇La(yk, ȳk, uk)‖ = 0.
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6 Numerical experiments

In this section, we present numerical experiments done on the Bratu problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�y(x) + ey(x) = 0 x = (x1, x2) ∈ [0,1]2,

y(0, x2) = y(1, x2) x2 ∈ [0,1],
y(x1,0) = sin(2πx1) x1 ∈ [0,1],
y(x1,1) = u(x1) x1 ∈ [0,1].

(86)

It is a periodic problem with respect to the horizontal coordinate x1 and has Dirichlet
boundary conditions on the lower and upper edge of the unit square. The function u

is viewed as a boundary control that can be varied to minimize the objective function

f (y,u) =
∫ 1

0
(∂x2y(x1,1) − 4 − cos(2πx1))

2dx1 + γ

∫ 1

0

(
u2 + u′2)dx.

The control = design u is set initially to the constant 2.0. We use γ = 1.0E-03 and
τ = 0.20. As far as the discretization of the problem (86) is concerned, we consider a
five points central difference scheme with a mesh size h. Since the nonlinearities oc-
cur only on the diagonal, we implement Jacobi’s method to obtain the basic iteration
function G(y,u).

To solve numerically the minimization problem, we use during the optimization
process power iterations to compute the spectral radius ρNyy of the matrix Nyy and
ρG∗

y
of G�

y Gy . Then, we update θ = ρNyy and ρ = √
ρG∗

y
. Furthermore, we update

the ratio q introduced in (57) from

qk = max

{
qk−1,

‖Ny(yk, ȳk, uk + �uk) − Ny(yk, ȳk, uk)‖2
2

‖G(yk,uk + �uk) − G(yk,uk)‖2
2

}
,

and the values of α, β as established in (59), then σ using (52). Here, we set
ε = 1.0E-04, start from the same initial state values and aim to study the behav-
ior with respect to the mesh size h of the number of iterations Nopt needed to solve
the optimization problem: run using the alternating approach until to obtain

α‖G(yk,uk) − yk‖2
2 + β‖Ny(yk, ȳk, uk) − ȳk‖2

2 + ‖�uk‖2
2 ≤ ε

relative to the number of iterations Nf required to reach feasibility: run with fixed u

until to get

‖G(yk,u) − yk‖2
2 + ‖Ny(yk, ȳk, u) − ȳk‖2

2 ≤ ε.

We carried out numerical experiments for a mesh size h taking values between 1/8 =
0.125 and 1/18 = 0.055. The behaviors with respect to h of Nopt, Nf are given in
Fig. 1 and of the ratio R = Nopt/Nf in Fig. 2.

Numerical experiments presented in Fig. 1 show that the number of iterations
Nopt needed to solve the optimization problem is always bounded by a reasonable
factor (here 4.6 at maximum) times the number of iterations Nf required to reach
feasibility: bounded retardation. Although both numbers grow while decreasing the
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Fig. 1 Number of iterations with respect to the mesh size h

mesh size h, the ratio R = Nopt/Nf in Fig. 2 seems reaching some limit slightly
bigger than 2 for small values of h.

In the case of our smooth doubly augmented Lagrangian La , the two line search
procedures determine step multipliers that are numerically almost undistinguishable.
Nevertheless, the line search procedure based on vector interpolations does not re-
quire the computation of ∇La which could be more convenient in the case of a sin-
gular merit function.

7 Conclusion

In this paper, we considered the task of design optimization where the constraint
is a state that can be transformed into a contractive fixed point equation. We used
the Lagrangian of the optimization problem to append the primal iteration with dual
and preconditioned design iterations. To coordinate the three iterative processes, we
employed an exact penalty function of doubly augmented Lagrangian type. We de-
rived a suitable design space preconditioner which ensures consistent reduction of
the used penalty function. We established an optimization approach that allows any
combination and sequencing of steps to improve feasibility and optimality. Then, we
proved under reasonable assumptions global convergence of the proposed approach.
Numerical experiments done on a variant of the Bratu problem show that the number
of iterations needed to solve the optimization problem is always bounded by a rea-
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Fig. 2 Retardation factor with respect to the mesh size h

sonable factor times the required number of iterations to reach feasibility (bounded
retardation).

Appendix

Here, we establish the proof of Proposition 3.3.

Proof Let ψ be the function defined for all α and β fulfilling (15) by

ψ(α,β) = 1 − ρ − (1 + θ
2 β)2

αβ(1 − ρ)
> 0

and ϕ be such that

ϕ(α,β) = α + qβ

ψ(α,β)
. (87)

Then, from (87) we have

∂ϕ

∂α
(α,β) = αβ(1 − ρ)2 − (1 + θ

2 β)2(2 + q
β
α
)

αβ(1 − ρ)ψ2(α,β)
,
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∂ϕ

∂β
(α,β) = qαβ(1 − ρ)2 − (1 + θ

2 β)(2q + (1 − θ
2 β)α

β
)

αβ(1 − ρ)ψ2(α,β)
.

(88)

And thus, a stationary point (α,β) of ϕ fulfills

αβ(1 − ρ)2 −
(

1 + θ

2
β

)2(
2 + q

β

α

)
= 0,

(89)

qαβ(1 − ρ)2 −
(

1 + θ

2
β

)(
2q +

(
1 − θ

2
β

)
α

β

)
= 0.

Furthermore, from multiplying the first equation in (89) by q then identifying terms
with the second equation, we obtain

q

(
1 + θ

2
β

)(
2 + q

β

α

)
= 2q +

(
1 − θ

2
β

)
α

β
. (90)

Moreover, multiplying (90) by α leads to

1

β

(
1 − θ

2
β

)
α2 − qθβα − q2β

(
1 + θ

2
β

)
= 0. (91)

The discriminant of the quadratic polynomial in α derived in (91) is � = 4b2 >

0. That implies (91) has two roots. Then, assuming 1 − θ
2 β > 0, those roots have

apposite signs where the positive of them is given by

α = qβ(1 + θ
2 β)

(1 − θ
2 β)

. (92)

Substituting α in the first equation of (89) by its value derived in (92) implies

(
q(1 − ρ)2 + θ2

4

)
β2 + θβ − 3 = 0. (93)

Since the discriminant of the polynomial (93) is � = 4(θ2 + 3q(1 − ρ)2) > 0, then
(93) has two roots which have opposite signs. Moreover, the positive root is such that

β =
√

θ2 + 3q(1 − ρ)2 − θ
2

q(1 − ρ)2 + θ2

4

= 3√
θ2 + 3q(1 − ρ)2 + θ

2

. (94)

The value of β derived in (94) fulfills the assumption used earlier in this proof namely
1 − θ

2 β > 0. Actually, we have

1 − θ

2
β = 1 − 3

2(
√

1 + 3 q

θ2 (1 − ρ)2 + 1
2 )

> 0. (95)
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Besides, using (93) and in view of (95) we find

1

q

(
1 − θ2

4
β2

)
+ 2

q

(
1 − θ

2
β

)
= (1 − ρ)2β2 �⇒ 1

qβ2

(
1 − θ2

4
β2

)
< (1 − ρ)2.

(96)

Then, employing the value of α derived in (92) and in view of (96), we get

αβ = qβ2 (1 + θ
2 β)

(1 − θ
2 β)

= qβ2

(1 − θ2

4 β2)

(
1 + θ

2
β

)2

>
(1 + θ

2 β)2

(1 − ρ)2
. (97)

Hence, (97) implies that α and β derived in (92), (94) fulfill the main condition (15). It
remains to identify the nature of the stationary point (α,β). To this end, we compute
the Hessian of ϕ. Then, we have

∂2ψ

∂α2
= − 2

α

∂ψ

∂α
and

∂ψ

∂α
= (1 + θ

2 β)2

α2β(1 − ρ)
> 0. (98)

Since ψ > 0 and according to (98), we find

∂2ϕ

∂α2
= 2ψ

∂ψ
∂α

(
qβ
α

ψ + ∂ψ
∂α

[α + qβ])
ψ4

> 0. (99)

Furthermore, from a simple computation and in view of (95) we obtain

∂ψ

∂β
= 1 − θ2

4 β2

αβ2(1 − ρ)
> 0 and

∂2ψ

∂β2
= −2

αβ3(1 − ρ)
< 0. (100)

Moreover, in view of (100) we get

∂2ψ

∂β2
[α + qβ] + 2q

∂ψ

∂β
= −2(α + qθ2β3

4 )

αβ3(1 − ρ)
< 0, (101)

which implies,

∂2ϕ

∂β2
=

−ψ2(
∂2ψ

∂β2 [α + qβ] + 2q
∂ψ
∂β

) + 2ψ(
∂ψ
∂β

)2[α + qβ]
ψ4

> 0. (102)

In addition, we have

∂2ϕ

∂β∂α
= ψ2(

∂ψ
∂β

− ∂2ψ
∂β∂α

[α + qβ] − q
∂ψ
∂α

) − 2ψ
∂ψ
∂β

(ψ − ∂ψ
∂α

[α + qβ])
ψ4

. (103)

Besides, since ∂2ψ
∂β∂α

= − 1
α

∂ψ
∂β

, it follows that

∂2ϕ

∂β∂α
= qψ2(

β
α

∂ψ
∂β

− ∂ψ
∂α

) + 2ψ
∂ψ
∂β

∂ψ
∂α

[α + qβ]
ψ4

. (104)
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Therefore, using (99), (102) and (104) we obtain

∂2ϕ

∂α2

∂2ϕ

∂β2
−

(
∂2ϕ

∂β∂α

)2

= −2ψ3 ∂ψ

∂α

∂2ψ

∂β2
[α + qβ]

(
qβ

α
ψ + ∂ψ

∂α
[α + qβ]

)

− q2ψ4
(

β

α

∂ψ

∂β
+ ∂ψ

∂α

)2

, (105)

and thus, we find

∂2ϕ

∂α2

∂2ϕ

∂β2
−

(
∂2ϕ

∂β∂α

)2

= −2αψ3 ∂ψ

∂α

∂2ψ

∂β2

(
qβ

α
ψ + ∂ψ

∂α
[α + qβ]

)

− 2qβψ3
(

∂ψ

∂α

)2
∂2ψ

∂β2
[α + qβ]

− ψ4

(
2
q2β2

α

∂ψ

∂α

∂2ψ

∂β2
+ q2

(
β

α

∂ψ

∂β
+ ∂ψ

∂α

)2
)

. (106)

Furthermore, using ∂ψ
∂α

and ∂ψ
∂β

derived in (98), (100) we get

β

α

∂ψ

∂β
+ ∂ψ

∂α
= 2(1 + θ

2 β)

α2β(1 − ρ)
. (107)

Then, employing
∂2ψ

∂β2
given in (100) and in view of (107), we obtain

−2
q2β2

α

∂ψ

∂α

∂2ψ

∂β2
= 4q2(1 + θ

2 β)2

α4β2(1 − ρ)2
= q2

(
β

α

∂ψ

∂β
+ ∂ψ

∂α

)2

. (108)

Therefore, according to (108) the third term in the right-hand side of (106) vanishes
and thus, we have

∂2ϕ

∂α2

∂2ϕ

∂β2
−

(
∂2ϕ

∂β∂α

)2

= −2αψ3 ∂ψ

∂α

∂2ψ

∂β2

(
qβ

α
ψ + ∂ψ

∂α
[α + qβ]

)

− 2qβψ3
(

∂ψ

∂α

)2
∂2ψ

∂β2
[α + qβ]. (109)
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Hence, as from (98) we have ∂ψ
∂α

> 0 and in view of (100), ∂2ψ

∂β2 < 0, then according
to (109) we find

∂2ϕ

∂α2

∂2ϕ

∂β2
−

(
∂2ϕ

∂β∂α

)2

> 0. (110)

Thus, (99) and (102) imply that the trace of the Hessian of ϕ is a strictly positive
real number. Furthermore, from (110) it follows that its determinant is also a strictly
positive real number. Therefore, the Hessian of ϕ is positive definite and thus the
couple (α,β) derived in (92), (94) realises its minimum. That ends the proof. �
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