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Abstract Minimal containment problems arise in a variety of applications, such as
shape fitting and packing problems, data clustering, pattern recognition, or medical
surgery. Typical examples are the smallest enclosing ball, cylinder, slab, box, or el-
lipsoid of a given set of points.

Here we focus on one of the most basic problems: minimal containment under
homothetics, i.e., covering a point set by a minimally scaled translation of a given
container. Besides direct applications this problem is often the base in solving much
harder containment problems and therefore fast solution methods are needed, es-
pecially in moderate dimensions. While in theory the ellipsoid method suffices to
show polynomiality in many cases, extensive studies of implementations exist only
for Euclidean containers. Indeed, many applications require more complicated con-
tainers.

In Plastria (Eur. J. Oper. Res. 29:98–110, 1987) the problem is discussed in a more
general setting from the facility location viewpoint and a cutting plane method is
suggested. In contrast to Plastria (Eur. J. Oper. Res. 29:98–110, 1987), our approach
relies on more and more accurate approximations of the container. For facet and
vertex presented polytopal containers the problem can be formulated as an LP, and for
many general containers as an SOCP. The experimental section of the paper compares
those formulations to the cutting plane method, showing that it outperforms the LP
formulations for vertex presented containers and the SOCP formulation for some
problem instances.

L. Roth has been supported by the “Deutsche Forschungsgemeinschaft” through the graduate
program “Angewandte Algorithmische Mathematik”, Technische Universität München.

R. Brandenberg · L. Roth (�)
Zentrum Mathematik, Technische Universität München, Boltzmannstr. 3, 85747 Garching
bei München, Germany
e-mail: roth@ma.tum.de

R. Brandenberg
e-mail: brandenb@ma.tum.de

mailto:roth@ma.tum.de
mailto:brandenb@ma.tum.de


326 R. Brandenberg, L. Roth

Keywords Containment · Core sets · Cutting planes · Outer radius · 1-center ·
Convex optimization

1 Introduction

The notion of optimal containment encompasses a large number of geometric op-
timization problems, where the goal is to find an extremal representative Copt of a
given class of convex bodies, such that Copt contains (or is contained in) another
given body P . Optimal containment problems arise in different applications, such as
shape fitting and packing problems, facility location, data clustering, pattern recog-
nition, robotics, or surgery planning. Typical examples are computing the smallest
enclosing ball, cylinder, slab, box, or ellipsoid of a given body; see [13] for a survey.

The problem of interest is the minimal containment problem under homothetics:

MINIMAL CONTAINMENT PROBLEM (MCPV
Hom)

Input: n ∈ N, P ∈ V n, and C ∈ Cn,
Task: min

c∈Rn,ρ≥0
ρ, such that P ⊂ c + ρC,

where V n is the family of vertex presented polytopes in R
n (abbreviated as

V -polytopes), that is P = conv{v1, . . . , vm}, or equivalently, the family of finite
point sets and Cn a family of n-dimensional closed, convex sets with 0 ∈ int(C)

for all C ∈ Cn. If, in addition, C is bounded and 0-symmetric (i.e. C = −C),
MCPV

Hom denotes the task of computing the outer radius of P due to the norm
‖x‖C := min{λ ≥ 0 : x ∈ λC}. We will address ρ in the above definition as the radius
of the containment problem, too, even when C is not symmetric. Other choices of the
input set or the container are possible, yet less important in applications.

To the best of our knowledge, the first to consider minimal containment prob-
lems in a general setting are Eaves and Freund [7]. Besides this, mostly the special
case where Cn contains only the Euclidean ball, the well known Euclidean 1-center
problem (minimum enclosing ball, smallest enclosing ball), was studied and major
progress has been achieved in the last years (see [5, 6, 8, 9, 17, 18, 24, 26], or [21]
for an overview).

The complexity of MCPV
Hom depends on the representation of C. In [12] it was

shown that MCPV
Hom can be solved by linear programming if C is restricted to ver-

tex or facet presented polytopes, and furthermore that MCPV
Hom can be approximated

in polynomial time using the ellipsoid method if C is the unit ball of any lp-space
(p ∈ N). The proof of the latter can be extended to show polynomial time approxima-
bility if C is presented by a strong separation oracle.

Definition 1.1 For any input x ∈ R
n a strong separation oracle outputs x ∈ C or

a halfspace {x : aT x ≤ 1} supporting C in x/ρ, where ρ > 1 is chosen such that
x ∈ bd(ρC).

MCPV
Hom appears directly in various applications (see [4, 19], and the Euclidean

case literature) and indirectly as a subproblem in algorithms for other kinds of con-
tainment problems (for instance, k-center and its variants [3, 15], minimal enclosing
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slab or cylinder, or containment under similarities, i.e., homothetics plus rotations).
As the latter are often NP-hard, dimensions of solvable problem instances are quite
small, and usually the MCPV

Hom subroutine has to be called extremely often. Hence
the focus of our analysis is not polynomiality in the input dimension, but practicabil-
ity of algorithms and generality of solvable instances.

While problem instances with facet presented polytopal containers C (H-
polytopes) can usually be solved in good running times with standard LP packages,
the appropriate approach for general containers is less obvious, even for vertex pre-
sented containers. It is well known that the ellipsoid method performs very badly
in practice [14]. So it is for sure not the algorithm to choose. A good overview on
applied techniques to solve general convex programming problems is given in [10].
Depending on Cn some of these may be the appropriate choice for MCPV

Hom (see
Sects. 2 and 3).

In Sect. 2.4, we present a simple geometric cutting plane algorithm which requires
nothing but a separation oracle for C. It makes use of the special structure of MCPV

Hom
and is easy to implement. Its worst-case running time could be exponential (as it
is for the simplex method or the LP-type algorithms mentioned in Sect. 2.2, both
widely accepted despite the fact that there exist polynomial solution methods for the
underlying problems).

Cutting plane algorithms are a well-known technique used for many types of op-
timization problems. The one we suggest appears in [19] in the typical formulation
where cutting planes are refinements of the epigraph of the objective function ϕ and
hence needing an oracle for a subdifferential of ϕ. There, mostly minisum problems
and other objective functions are considered. We observe that in the geometric set-
ting of containment problems, cutting-planes are adaptive refinements of a polytopal
approximation of the container.

Apart from that, cutting planes are a widely accepted super-polynomial approach
to hard integer linear programming and sometimes also to solving very large LP prob-
lems. For non-smooth, non-linear optimization problems (in our case, for non-smooth
and non-polytopal containers C) cutting plane methods are believed to be the ideal
tool (see [10]). Our experiments approve the latter, showing the good performance of
the cutting plane method. In typical applications, the number of data points exceeds
the dimension of the data significantly, and often, the dimension is quite small. For
these input sizes, the cutting plane method outperforms up to date SOCP solvers (see
Sects. 2.3 and 3) and for V -polytopal containers, it is even faster than a direct LP
solution (see Sects. 2.1.2 and 3 for details).

2 Solution methods

MCPV
Hom is a convex programming problem, comprising (among others) linear and

second-order cone programming problems. Thus depending on the class of possible
containers Cn, specialized methods should be applied to solve and/or approximate the
containment problem.
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2.1 H- and V -polytopes

As mentioned in the introduction, MCPV
Hom can be formulated as an LP if C is re-

stricted to facet or vertex presented polytopes.

2.1.1 H-polytopes

Since we have assumed that 0 ∈ int(C), the offsets of the half-space defining inequal-
ities can be normalized to 1. So let P = conv{v1, . . . , vm} ⊂ R

n and C = ⋂k
i=1{x :

aT
i x ≤ 1} ⊂ R

n. Then

P ⊂ c + ρC ⇐⇒ aT
i (vj − c) ≤ ρ for all 1 ≤ i ≤ k, 1 ≤ j ≤ m.

Thus the smallest ρ with P ⊂ c + ρC for any c ∈ R
n is the solution of the following

LP:

min ρ

ρ + aT
i c ≥ max1≤j≤m aT

i vj for all 1 ≤ i ≤ k,

ρ ≥ 0.

(2.1)

The LP has n + 1 variables (ρ and c) and k inequalities (not counting non-
negativity constraints). The number of vertices in P is of minor importance as it
influences only the right hand side computations of the LP.

Mind that in the case where C is a parallelotope (and especially when ‖ · ‖C =
‖ · ‖∞), one can solve MCPV

Hom simply by computing maxj1,j2 aT
i (vj1 − vj2) for all i.

2.1.2 V -polytopes

If C = conv{w1, . . . ,wk} then

P ⊂ c + ρC ⇐⇒ (1/ρ)(vj − c) ∈ conv{w1, . . . ,wk} for all 1 ≤ j ≤ m.

By setting ρ′ = 1/ρ and c′ = c/ρ (assuming dimP > 0) this can again be expressed
as an LP:

max ρ′
ρ′vj − c′ − ∑k

i=1 λijwi = 0 for all 1 ≤ j ≤ m,
∑k

i=1 λij = 1 for all 1 ≤ j ≤ m,

λij ≥ 0 for all 1 ≤ i ≤ k, 1 ≤ j ≤ m.

(2.2)

Thus the LP has km + n + 1 variables and m(n + 1) constraints (not counting
non-negativity constraints), which means especially that the size of the LP depends
quadratically on m, the number of points in P , since both the number of variables
and the number of constraints depend linearly on m. Hence, the sizes of the LPs in
formulation (2.2) are much worse than those in (2.1). Experiments show that even
when C is a V -polytope, the cutting plane method based on H-approximations of C

is usually much faster than solving the LP (2.2) (compare Sect. 3).
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2.2 Euclidean containers

As mentioned before, MCPV
Hom is the well-known 1-center problem when the con-

tainer is the Euclidean unit ball B. It has attracted considerable attention, thus many
different solution techniques are available. Their adequacy depends on the dimension,
the number of points and the desired level of accuracy.

In [8] geometric properties of the Euclidean 1-center are used, especially the fact
that at most n + 1 points define the ball uniquely and are situated on its surface. The
resulting algorithm is combinatorial (LP-type) and computes the exact center and
squared radius. It has exponential worst-case running time, yet the implementation is
fast and still widely accepted as the best solution method in the Euclidean setting.

The minimum enclosing ball problem can also be formulated as a second order
cone program

min
c∈Rn,ρ≥0

ρ, s.t. ‖vj − c‖2 ≤ ρ, j = 1, . . . ,m,

and tests show that implementations can compete with the LP-type algorithms (see
e.g., [17, 26]).

In recent publications, core-sets for geometric optimization problems have been
considered (see [1] for a survey). In the case of the Euclidean 1-center problem, a
very easy incremental core-set algorithm has been stated in [6] and improved in [5].
It can be used as a speed-up for any minimum enclosing ball algorithm. (A similar
analysis yields a basic subgradient method for the 1-center problem, too [5].)

Extensions of both the LP-type and the core-set method to more general containers
may be possible (at least as super-polynomial methods), however both rely essentially
on a “half-space lemma” [2], [6, Lemma 2.2] which cannot be transferred to non-
Euclidean containers as for n ≥ 3, in every non-Euclidean normed space, there exist
point sets P such that the centers c of their minimal enclosing balls do not lie in
conv(P ) [16].

Furthermore, if P is a regular simplex with center 0 and C = −P , we need a
subset of P of size dependent on n to approximate the containment factor up to a
given constant. So dimension independent core-set sizes for arbitrary combinations
of P and C are impossible.

2.3 Combined containers

The following methods could theoretically be used to solve the MCPV
Hom for compli-

cated combinations of these containers. However, the number of variables and con-
straints would grow quite fast.

2.3.1 Intersections

Suppose C is the intersection of some Euclidean balls and polytopes, C = ⋂k
i=1(ci +

riB) ∩ ⋂l
i=1 Qi , where the Qi are given in H- or V -presentation. Then MCPV

Hom is
equivalent to the following SOCP (LP if k = 0):

min ρ

‖vj − c − ρci‖2 ≤ ρri for all 1 ≤ i ≤ k, 1 ≤ j ≤ m,

vj − c ∈ ρQi for all 1 ≤ i ≤ l, 1 ≤ j ≤ m,
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where the vj − c ∈ ρQi conditions can be expressed as linear constraints by using
the manipulations as shown in Sect. 2.1.

2.3.2 Minkowski sums

Suppose C is the Minkowski sum of some polytopes and maybe one Euclidean ball,
C = ∑k+l

i=1 Qi , where Q1, . . . ,Qk are again polytopes given in H- or V -presentation,
l ∈ {0,1} and if l = 1 then Qk+1 = B. Since

vj ∈ c + ρC ⇐⇒ vj − c −
k+l∑

i=1

xij = 0, xij ∈ ρQi

for all 1 ≤ i ≤ k + l,

we can again transform the problem into an SOCP (LP if l = 0). In the special case
when C = ∑k

i=1[αi,βi]zi is a zonotope we obtain the following LP with ρ′ and c′ as
in Sect. 2.1.2:

max ρ′
ρ′vj − c′ − ∑k

i=1 μij zi = 0 for all 1 ≤ j ≤ m,

μij ∈ [αi,βi] for all 1 ≤ i ≤ k, 1 ≤ j ≤ m.

If C is the outer parallel body Q + B of an H-polytope Q = ⋂k
i=1{x ∈ R

n :
aT
i x ≤ 1}, it suffices to solve the following SOCP:1

minρ

‖vj − c − xj‖2 ≤ ρ for all 1 ≤ j ≤ m,

aT
i xj ≤ ρ for all 1 ≤ i ≤ k, 1 ≤ j ≤ m.

2.3.3 Examples

(a) In [22] the Minkowski symmetry for a convex set P is defined as

max{λ : −λP + t ⊂ P, t ∈ R
n}

a special containment problem under homothetics. Especially, when P is a V -
polytope computing its Minkowski symmetry means just solving an MCPV

Hom
with C = −P , c = t/λ, and ρ = 1/λ.

(b) Consider the situation where a robot arm should be able to grab a certain set of
objects (modelled by P ) in a plane. The arm may rotate freely in any direction,
whereas the robot itself can move along a track above the plane, which can again
move along an orthogonal track (see Fig. 1).

If we ask for the best robot position and size (assuming that the ratio between
the arm size and the track sizes is fixed), we have to solve an MCPV

Hom with a
container C being the Minkowski sum of a circle and a square.

1The sizes of all the SOCPs are slightly reducible by using the fact that vj − c ∈ ρ(Q1 + Q2) ⇔ (vj −
c − ρQ1) ∩ ρQ2 
= ∅.
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Fig. 1 A robot arm, hinged to
two axis parallel tracks

(c) Let a certain source emit radiation which should reach a set of given targets P .
Usually, we would be in the situation of a Euclidean container. However, the ray
source is often bounded on its sides, limiting the directions of the emitted rays
such that only a conical section (with the source as an apex) of the Euclidean ball
remains. Let Q be the convex “window” permitting emissions and assume 0 
∈ Q.
In standard cases, Q is a Euclidean ball or a polytope. Now covering the point set
with a homothetic copy of pos(Q) ∩ B models the problem as MCPV

Hom where
the optimal solution yields the minimal required reach and the optimal source
location:

min ρ

vj − c ∈ λjQ for all 1 ≤ j ≤ m,

‖vj − c‖2 ≤ ρ for all 1 ≤ j ≤ m,

λj ≥ 0 for all 1 ≤ j ≤ m.

In an application, one may be interested in the optimal solution allowing rotation,
which can be found by solving MCPV

Hom instances as subproblems.

2.4 A cutting plane algorithm

The most general polynomiality result can be obtained with help of the ellipsoid
method. In [12] it was shown that any instance of MCPV

Hom can be approximated up
to any given accuracy within polynomial time, if C is the unit ball of an lp-space
with p ∈ N, and the variant of the ellipsoid method, stated in that paper only needs a
bounding box or ball B ⊃ C and a separation oracle to work. For the polynomiality
proof the oracle must be strong.

Presuming the existence of a separation oracle helps to present the results as gen-
eral as possible. It is easy to see that for a huge class of convex bodies (and their
presentations) efficient strong separation oracles can be provided. For instance, the
later is possible whenever a subgradient of the objective ϕ(x) = min{ρ : P ⊂ x +ρC}
(which is maxj ‖vj − x‖C if C is 0-symmetric) can be computed.2

2One should recognize that the ability to provide a separation oracle for C strongly relies on the represen-
tation of C. For instance, if C should be the integer hull of some polytope a separation oracle could be
hard to deduce.
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Lemma 2.1 If a is a subgradient of ϕ(x) = min{ρ : P ⊂ x + ρC} at c then −a is an
outer normal of a hyperplane supporting c + ρC ⊃ P at vj ∈ P .

Proof Follows directly from the fact that the level sets of epi(ϕ) are
⋂

j vj −ρC and

that a is a subgradient of ϕ in x if and only if (aT ,−1)T is an outer normal of a
hyperplane supporting epi(ϕ) in (xT ,ϕ(x))T . �

The cutting plane approach we present for MCPV
Hom is very intuitive as its ap-

proximation of the optimal value is based solely on polytopal approximations of the
underlying container C. In contrast, general purpose cutting plane methods try to
generate better linear approximations of the involved convex constraints or the epi-
graph of the objective function. The latter holds true for the cutting plane approach
described in [19], and in case of the MCPV

Hom this method is also reducible to one
directly operating with the container C.

The cutting plane approach can also be interpreted as a dual core-set method.
Instead of finding a subset S of the points in P with almost the same radius, the
cutting plane method looks for a small subset of the hyperplanes describing C which
is essential for the containment.

Like the ellipsoid algorithm, our cutting plane method only requires an initial
bounding box HI and a separation oracle to work. For technical simplicity we as-
sume that the oracle is strong. This is no real restriction for two reasons: Firstly, we
already mentioned at the beginning of this section that for a huge class of convex bod-
ies an efficient oracle can be given in its strong version, and secondly, one can easily
obtain an approximatively strong version of every separation oracle by a one dimen-
sional search for the appropriate dilatation factor (by calling the separation oracle
successively until the required approximation is obtained).

Let P = conv{v1, . . . , vm} and ε > 0 the desired accuracy. At first, H is assigned
an H-polytope containing C, e.g., H = HI . In the following we call H the bounding
polytope. As long as the approximation H of C is not sufficient, it will be refined
adaptively by cutting hyperplanes. Let ρ, c be the solution of the MCPV

Hom with input
P and H obtained via linear programming (see Sect. 2.1.1). As C ⊂ H , the value of
ρ is a lower bound for the minimal radius ρ∗ of the MCPV

Hom with input P and C

(see Fig. 2).
Obviously, even if ϕ is not given in an explicit form, ϕ(c) for any fixed c can be

computed by using the oracle. Hence, we can easily check for every vertex vj of P if
vj ∈ c + ρC, and if not, compute ρ̄ = ϕ(c), which is an upper bound for ρ∗.

If ρ̄/ρ ≤ 1 + ε we are done. Otherwise, we replace H by H ∩ {x : aT
k+1x ≤ 1}

where {x : aT
k+1x ≤ ρ̄} is a hyperplane supporting ρ̄C at vj − c ∈ P − c, and the next

step of the iteration begins.
Finally, as each H is a subset of the preceding one, the sequence of lower bounds

ρ is increasing. This is not true for the upper bounds ρ̄. Hence, it makes sense to store
the best obtained upper bound and the corresponding center c̄.
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Fig. 2 Two iterations of the cutting plane method: Here C is the Minkowski sum of a square and a disc
and P the green polygon. In the first step (left picture) H is the square circumscribing C. Obviously, c and
ρ are an optimal solution for MCPV

Hom with P and H as input. Since vj is the vertex of P with maximal

distance to c (with respect to ϕ) the cut {x : aT x ≤ 1} supporting C in (vj − c)/ρ̄ will be added to H .
The right picture shows the same scene for the updated H . Surely, we get a better lower bound and here a
better upper bound, too

CUTTING-PLANE ALGORITHM

INPUT: P = conv{v1, . . . , vm}, C via separation oracle,
H = ⋂k

i=1{x : aT
i x ≤ 1} a bounding polytope of C, and ε > 0.

Set ρ̄ = ∞, loop = TRUE.
WHILE(loop)

solve the LP: ρ∗ := min{ρ : ρ + aT
i c ≥ maxj aT

i vj ∀i}
IF vj − c ∈ ρ∗C ∀j , set ρ̄ = ρ∗, c̄ = c, loop = FALSE.
ELSE compute ρ̄ = min{ρ̄, ϕ(c)},

set c̄ to the corresponding c.
IF ρ̄/ρ∗ ≤ 1 + ε, set loop = FALSE.
ELSE get ak+1 from the strong separation oracle with input (vj − c),

set H = H ∩ {x : aT
k+1x ≤ 1}.

END

OUTPUT: ε-approximation ρ̄ of ρ∗ and center c̄.

Obviously, the running time of the algorithm is linear in the number of points m

since the size of P is only involved in computing the two maxima for the right-hand
side of the LP and the new upper bound.

Essentially, the number of iterations of the algorithm is bounded by O(1/(qε)n−1),
where q > ε is the ratio between the smaller and the bigger radius of the smallest an-
nulus containing C. Hence, we may have an exponential number of iterations. Indeed,
the same bound is valid for an a-priori approximation of C by a polytope Q in hy-
perplane representation, such that Q ⊂ C ⊂ (1 + ε)Q. This upper bound therefore
primarily shows the convergence of the algorithm. In theory, our algorithm cannot
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compete with the ellipsoid method. However, our aim is also the experimental behav-
iour which is addressed in the next section.

3 Experimental behaviour of the cutting plane method

The theoretical analysis mentioned above does not pay credit to the adaptive principle
of the cutting plane algorithm. Consequently, our a-priori upper bound is much too
pessimistic. For example, approximating the 3-dimensional Euclidean ball (q = 1)
via equilateral triangulation by an H-polytope consisting of 512 hyperplanes yields
ε = 0.03. In 4-space, using barycentric subdivision [25], 9216 hyperplanes only suf-
fice for ε = 0.45. The following test results for different data sets P and C show a
substantially better general performance of the cutting plane algorithm.

Another issue is the handling of the linear programs. Despite the exponential
worst-case running time of the simplex method, using it as an LP solver in our ex-
periments yields better running times than, e.g., (polynomial) interior point methods.
This is a typical observation in almost all cutting-plane algorithms, arguably relying
on the good average case behavior of the simplex method. The reason is that the dual
simplex permits an easy warm start strategy, that is, using the optimal solution of the
preceding iteration as a starting point. Therefore, though we add a row to the linear
program in each iteration, the running time per iteration is almost constant.

We have already addressed several possibilities to solve containment problems
apart from the cutting plane algorithm, though some of those approaches only apply
to special instances. Still, a natural question to ask is why we do not use a tool for
general convex programming for MCPV

Hom. In [10] such a framework for unifying
convex programming (cvx) is proposed and has been implemented. Some instances
of MCPV

Hom can easily be formulated in cvx, others would require separate “graph
implementations” (see [10]). One should keep in mind that the main purpose of the
cvx-framework is to simplify the specification. In doing so, the performance is lim-
ited by the environment [11, p. 6].

One of our main goals is to find fast solution methods for (maybe thousands of)
MCPV

Hom instances occurring as subproblems when solving harder containment prob-
lems, e.g., k-center problems or containment under similarities. Hence, this usually
demands fast solutions in small dimensions, whereas high dimensions are out of reach
anyway.

A small test on different data sets (see Table 1) showed that cvx is not the appro-
priate choice for this kind of problems as even the smallest example took more than
five seconds.

Secondly, the running time increases noticeably with the number of points in P .
Considering the intersection of k balls as container (with notation as in Sect. 2.3), the
SOCP formulation yields O(kmn) constraints and variables

xij = c − vj − ρci and ξij = ρri for all 1 ≤ i ≤ k, 1 ≤ j ≤ m,

where the variables (xij , ξij ) underlie the second order cone conditions. That is why
data sets of 10000 points and a C defined by five balls already cause an “out of mem-
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Table 1 The cutting plane algorithm and cvx in exemplary tests. The input polytopes P are samples
of (0,1)-normally distributed points, the accuracy is 10−5 and C is formed by the intersection of five
n-dimensional balls

Input n 3 10 30

m 100 1000 10000 100 1000 10000 100 1000 10000

Cutting plane Iterations 10 20 11 93 71 49 641 702 751

Time (s) 0.03 0.05 0.11 0.10 0.15 0.68 5.77 8.68 30.46

cvx Time (s) 5.31 75.31 * 6.51 211.18 * 28.05 856.20 *

Table 2 Running times of the cutting plane method compared to directly solving the linear program in
Sect. 2.1.2. The container C is the cross polytope and P are samples of (0,1)-normally distributed data
points. In both cases, the problem is solved up to an accuracy of ε < 10−14

Input n 10 30

m 100 1000 10000 100 1000 10000

Cutting plane Iterations 24 24 27 194 196 182

Time (s) 0.04 0.04 0.16 0.67 0.85 4.12

LP (Sect. 2.1.2) Time (s) 0.37 15.20 2143.60 2.11 107.42 5594.63

ory” error (indicated by a ‘*’ in Table 1) in cvx.3 The performance of the cutting
plane algorithm deteriorates in higher dimensions, but it has the important advan-
tage that the number of constraints in the programs depends only on the number of
iterations.

Surely, our implementation is specialized on a specific convex problem and the
algorithm itself makes use of the given problem structure. For these reasons and be-
cause of the environments being hardly comparable (Matlab versus C++), an exten-
sive comparison of the cutting plane approach to cvx (or similar CP solvers) would
be of minor value. Instead, we present some examples to illustrate and analyze the
course of the cutting plane algorithm.

In a first experiment (see Table 2), we compared the cutting plane algorithm with
the direct approach via linear programming given in Sect. 2.1.2 for V -polytopal con-
tainers. As mentioned before, the sizes of those LPs depend quadratically on the num-
ber of input points. The first V -polytope that comes to mind is surely the ‖ · ‖1-norm
unit ball, the cross polytope.

Considering for instance the 30-dimensional cross polytope, it seems obvious that
solving the containment problem via the facet representation is foolish and one has to
use the vertex representation as shown in Sect. 2.1.2. However, when m = 10000, the
vertex representation of the cross polytope yields an LP (2.2) with a constraint ma-
trix of about 300000 rows, 600000 columns, and 1500000 non-zero entries, whereas,

3A direct solution via SEDUMI (the Matlab solver used by cvx, see [20, 23]) does not cause the “out of

memory” error but needs 1 h 45 min to solve the instance with 10000 points in R
3.
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Fig. 3 Averaged number of
iterations for different data sets
P in dimensions
n = 10,15,20,25, and 30.
Here, C is the Euclidean unit
ball and ε = 0.0001. N—(0,1)

normally distributed data,
B—points on the surface of the
unit ball, C—vertices of the unit
cube chosen at random,
R—equally distributed data in
[0,1]n . 100, 1000, and 10000
are the numbers of points in the
input polytope P

applying the cutting plane algorithm, one can see that about 200 of the 230 hyper-
planes in the hyperplane representation are enough to solve the containment problem
for P .4 The algorithm computes a suitable approximation (depending on P ) of the
cross polytope in facet representation, and as we can see from formulation (2.1), the
corresponding LP can be solved much faster. Moreover, upper bounds and cutting
planes can easily be generated, so the running times stay small (see Table 2). Clearly,
we suggest to use the direct approach when the number of points m is very small.

In a second experiment (see Fig. 3) we considered six differently distributed data
sets P of different sizes in several dimensions n ≤ 30 with the Euclidean unit ball as
container C and ε = 0.0001.

We sampled 100 instances for each data point in Fig. 3. All instances were solved
within 1 second in dimension 10 and those with at most 1000 points within 6 sec-
onds in dimension 30. The computations for the largest input sets (10000 points,
dimension 30) took about 15 seconds on average. For sure, the cutting plane method
cannot compete with specialized algorithms for the Euclidean 1-center problem that
are making use of specific properties of the Euclidean ball. In [8], the implementa-
tions by Fischer, Gärtner, and Kutz [8], by Kumar, Mitchell, and Yıldırım [17] as well
as by Zhou, Toh, and Sun [26] are compared. Their tests go up to dimension 2000
which is out of reach for our algorithm. Yet, our program seems to be competitive for
moderate dimensions which is sufficient for many applications.

The results illustrated in Fig. 3 corroborate that the number of vertices m of P

has no influence on the number of iterations performed and therefore it has only sec-
ondary influence on the running time. The shape of P on the other hand affects the
number of iterations. Points distributed on the surface of a ball or randomly chosen
vertices of a cube behave much better with growing dimension than test cases with
normally or equally distributed data points. For the normally distributed data sets,
bigger input data sets even reduce the number of iterations performed. These obser-
vations may be natural, as the shapes where the algorithm performs less iterations are
more symmetric or ball-like. We have also observed the decrease of the accuracy (the

4An accuracy of 10−14, about the tolerance of the LP solver, is reached after less than 200 iterations.
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Fig. 4 Number of iterations for
different values of q and
different dimensions

difference between upper and lower bound) with the number of iterations. The tests
suggest that it is exponential with a rate depending on the dimension.

We now proceed with non-polytopal, non-smooth containers. The non-smoothness
may increase the number of iterations, but the algorithm is still stable (for sensible
input) and achieves fast results.

In the first of these examples (see Fig. 4), P consists of 1000 normally distributed
points in [0,1]n, with n = 3,10,30, ε = 0.0001, and C is the intersection of two
Euclidean balls with equal radius. The value of q (here the ratio of the inner and outer
radius of C) varies between 0.3 and 0.8. The dependence of the average number of
iterations on the value of q is shown. The running times increase a bit with smaller q

values, especially in higher dimensions. However, even this increase is by no means
as steep as predicted in terms of the upper bound.

Figure 5 illustrates the average number of iterations where C is the intersection
of one to five Euclidean balls. Again, P consists of 1000 normally distributed points
and the accuracy is 0.0001. For moderate values of q , the number of balls forming the
intersection does not seem to affect the number of iterations (of course, the computing
time per iteration increases a bit). The sample size for Figs. 4 and 5 is again 100.

For the initial bounding polytope HI of C, boxes as well as regular simplices
have been considered. Experiments have also included random normal vectors for
the initial bounding polytope. A more precise initial approximation can reduce the
number of iterations. However, though the box is usually a much finer approximation,
the simplex performs slightly better in tests. The reason is probably that this choice
allows less ambiguity in the optimal solutions of the linear programs involved as box-
shaped containers permit an (n−1)-dimensional set of centers for the optimal radius.
Concerning the experiments with random directions, picking n + 1 random normal
vectors is comparable to choosing the simplex. Experiments suggest that choosing
twice or even ten times as many vectors will add many unnecessary constraints to the
LP, making the algorithm perform slower especially in higher dimensions.
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Fig. 5 Number of iterations for
different dimensions, where C is
the intersection of 1 to 5 balls

Furthermore, experiments for 0-symmetric C have included not only adding the
identified cutting plane but also its symmetric counterpart. This leads to a small re-
duction in the number of iterations in some cases, but on the other hand the sizes of
the LPs grow faster.

In order to overcome ambiguities in optimal LP solutions which allow the centers
to oscillate, it has been tried to minimize the distance (measured in the distance func-
tion induced by H ) between the new center and its predecessor. This involves solving
a second linear program in each iteration. The number of iterations reduces notice-
ably for normally distributed input data, but the observed running time deteriorates
due to the effort spent solving the additional linear programs.5

Finally, instead of approximation by cutting planes, more sophisticated approxi-
mations, for instance by balls or ellipsoids, may provide faster convergence towards
the optimum. This alternate approach results in subproblems where the containers
are formed by intersections of ellipsoids and polytopes. Our experiments with such
container shapes indicate that solving this type of problems directly using an SOCP
solver is currently not competitive to the LP approach (at least, in the dimensions
considered). This is apparently due to the fact that the SOCPs have many more con-
straints, as it is possible only in the case of linear constraints to consider just one
point (where the maximum is attained) in order to ensure that the whole set P satis-
fies the constraint. More specialized subroutines than the general SOCP solvers might
be helpful to improve the performance of the alternate approach. Yet, we are aware

5Another idea to improve the performance of cutting-plane algorithms is reported in [19]. The computing
times are improved using an interpolation technique, so we have experimented with this approach, too.
Though we can confirm that the interpolation step reduces the number of iterations a little, we conclude
that the overall running time deteriorates again due to the additional effort spent in each iteration. The
reasons may be that the technique is not adequate for minimax approximation (the mentioned examples
involve other objective functions) or simply that the problem settings are hardly comparable since in [19],
only point sets of up to 50 points are considered.
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of the existence of such methods only for the Euclidean case [8, 17, 26] (relying fun-
damentally on properties of the Euclidean ball), a lack motivating this paper. Note
that the incremental core-set approach [6, 17] can in principal be used for any kind of
problem involving the containment of a point set, but polynomiality is only proven in
the Euclidean case.

Experiments have been performed on a SUNW SPARC Sun Fire 440 Workstation
(1.3 GHz) with 1.6 GB RAM. A C++ implementation of the cutting plane algorithm
and XpressMP as LP-Solver have been used.
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