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Abstract In this paper, we study the application of a class of direct search methods
to bilevel programming with convex lower level problems with strongly stable opti-
mal solutions. In those methods, directions of descent in each iterations are selected
within a finite set of directions. To guarantee the existence of such a finite set, we in-
vestigate the relation between the aperture of a descent cone at a non stationary point
and the vector density of a finite set of directions. It is shown that the direct search
method converges to a Clarke stationary point of the bilevel programming problem.

Keywords Bilevel programming · Nonsmooth optimization · Solution algorithm ·
Direct search algorithm · Clarke stationary solution

1 Introduction

Bilevel programming problems are optimization problems whose feasible set is re-
stricted (in part) to the solution set mapping of another optimization problem. They
have a hierarchical (or nested) structure and can be considered as a version of a non-
cooperative, two person game which was introduced and investigated by the German
economist H. von Stackelberg [20] in 1934. Generally speaking, the decision vector
is partitioned among the players: the upper level decision maker and the lower level
decision maker in such a way that the upper level decision maker, the leader, controls

Work of the first author was supported by DAAD (Deutscher Akademischer Austausch Dienst) with
a scholarship grant.

A.G. Mersha · S. Dempe (�)
Department of Mathematics and Computer Science, Technical University Bergakademie, Freiberg,
Germany
e-mail: dempe@tu-freiberg.de

A.G. Mersha
e-mail: ayalew@math.tu-freiberg.de

mailto:dempe@tu-freiberg.de
mailto:ayalew@math.tu-freiberg.de


2 A.G. Mersha, S. Dempe

one part, say x, and the lower level decision maker, the follower, controls the other
part, say y. It should be underscored that each player wants to optimize his respec-
tive objective function and, hence, perfect information is assumed. In this paper we
consider the following bilevel programming problem:

F(x, y) → “ min
x

” (1.1)

where y solves

f (x, y) → min
y

g(x, y) ≤ 0
h(x, y) = 0

(1.2)

where F,f : R
n+m → R, g : R

n+m → R
p,h : R

n+m → R
q are sufficiently smooth

functions and the lower level problem (1.2) is a convex optimization problem. Define
the solution set mapping �(·) by

�(x) := arg min
y

{f (x, y) : g(x, y) ≤ 0, h(x, y) = 0}. (1.3)

If the solution of the lower level problem (1.2) corresponding to any parameter x is
not unique, the upper level problem (1.1) is not a well defined optimization problem.
In this case, the bilevel programming problem may not be solvable. This situation is
depicted by examples constructed in [7] and [11, example on p. 121]. The following
Lemma substantiates this claim.

Lemma 1.1 [8] If �(x) is not a singleton for all parameter values x, the leader may
not achieve his infimum objective function value.

To overcome such an unpleasant situation, there are three strategies available for
the leader. The first strategy is to replace min with inf in the formulation of prob-
lem (1.1) and to define ε-optimal solutions. The second strategy is to allow cooper-
ation between the leader and the follower. This resulted in the so called optimistic
or weak bilevel programming problem. The third is a conservative strategy. In this
case the leader is forced to bound the damage caused by the follower’s “unfavorable”
choice. In this paper we will avoid this unpleasant situation by assuming that the so-
lution of the lower level problem (1.2) is uniquely determined for all selections of
the leader. First we define regularity conditions for the parametric lower lever prob-
lem (1.2). Let

M := {(x, y) : g(x, y) ≤ 0, h(x, y) = 0},
M(X) := {x ∈ R

n : ∃y s.t. (x, y) ∈ M},
M(x) := {y ∈ R

m : g(x, y) ≤ 0, h(x, y) = 0},
I (x◦, y◦) := {i : gi(x◦, y◦) = 0}.

Definition 1.2 The lower level problem (1.2) is said to satisfy the Mangasarian-
Fromowitz Constraint Qualification (MFCQ) at (x◦, y◦), y◦ ∈ �(x◦) if{

r ∈ R
m

∣∣∣∣∣ r
�∇ygi(x◦, y◦) < 0,∀i ∈ I (x◦, y◦),

r�∇yhj (x◦, y◦) = 0, j = 1,2, . . . q

}

= ∅
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and the gradients {∇yhj (x◦, y◦) : j = 1, . . . , q} are linearly independent.

The Lagrangian function for the lower level problem is given by

L(x, y,λ,μ) := f (x, y) + λ�g(x, y) + μ�h(x, y).

Consider the set of Lagrange multipliers

�(x,y) := {(λ,μ) : λ ≥ 0, λ�g(x, y) = 0,∇yL(x, y,λ,μ) = 0}.
Let

J (λ) := {j : λj > 0}.

Definition 1.3 The lower level problem (1.2) is said to satisfy a strong suffi-
cient optimality condition of second order (SSOC) at a point (x◦, y◦) if for each
(λ,μ) ∈ �(x◦, y◦) and for every nonzero element of the set{

r ∈ R
m

∣∣∣∣∣ r
�∇ygi(x◦, y◦) = 0,∀i ∈ J (λ),

r�∇yhj (x◦, y◦) = 0, j = 1,2, . . . , q

}

we have

rT ∇2
yyL(x◦, y◦, λ,μ)r > 0.

Definition 1.4 The constant rank constraint qualification (CRCQ) is valid for prob-
lem (1.2) at a point (x◦, y◦) if there exists an open neighborhood Wε(x◦, y◦), ε > 0
of (x◦, y◦) such that for each subsets I ⊆ I (x◦, y◦), J ⊆ {1, . . . , q} the family of gra-
dient vectors {∇ygi(x, y) : i ∈ I } ∪ {∇yhj (x, y) : j ∈ J } has the same rank for all
(x, y) ∈ Wε(x◦, y◦).

Let the following assumption be satisfied:

Assumption 1 The set M is nonempty and compact.

2 Piecewise continuously differentiable functions

Definition 2.1 A function y : R
n → R

m is a piecewise continuously differentiable
(or PC1) function at x◦ if it is continuous and there exists an open neighborhood
V of x◦ and a finite number of continuously differentiable functions yi : V → R

m,
i = 1, . . . , b such that y(x) ∈ {y1(x), y2(x), . . . , yb(x)} for all x ∈ V . The function y

is a PC1 function on some open set O provided it is a PC1 function at every point
x◦ ∈ O .

Theorem 2.2 [16] Let the lower level problem (1.2) at x = x◦ be convex satisfying
(MFCQ), (SSOC) and (CRCQ) at a stationary solution y◦. Then, the locally uniquely
determined function y(x) ∈ �(x), and hence F(x, y(x)) is a PC1 function.
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It has been shown in [12] that PC1 functions are locally Lipschitz continuous.
The existence of the directional derivative

y′(x;d) := lim
t↓0

t−1[y(x + td) − y(x)]

and, hence, directional differentiability of the function F(x, y(x)) is an implication
of a result in [14]. This is restated as

Theorem 2.3 [11, Theorem 4.8] Let f : R
n → R be a PC1 function. Then f is

directionally differentiable.

Under the assumptions (MFCQ), (CRCQ), and (SSOC) the bilevel programming
problem (1.1) can be replaced by a single level Lipschitz optimization problem:

F (x) := F(x, y(x)) → min
x

. (2.1)

The following theorem gives necessary optimality conditions. It shows the nonexis-
tence of a feasible descent direction at a local optimal solution of the bilevel pro-
gramming problem.

Theorem 2.4 [10] Let (x◦, y◦), with y◦ ∈ �(x◦), be a local optimal solution of
the bilevel programming problem (1.1), (1.2) and assume that the lower level prob-
lem (1.2) is a convex parametric optimization problem satisfying (MFCQ), (SSOC)
and (CRCQ) at (x◦, y◦). Then the following problem has a non negative optimal ob-
jective function value:

α → min
α,d

(2.2a)

∇xF (x◦, y◦)d + ∇yF (x◦, y◦)y′(x◦;d) ≤ α (2.2b)

‖d‖ ≤ 1. (2.2c)

Note that the convexity assumptions can not be relaxed because without convex-
ity, even under the assumptions made in the theorem, the lower level optimal solution
may not be unique. In the direct search algorithm, a Clarke stationary solution of
problem (1.1), (1.2) will be computed. To determine the Clarke generalized differ-
ential of the function F (x) := F(x, y(x)) we need the index set of essentially active
selection functions I s

y (x). Let the PC1-function y(x) be a continuous selection of
the continuously differentiable functions yi(x), i = 1, . . . , b. Then,

K(i) := {x : y(x) = yi(x)}

is the set of all points x, where the PC1-function coincides with one of its selection
functions, and

I s
y (x) := {i : y(x) = yi(x), x ∈ cl intK(i)} ⊆ {1,2, . . . , b}
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is the index set of essentially active selection functions. The tangent (or Bouligand)
cone to the set K(i) is defined as

TK(i)(x) :=
{
d : ∃xk → x, xk ∈ K(i) ∀k, tk ↘ 0 such that

xk − x

tk
→ d

}
.

Once the set of essentially active selection function is known, it has been shown in
Scholtes [17, Proposition A.4.1], that the generalized Jacobian of y(·) is given by

∂◦y(x) = conv{∇yi(x) : i ∈ I s
y (x)}.

The generalized directional derivative (in the sense of Clarke) of the solution function
y(·) is given by

y◦(x;d) = sup{〈d, z〉 : z ∈ ∂◦y(x)}.

Definition 2.5 A point (x◦, y◦), y◦ ∈ �(x◦) is said to be a Clarke stationary point
for the bilevel programming problem (1.1), (1.2) if ∀d , ∃i ∈ I s

y (x◦) such that d ∈
TK(i)(x◦),∇xF (x◦, y◦)d + ∇yF (x◦, y◦)∇yi(x◦)d ≥ 0.

In other words, the point (x◦, y◦) is Clarke stationary if F ◦(x◦;d) ≥ 0 for all
directions d [9]. The necessary optimality condition is given by:

Theorem 2.6 Let the lower level problem (1.2) satisfy (MFCQ), (SSOC) and
(CRCQ). If a point (x◦, y◦) with y◦ ∈ �(x◦) is a local minimum of the bilevel pro-
gramming problem (1.1), (1.2), then it is a Clarke stationary point for the bilevel
programming problem.

Proof Let (x◦, y◦) be local optimal solution of (1.1), (1.2). From Theorem 2.4 we
have

∇xF (x◦, y◦)d + ∇yF (x◦, y◦)y′(x◦;d) ≥ 0, ∀d.

Then there is i ∈ I s
y (x◦) with d ∈ TK(i)(x◦), y′(x◦;d) = ∇yi(x◦)d . From Theo-

rem 2.3 we derive

∇xF (x◦, y◦)d + ∇yF (x◦, y◦)y′(x◦;d) = ∇xF (x◦, y◦)d + ∇yF (x◦, y◦)∇yi(x◦)d ≥ 0

for i ∈ I s
y (x◦), d ∈ TK(i)(x◦). Hence the theorem. �

The direct search algorithm as formulated e.g. in [13] can be applied to problems
of minimizing smooth functions. Our aim in this work is to extend it to nonsmooth
optimization of a very special type, i.e. to apply it to the class of bilevel programming
problem with convex lower level problems having strongly stable optimal solutions.
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3 Direct search methods

Direct search methods are iterative optimization methods which do not require the
computation or any approximation of gradients. The directions used to update the it-
erations are selected from a special finite set of directions. These methods are popular
in industry. They were used to solve difficult problems that arise from industry and
engineering because they can easily be applied to almost any optimization problem,
including those with nonsmooth objective functions. It should be noted that the term
direct search method is broad. There exist many classes of direct search methods in
the literature. These classes include pattern search methods [18, 19]. Convergence
proofs for such algorithms can be found in [4, 5, 18, 19] and in the review [13]. The
reader is also referred to the references therein for the details of the development of
many versions of algorithms and thorough theoretical analysis of their convergence
proofs. In [1] Abramson and in [2] Abramson and Audet proposed the second-order
convergence analysis for generalized pattern search (GPS). In [13, p. 443], it was re-
ported that there were no theoretical guarantee that some versions of pattern search
methods work for a nonsmooth optimization problems. To demonstrate this problem,
a simple example is constructed by taking a variant of the Dennis-Woods two di-
mensional function and apply compass search method to get a local minimizer. The
reason for such a failure is that pattern search algorithms explore the space of vari-
ables using always the same finite set of directions. In 2006, Audet and Dennis [6]
proposed a new class of pattern search methods called the mesh adaptive direct search
(MADS) which not only overcomes the limitation of exploring through a finite num-
ber of directions but also second-order convergence is given. They established that if
the objective function is locally Lipschitz around the limit point, then the limit point
is Clarke stationary point under some mild assumptions (see [6, Theorem 3.13]).
Though the method used in this paper and the one reported in [15] are motivated
by the investigations in pattern search methods, we do not consider pattern search
methods or other frame, mesh or grid based methods which are based on a simple
decrease of the objective function. Our investigation focuses on the class of direct
search methods that are based on a sufficient decrease and hence we do not require
neither the step update parameter to be an integer power of some rational number nor
the set of directions satisfy special conditions such as reported in [19, Sect. 2] and [3]
for the pattern search methods. The term direct search method hereafter should be
understood in this sense.

Direct search methods for minimizing a function θ(x) can be summarized in the
following way. Consider the k-th iterate xk . The next iterate xk+1 
= xk is produced
if there is a scalar tk > 0 and a direction dk ∈ D such that θ(xk + tkdk) < θ(xk). In
this case we write xk+1 := xk + tkdk . To realize this strategy, one has to define the
set D of search directions. If the mentioned descent step cannot be realized for all
directions in D the step size parameter tk is first reduced.

The definition and characterization of the aforementioned set of directions, D, is
the key to the convergence of direct search methods. The existence of such a finite
set of search directions at a nonstationary point within a certain compact set will be
shown next.

Assume θ(·) is a locally Lipschitz continuous function near a given point x.
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Definition 3.1 [15] A vector d is said to be descent direction of θ(·) at x if
θ ′(x;d) < 0. A set D ⊂ R

n is a descent set of θ(·) in some set � if for every x ∈ �

there is d ∈ D such that θ ′(x;d) < 0 provided that θ(·) is directionally differentiable
in the direction d .

The next theorem shows the existence of a finite set of descent directions at a
nonstationary point.

Theorem 3.2 [15] Let θ(·) be a locally Lipschitz function near x ∈ �, where � ⊂ R
n

is a compact set that does not contain stationary points of θ(·). Then there exists a
finite set D of vectors and a positive number α such that

min
d∈D

θ ′(x;d) ≤ −α (3.1)

for every x ∈ � provided that θ(·) is directionally differentiable in the direction d .

The classical directional derivative can be replaced by the generalized directional
derivative for lower semicontinuous functions.

4 Application of direct search methods to bilevel programming problems

Let (x◦, y◦) be an arbitrary point and assume that the set

X := {x : F(x, y(x)) ≤ F(x◦, y◦), y(x) ∈ �(x)}
is compact and nonempty. Let C be the set of Clarke stationary points of the (2.1).
Let δ be a sufficiently small positive number. Set

SC := X \
⋃
x∈C

B(x, δ)

where B(x, δ) is an open neighborhood of x with radius δ > 0. Note that the gener-
alized directional derivative of the function F at some point x is equal to

F ◦(x;d) = ∇xF (x, y)d + ∇yF (x, y)y◦(x◦;d)

provided that the function F(·) is continuously differentiable and the function y(·) is
locally Lipschitz continuous. Then, the set SC is closed.

Theorem 4.1 Let the lower level problem be convex satisfying (MFCQ), (SSOC) and
(CRCQ). Then there exists a finite set D of vectors and a positive number α > 0 such
that

min
d∈D

F ◦(x;d) ≤ −α (4.1)

for every x ∈ SC.
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Proof Suppose this is not the case. Then for every finite set of vectors D and any
positive number α there is x ∈ SC such that

min
d∈D

F ◦(x;d) > −α.

Take an arbitrary sequence {αk} of positive numbers converging to zero and a finite
set Dp = {d1, d2, . . . , dj }pj=1. The definition of this set will be made more precise
later in the proof. For the moment we need only finiteness.

Since (4.1) is not satisfied, for every k there exists xk ∈ SC such that

min
d∈D

F ◦(xk;d) > −αk. (4.2)

Then, since the generalized derivative of PC1-functions is the convex hull of fi-
nitely many points, for all i and some essentially active selection function ysk (·), sk ∈
I s
y (xk), the following inequality is valid:

F ◦(xk, di) = ∇xF (xk, y(xk))di + ∇yF (xk, y(xk))y
◦(xk;di)

= ∇xF (xk, y(xk))di + ∇yF (xk, y(xk))∇ysk (xk)di

> −αk. (4.3)

Due to compactness of the set X, {xk} is bounded and, hence, has an accumula-
tion point, say x◦. For the sake of simplicity assume without loss of generality
that xk → x◦. Since there exist only a finite number of selection functions, for a
fixed di ∈ D, we can assume that s = sk with sk ∈ I s

y (xk) is also fixed (otherwise
we take an infinite subsequence). Since the graph of the tangent cone mapping is
closed, di ∈ TK(sk)(xk) for all k and fixed i and xk → x◦ imply di ∈ TK(s)(x◦). Now,
from (4.2) and (4.3) we have

∇xF (xk, y(xk))di + ∇yF (xk, y(xk))∇ys(xk)di > −αk. (4.4)

Taking the limit k → ∞ in (4.4), we derive

∇xF (x◦, y(x◦))di + ∇yF (x◦, y(x◦))∇ys(x◦)di ≥ 0, ∀di ∈ TK(s)(x◦).

Now choose a finite set of vectors D = {d1, d2, . . . , dk} such that

∀TK(i)(x◦) ∃{di1, di2, . . . , dip } ⊆ D

satisfying

TK(i)(x◦) ⊆ cone {di1, di2, . . . , dip },
where cone M denotes the conical hull of the set M . Then, ∀d ∈ R

n ∃i : d ∈ TK(i)(x◦)
and there are nonnegative numbers βj ≥ 0 such that

∇xF (x◦, y(x◦))d + ∇yF (x◦, y(x◦))∇ys(x◦)d

=
p∑

j=1

βj (∇xF (x◦, y(x◦))dij + ∇yF (x◦, y(x◦))∇ys(x◦)dij ) ≥ 0. (4.5)



Direct search algorithm for bilevel programming problems 9

This implies x◦ is Clarke stationary, which contradicts x◦ ∈ SC. Hence, the theorem
is correct. �

The cosine measure of D, denoted by ρ(D), is used to verify if a given finite set
can be used as descent set. It is defined as

ρ(D) = inf
u 
=0
u∈Rn

sup
v 
=0
v∈D

u�v

‖u‖‖v‖ . (4.6)

A finite set D ⊂ R
n is called generating if its conical hull equals R

n. If D is a gen-
erating set then ρ(D) > 0. The cosine measure can be used to estimate the quality of
search directions: it is a measure for the “distance” of D to the steepest descent di-
rection. We impose a lower bound on the cosine measure of a set of search directions
in order to “protect” the search directions from being “too close” to the orthogonal
to ∇f (xk).

Next, define the descent cone and the aperture of a convex cone.

Definition 4.2 Let the lower level problem satisfy (MFCQ), (CRCQ), and (SSOC).
A descent cone of F(·, y(·)) = F (·) at a point x is defined as

C(x) := {v ∈ R
n : F ◦(x;v) < 0}.

Definition 4.3 [15] Let C be a convex cone that does not contain zero vectors, and
let C be the closure of C. The aperture of the cone C, denoted by ψ(C), is defined
as

ψ(C) := arccos

(
min
w∈C
w 
=0

sup
z∈R

n\C
z 
=0

w�z

‖w‖‖z‖
)

.

The aperture of a cone varies between the two extremes 0 and π
2 . The aperture of

the descent cone C(x) can be used to show that this cone intersects a finite generating
cone, provided that some assumptions are satisfied.

Lemma 4.4 [15] Let D be a finite generating set with positive vector density ρ(D)

and let C be a given open cone with an aperture ψ(C) > 0. If ρ(D) > cos(ψ(C))

then D ∩ C 
= ∅.

Definition 4.5 Let the lower level problem satisfy (MFCQ), (CRCQ) and (SSOC).
The descent aperture of F (·) of some set S is defined as the smallest aperture of all
descent cones of F (.) on that set:

φ(F , S) := inf
x∈S

ψ(C(x))

where C(x) is a convex cone contained in a descent cone {d : F ◦(x;d) < 0}.

Now we state one of the important results that helps us to prove our main result.
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Theorem 4.6 Let the lower level problem satisfy (MFCQ), (SSOC), (CRCQ) at
(x◦, y◦), where y◦ ∈ �(x◦). Assume that the set X = {x : F (x) ≤ F (x◦)} is compact.
Then φ(F , SC) > 0.

Proof If (MFCQ), (SSOC) and (CRCQ) are assumed to be satisfied for the convex
parametric lower level problem, then y(·) is a piecewise continuously differentiable
function and hence F (·) is also a piecewise continuously differentiable function [11].
Therefore F (·) is locally Lipschitz. By Theorem 4.1 there exists a finite set of nonzero
vectors D and a real number α > 0 such that

min
d∈D

F ◦(x;d) < −α

for all x ∈ SC.
Take any x̂ from SC and select a vector r ∈ D such that F ◦(x̂, r) ≤ −α. Assume

that

0 < βmin := min
d∈D

‖d‖ ≤ max
d∈D

‖d‖ =: βmax < +∞.

Set δ := min(βmin,
α

2L ) where L is the Lipschitz constant of F (x) on SC. Now, the
Clarke directional derivative

F ◦(x̂; z) ≤ F ◦(x̂; r) + F ◦(x̂; z − r) ≤ −α + L‖z − r‖ ≤ −α + Lδ ≤ −α

2

∀z ∈ Bδ(r) := {z ∈ D : ‖r − z‖ < δ}.
Assume without loss of generality βmin ≥ α

2L . Construct the cone

C(r, δ) := {tz : t > 0, z ∈ Bδ(r)}.
Let d̂ ∈ C(r, δ). This implies d̂ = tz, z ∈ Bδ(r) for some t > 0.

F ◦(x̂; d̂) = F ◦(x̂; tz) = t F ◦(x̂; z) < −tα/2

which implies that d̂ ∈ C(x̂) for some convex cone C(·) contained in a descent cone
of F . Therefore, C(r, δ) ⊆ C(x̂). We have

inf
u∈C(r,δ)

u 
=0

sup
v∈R

n\C̄(r,δ)
v 
=0

u�v

‖u‖‖v‖ ≥ inf
u∈C(x̂)

u 
=0

sup
v∈R

n\C̄(x̂)
v 
=0

u�v

‖u‖‖v‖ .

This implies

arccos

(
inf

u∈C(r,δ)
u 
=0

sup
v∈R

n\C̄(r,δ)
v 
=0

u�v

‖u‖‖v‖
)

≤ arccos

(
inf

u∈C(x̂)
u 
=0

sup
v∈R

n\C̄(x̂)
v 
=0

u�v

‖u‖‖v‖
)

.

Hence, ψ(C(x̂)) ≥ ψ(C(r, δ)).
On the other hand observe that

βmin ≤ ‖d‖ ≤ βmax ∀d ∈ D ⇒ βmin ≤ ‖d̂‖ ≤ βmax
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⇒ 1

βmax
≤ 1

‖d̂‖ ≤ 1

βmin

⇒ α

2Lβmax
≤ α

2L‖d̂‖ ≤ α

2Lβmin

Since δ = α
2L or δ

‖r‖ = α
2L‖r‖ , the following conclusion is true:

α

2Lβmax
≤ δ

‖r‖ ≤ α

2Lβmin
=⇒ 0 < arcsin

(
α

2Lβmax

)
≤ arcsin

(
δ

‖r‖
)

.

Consider now

ψ(C(r, δ)) = arccos inf
u∈C(r,δ)

u 
=0

sup
v∈R

n\C̄(r,δ)
v 
=0

u�v

‖u‖‖v‖

= arccos inf
z∈Bδ(r)

u 
=0

sup
v∈R

n\C̄(r,δ)
v 
=0

tz�v

‖tz‖‖v‖ , t > 0

≥ arccos

(‖z‖
‖r‖

)
, ∀z ∈ Bδ(r). (4.7)

This implies ψ(C(r, δ)) ≥ arcsin( δ
‖r‖ ). Clearly this inequality holds for all x̂ from

SC. Hence, it follows that

φ(F , SC) ≥ arcsin
α

2Lβmax
> 0. �

An important theorem for the characterization of the finite set D follows.

Theorem 4.7 Let X = {x : F (x) ≤ F (x◦)} be compact. Assume that the lower
level problem satisfies (MFCQ), (SSOC) and (CRCQ). Let C be the set of station-
ary points of the bilevel programming problem. Then any set with vector density
ρ(D) > cos(φ(F , SC)) is a descent set.

Proof Using similar implications as in the proof of Theorem 4.6, F (·) is a locally
Lipschitz continuous function. Then by Theorem 4.6 we have φ(F , SC) > 0. By
Lemma 4.4, if D is finite set of vectors with ρ(D) > cos(φ(F , SC)), then we have
D ∩ C(x) is non empty for every x ∈ SC where C(x) is a convex cone contained in a
descent cone of F (·) at x. That means there is d ∈ D such that F ◦(x;d) < 0 which
implies D is a descent set. �

The following algorithm is a prototype realization of the proposed direct search
algorithm. Before we give the convergence proof of this algorithm we state two in-
termediate results.
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Lemma 4.8 Let the lower level problem be convex satisfying (MFCQ), (SSOC) and
(CRCQ) at all x. Let D be any finite generating set of vectors such that the vector
density ρ(D) > cos(φ(F , SC)) and ‖d‖ ∈ [βmin, βmax], ∀d ∈ D. Then for sufficiently
small δ > 0 and t∗ there exists d ∈ D such that

F (x + td) − F (x) ≤ −δt

for all t ∈ (0, t∗) and for all x ∈ SC.

Proof Since the assumptions (MFCQ), (SSOC), and (CRCQ) are satisfied for the
lower level problem (1.2) at all x, the function F (·) is piecewise continuously dif-
ferentiable, hence directionally differentiable. Since x ∈ SC, it follows that x is
not a local solution of problem (2.1). Thus, there exists a direction d such that
F ◦(x;d) < −2δ for a sufficiently small δ > 0. Hence, F ′(x;d) < −2δ, too. Then

F (x + td) − F (x)

t
< −δ, ∀t ∈ (0, t∗]

and some t∗ > 0. It remains to show that the set D contains a direction d with the
desired property. By Theorem 4.7, D is a descent set. From Lemma 4.4 we see that
D contains d with F ◦(x;d) < −δ, ∀x ∈ SC. �

Lemma 4.9 Let X = {x : F (x) ≤ F (x◦)} be compact. Let {xk} be a sequence of
iterates produced by Algorithm 1. Then limk→∞ tk = 0.

Proof Let {tk} be a sequence of step size parameter. Suppose there exist a subse-
quence {tki

}∞i=0 with limi→∞ tki
= η > 0. Then, either limk→∞ tk = η or the limit

does not exist. Observe that tki
is the step size in a successful iteration. Then

F (xki
+ tki

dki
) < F (xki

) − ω(tki
), i = 1,2, . . .

Algorithm 1 Direct search algorithm for bilevel programming: the first version
Initialization: Select an initial point x◦, ρ◦ > φ(F , SC), and take a finite set D with

vector density ρ◦. k := 0. Consider constants c1, c2, t◦, βmax, βmin with 0 < c1 <

1 < c2, t◦ > 0 sufficiently small and βmax > βmin. Let ω(t) be a continuous function
such that limt→0

ω(t)
t

= 0 and ω(t) > 0 if t > 0.
Step 1: For the current step size tk search for dk ∈ D such that

F (xk + tkdk) < F (xk) − ω(tk). If there exists such dk ∈ D then go to Step 2
otherwise go to Step 3.

Step 2: Successful step. Do the following:
set xk+1 = xk + tkdk

set tk+1 = c2k
tk , c2k

∈ [1, c2) and go to Step 1.
Step 3: Unsuccessful step. Do the following:

Set xk+1 = xk

Set tk+1 = c1k
tk, c1k

∈ (c1,1) and go to step 4.
Step 4: Stopping condition. If tk+1 < t◦ then terminate.

Else put k := k + 1 go to Step 1.
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with ω(tki
) > 0. Continuity of ω(·) and ω(t) > 0 for t > 0 implies that we have

limi→∞ F (xki
) = −∞ which contradicts the boundedness from below of F . Hence,

this infinite subsequence can not exist and hence limi→∞ tk = 0. �

Remark 4.10 Observe that a sufficient condition for F (·) to be bounded from below
is that the set X = {x : F (x) ≤ F (x◦)} is compact for some point x◦.

Lemma 4.11 Let X = {x : F (x) ≤ F (x◦)} be compact and let the lower level prob-
lem satisfy (MFCQ), (SSOC), and (CRCQ). Let {xk} be a sequence of iterates pro-
duced by Algorithm 1. Then, there is a subsequence {xki

} of the sequence {xk} that
converges to an element of C.

Proof By Lemma 4.9 we have limi→∞ tki
= 0. This implies there are infinitely many

unsuccessful iterates. Let δ be an arbitrary small positive number and define

SC(δ) := X \
⋃
x∈C

B(x, δ).

Since xk ∈ X, it follows either xk ∈ SC(δ) or xk ∈ ⋃
x∈C B(x, δ). Let xk ∈ SC(δ). Due

to ρ(D) > cos(φ(F , SC)) and using Lemma 4.8 we obtain that, for such xk and for
all t∗ and σ there exists d ∈ D such that F (xk + td) − F (xk) < −σ t,∀t ∈ (0, t∗].
The number of such iterates xk must be finite, since otherwise we have F (xk) → −∞
which is a contradiction to the assumption that F (·) is bounded below. Hence there
must exist k◦ such that

xk ∈
⋃
x∈C

B(x, δ), ∀k ≥ k◦.

Since δ > 0 is arbitrarily chosen, this implies that all accumulation points of {xk}
belong to C. By boundedness of X there exists at least one accumulation point. �

The main difficulty in Algorithm 1 is to find φ(F , SC). Clearly for an arbitrary
set it is difficult to calculate this number practically. Hence, it is important to modify
Algorithm 1 in such a way that it does not use φ(F , SC). This is done in Algorithm 2.
The following theorem is originally stated in [15] for a locally Lipschitz function.

Theorem 4.12 Let C be the set of all Clarke stationary points of problem (2.1). Let
the lower level problem satisfy (MFCQ), (SSOC) and (CRCQ) and let X be compact.
Assume also that {ρk} is produced in such a way that limk→∞ ρk = 1. Then, the
sequence {xk} produced by the Algorithm 2 has a subsequence that converges to a
point in C.

Proof Let the sequence {tk} be produced by the algorithm. From Lemma 4.9 we have
limk→∞ tk = 0. Let δ > 0 be sufficiently small. Set

SC(δ) = X \
⋃
x∈C

B(x, δ).
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Algorithm 2 Direct search algorithm for bilevel programming: the second version
Initialization: Select an initial point x◦ and a positive number ρ◦ < 1. Consider

constants c1, c2, t◦, βmax, βmin with 0 < c1 < 1 < c2, βmax ≥ βmin. k := 0. Consider
a continuous single variable function ω(t) such that limt→0

ω(t)
t

= 0 and ω(t) > 0
if t > 0.

Step 1: Choose Dk with vector density ρk > 0 and βmin ≤ ‖d‖ ≤ βmax, ∀d ∈ Dk .
Step 2: Search for dk ∈ Dk such that F (xk + tkdk) < F (xk) − ω(t). If there exists

such a direction d then go to Step 3 otherwise go to Step 4.
Step 3 (Successful iterate): Do the following:

set xk+1 = xk + tkdk

set tk+1 = c2k
tk, c2k

∈ [1, c2) go to Step 1.
Step 4 (Unsuccessful iterate): Do the following:

Set xk+1 = xk

Set tk+1 = c1k
tk, c1k

∈ (c1,1) go to Step 5.
Step 5 (Stopping condition): If tk+1 < t◦ then go to Step 6.
Step 6: Select ρk+1 > ρk . Pick Dk+1 ⊇ Dk with ρ(Dk+1) ≥ ρk+1 and βmin ≤ ‖d‖ ≤
βmax, ∀d ∈ Dk+1. Put k := k + 1 and go to Step 2.

From Theorem 4.6, for every such set SC(δ) we have φ(F , SC(δ)) > 0. Since ρk → 1
as k → ∞ there must exist a constant k◦ such that ρk > φ(F , SC(δ)) for k ≥ k◦. Let
Dk◦ be a finite generating set with vector density ρk◦ . By Lemma 4.8 there exist τ

and ε such that for all t ∈ (0, τ ] we have

min
v∈Dk◦

F (x + tv) − F (x) ≤ −εt.

For every k ≥ k◦ we have Dk◦ ⊆ Dk . That means minv∈Dk
F (x + tv) − F (x) ≤ −εt

for the above τ and ε. The remaining proof is similar to the proof of Theorem 4.11. �

5 Conclusion

We have shown that, if the lower level problem is a convex parametric optimization
problem satisfying (MFCQ), (CRCQ) and (SSOC), then the bilevel programming
problem can be replaced by single level Lipschitz optimization problem. The direct
search method can be applied to the later problem. We have presented two versions of
the algorithm. However, the algorithm developed here in this paper is purely theoret-
ical and conceptual because for efficient implementation we need the explicit knowl-
edge of the solution function which is difficult to determine in practice. The explicit
computation of the solution function y(·) is left for future investigation. Moreover, in
our future work we extend our study to the application of direct search methods for
bilevel programming problems with coupling constraints.
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