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Abstract When one solves Nonlinear Programming problems by means of algo-
rithms that use merit criteria combining the objective function and penalty feasibility
terms, a phenomenon called greediness may occur. Unconstrained minimizers attract
the iterates at early stages of the calculations and, so, the penalty parameter needs to
grow excessively, in such a way that ill-conditioning harms the overall convergence.
In this paper a regularization approach is suggested to overcome this difficulty. An
Augmented Lagrangian method is defined with the addition of a regularization term
that inhibits the possibility that the iterates go far from a reference point. Convergence
proofs and numerical examples are given.
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1 Introduction

When Penalty-Lagrangian methods are used for solving constrained minimization
problems, outer iterations consist of minimizing a merit function that combines the
objective function of the problem and a penalty term that inhibits infeasibility.

The penalty parameter is set to be small at the first outer iterations, because large
penalty parameters tend to produce ill-conditioned subproblems [4–6, 9]. As a con-
sequence, the first iterations tend to privilege optimality over feasibility and, so, very
infeasible points may be computed at the beginning, even when the initial approxi-
mation is feasible or nearly feasible [3]. This phenomenon is called greediness in the
present paper. Unfortunately, greediness may take place even when a feasible initial
point is available.

Here we consider the greediness phenomenon associated with the application of
the Powell-Hestenes-Rockafellar (PHR) Augmented Lagrangian method to noncon-
vex problems [4, 7, 10, 13]. We employ the approach of [2], by means of which
feasible limit points satisfy the KKT conditions under the CPLD (Constant Posi-
tive Linear Dependence) constraint qualification [1, 11]. The theoretical results of
[2] show that the method always converges to stationary points of the sum-of-squares
measure of infeasibility, which, of course, includes feasible points, but infeasible lim-
its are possible, being, in general, local minimizers of the infeasibility. This limitation
is unavoidable because, ultimately, the problem may have no feasible points. How-
ever, it is reasonable to provide the algorithms with practical procedures that avoid
convergence to local-nonglobal infeasibility minimizers, at least when feasible points
exist.

In 1973, dealing with the convex programming problem with inequality con-
straints, Rockafellar [12] introduced the Proximal Augmented Lagrangian method.
At each iteration of this method an unconstrained minimizer of the augmented La-
grangian with a proximal point penalization is computed. In the present paper we
employ a similar regularization procedure to inhibit greediness in nonconvex prob-
lems. Augmented Lagrangian regularizations were used with different purposes in the
convex programming literature. See, for example, [8]. The objective function used in
the subproblems of Algencan [2] is modified here in such a way that the distance with
respect a reference point, updated at every iteration, is penalized. We will show that
the convergence properties of [2] are preserved and that, in practice, the modification
does not harm the behavior of the algorithm when greediness is not present. Finally,
we show that the performance of the algorithm is improved in situations where greed-
iness is observed when applying Algencan.1

This paper is organized as follows. Two versions of the algorithm are presented in
Sect. 2. Convergence results are proved in Sect. 3. Numerical experiments are given
in Sect. 4. Section 5 contains final remarks and lines for future research.

Notation The symbol ‖ · ‖ denotes the Euclidean norm throughout the paper, al-
though many times it can be replaced by an arbitrary norm.

We denote K1 ⊂∞K2 to indicate that K1 is an infinite subsequence of indices con-

tained in K2.

1Algencan is available in www.ime.usp.br/~egbirgin/tango.

http://www.ime.usp.br/~egbirgin/tango
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2 Algorithms

The problem considered from now on is:

Minimize f (x)

subject to h(x) = 0, g(x) ≤ 0, x ∈ �.
(1)

The set � will be given by lower-level constraints of the form

h(x) = 0, g(x) ≤ 0.

In the most simple cases, � will take the form of an n-dimensional box:

� = {x ∈ R
n | � ≤ x ≤ u}.

We will assume that the functions f : R
n → R, h : R

n → R
m,g : R

n → R
p,h :

R
n → R

m,g : R
n → R

p have continuous first derivatives on R
n.

Given ρ > 0, λ ∈ R
m, μ ∈ R

p
+, x ∈ R

n the usual PHR- Augmented Lagrangian
Lρ(x,λ,μ) is given by:

Lρ(x,λ,μ) = f (x) + ρ

2

{ m∑
i=1

[
hi(x) + λi

ρ

]2

+
p∑

i=1

[
max

(
0, gi(x) + μi

ρ

)]2}
.

At each (outer) iteration, Algencan [2] minimizes (approximately) Lρ(x,λ,μ) sub-
ject to x ∈ �.

The Regularized Augmented Lagrangian employed in this paper uses two addi-
tional parameters that are updated at every outer iteration: The reference point x̄ and
the regularization parameter γ . Therefore, we define:

Lρ,γ,x̄ (x, λ,μ) = f (x) + ρ

2

{ m∑
i=1

[
hi(x) + λi

ρ

]2

+
p∑

i=1

[
max

(
0, gi(x) + μi

ρ

)]2}

+ γ

2
‖x − x̄‖2.

At each iteration of the algorithms an approximate solution of the subproblem

Minimize Lρk,γk,x̄
k (x, λ̄k, μ̄k)

s. t. h(x) = 0, g(x) ≤ 0
(2)

will be computed. The objective function of (2) has continuous first derivatives al-
though its second derivatives are generally discontinuous.

Let us define now the main algorithms presented in this paper.

Algorithm 2.1 The parameters that define the algorithm are: τ ∈ [0,1),
η > 1, λmin < λmax , μmax > 0, β > 0. At the first outer iteration we use a penalty
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parameter ρ1 > 0 and safeguarded Lagrange multipliers estimates λ̄1 ∈ R
m and

μ̄1 ∈ R
p such that

λ̄1
i ∈ [λmin, λmax] ∀i = 1, . . . ,m and μ1

i ∈ [0,μmax] ∀i = 1, . . . , p.

The initial regularization parameter is γ1 ≥ 0. We also assume that x0 ∈ R
n is an

arbitrary initial point that coincides with the initial reference point x̄0.
Finally, {εk} is a sequence of positive numbers that satisfies

lim
k→∞ εk = 0.

Step 1. Initialization.
Set k ← 1.

Step 2. Solve the subproblem.
Compute xk ∈ R

n such that there exist vk ∈ R
m,wk ∈ R

p satisfying
∥∥∥∥∇Lρk

(xk, λ̄k, μ̄k) + γk(x
k − x̄k−1)

+
m∑

i=1

vk
i ∇hi(x

k) +
p∑

i=1

wk
i ∇g

i
(xk)

∥∥∥∥ ≤ εk, (3)

wk ≥ 0, g(xk) ≤ εk, (4)

g
i
(xk) < −εk ⇒ wk

i = 0 for all i = 1, . . . , p, (5)

‖h(xk)‖ ≤ εk. (6)

Step 3. Estimate multipliers.
For all i = 1, . . . ,m, compute

λk+1
i = λ̄k

i + ρkhi(x
k). (7)

For all i = 1, . . . , p, compute

μk+1
i = max{0, μ̄k

i + ρkgi(x
k)} (8)

and

V k
i = max

{
gi(x

k),− μ̄k
i

ρk

}
.

Step 4. Update penalty parameter.
Define

Rk = max{‖h(xk)‖∞,‖V k‖∞}. (9)

If k > 1 and

Rk > τRk−1,
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define

ρk+1 = ηρk.

Else, define

ρk+1 = ρk.

Step 5. Update reference point and regularization parameter.
If

Rk = min{R0, . . . ,Rk} (10)

define x̄k = xk . Else, define x̄k = x̄k−1.
For all i = 1,m, compute:

λ̄k+1
i ∈ [λmin, λmax]. (11)

For all i = 1, . . . , p, compute:

μ̄k+1
i ∈ [0,μmax]. (12)

Choose γk+1 ≥ 0 in such a way that

γk+1 ≤ min{γk,βRk}. (13)

Remarks

1. The conditions (3–6) say that xk is an approximate KKT point of the subprob-
lem (2). Therefore, at each outer iteration we aim to minimize (approximately)
the regularized augmented Lagrangian subject to the lower level constraints de-
fined by the set �. Since the objective function of (2) is differentiable, first-order
algorithms may be used for this purpose.

2. Steps 3 and 4 of Algorithm 2.1 are as in the main algorithm of [2]. At Step 5
the reference point and the regularization parameter are updated. The idea is that
the reference point should be the best previous iterate in terms of the feasibility-
complementarity measure Rk . In other words, the regularization does not allow
the next iteration to be very far from the most feasible point already computed.
On the other hand, the condition (13) imposes that the regularization parameter
must tend to zero when Rk goes to zero. Thus, the effect of regularization tends to
disappear when the algorithm is going well in terms of getting feasible points.

3. If (10) takes place the safeguarded multipliers λ̄ and μ̄ in (11) and (12) will be
computed as follows:

λ̄k+1
i = max{λmin,min{λmax,λ

k+1
i }},

for i = 1, . . . ,m and

μ̄k+1
i = min{μk+1

i ,μmax}
for i = 1, . . . , p.

When (10) does not hold we define λ̄k+1 = λ̄k and μ̄k+1 = μ̄k .
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4. If the initial point is feasible and the initial inequality multipliers are chosen in
such a way that complementarity takes place, we have R0 = 0 and the condition
(10) may be too restrictive for updating the reference point. In this case it is con-
venient to replace (10) by

Rk = min{Rtol,R1, . . . ,Rk}, (14)

where Rtol > 0 is a given initial tolerance. The use of (14) instead of (10) does not
affect the convergence theory.

In the proof of the global convergence of Algorithm 2.1 we will use the fact that,
if K ⊂∞ N,

lim
k∈K

Rk = 0 ⇒ lim
k→∞γk = 0.

This property is true because limk∈K Rk = 0 implies, by (13), that limk∈K γk+1 = 0.
So, since γk+1 ≤ γk for all k, it follows that limk→∞ γk = 0. This means that the re-
quirement

γk+1 ≤ γk ∀k, (15)

imposed by (13) seems to be necessary for proving the convergence theorem. How-
ever, the condition (15) contradicts common sense because, perhaps, one would like
to increase the regularization parameter if feasibility deteriorates. In other words,
reasonable regularization strategies could require only that γk+1 ≤ βRk , but not that
γk+1 ≤ γk .

We will see that, with a suitable modification of Algorithm 2.1, monotonicity con-
ditions on γk may be eliminated.

Algorithm 2.2 This algorithm coincides with Algorithm 2.1 except that:

• For the solution of the subproblems we employ an iterative minimization algorithm
that uses x̄k−1 as initial point and guarantees that

Lρk,γk,x̄
k−1(x

k, λ̄k, μ̄k) ≤ Lρk,γk,x̄
k−1(x̄

k−1, λ̄k, μ̄k). (16)

• The condition (13) is replaced by

γk+1 ≤ βRk. (17)

The condition (16) is quite natural if one uses a monotone minimization algorithm
that preserves feasibility of the lower level set for solving the subproblems. In most
cases, the lower level set is simple enough to make it possible the employment of
such an algorithm.

The crucial result that allows one to relax (17) is the following.

Lemma 2.3 Let {xk} be a bounded sequence generated by Algorithm 2.2 and sup-
pose that there exists an infinite set of indices K such that

lim
k∈K

Rk = 0.
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Then,

lim
k→∞Rk = 0. (18)

Proof If {ρk} is bounded we have that Rk ≤ τRk−1 for all k large enough, so the
thesis is proved.

Let us assume, from now on, that limk→∞ ρk = ∞.
By (16), we have that, for all k ∈ N,

f (xk) + ρk

2

{
m∑

i=1

[
hi(xk) + λ̄k

i

ρk

]2

+
p∑

i=1

[
max

(
0, gi(x

k) + μ̄k
i

ρk

)]2
}

+ γk

2
‖xk − x̄k−1‖2

≤ f (x̄k−1) + ρk

2

{
m∑

i=1

[
hi(x̄k−1) + λ̄k

i

ρk

]2

+
p∑

i=1

[
max

(
0, gi(x̄

k−1) + μ̄k
i

ρk

)]2
}

.

Dividing by ρk we get:

1

ρk

f (xk) + 1

2

{
m∑

i=1

[
hi(xk) + λ̄k

i

ρk

]2

+
p∑

i=1

[
max

(
0, gi(x

k) + μ̄k
i

ρk

)]2
}

+ γk

2ρk

‖xk − x̄k−1‖2

≤ 1

ρk

f (x̄k−1) + 1

2

{
m∑

i=1

[
hi(x̄

k−1) + λ̄k
i

ρk

]2

+
p∑

i=1

[
max

(
0, gi(x̄

k−1) + μ̄k
i

ρk

)]2
}

.

(19)

By the definition of x̄k−1 we can write:

{x̄0, x̄1, x̄2, . . .} = {xk0 , xk1, xk2 , . . .}
where k0 ≤ k1 ≤ k2 ≤ · · · . Moreover, since limk∈K Rk = 0, we have that

lim
j→∞Rkj

= 0. (20)

Clearly, (20) implies that

lim
j→∞‖h(xkj )‖2 +

p∑
i=1

max{0, g(xkj )}2 = 0.

Therefore,

lim
k→∞‖h(x̄k−1)‖2 +

p∑
i=1

max{0, g(x̄k−1)}2 = 0.
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Therefore, the right-hand side of (19) tends to zero when k tends to infinity.
Thus,

lim
k→∞

1

2

{
m∑

i=1

[
hi(xk) + λ̄k

i

ρk

]2

+
p∑

i=1

[
max

(
0, gi(x

k) + μ̄k
i

ρk

)]2
}

= 0.

Since ρk → ∞ and μ̄k , λ̄k are bounded, this implies that

lim
k→∞‖h(xk)‖ = 0 (21)

and

lim
k→∞ max{0, gi(x

k)} = 0 ∀i = 1, . . . , p.

Then,

lim
k→∞V k

i = 0 ∀i = 1, . . . , p. (22)

By (9), (21) and (22) we obtain (18). �

Lemma 2.4 Let {xk} be a bounded sequence generated by Algorithm 2.2 and sup-
pose that there exists an infinite set of indices K such that

lim
k∈K

Rk = 0.

Then,

lim
k→∞γk = 0.

Proof The desired result follows from (17) and Lemma 2.3. �

3 Convergence

In this section we address the global convergence of Algorithms 2.1 and 2.2. Essen-
tially, we will show that the addition of the regularization term does not affect the
properties proved in [2] for the standard version of Algencan.

The main global convergence results are given below. Lemma 3.1 shows that, as
a result of solving (3–6) one obtains an approximate KKT point of the problem of
minimizing a regularized Lagrangian subject to x ∈ �.

Lemma 3.1 Assume that {xk} is a sequence generated by Algorithm 2.1 or Algo-
rithm 2.2. Then, for all k = 1,2, . . . we have:

‖∇f (xk) + ∇h(xk)λk+1 + ∇g(xk)μk+1 + γk(x
k − x̄k−1)

+ ∇h(xk)vk + ∇g(xk)wk‖ ≤ εk,
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where

wk ≥ 0, wk
i = 0 whenever g

i
(xk) < −εk,

g
i
(xk) ≤ εk ∀i = 1, . . . , p, ‖h(xk)‖ ≤ εk.

Proof The proof follows from (3–6) using the definitions (7) and (8). �

Lemma 3.2 below says that, if {xk}k∈K is a convergent subsequence and an in-
equality constraint is strictly satisfied at the limit point, then the corresponding es-
timated Lagrange multiplier is necessarily null if k is large enough. This property
holds even if the limit point is infeasible. This result corresponds, in Algencan, to
formula (4.10) of [2, Theorem 4.2]. It is interesting to show that it also holds for the
regularized method. The result has an independent interest in terms of stopping cri-
teria. It shows that, essentially, the algorithm takes care of complementarity and that
the algorithm designer needs only to look at feasibility and optimality for deciding if
an iterate is good enough. Moreover, since optimality is guaranteed by the solution of
the subproblems, we may think that the iterates follow a path that satisfies optimal-
ity and complementarity, aiming a feasible point along this path. The arguments for
proving this property are all contained in the proof of Theorem 4.2 of [2]. However,
we found it interesting to isolate them from that specific context in order to stress the
independent interest of the result.

Lemma 3.2 Assume that the sequence {xk} is generated by Algorithm 2.1 or Algo-
rithm 2.2 and K is an infinite sequence of indices such that

lim
k∈K

xk = x∗.

Then, for all k ∈ K large enough,

gi(x
∗) < 0 ⇒ μk+1

i = 0

and

g
i
(x∗) < 0 ⇒ wk

i = 0.

Proof By Lemma 3.1, we have that for all k ∈ K , there exist wk ∈ R
p

+, δk ∈ R
n such

that ‖δk‖ ≤ εk and

∇f (xk) +
m∑

i=1

λk+1
i ∇hi(x

k) +
p∑

i=1

μk+1
i ∇gi(x

k) + γk(x
k − x̄k−1)

+
m∑

i=1

vk
i ∇hi(x

k) +
p∑

i=1

wk
i ∇g

i
(xk) = δk.

By (8), μk+1 ∈ R
p
+ for all k ∈ N.
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Suppose that g
i
(x∗) < 0. Then, there exists k1 ∈ N such that ∀k ∈ K , k ≥ k1,

g
i
(xk) < −εk . Then, by (5),

wk
i = 0 ∀k ∈ K,k ≥ k1.

Now, assume that gi(x
∗) < 0. In this case, there exists k2 ≥ k1 such that

gi(x
k) < c < 0 ∀k ∈ K,k ≥ k2.

We consider two cases:

1. {ρk} is unbounded.
2. {ρk} is bounded.

In the first case, we have that limk∈K ρk = ∞. Since {μ̄k
i } is bounded, there exists

k3 ≥ k2 such that, for all k ∈ K,k ≥ k3,

μ̄k
i + ρkgi(x

k) < 0.

By the definition of μk+1 this implies that

μk+1
i = 0 ∀k ∈ K,k ≥ k3.

Now, consider the case in which {ρk} is bounded. In this case, by Step 4,

lim
k→∞V k

i = 0.

Therefore, since gi(x
k) < c < 0 for k ∈ K large enough,

lim
k∈K

μ̄k
i = 0.

Then, for k ∈ K large enough,

μ̄k
i + ρkgi(x

k) < 0.

By the definition of μk+1, there exists k4 ∈ N such that μk+1
i = 0 for all k ∈ K ,

k ≥ k4.
Therefore, there exists k5 ≥ max{k3, k4} such that for all k ∈ K , k ≥ k5,

gi(x
∗) < 0 ⇒ μk+1

i = 0 and g
i
(x∗) < 0 ⇒ wk

i = 0,

as we wanted to prove. �

The asymptotic joint behavior of the regularization parameter, together with the
penalty parameter and the reference point is described in Lemma 3.3. Thanks to this
result we are able to reproduce the convergence results of Algencan [2].
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Lemma 3.3 Assume that {xk} is a bounded sequence generated by Algorithm 2.1 or
Algorithm 2.2. Then,

lim
k→∞

γk

ρk

‖xk − x̄k−1‖ = 0. (23)

Proof The sequence {x̄k} is bounded since, by definition, {x̄k} ⊂ {xk}.
Since {μ̄k} is also bounded, we have that {Rk} is bounded. Therefore, since γk+1 ≤

βRk for all k, {γk} is bounded.
If {ρk} is bounded, then the penalty parameter ceases to increase for k large

enough. Therefore, limk→∞ Rk = 0. Then, since γk+1 ≤ βRk , we have that
limk→∞ γk = 0. Since ‖xk − x̄k−1‖ is bounded, it turns out that (23) takes place.

If {ρk} tends to infinity, the boundedness of {γk} and ‖xk − x̄k−1‖ also implies that
(23) holds. �

Theorem 3.1 Assume that x∗ is a limit point of a bounded sequence generated by
Algorithm 2.1 or Algorithm 2.2. Then:

1. At least one of the following two possibilities holds:

• The point x∗ fulfills the KKT conditions of the problem

Minimize ‖h(x)‖2 + ‖g(x)+‖2

s.t. h(x) = 0, g(x) ≤ 0.

• The CPLD constraint qualification is not fulfilled at x∗ for the lower level con-
straints h(x) = 0, g(x) ≤ 0.

2. If x∗ is a feasible point of (1) then at least one of the following two possibilities
holds:

• The point x∗ fulfills the KKT conditions of (1).
• The CPLD constraint qualification is not satisfied at x∗ for the constraints

h(x) = 0, g(x) ≤ 0, h(x) = 0, g(x) ≤ 0.

Proof Let K ⊂∞ N be such that

lim
k∈K

xk = x∗.

The first part of the thesis is obtained following the same sequence of arguments used
in Theorem 4.1 of [2]. The only difference is that we need to use (23) at the proper
places. (For this reason we included the assumption that the whole sequence {xk} is
bounded.)
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Let us prove the second part of the statement. By (3–6) and Lemma 3.2, for k ∈ K

large enough we have that:

∇f (xk) +
m∑

i=1

λk+1
i ∇hi(x

k) +
∑

gi (x
∗)=0

μk+1
i ∇gi(x

k) + γk(x
k − x̄k−1)

+
m∑

i=1

vk
i ∇hi(x

k) +
∑

g
j
(x∗)=0

wk
j∇g

j
(xk) = δk,

where μk+1 ∈ R
p
+,wk ∈ R

p

+ and ‖δk‖ → 0.
Now, since x∗ is feasible, we have that limk∈K Rk = 0. In the case of Algorithm 2.1

we have, by (13), that

lim
k→∞γk = 0. (24)

In the case of Algorithm 2.2, (24) follows from Lemma 2.4. Therefore, defining

δk = δk − γk(x
k − x̄k−1),

we have that, for k ∈ K large enough,

∇f (xk) +
m∑

i=1

λk+1
i ∇hi(x

k) +
∑

gi (x
∗)=0

μk+1
i ∇gi(x

k)

+
m∑

i=1

vk
i ∇hi(x

k) +
∑

g
j
(x∗)=0

wk
j∇g

j
(xk) = δk,

where μk+1 ∈ R
p
+,wk ∈ R

p

+ and ‖δk‖ → 0.
From this point on, we may follow the arguments of Theorem 4.2 of [2] for ob-

taining the desired result. �

4 Implementation and numerical examples

We implemented Algorithm 2.2 (RAlgencan) under the general framework of the
Algencan package, maintaining the default parameters and internal choices of this
implementation as well as the routines used for solving the subproblems. We used
the version of Algencan available in March 2007. The tolerances for feasibility and
optimality were εf eas = 10−8 and εopt = 10−4. As initial point for the algorithm that
solves subproblem k, we took the reference point x̄k−1. In this way we guarantee the
fulfillment of (16).

We employed the following strategy for updating the regularization parameter:

• We use (14) with Rtol = max{R0,1} and γ1 = 0.
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• If Rk = min{Rtol,R1, . . . ,Rk} we define γk+1 = 0. Else, we define

γk+1 = min{βRk, γk + 1}. (25)

In well behaved cases Algencan satisfies Rtol ≥ Rk ≥ Rk+1 at most iterations.
This is the reason why the performance of RAlgencan is almost identical to the per-
formance of Algencan in those situations. As an example, we considered the family
of problems defined by:

Minimize
∑
i>j

1

‖Pi − Pj‖
subject to Pk ∈ R

ndim, ‖Pk‖ ≤ 1, k = 1, . . . , npun

for different values of ndim,npun. We wrote x = (P1, . . . ,Pnpun) and we defined the
initial point by

x0
i = sin(i), i = 1, . . . , n.

We ran Algencan and RAlgencan for the problems defined by ndim = 3, npun =
10,20, . . . ,100. Both algorithms obtained the same solutions in the 10 problems. In
6 problems (npun = 10,20,40,60,90,100) both used the same number of iterations.
Algencan converged in 27 iterations for npun = 30 and in 25 iterations for npun = 50.
In these problems RAlgencan employed 28 iterations. On the other hand, RAlgencan
converged in 19 iterations for npun = 70 and in 18 iterations for npun = 80. Algencan
needed 23 and 21 iterations respectively for those problems.

Then, we considered the following 6 problems, in which Algencan exhibited the
greedy behavior. In all these problems the lower-level constraint set � was the (arti-
ficial) box [−1020,1020]n.

Problem 1

Minimize
n∑

i=1

x3
i

subject to gi(x) ≡ −xi ≤ 0, i = 1, . . . , n.

Initial point: (−7, . . . ,−7), n = 100.

Results

• Algencan stopped at iteration 9, due to impossibility of improving feasibility dur-
ing 9 consecutive iterations. The final norm of the constraint was ≈ 1020. The final
objective function value was −1060.

• RAlgencan detected greediness at the first iteration with f (x1) = −1062 and
R1 ≈ 1020. So, x0 was used as reference point and γ2 = 1. The same situation
was repeated the next 5 iterations, in which the regularization parameter was up-
dated. At iteration 7 the minimization subproblem used γ7 = 6. The solution of the
seventh subproblem was finally acceptable, with R7 ≈ 0.004 and f (x7) ≈ −0.98.
As a consequence, the algorithm chose γ8 = 0 and convergence ocurred at iteration
9, with the fulfillment of the feasibility-optimality convergence criterion.



242 E.V. Castelani et al.

Problem 2

Minimize −x1x2x3

subject to h1(x) ≡ x1 − 4.2 sin(x4)
2 = 0,

h2(x) ≡ x2 − 4.2 sin(x5)
2 = 0,

h3(x) ≡ x3 − 4.2 sin(x6)
2 = 0,

h4(x) ≡ x1 + 2x2 + 2x3 − 7.2 sin(x7)
2 = 0.

Initial point: (1,2,3,4,5,6,7).

Results

• At the initial point we have f (x0) ≈ −6 and R0 ≈ 7.9. The first iteration of Algen-
can was greedy, obtaining f (x1) ≈ −106,R1 ≈ 1020. Algencan could not improve
feasibility in the next iterations, in spite of the growth of the penalty parameters.
The algorithm stopped at iteration 9, due to an unacceptably big penalty parameter.

• At the first iteration, with γ1 = 0, RAlgencan obtained, of course, the same iterate
x1 as Algencan did. Therefore, the algorithm took x0 as reference point and in-
creased the regularization parameter. With γ2 = 1, x2 was still very close to x1 but,
with γ3 = 2, a quite reasonable iterate x3 was computed, with f (x3) ≈ −2.76 and
R3 ≈ 0.12. As a consequence, RAlgencan chose γ4 = 0. However, due to moderate
deterioration of feasibility, after 4 iterations, it was necessary to take γ8 = 1 and
γ9 = 2. This was enough to find a good improvement of Rk , so that γ10 = γ11 = 0
and convergence criteria were met at x11.

Problem 3

Minimize −x1x
3
2

subject to h1(x) ≡ x1x2 − 4 sin(x1)
2 = 0.

Initial point: (1,1).

Results

• Algencan computes a very greedy infeasible first outer iteration. Therefore, the
penalty parameter is increased many times. After each penalty parameter increase,
feasibility is slightly improved. However, after 40 outer iterations the method stops
with a very large penalty parameter and a very infeasible point. The final norm of
the constraint is greater than 1020.

• After the first greedy iteration, RAlgencan uses x0 as reference point associated
with γ2 = 1 as regularization parameter. The second iteration was also greedy and
γk needed to be increased once more. With γ3 = 2 greediness was overcome and
the algorithm obtained f (x3) ≈ −43 and R3 ≈ 0.46. From this iteration on, accu-
racy improved monotonically, and the regularization parameter was zero. Conver-
gence criteria were met at iteration 18, with f (x18) ≈ −30.

Problem 4

Minimize −x1 exp(−x1x2)

subject to h1(x) ≡ −(x1 + 1)3 + 3(x1 + 1)2 − 1.5 + x2 = 0.

Initial point: (1,−1.5).
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Results

• Algencan exhibited greediness at the first iteration, with f (x1) ≈ −∞ and
R1 ≈ 1012. The penalty parameter was increased during 9 consecutive iterations
without modification of this state of facts. Divergence was declared at iteration 21.

• The first iteration was greedy, therefore, RAlgencan increased the regularization
parameter and the reference point for the second iteration was the initial point x0.
As a consequence, the second iteration was less infeasible than the first. However,
since its infeasibility is substantially greater than the one of the initial point, the
regularization parameter increased. Increase of γk continued until iteration 7. With
γ7 = 6 we obtained f (x7) ≈ −2.3 and R7 = 10−4. From then on, the algorithm
used γk = 0. Convergence ocurred at iteration 10, with f (x10) ≈ −2.28.

Problem 5

Minimize −
n∑

i=1

(x8
i + xi)

subject to
n∑

i=1

x2
i ≤ 1.

Initial point: (0.1, . . . ,0.1), n = 50.

Results

• At the initial point we have f (x0) ≈ −5,R0 = 0. The first iteration of Algencan
leads to f (x1) = −1099,R1 ≈ 1026. The situation was not modified in the next 20
iterations and divergence was declared at iteration 21.

• After the first greedy iteration, Ralgencan took x0 as reference point and ran the
second subproblem with γ2 = 1. As a result, greediness was corrected, obtaining
f (x2) ≈ −8 and R2 ≈ 0.29. At the following iterations the algorithm used γk = 0.
Convergence ocurred at iteration 15 with f (x15) = −0.71.

Problem 6

Minimize
n∑

i=1

ϕ(xi)

subject to
n∑

i=1

x2
i ≤ 1,

where ϕ(t) = log(cos(t)) if cos(t) > 0; ϕ(t) = −1030 otherwise.
We used n = 100.
Initial point: (1/n, . . . ,1/n).

Results The peculiarity of this problem is that the objective function is defined ar-
bitrarily as f (x) = −1030 at the points x where, in principle, f (x) would not be
defined. All these points are infeasible.
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• At the initial (feasible) point we have f (x0) ≈ −0.005 and R0 = 0. The initial
iterate computed by Algencan gave f (x1) = −1030 and R1 ≈ 250. At all the sub-
sequent Algencan iterates the objective function value was −1030. The feasibility-
complementarity measure Rk oscilated around 250 and divergence was declared at
iteration 22.

• The second iteration of RAlgencan was computed with γ2 = 1 and was not able
to correct the initial greediness. However, with γ3 = 2 and preserving x0 as refer-
ence point, we obtained f (x3) ≈ −0.002 and R3 = 0. With γ4 = 0, iteration 4
was greedy again, giving f (x4) = −1030 and R4 ≈ 246. Greediness was cor-
rected at iteration 5, with γ5 = 1, f (x5) = −0.5 and R5 ≈ 10−4. Since R5 was
not the minimum of {Rtol,R1, . . . ,R5} the algorithm chose, according to (25),
γ6 = βR5 ≈ 0.102. This mild regularization produced again a greedy iteration
f (x6) = −1030,R6 ≈ 246. So, the algorithm defined γ7 ≈ 1.102. Greediness was
corrected once more, allowing the algorithm to choose γ8 = 0.006 due to the limi-
tation βRk . Alternate greedy and non-greedy iterations followed until iteration 12.
With γ12 = 1 we got f (x12) ≈ −0.5 and R12 ≈ 10−8. Finally, convergence was
detected at iteration 14.

5 Final remarks

The greediness phenomenon is defined in this paper as the tendency of some nonlin-
ear programming methods to find very infeasible points with very small functional
values, in general, at the first iterations. This phenomenon may occur even when one
has good (perhaps feasible) initial approximations to the solution of the problem. Fre-
quently, the points found in this way are local minimizers of the infeasibility measure
and the method converges to them even from the theoretical point of view.

The remedy proposed in this paper to alleviate this inconvenient is to replace the
usual Augmented Lagrangian iteration by a regularized iteration with respect to a
suitably defined reference point. We showed that the resulting methods preserve the
global convergence properties of the original algorithm. From the practical point of
view, we showed that the modification proposed does not seem to harm the behavior
of Algencan (the method introduced in [2]) when this algorithm behaves well. We
also provided some evidence that, in situations where Algencan fails because of the
greediness effect, the regularization procedure may help to put the algorithm in the
correct trajectory.

An additional consequence of the regularization strategy is that conditioning of the
subproblems is improved. Usually, this type of improvement is accompanied by a de-
crease of the speed of convergence. However, this phenomenon was not observed in
our numerical experiments using problems without greediness. This is due to the par-
ticular strategy employed for reducing the regularization parameter, that tends to zero
when feasibility-complementarity progresses. Therefore, it may be recommendable
to incorporate the regularization strategy as a standard procedure of Algencan.

Considering that the greediness phenomenon is a serious drawback for the ap-
plication of generally useful nonlinear programming algorithms that use globalizing
devices combining feasibility and optimality, we think that further research may be
expected, along the following lines:
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• Alternative heuristic choices of regularization parameters, preserving the theoreti-
cal requirements of Algorithms 2.1 or 2.2.

• Anti-greedy strategies not based on regularization.
• Warm-start procedures based on a priori knowledge of the quality of the initial

point.
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