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Abstract A new general scheme for Inexact Restoration methods for Nonlinear Pro-
gramming is introduced. After computing an inexactly restored point, the new iterate
is determined in an approximate tangent affine subspace by means of a simple line
search on a penalty function. This differs from previous methods, in which the tan-
gent phase needs both a line search based on the objective function (or its Lagrangian)
and a confirmation based on a penalty function or a filter decision scheme. Besides
its simplicity the new scheme enjoys some nice theoretical properties. In particular,
a key condition for the inexact restoration step could be weakened. To some extent
this also enables the application of the new scheme to mathematical programs with
complementarity constraints.

Keywords Nonlinear programming · Inexact restoration · Line search · Penalty
function · Complementarity constraints

1 Introduction

Let us consider the optimization problem

F(x) → min subject to x ∈ G := {x ∈ � | H(x) = 0} (1)
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with given functions F : Rn → R and H : R
n → R

m and a given compact and convex
set � ⊂ R

n. The functions F and H are assumed to be at least continuous on �.
Additional smoothness assumptions will be made when needed.

Modern Inexact Restoration (IR) methods for Nonlinear Programming begin with
the algorithm of Martínez and Pilotta [15]. The common features of this and other IR
methods are the following:

(I) Given the current iterate xk ∈ R
n, an intermediate more feasible point yk is

computed using an arbitrary procedure which, in practice, is chosen according
to the problem characteristics. This is the Restoration Phase of the method.

(II) A trial point z is computed on the “tangent set” that passes through yk , in such
a way that an optimality measure improves at z with respect to yk .

(III) If the point z is acceptable for a criterion that combines feasibility and optimal-
ity, one defines the new iterate xk+1 = z. Otherwise, the trial point z is chosen
in a smaller trust region around yk .

The optimality improvement (II) involved in the choice of z can be done by a line
search with respect to the objective function [9, 15] or the Lagrangian [14]. The ac-
ceptability of z in (III) depends, in [14, 15], on a function that combines feasibility
and optimality. In [9] the acceptability of z was decided on the basis of a filter strat-
egy. The filter strategy was developed and modified in further papers, see [11, 20, 21].
Assumptions for the local convergence of an IR method were analyzed by Birgin and
Martínez [4]. Based on this and [14], Kaya and Martínez [12] suggested to apply
an IR method to a class of discretized optimal control problems and provide results
on local convergence properties of the method, see also Sect. 5 of the expanded ver-
sion [13] of [12]. The use of an IR technique for solving bilevel problems was studied
in [1]. An IR method in which inexact restoration appears as the natural generaliza-
tion of the spectral projected gradient method [5–7] to minimization with nonlinear
constraints was given in [8].

In the present paper we aim to simplify and extend the applicability of the IR
approach in several ways. For this purpose we introduce an IR Model Algorithm
where the new iterate (in an approximation of the tangent set) is obtained by means
of a single line-search procedure that only involves a penalty function. Therefore, it
is not necessary to begin with a line search involving optimality and completing the
iteration with a criterion that combines optimality and feasibility.

Our main result proves that any sequence of search directions generated by the
Model Algorithm tends to zero. With adequate choices of the search direction this
implies a necessary optimality condition to hold at an accumulation point of the se-
quence {xk}.

The Model Algorithm poses general conditions for the inexact restoration and for
the choice of search directions. These conditions are weaker than existing ones and, in
particular, allow to some extent the application of the Model Algorithm to problems
with complementarity constraints.

Moreover, the sequences of penalty parameters and step lengths generated by the
Model Algorithm are proved to be bounded away from zero. This simplifies the
proofs and enables us to show that every accumulation point is stationary (and not
just one of them as in [14, 15]).
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2 The inexact restoration model algorithm

As tools for describing the Model Algorithm and its analysis we will make use of
functions h : � → [0,∞) and � : � × [0,1] → R. The function h is assumed to be
continuous on �. Moreover, h is required to be a majorant for ‖H‖ on �, i.e.,

‖H(x)‖ ≤ h(x) for all x ∈ �. (2)

The advantage of using h instead of ‖H‖ will become clear in Sect. 4 when we deal
with complementarity constraints. The penalty function � is defined by

�(x,p) := pF(x) + (1 − p)h(x) for all (x,p) ∈ � × [0,1].
We are now going to describe a simple frame for an inexact restoration algorithm.
On the one hand, this frame allows the user to apply several concrete methods within
both the restoration phase and the optimization phase. On the other hand, the frame
is detailed enough for a concise global convergence analysis.

Model Algorithm

Let r ∈ [0,1) and β,γ, γ̄ , τ > 0 be fixed.
Step 0: Initialization.

Choose x0 ∈ � and p0 ∈ (0,1). Set k := 0.
Step 1: Inexact restoration.

Compute yk ∈ � so that

h(yk) ≤ rh(xk), (3)

F(yk) ≤ F(xk) + βh(xk). (4)

Step 2: Penalty parameter.
Determine pk+1 ∈ {2−ipk | i ∈ {0,1,2, . . .}} as large as possible so that

�(yk,pk+1) − �(xk,pk+1) ≤ 1

2
(1 − r)(h(yk) − h(xk)). (5)

Step 3: Search direction for optimization.
Compute dk ∈ R

n so that yk + dk ∈ � and

F(yk + tdk) ≤ F(yk) − γ t‖dk‖2, (6)

h(yk + tdk) ≤ h(yk) + γ̄ t2‖dk‖2 (7)

holds for all t ∈ [0, τ ].
Step 4: Line search.

Determine tk ∈ {2−i | i ∈ N} as large as possible so that

�(yk + tkd
k,pk+1) − �(xk,pk+1) ≤ 1

2
(1 − r)(h(yk) − h(xk)). (8)

Step 5: Update.
Set xk+1 := yk + tkd

k and k := k + 1. Go to Step 1.
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The conditions on yk in Step 1 are weaker than those used in existing IR methods,
see Sect. 4 for a discussion. The remaining part of this section is devoted to the well-
definedness of the Steps 3 and 1 of the Model Algorithm. For Steps 2 and 4 this
question is answered by Lemma 3 in Sect. 3.

Remark 1 The conditions on dk in Step 3 of the Model Algorithm can always be sat-
isfied by setting dk := 0. Obviously, this is not a useful choice in general. In Sect. 3 it
will be shown that {dk} converges to zero if Step 1 is always well defined. Therefore,
it has to be guaranteed that limk→∞ dk = 0 has a reasonable meaning, i.e., that an ac-
cumulation point of the sequence {yk} converges to a stationary point of problem (1).
Therefore, appropriate directions dk which also satisfy (6) and (7) need to be used.
Based on the following lemma, Remark 2 shows that this is possible at least if � is a
polyhedron and h is given by ‖H‖.

To proceed let us define the set (of tangent directions)

T (y) := {d ∈ R
n | y + d ∈ �,∇H(y)	d = 0} for all y ∈ �.

Obviously, T (y) is always nonempty (since 0 ∈ T (y)), convex, and closed. Moreover,
for y ∈ �, let

d(y) := ProjT (y)(−∇F(y))

denote the Euclidean projection of −∇F(y) onto T (y).

Lemma 1 Suppose that F and H are differentiable on � and that ∇F and ∇H are
Lipschitz continuous on � with modulus L > 0. Then, there are γ, γ̄ , τ > 0 so that

F(y + td(y)) ≤ F(y) − γ t‖d(y)‖2 (9)

and

‖H(y + td(y))‖ ≤ ‖H(y)‖ + γ̄ t2‖d(y)‖2 (10)

hold for all y ∈ � and all t ∈ [0, τ ].

Proof Let y ∈ � be arbitrarily chosen. Then, because 0 ∈ T (y), we get

‖∇F(y) + d(y)‖2 = ‖ − ∇F(y) − ProjT (y)(−∇F(y))‖2 ≤ ‖∇F(y)‖2

and, thus,

∇F(y)	d(y) ≤ −1

2
‖d(y)‖2.

Using the Lipschitz continuity of ∇F on �, y, y + d(y) ∈ �, and the convexity of �

we obtain by Taylor’s formula

F(y + td(y)) = F(y) + t∇F(y)	d(y) + t

1∫

0

(∇F(y + σ td(y)) − ∇F(y))	d(y)dσ
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≤ F(y) − 1

2
t‖d(y)‖2 + 1

2
t2L‖d(y)‖2

for all t ∈ [0,1]. Therefore, (9) is valid for all t ∈ [0, τ ] with τ := min{1, 1
2L

} and
γ := 1

4 . Similarly, using ∇H(y)	d(y) = 0 due to d(y) ∈ T (y), we have

H(y + td(y)) = H(y) + t

∫ 1

0
(∇H(y + σ td(y)) − ∇H(y))	d(y)dσ

and

‖H(y + td(y))‖ ≤ ‖H(y)‖ + 1

2
Lt2‖d(y)‖2

for all t ∈ [0,1]. Thus, (10) holds for all t ∈ [0,1] with γ̄ := 1
2L.

Hence, (9) and (10) are valid for all y ∈ � and all t ∈ [0, τ ] with γ, γ̄ , τ as defined
in this proof. �

Remark 2 Let � be defined by linear inequalities and equations. Assume that h :=
‖H‖ and dk in Step 3 of the Model Algorithm is given by dk := d(yk). Moreover, let
us assume that

lim
k→∞dk = 0

is satisfied. Since {yk} lies in the compact set � a subsequence of {yk} converges to
some y∗ ∈ �. According to Lemma 1, it follows that y∗ ∈ G (by (3)) and

lim
k→∞ ProjT (yk)(−∇F(yk)) = 0. (11)

This implies that y∗ is feasible and satisfies the AGP optimality condition associated
to problem (1). AGP (Approximate Gradient Projection) is a strong sequential neces-
sary optimality condition introduced by Martínez and Svaiter [16]. If a feasible point
satisfies the AGP condition and the Mangasarian-Fromovitz constraint qualification
(MFCQ), or even the weaker constant positive linear dependence (CPLD) constraint
qualification from [18], then this point is a Karush-Kuhn-Tucker point, see Andreani,
Martínez, and Schuverdt [3].

Hence, with Lemma 1, we have shown that Step 3 of the Model Algorithm can
generate directions dk for which limk→∞ dk = 0 has a reasonable meaning in respect
to an optimality condition.

Based on the next lemma, sufficient conditions under which Step 1 (inexact
restoration) of the Model Algorithm is well defined will be provided in Remark 3.

Lemma 2 Suppose that � is a bounded box, i.e., � = {x ∈ R
n | li ≤ xi ≤ ui for i =

1, . . . , n} with −∞ < li < ui < ∞ for i = 1, . . . , n. Moreover, suppose that the fea-
sible set G is nonempty, that H is continuously differentiable on �, and that MFCQ
holds for all x ∈ G. Then, there is ζ > 0 so that for each x ∈ � there is y(x), so that

y(x) ∈ G (12)
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and

‖x − y(x)‖ ≤ ζ‖H(x)‖. (13)

Proof Taking into account that G is compact and that the MFCQ holds for all points
in G we can apply Corollary 1 in Robinson’s paper [19]. This yields that there is
ζ0 > 0 so that for each z ∈ G there is some δ(z) > 0 so that

dist[x,G] ≤ ζ0‖H(x)‖ for all x ∈ � ∩ B(z, δ(z)),

where B(z, δ(z)) denotes the ball around z with radius δ(z). By the compactness of
G we easily get that there is δ > 0 so that

dist[x,G] ≤ ζ0‖H(x)‖ for all x ∈ � ∩ (G + δB) (14)

with B as the unit ball in R
n. Let us assume that there is x ∈ �̄ := � \ (G + δB).

Since G and �̄ are nonempty and compact and ‖H‖ is continuous we have

c1 := sup
x∈�̄

dist[x,G] < ∞ and c2 := inf
x∈�̄

‖H(x)‖ > 0.

Thus, it follows that

dist[x,G] ≤ c1 = c1

c2
c2 ≤ c1

c2
‖H(x)‖ for all x ∈ �̄.

With ζ := ζ0 + c1
c2

we obtain

dist[x,G] ≤ ζ‖H(x)‖ for all x ∈ �.

By (14), this is also valid if �̄ = ∅.
Therefore and with the compactness of G we obtain for each x ∈ � that there is

y(x) ∈ G with ‖x − y(x)‖ = dist[x,G] ≤ ζ‖H(x)‖, i.e., (12) and (13) are satisfied
for all x ∈ �. �

Remark 3 We are now going to explain that Lemma 2 provides sufficient conditions
under which Step 1 of the Model Algorithm (inexact restoration) is well defined. To
this end let h be given by ‖H‖ and note that, given xk ∈ �, (12) implies

h(y(xk)) = ‖H(y(xk))‖ = 0 ≤ r‖H(xk)‖ = rh(xk)

for any r ≥ 0. Furthermore, by the local Lipschitz continuity of F and (13) we have

F(y(xk)) − F(xk) ≤ LF ‖y(xk) − xk‖ ≤ LF ζ‖H(xk)‖ = LF ζh(xk),

where LF > 0 is some Lipschitz constant for F on (the compact set) �. Setting
yk := y(xk) and β := LF ζ we finally see that yk satisfies the conditions (3) and (4)
within Step 1 of the Model Algorithm.

Note that the MFCQ is slightly weaker than the regularity condition (assumption
A4) used by Martínez [14]. In contrast to Lemma 2 he shows that in a certain neigh-
borhood of G a particular Newtonian choice of yk satisfies conditions (3) and (4).
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We finally refer the reader to [12, Lemma 4.1] where the Euler discretization of
a certain optimal control problem has the property that (3) (with h := H ) implies
condition (16) (see Sect. 4) which, again, implies (4).

3 Convergence analysis

We will first prove that the Model Algorithm is well defined if its Step 1 is well
defined. In particular, the penalty parameters pk and the step lengths tk are proved to
remain bounded away from zero. Based on this, we will show in Theorem 1 that the
sequences {h(xk)} and {H(xk)} tend to zero. Finally, Theorem 2 presents our main
result that {dk} converges to zero.

Lemma 3 Suppose that Step 1 of the Model Algorithm is well defined. Then, the
Model Algorithm is well defined. Moreover, there are k0 ∈ N and t̄ ∈ R so that

pk = pk0 > 0 for all k ≥ k0,

tk ≥ t̄ > 0 for all k ∈ N.

Proof Let xk and pk be generated by the Model Algorithm. Then, using (3) and (4)
we obtain, for any p ∈ (0,1),

�(yk,p) − �(xk,p) = p(F(yk) − F(xk)) + (1 − p)(h(yk) − h(xk))

≤ pβh(xk) − (1 − p)(1 − r)h(xk)

= h(xk)(p(β + 1 − r) − (1 − r)).

Therefore, if

0 ≤ p ≤ p̃ := 1 − r

2(β + 1 − r)

it follows that p(β + 1 − r) − (1 − r) ≤ − 1
2 (1 − r) and

�(yk,p) − �(xk,p) ≤ −1

2
(1 − r)h(xk) ≤ 1

2
(1 − r)(h(yk) − h(xk)).

Hence, Step 2 of the Model Algorithm is well defined and generates some pk+1.
More in detail, due to the rule of finding pk+1 as the largest value in {2−ipk | i ∈ N}
which satisfies (5), we have

pk+1 ≥ p̄ := min

{
p0,

1

2
p̃

}
> 0 for all k ∈ N. (15)

Thus, since either pk+1 = pk or pk+1 ≤ 1
2pk for all k ∈ N, there is k0 ∈ N so that

pk = pk0 ≥ p̄ for all k ≥ k0.
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Obviously, Step 3 of the Model Algorithm is well defined, see Remarks 1 and 2.
To show that Step 4 is also well defined we first note that, by (5), (6), (7), and (15),

�(yk + tdk,pk+1) − �(xk,pk+1)

= �(yk + tdk,pk+1) − �(yk,pk+1) + �(yk,pk+1) − �(xk,pk+1)

≤ pk+1(F (yk + tdk) − F(yk)) + (1 − pk+1)(h(yk + tdk) − h(yk))

+ 1

2
(1 − r)(h(yk) − h(xk))

≤ −p̄γ t‖dk‖2 + γ̄ t2‖dk‖2 + 1

2
(1 − r)(h(yk) − h(xk))

= t‖dk‖2(−p̄γ + t γ̄ ) + 1

2
(1 − r)(h(yk) − h(xk))

holds for all t ∈ [0, τ ]. Thus, if

0 ≤ t ≤ t̃ := min{τ, p̄γ γ̄ −1}
we have −p̄γ + t γ̄ ≤ 0 and

�(yk + tdk,pk+1) − �(xk,pk+1) ≤ 1

2
(1 − r)(h(yk) − h(xk)).

Hence, Step 4 of the Model Algorithm is well defined and provides tk with

tk ≥ t̄ := 1

2
t̃

for all k ∈ N. �

Remark 4 For previous IR methods having the same penalty function the bounded-
ness of the penalty parameters away from zero is not known. This indicates a possible
advantage of the Model Algorithm in respect to the speed of convergence.

Theorem 1 Suppose that Step 1 of the Model Algorithm is well defined. Then, for
any sequence {xk} generated by the Model Algorithm, there is σ̂ ≥ 0 so that

∞∑
k=0

h(xk) = σ̂ .

Moreover,

lim
k→∞h(xk) = 0 and lim

k→∞H(xk) = 0

are valid.

Proof According to Lemma 3 the Model Algorithm generates infinite sequences
{xk}, {yk}, {dk}, {pk}, and {tk}. In particular, pk = pk0 > 0 holds for all k ≥ k0.
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Therefore, exploiting (8) and (3), we obtain

�(xk+1,pk0) − �(xk,pk0) ≤ 1

2
(1 − r)(h(yk) − h(xk)) ≤ −1

2
(1 − r)2h(xk)

for all k ≥ k0. It follows immediately that, for any 
 ∈ N with 
 > k0,

�(x
,pk0) − �(xk0 ,pk0) =

−1∑
k=k0

(�(xk+1,pk0) − �(xk,pk0))

≤ −1

2
(1 − r)2


−1∑
k=k0

h(xk).

Taking into account that the function �(·,pk0) is continuous on the compact set �,
that {xk} ⊂ �, and that {h(xk)} ⊂ [0,∞), we conclude that the sequence {σ
} given
by

σ
 :=

∑

k=0

h(xk) for 
 ∈ N

is monotonically increasing and bounded and, in turn, converges to some σ̂ ≥ 0. Ob-
viously, this implies limk→∞ h(xk) = 0 and, due to (2), also limk→∞ H(xk) = 0. �

Theorem 2 Suppose that Step 1 of the Model Algorithm is well defined. Then,

lim
k→∞dk = 0.

Proof Using (6) and (4), we obtain that, for all k ∈ N,

F(xk+1) − F(xk) = F(yk + tkd
k) − F(yk) + F(yk) − F(xk)

≤ −γ tk‖dk‖2 + βh(xk).

Hence, by Lemma 3, it follows that

F(x
+1) − F(x0) =

∑

k=0

(F (xk+1) − F(xk)) ≤ −γ t̄


∑
k=0

‖dk‖2 + β


∑
k=0

h(xk)

is valid for all 
 ∈ N. Theorem 1 and {h(xk)} ⊂ [0,∞) now provide

F(x
+1) − F(x0) ≤ −γ t̄


∑
k=0

‖dk‖2 + βσ̂ for all 
 ∈ N.

Because F is continuous on the compact set � and {xk} ⊂ � we have
limk→∞ dk = 0. �
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4 Dealing with complementarity constraints

If complementarity constraints are present then the condition

‖yk − xk‖ ≤ β̃‖H(xk)‖ for all k ∈ N (16)

(with some β̃ > 0) as used in previous IR algorithms [1, 14, 15] for the inexact
restoration step becomes critical. Instead of requiring (16) the Model Algorithm as-
sumes (4) to hold. If F is Lipschitz-continuous on the compact set � with modulus
LF > 0 condition (4) is implied by (16). More in detail, we have

F(yk) − F(xk) ≤ LF ‖yk − xk‖ ≤ LF β̃‖H(xk)‖ ≤ βh(xk),

where (2) has been taken into account. Thus, condition (4) is weaker than (16). In
what follows we will describe two cases to exploit this. The first case is treated in
Sect. 4.1 and deals with a Mathematical Program with Complementarity Constraints
(MPCC) whose complementarity variables do not appear in the objective function. In
Sect. 4.2 we suggest a special choice of the majorant function h so that condition (4)
can be satisfied in the presence of complementarity constraints. Although the ideas
also work for more general settings the presentation in both cases is for simplicity
based on the following MPCC

F(u, v) → min subject to (u, v,w) ∈ G,

where G contains exactly those points (u, v,w) ∈ � which satisfy

H(u,v,w) :=

⎛
⎜⎜⎜⎝

g(u, v) − w

v1w1
...

vmwm

⎞
⎟⎟⎟⎠ = 0. (17)

The functions F : R
p+m → R and g : R

p+m → R
m are assumed to be sufficiently

smooth. The set � ⊂ R
p+m+m is a compact box, where the variables vi and wi have

the lower bound 0 for i = 1, . . . ,m. Thus, x in problem (1) can be identified with
(u, v,w), where n = p + 2m.

4.1 MPCCs with a particular objective

Let us assume here that F depends on u ∈ R
p only. For example, such situations can

be encountered for certain discretized optimal control problems where the objective
only depends on the control. Optimal control problems of this kind can be found in
[10, 17].

Let us now consider Step 1 of our Model Algorithm with xk = (uk, vk,wk) given.
If the inexact restoration is done in such a way that uk remains fixed and only (vk,wk)

can be modified so that yk = (uk, v̂k, ŵk) and

h(yk) ≤ rh(xk)
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it follows that condition (4) is obviously satisfied since

F(yk) = F(uk) = F(xk) ≤ F(xk) + βh(xk).

In contrast to this, due to yk −xk = (0, v̂k −vk, ŵk −wk), condition (16) is not satis-
fied in general. It might be interesting to identify other situations where condition (4)
holds but (16) does not.

4.2 The use of a special majorant function h

Before defining the continuous function h : � → [0,∞) with the property (2) we will
provide an auxiliary result.

Lemma 4 For some i ∈ {1, . . . ,m}, let q : R
p+m+m → R be defined by

q(u, v,w) := viwi for all (u, v,w) ∈ R
p+m+m.

If, for some (u, v,w) ∈ R
p+m+m and some d = (du, dv, dw) ∈ R

p+m+m,

viwi ≥ 0, (vi,wi) �= (0,0), ∇q(u, v,w)	d = 0

hold, then

q(u + tdu, v + tdv,w + tdw) = (v + tdv)i(w + tdw)i ≤ viwi = q(u, v,w)

is valid for all t ∈ R.

Proof Let us consider the case that vi �= 0. Then, since ∇q(u, v,w)	d = 0 is the
same as

wi(dv)i + vi(dw)i = 0,

we have

(dw)i = −(vi)
−1wi(dv)i .

With both equations and viwi ≥ 0 it follows that

(v + tdv)i(w + tdw)i = viwi + t (vi(dw)i + wi(dv)i) + t2(dv)i(dw)i

= viwi − t2(vi)
−1wi(dv)i(dv)i

≤ viwi.

In analogy to this, the same inequality is obtained for the case that wi �= 0. Thus, by
definition of q , the assertion of the lemma follows. �

Now, let us define the function h : � → [0,∞) by

h(u, v,w) := ‖H(u,v,w)‖ +
√

v	w for all (u, v,w) ∈ �. (18)
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Note that (u, v,w) ∈ � implies u,v ∈ R
n+. Obviously, (2) is valid.

Let xk = (uk, vk,wk) and yk = (ûk, v̂k, ŵk) denote the input and the output of
Step 1 of the Model Algorithm. The use of h as defined by (18) has the advantage
that condition (4) is now significantly weaker compared to the case when h = ‖H‖ is
employed. Condition (4) with h given by (18) reads as

F(yk) − F(xk) ≤ β
(
‖H(xk)‖ +

√
(vk)	wk

)
, (19)

where H is given by (17). In the presence of complementarity constraints it seems
appropriate to require that

‖yk − xk‖ ≤ β̄
(
‖H(xk)‖ +

√
(vk)	wk

)
(20)

holds for all k with some β̄ > 0. Note that

0 ≤
m∑

i=1

min{vi,wi} ≤
√

v	w for all v,w ≥ 0.

If F is Lipschitz continuous on the compact set � with modulus LF > 0 we have

‖F(yk) − F(xk)‖ ≤ LF ‖yk − xk‖
so that (20) implies (19). Moreover, it would be possible to replace

√
v	w within

(18) by (v	w)α with some α > 0 to further weaken (19) and (20).
It seems that replacing ‖H‖ by some h so that (4) becomes significantly weaker

is quite simple. However, the difficulty with replacing H by h are linked to condition
(7) in Step 3 of the Model Algorithm. Fortunately, for the definition of h given by
(18) it is possible to show that (7) can be satisfied, at least by choosing dk := d(yk)

(see Sect. 2 for d(y)). According to Lemma 1 and Lemma 4 this choice leads to

h(yk + tdk) = ‖H(yk + tdk)‖ +
√

(vk + tdk
v )	(wk + tdk

w)

≤ ‖H(yk)‖ + γ̄ t2‖dk‖2 +
√

(vk)	wk

≤ h(yk) + γ̄ t2‖dk‖2

for all t ∈ [0, τ ]. Hence, condition (7) is satisfied and the convergence theory for the
Model Algorithm is applicable.

5 Final remarks

The philosophy of Inexact Restoration relies on recognizing a few obvious and prac-
tical facts of Nonlinear Programming. The first is that feasibility is generally more
important than optimality and, so, deserves to be treated independently, using its im-
provement as an intermediate objective to be verified at each iteration. Nevertheless,
being rigorous with feasibility from the beginning may lead to slow convergence
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when high nonlinearity of the constraints is present or when restoring feasibility is
computationally costly. Finally, many problem structures suggest their own way for
keeping or restoring feasibility and this possible advantage should be exploited in
algorithms.

Our main objective here has been to provide a simple framework for defining
Inexact Restoration algorithms and proving their convergence. The Model Algorithm
in Sect. 2 has at least as good theoretical properties (regarding global convergence) as
those that are known for the IR Algorithms defined in [14, 15]. In addition, the Model
Algorithm provides that any accumulation point of the sequence {yk} is an AGP
point. To have the same for the sequence {xk} one could add an additional but very
weak condition in Step 1, e.g. ‖xk − yk‖ ≤ β̃h(xk)1/4. Moreover, the boundedness
of the penalty parameters and the step lengths away from zero could be shown. A
number of research topics remains. They include the efficient choice of directions in
Step 3 and local superlinear convergence.

The application of our algorithm to Mathematical Programs with Complementar-
ity Constraints (or bilevel programming) is appealing. We gave some hints on this
application in Sect. 4. In this respect, there are several open questions. In particular,
what is the meaning of the AGP optimality condition in the presence of comple-
mentarity constraints. Note that Andreani and Martínez [2] analyzed this question
successfully under a strict complementarity condition. Moreover, it seems interesting
to identify in detail those classes of bilevel programs or MPCCs that can be treated
by the ways suggested in Sects. 4.1 and 4.2. This is going to be a subject of future
research.
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