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Abstract Aiming at a fast and robust simulation of large multibody systems with
contacts and friction, this work presents a novel method for solving large cone com-
plementarity problems by means of a fixed-point iteration. The method is an exten-
sion of the Gauss-Seidel and Gauss-Jacobi method with overrelaxation for symmetric
convex linear complementarity problems. The method is proved to be convergent un-
der fairly standard assumptions and is shown by our tests to scale well up to 500,000
contact points and more than two millions of unknowns.

Keywords Iterative methods · Cone complementarity problems · LCP ·
Complementarity · Contacts · Multibody

1 Introduction

Mechanisms involving contacts and impacts between parts can be modeled in terms
of multibody systems with unilateral constraints. The simulation of rigid contacts
entails the solution of nonsmooth equations of motion: the dynamics is nonsmooth
because of the discontinuous nature of noninterpenetration, collision, and adhesion
constraints [31].

Devices composed of rigid bodies interacting through frictional contacts are ex-
tensively used in many engineering solutions, either featuring a small number of uni-
lateral contacts such as cam-followers and Geneva wheels or including thousands of
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contacts between a large number of parts, such as in the cases of palleting machines,
vibratory feeders, size-segregation devices, CVT chains, and pebble reactors. Robust
and efficient simulation software is mandatory, since the proper operation of these
devices relies on the formation and loss of frictional contacts that cannot be eas-
ily studied by analytical methods. Given the presence of discontinuities, however, a
straightforward application of numerical methods for ordinary differential equations
is impracticable.

One of the most popular approaches to nonsmooth dynamics is the integrate-
detect-restart method, which adopts traditional DAE or ODE integration on piecewise
integrals (Caratheodory integrals) [14, 15]. Nonetheless, this scheme, though reliable
for systems with one degree of freedom, may fail when handling multiple unilateral
constraints, because there is no way to guarantee an upper bound on the number of
subproblems to solve in finite time intervals [41].

Another popular approach is represented by regularization strategies, which model
contacts by means of many compliant spring-dashpot linkages. This approach re-
quires little effort on the programming side and allows the adoption of normal ODE
or DAE integrators [12, 29, 34, 35]. Because of the high stiffness affecting the ex-
plicit integration, however, this method may require prohibitively small time steps to
achieve alpha stability; moreover, the need to tune additional parameters on case-by-
case basis is not welcome by end users.

These issues motivate the investigation of innovative numerical methods that can
deal with multiple frictional contacts, even in case of thousands, if not millions, of
moving parts. To that end, much attention was drawn by time-stepping approaches
that produce weak solutions of the differential variational inequality (DVI) that de-
scribes the continuous time motion of rigid bodies with collision, contact, and fric-
tion. The DVI as a problem formulation was recently introduced in full generality and
classified by differential index [26, 27], though earlier numerical approaches based
on DVI formulations do exist [19–21]. Recent work on time-stepping schemes has
included both acceleration-force linear complementarity problem (LCP) approaches
[8, 28, 41] and velocity-impulse LCP-based time-stepping methods [4, 7, 37, 38].

The introduction of inequalities in time-stepping schemes for DVI, coupled with a
polyhedral approximation of the friction cone, leads to linear complementarity prob-
lems (LCP) [38], which are systems of complementary inequalities to be satisfied
simultaneously [11]. These complex LCP problems must be solved at each time step
in order to advance the integrator [19, 38].

If the simulation entails a large number of contacts and rigid bodies as is the case
of part feeders, packaging machines, and conveyor belts, the computational burden of
classical LCP solvers can be significant. Indeed, a well-known class of approaches to
LCP problems is based on simplex methods, also known as direct or pivoting methods,
originating from the algorithms of Lemke and Dantzig [10]. However, these methods
may exhibit an exponential worst-case complexity [9]. Our experience shows that,
in spite of deep optimizations [40], simplex methods still cannot practically handle
multibody systems with more than one hundred colliding bodies.

In the three-dimensional case, the Coulomb friction at contact points without the
use of a polyhedral approximation leads to a more complex nonlinear complementar-
ity problem (NCP). The use of a polyhedral approximation make possible the use of
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typical LCP solvers [4, 38, 41]. Artificial anisotropy, however, affects friction because
friction cones become faceted friction pyramids. In addition, such finite approxima-
tion of cones results in a far larger problem (insofar as the number of constraints) and
has a negative impact on the performance of LCP solvers, which is already critical in
general.

To circumvent the difficulties posed by increasing complexity of classical LCP
solvers and the increased size and inaccuracy introduced by polyhedral approxima-
tion, we have developed a novel solution method, based on a fixed-point iteration
with projection on a convex set, that can directly solve large cone complementarity
problems with low computational overhead. The method is based on a time-stepping
formulation that solves at every step a cone constrained optimization problem [1].
The time-stepping scheme was proven to converge in a measure differential inclusion
sense, to the solution of the original continuous-time DVI. At every step, we solve
the cone complementarity problem (CCP) that results from the optimality conditions
of the cone constrained optimization problem. Note that the same formulation has
been recently used as the basis of a quasistatic frictional contact model with local
compliance [30] that also results in a CCP.

In systems with bilateral constraints only, our method reduces to a stationary
Gauss-Seidel or Gauss-Jacobi method with successive over-relaxation [24]. For the
original NCP formulation, Gauss-Seidel methods have been successfully used for
thousands of rigid bodies in contact [17, 22]. For these methods, however, no con-
vergence theory exists, except for small friction coefficients, whereas our methods
converges under certain conditions that do not include a small friction assumption.
If the CCP is solved without overrelaxation, then our method shares certain features
with the block coordinate descent method with convex constraints on the variables in
a block [42].

Among the most promising applications of this method are dynamical analysis
of large scenarios comprising thousands of colliding bodies, as in the case of the
simulation of pebble bed nuclear reactors, granular flows, masonry stability analysis,
robotics, and CAD/CAM/CAE simulations of complex devices (Fig. 1), which to date
are strongly limited by computational complexity issues, even on supercomputers.

2 Optimization-based time-stepping scheme

In the following, we present our contact model, and we compare it to previous ap-
proaches. The object of study is a system of rigid bodies, described by state variables
and contact and frictional constraints.

2.1 System representation

At a time t , the position of the system is described by generalized coordinates q(t) ∈
R

m (which may include rotational coordinates that cannot be defined over a subspace
homeomorphic to R

n, for some n), and generalized velocities v(t) ∈ R
m. In classical

mechanics, v(t) is continuous, and we can write dq/dt = �(q)v, where �(q) is a
matrix that connects the generalized velocities to the derivatives of the generalized
coordinates.
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Fig. 1 Examples of multibody systems with many unilateral contacts

In three dimensions, the position of a rigid body is described by the position x, y, z

of the center of mass and a 3 × 3 orthogonal matrix A ∈ SO(3,R) that represents the
rotation of a frame attached to the body with respect to a fixed-world frame. The A

matrix could be function of three parameters ∈ R
3 (Cardano angles, Euler angles,

etc.), but this may cause numerical problems such as singularities in transforma-
tions. To overcome such problems, we adopt four-dimensional unitary quaternions
η ∈ S3 ⊂ H, though their space is not homeomorphic to R

3.
Here we assume that A can be represented smoothly by three parameters, φ, θ, ζ :

this parameterization is valid only locally, while for the global cumulative rotations
we use quaternions. This reparameterization does not affect the dynamics [14]. There-
fore a system with n bodies in three dimensions is represented by m = 6n coordinates.

2.2 Nonpenetration constraints

Two rigid bodies should not penetrate, and, if they are in contact, there should be
friction acting at the interface. To enforce the nonpenetration constraint, we assume
that there exists a function �(q), which we call the gap function, that satisfies

�(q) =
{

> 0 if the bodies are separated,
= 0 if the bodies touch each other,
< 0 if the bodies are interpenetrating.

(1)

For such a function, the nonpenetration constraint becomes �(q) ≥ 0.
An example of such a mapping is the signed distance function [18], which is dif-

ferentiable when the bodies are smooth and convex, at least up to some value of the
interpenetration [6]. For most cases, even simple ones involving the relative posi-
tion of two spheres, a differentiable signed distance function cannot be defined for
all values of q . The fact that �(q) can be differentiably defined only on a neighbor-
hood of the set �(q) ≥ 0 can be accommodated at the cost of making the analysis
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substantially more involved [2]. To simplify our discussion, we make the following
assumption.

Differentiability of geometrical constraint data assumption Any contact is de-
scribed by a gap function �(q) that is everywhere twice continuously differentiable.

2.3 Frictional constraints

In this work we describe the frictional constraints by conic constraints, which are an
extension of complementarity models discussed in [4, 38].

2.3.1 The Coulomb friction model

The model we represent and approximate is the Coulomb friction model. If a position
q is feasible and the contact is active, that is, �(q) = 0, then at the contact we have a
normal force and a tangential force.

Let n be the normal at the contact, pointing toward the exterior of the body, and
let t1 and t2 be the tangents at the contact. Here n, t1, t2 are mutually orthogonal
vectors of length one in three dimensions. The vectors n, t1, and t2 are a function of
the position q . In the following we use v, v to refer to velocities, and the subscripts
u, v to refer to quantities related to the two linearly independent tangential directions
at a given contact.

The reaction force is impressed on the system by means of multipliers γ̂n ≥ 0,
γ̂u, and γ̂v . The normal component of the force is FN = γ̂nn, and the tangential
component of the force is FT = γ̂ut1 + γ̂vt2.

The Coulomb model consists of the following constraints:

γ̂n ≥ 0, �(q) ≥ 0, �(q)γ̂n = 0,

μγ̂n ≥ √
γ̂ 2
u + γ̂ 2

v , ‖vT ‖
(
μγ̂n − √

γ̂ 2
u + γ̂ 2

v

)
= 0,

〈FT ,vT 〉 = −‖FT ‖‖vT ‖
(2)

where vT is the relative tangential velocity at contact. The effect of the friction over
the dynamical system is defined by the friction coefficient μ ∈ R

+, that typically has
a value between 0 and 1 for most materials.1

The first part of the constraint can be restated as

F = FN + FT = γ̂nn + γ̂ut1 + γ̂vt2 ∈ K,

where K is a cone in three dimensions, whose slope is arctan(μ).
The constraint 〈FT , vT 〉 = −‖FT ‖‖vT ‖ requires that the tangential force be op-

posite to the tangential velocity. This results in the reaction force being dissipative.

1Though the original Coulomb model distinguishes between static μs and kinetic μk friction coefficients,
where usually the kinetic coefficient is slightly lower than its static counterpart, in this work we consider
both to have the same value μ because the difference is not relevant for the discussion and suffices to say
that a proper algorithm might adjust the friction coefficient adaptively during the simulation, depending on
the slipping speed, to match complex nonlinearities in μ as a function of speed.
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In fact, an equivalent convenient way of expressing this constraint is by using the
maximum dissipation principle [36–38]

(γ̂u, γ̂v) = argmin√
γ̂ 2
u +γ̂ 2

v ≤μγ̂n

(γ̂ut1 + γ̂vt2)
T vT .

These constraints are represented by mapping the vectors n, t1, t2 from contact
coordinates to generalized coordinates [6].

For example, if we have a two-body system, then the generalized coordinates in
the three-dimensional space are embedded in a twelve-dimensional space by using
the coordinates x1, y1, z1, φ1, θ1, ζ1, x2, y2, z2, φ2, θ2, ζ2.

For a three-dimensional vector v, the mapping to generalized coordinates is

v 
→
⎛
⎜⎝

v
r1 × v
−v

−r2 × v

⎞
⎟⎠ ,

where r1 and r2 are the relative positions of the contact point with respect to the
centers of mass of the two bodies [6]. Using this mapping, we denote the generalized
vector version of n, t1, t2 by Dn,Du,Dv . One unfortunate side effect of generalized
coordinates mapping is that, in the new coordinates, Dn, Du, Dv cease to be mutually
orthogonal.

If v is the generalized velocity, the tangential velocity satisfies the following

tT1 vT = vT Du, tT2 vT = vT Dv.

In generalized coordinates, the Coulomb model thus becomes

FN = γ̂nDn, FT = γ̂uDu + γ̂vDv,

γ̂n ≥ 0, �(q) ≥ 0, γ̂n�(q) = 0,

μγ̂n ≥
√

γ̂ 2
u + γ̂ 2

v ,

argmin√
γ̂ 2
u +γ̂ 2

v ≤μγ̂n

(γ̂uDu + γ̂vDv)
T v = (γ̂u, γ̂v).

2.4 The overall dynamical model

The other dynamical data needed for the model are the mass matrix M(q), the exter-
nal force fe(t, q, v), and the term fc(q, v) which contains the effect of centrifugal and
Coriolis forces. The mapping fc(q, v) is continuously differentiable and satisfies [5]

vT fc(q, v) = 0 ∀q, v.
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This equation implies that Coriolis and centrifugal forces do not provide any net
work to the rigid multibody system. To simplify notation, we also make the following
assumption.

Constant mass matrix assumption The mass matrix M(q) ∈ R
m×m is positive def-

inite and constant. This assumption is satisfied in two dimensions and three dimen-
sions if we use the Newton-Euler formulation in body coordinates [23].

With this definition, we can define the total force

ft (t, q, v) = fe(t, q, v) + fc(q, v). (3)

Assume now that we have p potential contact constraints, which are enforced by
the nonpenetration constraints �i(q) ≥ 0, i = 1,2, . . . , p.

In the following, we denote by the superscript i the data associated to the potential
contact i. The continuous model is the following differential variational inequality
[26]:

M
dv

dt
=

∑
i=1,2,...,p

(γ̂ i
nDi

n + γ̂ i
uDi

u + γ̂ i
vDi

v) + ft (t, q, v)

dq

dt
= �(q) v

γ̂ i
n ≥ 0 ⊥ �i(q) ≥ 0, i = 1,2, . . . , p

(γ̂ i
u, γ̂ i

v ) = argmin
μi γ̂ i

n≥
√

(γ̂ i
u)2+(γ̂ i

v )2

(γ̂uD
i
u + γ̂vD

i
v)

T v, i = 1,2, . . . , p.

(4)

Here �(q) is used to transform the generalized velocities into derivatives of the
generalized positions. For instance, when dealing with rotations, �(q) can be a linear
mapping from three-dimensional angular speeds into four-dimensional time deriva-
tives of unit quaternions.

The Coulomb model used in this work is the predominant model used in the engi-
neering literature to describe dry friction. Unfortunately, the model may be inconsis-
tent: there exist configurations for which the model does not have a solution [8, 37].
This situation has led to the need to explore weaker formulations where the forces
are measures and Newton’s law is satisfied in a measure differential inclusion sense
[37]. It has been shown that solutions in that sense do exist and can be found by time
stepping schemes [36].

We will consider all collisions that appear during the simulation of the inelas-
tic type. Therefore, they are naturally treated by the time-stepping scheme through
a change of active set without the need to modify the algebraic expression of the
scheme.

2.5 Time stepping scheme

We now define a stepping scheme for the continuous time formulation. We start at the
time t (l), position q(l), and velocity v(l) with time step h. The scheme is expressed by
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the following equation problem with equilibrium constraints:

M(v(l+1) − vl) =
∑

j∈A(q(l),ε)

(γ i
nDi

n + γ i
uDi

u + γ i
vDi

v)

+ hft (t
(l), q(l), v(l)) (5)

0 ≤ 1

h
�i

(
q(l)

) + ∇�iT v(l+1) (6)

⊥ γ i
n ≥ 0, i ∈ A(q(l), ε)(

γ i
u, γ i

v

) = argmin
μiγ i

n≥
√

(γ i
u)2+(γ i

v )2

[
vT (γuD

i
u + γvD

i
v)

]
(7)

i ∈ A(q(l), ε)

q(l+1) = q(l) + h�
(
q(l)

)
v(l+1), (8)

where

A(q, ε) = {
i| i ∈ {1,2, . . . , p}, �i(q) ≤ ε

}
. (9)

We have denoted by γs the constraint impulses of a contact constraint, that is, γs =
hγ̂s , for s = n,u, v. The 1

h
�i(q(l)) term achieves constraint stabilization and its effect

is amply discussed in [2].
In previous work, we have shown that the scheme is convergent, as the time step h

goes to 0 to the solution of a measure differential inclusion [1]. Solutions of the sub-
problems, when the nonlinear constraint is approximated by a piecewise linear cone,
can be found by Lemke’s algorithm [4]. Nonetheless, in [3] we have also demon-
strated that, as the number of constraints in the problem increases, the computational
cost of Lemke’s method increases far faster than linearly with the size of the problem.
As an alternative we proposed to solve the problem as a monotone optimization by
introducing a relaxation over the complementarity constraints, that is, we modified
the time-stepping scheme by replacing (6) with:

0 ≤ 1

h
�i(q(l)) + ∇�iT v(l+1)

− μi

√
(D

i,T
u v)2 + (D

i,T
v v)2 ⊥ γ i

n ≥ 0, i ∈ A(q(l), ε). (10)

We note that the modified formulation does fit the paradigm put forth in [25]. We
also note, however, that, at least in its most evident obvious formulations the prob-
lem would violate either assumption (H2) or assumption (H4) that are used in that
reference to prove existence of solutions, though it is also clear that even mild regu-
larizations would satisfy those assumptions.

In this work, we do not discuss elastic or partially inelastic collision. This is equiv-
alent to considering a 0 restitution coefficient. It is conceivable that the approach in
[4, 32] can be adapted to our scheme if restitution is needed, but that is an issue that
needs further study, due to the effective normal compliance that this scheme presents,
as discussed below. What ever the modification, however, it is likely to result in a
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cone complementarity one-step problem whose matrix has similar structure to the
one considered here. How to solve that problem, as opposed to the time stepping
scheme itself, is the focus of this article.

We have shown in [1] that, as h → 0, the solution of the modified time-
stepping scheme will approach the solution of the same measure differential inclu-
sion as the original scheme. In addition, we have shown that the iterates produced
by the modified scheme approach the ones of the original scheme provided that

μiγ i
n

√
(D

i,T
u v)2 + (D

i,T
v v)2 � 1 [3]. We remark that this regime is precisely the one

in which pebble bed simulators operate [33], an application that motivates our second
example, as well as other granular flow applications.

The physical meaning of the modified scheme was described to some extent in
[1], and is connected to the microscopic description of contact with friction as rigid
piecewise linear asperities whose tangent of the side angle is equal to the macroscopic
friction coefficient. The effect of the modification on the iterates of the time stepping
scheme is that it allows for some amount of normal motion at the contact even when
the body is supposed to be in contact. In some sense, the scheme allows for a “bound-
ary layer”, effectively normal compliance, at the contact whose size is proportional
to μvT h (but that otherwise does not depend on any parameter, as penalty schemes
do). This interpretation can be demonstrated on a two-dimensional example assum-
ing persistent contact that is already established. Of course, the modification (10) may
not be suitable for all simulations with contact and friction and a good example of an
unsuitable configuration is the case where two bodies are in initial contact with large
tangential velocity, as is discussed in [1].

For the rest of the paper we use the modified scheme, which uses (10) instead
of (6).

2.6 Cone complementarity formulation

If we now write the optimality conditions for the equilibrium constraint in (7), we
obtain that, for any i ∈ A(q(l), ε), there exists a Lagrange multiplier λi such that

λiγ i
u = −Di,T

u v, λiγ i
v = −Di,T

v v, λi ≥ 0 ⊥ μiγ i
n −

√
(γ i

u)2 + (γ i
v )2 ≥ 0.

(11)

The first two equations imply that λi
√

(γ i
u)2 + (γ i

v )2 =
√

(D
i,T
u v)2 + (D

i,T
v v)2, while

the last equation implies that

0 = λi
√

(γ i
u)2 + (γ i

v )2
(
μiγ i

n −
√

(γ i
u)2 + (γ i

v )2
)

and, in turn, that

μiγ i
n

√
(D

i,T
u v)2 + (D

i,T
v v)2 = λi

(
(γ i

u)2 + (γ i
v )2). (12)

We now define, for i ∈ A(ql, ε) the vectors

ui = (ui
1, u

i
2, u

i
3), wi = (γ i

n, γ i
u, γ i

v )

ui
1 = 1

h
�i(q(l)) + ∇�iT v(l+1), ui

2 = Di,T
u v, ui

3 = Di,T
v v.
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We calculate the scalar product

uiT wi = γ i
n

(
1

h
�i(q(l)) + ∇�iT v(l+1)

)
+ γ i

uDi,T
u v + γ i

vDi,T
v v

(10), (11)= μiγ i
n

√(
D

i,T
u v

)2 + (
D

i,T
v v

)2 − λi
(
(γ i

u)2 + (γ i
v )2)

= 0,

which implies that

uiT wi = 0, and thus ui ⊥ wi. (13)

We now define the cones

�i = {
(x, y, z) ∈ R

3|x ≥ μi
√

y2 + z2
}
,

F Ci = {
(x, y, z) ∈ R

3|μix ≥
√

y2 + z2
}
.

It immediately follows that �i is the negative polar cone of F Ci , that is, ũ ∈ �i and
w̃ ∈ F Ci imply that ũT w̃ ≥ 0. Then (7), (10), and (13) imply that the following set
of cone complementarity constraint holds:

−ui ∈ F Ci◦ ⊥ wi ∈ F Ci , i ∈ A
(
q(l), ε

)
, (14)

where we denote by C◦ the polar cone of a given cone C, that is, C◦ = {x ∈ R
m|〈x, y〉

≤ 0, ∀y ∈ C}.
We now define the vector

k̃(l) = Mv(l) + hft

(
t (l), q(l), v(l)

)
. (15)

Then, (15) and (14), together with (5) and the definition of the vectors ui and wi ,
result in the following problem:

Mv(l+1) = k̃(l) +
∑

i∈A(q(l),ε)

(γ i
nDi

n + γ i
uDi

u + γ i
vDi

v),

i ∈ A(q(l), ε)

(
1

h
�i(q(l)) + ∇�iT v(l+1),Di,T

u v(l+1),Di,T
v v(l+1)

)
∈ −F Ci◦ ⊥ (γ i

n, γ i
u, γ i

v ) ∈ F Ci .

(16)

We denote by nA the number of elements in the set A(ql, ε). We then define the
following vectors:

b ∈ R
3nA =

(
1

h
�i1(q(l)),0,0,

1

h
�i2(q(l)),0,0, . . . ,

1

h
�inA (q(l)),0,0

)

d ∈ R
3nA =

(
1

h
�i1(q(l)) + D

iT1
n M−1k̃(l),D

iT1
u M−1k̃(l),D

iT1
v M−1k̃(l),
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1

h
�i2(q(l)) + D

iT2
n M−1k̃(l),D

iT2
u M−1k̃(l),D

iT2
v M−1k̃(l),

. . . ,
1

h
�inA (q(l)) + D

iTnA
n M−1k̃(l),D

iTnA
u M−1k̃(l),D

iTnA
v M−1k̃(l)

)

γ ∈ R
3nA = (

γ i1
n , γ i1

u , γ i1
v , γ i2

n , γ i2
u , γ i2

v , . . . , γ
inA
n , γ

inA
u , γ

inA
v

)
(17)

and the following matrices

Di = [Di
n,D

i
u,D

i
v], i ∈ A(q(l), ε),

D = [Di1,Di2, . . . ,DinA ], N = DT M−1D.
(18)

Note that the matrix N is positive semidefinite.
In addition, for a vector d̃ ∈ R

3nA , we define by d̃ i ∈ R
3 = (d̃3∗(i−1)+1,

d̃3∗(i−1)+2, d̃3∗i ). Note that d̃ i is a vector, whereas d̃i is a real number component.
This convention allows us, after multiplying with M−1 its first equation, to write the
problem (16) as the conic complementarity problem

(Nγ + d)i ∈ −F Ci◦ ⊥ γ i ∈ F Ci , i = 1,2, . . . , nA. (19)

3 Convergence theory of the iterative method

We now describe the structure of projection operators over direct sums of cones.
Assume that we have a set of closed convex cones ϒi ⊂ R

ni , where the index takes
the values i = 1,2, . . . , nk . We consider the Cartesian product of such cones ϒ =⊕nk

i=1 ϒi , which we assume is a cone in R
nc , that is, that the sum of the dimensions

of the element cones satisfies nc = ∑nk

i=1 ni . In this section and in the sequel, for a
vector x ∈ R

nc , we denote by xi , i = 1,2, . . . , nk its components that satisfy xi ∈ R
ni ,

that is, x = (x1, x2, . . . , xnk
). Since all the operations we will carry out will be on

blocks corresponding to the partition of x into its components xi , there will be no
confusion between xi and the components of x. Note that the Cartesian product cone
is also a convex cone. Note that we have chosen to use subscripts to denote indices
of blocks of the vector x in order to avoid collusion with iteration indices. When
particularizing the results to the case of the cone complementarity problem (19) we
will again use superscripts for variables γ pertaining to a contact with index i.

For a convex cone, C ⊂ R
m, we denote by C(y) the projection of the vector

y ∈ R
m onto the convex cone C. From the theory of convexity, it follows that the

projection has the following properties.

P1 ‖C(y1) − C(y2)‖2 ≤ 〈C(y1) − C(y2), y1 − y2〉, ∀y1, y2 ∈ R
m

[16] [Proposition 3.1.3].
P2 x = C(y) ⇔ x ∈ C, y − x ∈ C◦, 〈x, y − x〉 = 0 [16] [Proposition 3.2.3].
P3 ϒ(x) = (ϒ1(x1),ϒ2(x2), . . . ,ϒnk (xnk

)).
P4 ϒ◦ = ⊕nk

i=1 ϒi,◦.

The last two properties are a straightforward application of the properties of con-
vex cones and their projections.
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Consider now the symmetric positive semidefinite matrix N . We define the fol-
lowing cone complementarity problem:

(CCP ) si = (Nx + q)i ∈ −ϒi,◦, xi ∈ ϒi, 〈xi, si〉 = 0,

i = 1,2, . . . , nk. (20)

It is immediate that it represents the optimality conditions of the following optimiza-
tion problem with conic constraints:

(OC)
min f (x) = 1

2
xT Nx + qT x

s.t. xi ∈ ϒi, i = 1,2, . . . , nk.

The goal of this section is to analyze the following iterative method. We start with an
arbitrarily chosen initial point x0 ∈ ϒ . The iterative method is defined by the formula

xr+1 = λϒ

(
xr − ωBr(Nxr + q + Kr(xr+1 − xr))

) + (1 − λ)xr ,

r = 0,1,2, . . . , (21)

where λ,ω are parameters that satisfy 0 < λ ≤ 1, ω > 0; for each r , the matrix Kr is
a strictly block upper triangular or strictly block lower triangular, with blocks corre-
sponding to the partition of the vector x ∈ R

nc into the components xi as outlined in
the beginning of the section. In addition, Br is a positive diagonal matrix, which is
made of identity blocks whose sizes correspond to the same partition of the vector x.
We therefore have

Br =

⎛
⎜⎜⎝

η1In1 0 · · · 0
0 η2In2 · · · 0
...

...
. . .

...

0 0 · · · ηnk
Innk

⎞
⎟⎟⎠ ,

Lr =

⎛
⎜⎜⎜⎜⎝

0 K12 K13 · · · K1nk

0 0 K23 · · · K2nk

0 0 0 · · · K3nk

...
...

...
. . .

...

0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎠ ,

(22)

where ηi > 0, i = 1,2, . . . , nk , Ini
∈ R

ni×ni , Kij ∈ R
ni×nj , 1 ≤ i < j ≤ nk , and we

have either that Kr = Lr , or that Kr = LrT .
We will use the following assumptions.

A1 The matrix N of the problem (CCP) is symmetric and positive semi-definite.
A2 There exists a positive number, α > 0 such that, at any iteration r , r = 0,1,2, . . . ,

we have that Br � αI .
A3 There exists a positive number, β > 0 such that, at any iteration r , r = 0,1,2, . . . ,

we have that (xr+1 −xr)T ((λωBr)−1 + Kr − N
2 )(xr+1 −xr) ≥ β‖xr+1 − xr‖2.

To analyze the convergence behavior of the iteration (21), we used the same ap-
proach as Murty [24], adapted to the case of general convex cones. We first charac-
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terize the solution of the cone complementarity problem in terms of a fixed point of
an appropriate mapping.

Theorem 1 Assume that B is a positive definite diagonal matrix with a block struc-
ture prescribed in (22). The vector x ∈ ϒ is a solution of the cone complementarity
problem (CCP) if and only if it satisfies the following fixed-point relationship:

ϒ(x − ωB(Nx + q)) = x.

Proof By the second property of projections [P2] we have that the vector x satisfies
the fixed-point relationship if and only if it satisfies the following relationships:

x ∈ ϒ, (x − ωB(Nx + q)) − x = s ∈ ϒ◦, 〈x, s〉 = 0.

In turn, these are equivalent to

xi ∈ ϒ, (−ωB(Nx + q))i = si ∈ ϒ◦, 〈xi, si〉 = 0, i = 1,2, . . . , nk.

From the property (P3) of the cones and the fact that the diagonal matrix B has the
structure described in (22), such that the blocks corresponding to the components of
x are multiples of the identity, it immediately follows that

(−ωB(Nx + q))i = ηiω(−(Nx + q)i, ),

where we have used the notation from (22). In turn, this implies that the previously
displayed equation is equivalent to

xi ∈ ϒ, (−(Nx + q))i = si ∈ ϒ◦, 〈xi, si〉 = 0, i = 1,2, . . . , nk,

which is precisely (CCP). The proof is complete. �

Theorem 2 Assume that B is a positive definite matrix with the structure described
in (22). Then ∀x ∈ R

nc we have that

(ϒ(x) − x)T B−1(ϒ(x) − y) = 〈(ϒ(x) − x),B−1(ϒ(x) − y)〉 ≤ 0, ∀y ∈ ϒ.

Proof From the definition of the total cone ϒ we have that ϒ = ⊕nk

i=1 ϒi . Since the
matrix B is diagonal with the structure described in (22), we immediately have that

〈(ϒ(x) − x),B−1(ϒ(x) − y)〉 =
nk∑
i=1

1

ηi

〈(ϒ(x) − x)i, (ϒ(x) − y)i〉

=
nk∑
i=1

1

ηi

〈ϒi (xi) − xi,ϒi (xi) − yi〉.

The last relation follows from the property [P3] of the cones and projections onto
them. It is therefore sufficient to show that

xi ∈ R
ni ⇒ 〈ϒi (xi) − xi,ϒi (xi) − yi〉 ≤ 0, ∀yi ∈ ϒi. (23)
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Using property [P1] of the cones, we have that

〈ϒi (xi) − yi,ϒi (xi) − yi〉 ≤ 〈ϒi (xi) − yi, xi − yi〉, ∀yi ∈ ϒi, xi ∈ R
ni .

Using the fact that the scalar product is a bilinear form and taking the term from the
right to the left with a change sign, we obtain that

〈ϒi (xi) − yi,ϒi (xi) − xi〉 ≤ 0, ∀yi ∈ ϒi, xi ∈ R
ni ,

which proves (23) and therefore the theorem. The proof is complete. �

Theorem 3 Let {xr : r = 1,2, . . .} be the sequence of points obtained under the it-
erative scheme (21). Assume that x0 ∈ ϒ and that the sequences of matrices Br and
Kr are bounded. Then we have that

f (xr+1) − f (xr) ≤ −β‖xr+1 − xr‖2

for any iteration index r , and any accumulation point of the sequence xr is a solution
of (CCP).

Proof The proof is identical to the proof from Murty [24], where the projection on
the positive orthant, +, is replaced with the projection on the cone ϒ . The only
property of the projection that is used is the one from Theorem 2, which holds for the
general case as well. We nonetheless include it here for completeness.

Since the initial point satisfies x0 ∈ ϒ and from (21), we conclude that xr ∈ ϒ ,
∀r = 1,2, . . . . From straightforward manipulation it follows that

f (xr+1) − f (xr)

= ωBr(Nxr + q)T (ωBr)−1(xr+1 − xr)

+ (xr+1 − xr)N
(xr+1 − xr)

2

(
(xr+1 − (1 − λ)xr)

λ
− xr

+ ωBr(Nxr + q + Kr(xr+1 − xr))

)T

× (ωBr)−1(xr+1 − xr) + (xr+1 − xr)

(
N

2
− (λωBr)−1 − Kr

)
(xr+1 − xr)

= λ

(
(xr+1 − (1 − λ)xr)

λ
− (xr − ωBr(Nxr + q + Kr(xr+1 − xr)))

)T

× (ωBr)−1
(

(xr+1 − (1 − λ)xr)

λ
− xr

)

+ (xr+1 − xr)

(
N

2
− (λωBr)−1 − Kr

)
(xr+1 − xr).
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From (21) we know that

(xr+1 − (1 − λ)xr)

λ
= ϒ

(
xr − ωBr(Nxr + q + Kr(xr+1 − xr))

)
.

We also know that λ > 0. Using these and Theorem 2, we conclude that the first
term in the right-hand side of the long equality above is ≤ 0. We therefore have that

f (xr+1) − f (xr) ≤ (xr+1 − xr)

(
1

2
N − (λωBr)−1 − Kr

)
(xr+1 − xr)

≤ −β‖xr+1 − xr‖2. (24)

The last inequality follows from conditions [A3] and proves the first part of our claim.
Since β > 0, (24) implies that f (xr) − f (xr+1) ≥ 0. Hence {f (xr) : r = 1,2, . . .}

is a monotone nonincreasing sequence of real numbers. Let x̄ be an accumulation
point of the sequence {xr : r = 1,2, . . .}. Hence, there exists a sequence of positive
integers such that the sequence of xr with r belonging to this subsequence of integers
converges to x̄. Since the sequences of Brand Krare bounded sequences of matrices,
we can again find a subsequence of the above sequence of positive integers satisfy-
ing the property that both the subsequences of Brand Kr with r belonging to this
subsequence converge to the limits. Let {rt : t = 1,2, . . .} be this final subsequence of
positive integers. Therefore, we can assume that

lim
t→∞Brt = B̄, lim

t→∞Krt = K̄, lim
t→∞xrt = x̄.

In addition, from property (A2) it follows that B̄ is a diagonal matrix with pos-
itive diagonal entries. Since f (x) is a continuous function, we have that f (x̄) =
limt→∞ f (xrt ). Since {f (xr) : r = 0,1, . . .} is a nonincreasing sequence of real num-
bers with a convergent subsequence, f (xrt ), it follows that the entire sequence is it-
self convergent. This and (24) together imply that 0 = limt→∞(f (xrt )−f (xrt+1)) ≥
limt→∞ β‖xrt − xrt+1‖2 ≥ 0. From this and the fact that the sequence {xrt } is con-
vergent to x̄, it follows that {xrt+1} is also convergent to the same limit. These facts
imply that

0 = lim
t→∞

∥∥x1+rt − xrt
∥∥

= λ
∥∥ϒ

(
xrt − ωBrt (Nxrt + q + Krt ](xrt+1 − xrt ))

) − xrt
∥∥

= λ
∥∥ϒ

(
x̄ − ωB̄(Nx̄ + q)

) − x̄
∥∥.

So we have that ϒ(x̄ − ωB̄(Nx̄ + q)) − x̄ = 0. By Theorem 1, we have that
(Mx̄ + q, x̄) is a solution for CCP. �

Note that the preceding result does not mean that the sequence will converge, since
it is still possible that the sequence will diverge to infinity and have no accumulation
point. The proper alternative is related by the following result.

Theorem 4 Under the assumptions of the section, either (a) the sequence xr is
bounded, or (b) there exists a 0 �= y ∈ ϒ, that satisfies Ny = 0. In case (a), any
two accumulation points z1 and z2 satisfy Nz1 = Nz2.
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Proof Assume that case (a) does not hold. Then the sequence xr will have a subse-
quence xri that satisfies xri → ∞, as i → ∞. Consider the sequence

yi = xri

‖xri ‖ ,

which, being bounded, must have an accumulation point ȳ. We assume, without loss
of generality, that the entire sequence yi converges to ȳ ∈ ϒ . From the previous
theorem, we have that the sequence f (xri ) is decreasing, and we obtain that

f (xri )

‖xri ‖2
= 1

2

(
xri

‖xri ‖
)T

N

(
xri

‖xri‖
)

+
(

qT

‖xri ‖
)(

xri

‖xri ‖
)

.

Taking the limit as i → ∞, we obtain that ȳT Nȳ ≤ 0. Using assumption [A1], we
obtain that ȳT Nȳ = 0. From assumption [A1] it follows that ȳ is a minimum for
the function yT Ny, and from the optimality conditions it follows that Nȳ = 0. Since
ȳ ∈ ϒ , case (b) must hold. We have thus proved that the outcome of the iterative
method can be only (a) or (b).

Assume now that we are in case (a), and we have two accumulation points z1 ∈ ϒ

and z2 ∈ ϒ . From Theorem 3 we have that both z1 and z2 are a solution of (CCP),
and therefore they satisfy the following relationships.

z1 ∈ ϒ, z2 ∈ ϒ, −(Nz1 + q) ∈ ϒ◦, −(Nz2 + q) ∈ ϒ◦.

Since both the cone ϒ and the cone ϒ◦ are convex sets, it follows that z2 +
λ(z1 − z2) ∈ ϒ and that Nz2 + q + λ(Nz1 − Nz2) ∈ −ϒ◦, for any parameter λ ∈
[0,1]. In turn, from the definition of the polar cone, it follows that

g(λ) =
〈
z2 + λ(z1 − z2),Nz2 + q + λ(Nz1 − Nz2)

〉
≥ 0, ∀λ ∈ [0,1].

Using the fact that z2 satisfies 〈z2,Nz2 + q〉 = 0 being a solution of (CCP), we obtain
that

λ
〈
(z1 − z2),Nz2 + q

〉
+ λ

〈
z2, (Nz1 − Nz2)

〉
+ λ2

〈
(z1 − z2), (Nz1 − Nz2)

〉
≥ 0, ∀λ ∈ [0,1]

from which it follows that〈
(z1 − z2),Nz2 + q

〉
+

〈
z2, (Nz1 − Nz2)

〉
≥ 0.

By using the same argument but switching z1 and z2, we obtain that

−
〈
(z1 − z2),Nz1 + q

〉
−

〈
z1, (Nz1 − Nz2)

〉
≥ 0.

Adding the last two equations, we obtain that〈
(z1 − z2),Nz2 − Nz1〉 + 〈

z2 − z1, (Nz1 − Nz2)
〉 ≥ 0,
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with which, using the symmetry of the matrix N that follows from assumption A1,
we obtain that

2
〈
(z1 − z2), (Nz1 − Nz2)

〉 ≤ 0.

Using again assumption A1, we have that Nz1 = Nz2, which completes the proof. �

Corollary 1 Assume that the friction cone of the configuration is pointed (that is,
there does not exist a choice of reaction forces whose net effect is zero). If the rele-
vant parameters satisfy assumptions [A2] and [A3], then the algorithm (21) for CCP
applied to (19) produces a bounded sequence, and any accumulation point results in
the same velocity solution.

Proof Assume that the sequence xr is produced by the algorithm (21) whose parame-
ters satisfy Assumptions [A2] and [A3]. Then, from Theorem 4 there exists 0 �= y ∈ ϒ

such that Ny = 0. From (18) this implies that Dy = 0. In turn, from the definition of
D in (18) and Sect. 2.3, this implies that there exist nonzero constraint feasible im-
pulses that produce a zero net effect on the system. This contradicts the assumption
that the friction cone is pointed [38].

Therefore boundedness of the iteration sequence and the existence of an accumu-
lation point are assured. Uniqueness of the velocity follows from the second part of
Theorem 4, since Nz1 = Nz2 and the definition of D in (18) implies that Dz1 = Dz2,
which, in turn, from (16) implies that the velocity solution is unique. The proof is
complete. �

Note that N is symmetric positive semi-definite and therefore assumption [A1]
is satisfied. Assumption [A2] is easily satisfied, whereas assumption [A3] can be
satisfied by a trial-and-error approach, whereas if the iterates xr+1 and xr do not
satisfy [A3], than the parameter ω is decreased by factor of two, and the iterate x(r+1)

is recomputed. It is immediate that such a strategy can decrease the parameter ω only
a finite number of times.

4 Implementation

The CCP method proposed here can be applied to the simulation of multibody sys-
tems with a large number of parts and contacts because, where an upper limit on the
number of iteration is enforced, the iteration (21) can run in O(n) space and O(n)

time.
Previous sections showed that generic multibody problems with frictional con-

tacts, expressed with the system (5)–(8), embed the cone complementarity problem
(19). Hence, the iterative method (21) can be used to solve such convex CCP, be-
cause (19) is equivalent to the more general problem (20) where one considers the
specific case of three-dimensional cones ϒi . That is, for the ith friction cone ϒi we
have that ni = 3 and that there is an associated vector with a normal and two tangen-
tial reactions: γ i = {γ i

n, γ i
u, γ i

v }. The complete vector of unknown scalar reactions is
γ ∈ R

3nA . From Sect. 3, we have that nk = nA and nc = 3nA.
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Given (17), the final time-stepping scheme can be seen as a sequence of three main
operations: a CCP problem that finds unknown reactions γ (25a), a linear application
(25b) that gives the new speeds v(l+1), and a position update (25c):

(Nγ + d) ∈ −ϒo ⊥ γ ∈ ϒ (25a)

v(l+1) = M−1(k̃ + Dγ ) (25b)

q(l+1) = q(l) + h�(q(l))v(l+1). (25c)

The biggest computational overhead is caused by the first problem, that is, the
CCP (25a). In fact, (25c) is immediate, and (25b) can be computed quickly because
in most cases the matrix M is diagonal and its inverse M−1 can be precomputed
easily.

We recall that N = DT M−1D. The full D matrix can be partitioned in nA vertical
blocks Di ∈ R

m×3, each pertaining to the corresponding ith cone. We also recall that,
from (18), we have that

D = [D1|D2| . . . |DnA ].
Using (17), we can rewrite the term r from (17) in a more compact form:

d = DT M−1k̃ + b. (26)

The convergence theory about the iterative scheme (21) leaves some degrees of
freedom in choosing ηi values that build the diagonal blocks of the iteration matrix B .
A trivial choice could be to use the same ηi = ξ value for all diagonal blocks, that
is, B = ξI , and then use the overrelaxation parameter ω to control the convergence.
However, setting the same value for all ηi may slow convergence in systems with
large mass ratios, even with an optimal ω. A more practical approach, which copes
better with systems affected by uneven masses, is to use ηi = 1/ḡi , where ḡi is the
average of the diagonal values of the ith block of the N matrix. We note that ḡi can
be computed easily from the trace of the 3 × 3 matrix Di,T M−1Di , as

ḡi = Trace(Di,T M−1Di)

3
. (27)

Also the K matrix in (21) can be chosen freely, within the convergence limits
posed by assumptions [A1]–[A3]. Among the most noticeable options, we note the
case where K = 0, which results in a scheme like a projected Jacobi, or the case
where K is built by using the lower blocks of N , so that Ki,j = Di,T M−1Dj , where
1 ≤ j < i ≤ nA. In practical terms this means that, as soon as computed, a triplet γ i

with three reaction values will be used also for computing the following γ i+1 triplet,
and so on for all i, without needing to finish a single iteration, which results in a
Gauss-Seidel-type iteration. Numerical tests show that this last option, similar to a
projected SOR scheme with immediate update of unknown vector, converges faster
than the case of K = 0. Hereafter, we will assume that such a kind of K matrix is
used. Another choice, that we do not explore here, is the one of having the matrix
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K be block-diagonal with block lower triangular blocks, which would be equivalent
with block Jacobi, where for each block we do a Gauss-Seidel-type iteration. The
latter is suitable for a parallel iteration with low communication overhead.

We recall that the matrix N is a product of large matrices; N = DT M−1D, and it
is full even if D and M are sparse. For systems with a large number of contacts, the
size of N would be prohibitive and clearly would not satisfy the goal of O(n) space
complexity. To this end, direct multiplication of vectors and matrices in (21) must be
avoided; otherwise the effort and the space requirement would be superlinear in the
number of constraint.

For the reasons above, a scheme that does not need N computed explicitly has
been developed, exploiting the sparsity of M and D. Also the K matrix does not
need to be explicitly built, if we adopt the above mentioned choice of K as the upper
block-structure of N . These considerations lead to the following implementation of
the r th step of the iteration (21), expressed as an inner loop with index i = 1 . . . nA
on all nA friction cones ϒi :

δir = γ ir − ωηi

(
Di,T M−1

(
i−1∑
z=1

Dzγ z,r+1 +
nA∑
z=i

Dzγ zr + k̃i

)
+ bi

)
(28)

γ i,r+1 = λϒi (δ
ir ) + (1 − λ)γ ir . (29)

In the case of friction in three-dimensional space, the implementation of the projec-
tion operator ϒi (δi) : R

3 → R
3 is straightforward.

For improved performance, some operations can be computed at the beginning of
the iteration because their outcome would remain unchanged. In detail, we introduce
the m × 3 matrix si = M−1Di and the 3 × 3 matrix gi = Di,T M−1Di .

Considering the optimizations above, we can express the final CCP algorithm with
the following pseudocode:

Algorithm 1

1. For i = 1,2, . . . , nA compute the m× 3 matrices si = M−1Di and 3 × 3 matrices
gi = Di,T si .

2. For i = 1,2, . . . , nA, compute ηi = 3/Trace(gi).
3. If warm starting with some initial guess γ ∗, initialize reactions as γ 0 = γ ∗, other-

wise γ 0 = 0.
4. Initialize speeds: v = ∑nA

i=1 siγ 0 + M−1k̃.
5. For i = 1,2, . . . nA, perform the updates

δi,r = (γ i,r − ωηi(D
i,T vr + bi));

γ i,r+1 = λϒ(δi,r ) + (1 − λ)γ i,r ;
�γ i,r+1 = γ i,r+1 − γ i,r ;
v := v + siT �γ i,r+1.

6. Repeat the step 5 by looping on the list of contacts in backward direction, if sym-
metric updates are desired.

7. r := r + 1. Repeat from 5 until convergence, or until r > rmax.
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The iterations, usually stopped when an approximation threshold has been
reached, can be also prematurely aborted when r exceeds a limit rmax on the maxi-
mum number of iterations if the simulation must meet hard-real-time requirements.

With minimal changes to the ϒ(·) operator, the proposed method can be easily
adapted to the case of friction in 2D or the case of generic unilateral constraints. Also,
without major modifications to the main scheme, classical bilateral constraints can be
added. In that case, the cones ϒi can be taken to be R

li , where li is the dimension of
the force vector associated to a joint and the projection on such a cone is the identity.
Therefore the scheme is modified by simply replacing (29) with

γ i,r+1 = λδir + (1 − λ)γ ir . (30)

In our simulations, we chose ω = 1 and λ = 1, except for the test of convergence
of the residual with respect to ω. We cannot guarantee a priori that this will satisfy
condition [A3], but it did for all our simulations. In addition, the matrix sequences Kr

and Br were constant. We can therefore claim that Theorem 3 does apply and, since
the sequence did not diverge (and was in fact convergent), any accumulation point
is a solution of the cone complementarity problem (25a). In addition, Theorem 4
is applicable to show that any accumulation point has the same velocity solution.
It is difficult to verify numerically the condition of Corollary 1 (the pointed friction
cone assumption). Nonetheless, boundedness of the iterates was observed in all cases.
In addition, our proofs of the theoretical results allow for similar conclusions if ω

varies from iteration to iteration. Therefore, we could ensure that at some iteration
the appropriate ω is chosen after decreasing its value a few times until assumption
[A3] holds. It can be shown that if the value of ω is halved each time [A3] does not
hold and the respective iteration is rejected, then [A3] will eventually be satisfied after
a finite number of steps. In our experiments, however, the values we have chosen for
ω and λ have worked for all iterations without need of further adjustment.

Finally, the overall scheme (25) for advancing a single time step can be expressed
with the following pseudocode:

Algorithm 2

1. Set t = 0, step counter l = 0, provide initial values for v(l) and q(l).
2. Perform collision detection between shapes of bodies, obtaining nA possible con-

tact points within an ε distance. For each contact point, compute Dn,Du,Dv and
residual �(q).

3. For each body, compute forces ft (q, v, t), then compute k̃ with (15) and b with
(17).

4. Use Algorithm 1 to obtain unknown impulses γ and speeds v(l+1) for the CCP
problem.

5. Update positions using q(l+1) = q(l) + h�(q(l))v(l+1).
6. Increment t := t + h, l := l + 1, and repeat from step 2 until t > tend

We remark that choosing a proper value for the collision envelope ε is not trivial.
If a very small or zero value is used, contacts will enter the CCP solver only when it
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Fig. 2 Shaker benchmark, for a 1500-sphere case, showing vibration-induced granular segregation of
large objects. After ten seconds of simulation three black intruder particles, originally placed at the bottom
of the shaker, will rise at the top surface

is too late and some amount of interpenetration will be unavoidable: this will affect
negatively the stability of the method. On the other hand, if too large values are used,
the collision detection algorithm will return too many potential contacts which will
waste computational resources for the CCP solution and which could occasionally
create troubles with convex shapes: this will decrease the efficiency and the robust-
ness of the method. We experienced that a simple yet efficient heuristic is to choose
ε as the maximum distance which can be spanned by whatever point of the moving
body, given its speed.

5 Examples

We present the results of our algorithm on two granular materials applications. For
the larger simulation, the number of impulse variables exceeded 400,000.

5.1 Size segregation in a shaker

The first example is meant as a benchmark to evaluate the performance of the solver
when dealing with many contacts with friction. A rectangular box is filled with
spheres; then the box is shaken by means of an articulated suspension and a crank
mechanism (Fig. 2). When large objects are mixed with the spheres, a phenomenon
called vibration-induced size segregation moves larger objects on top: this effect can
be observed also in our simulations.

Different parameters have been tested, for example repeating the simulation with
a varying number of spheres up to 1500. In all cases the mass of the spheres is m =
0.01 kg, their diameter is d = 26 mm, the friction coefficient is μ = 0.3, and the time
step is h = 2π/50� s, with � rad/s being the frequency of the crank. The amplitude
of the vibration has been tested up to A = 10 mm.

Plotting of ‖�γ ‖ (Fig. 3) during the iteration of the algorithm shows the conver-
gence of the method for varying values of the overrelaxation factor ω.

Figure 4 shows how the CPU spends time in various parts of the simulation algo-
rithm. For this benchmark, a shaker with 1,000 rigid bodies was simulated with an
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Fig. 3 Convergence of �γ r for
varying ω, for a sample time
step in the 300-sphere
benchmark

Fig. 4 CPU time for each step
in a 1000-body simulation, split
into CCP fraction, collision
detection fraction, and other

upper limit of 40 iterations for the CCP solver. One can easily see that the solution of
the CCP is the bottleneck in the entire simulation process, while collision detection
and other tasks (time integration, Jacobian update, etc.) are less CPU-intensive. In
this example, the 40-iteration limit was enough to keep the feasibility errors at neg-
ligible levels (max. interpenetration ‖εPn‖ < 0.002d). However, if lower precision
is acceptable as in case of virtual reality or real-time applications, fewer iterations
can be used, thus reducing the CCP timings to levels which are comparable to the
collision detection timings.

To show how the number of iterations affect the precision of the solution to the
complementarity problem, in Fig. 5 we report the maximum error in terms of speed
violation ‖εV n‖ in contact constraints, during 300 time steps of simulation. Speed is
measured in d/s, where d is the diameter of the spheres.

Similarly, we report in Fig. 6 the maximum position error ‖εPn‖ in contact con-
straints, that is, the maximum interpenetration. The error is measured in d units. One
can see that, despite the large number of objects in contact, acceptable precision can
be obtained also with a moderate number of iterations.
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Fig. 5 Maximum speed
violation in constraints, for the
300-sphere benchmark

Fig. 6 Maximum penetration
error in constraints, for the
300-sphere benchmark

By performing a set of six shaker simulations with an increasing number of ob-
jects, hence for increasing numbers of contacts, one can obtain a graph as in Fig. 8,
which shows how the CPU effort grows linearly with the number of frictional con-
tacts. Here, for each simulation, CCP timings have been recorded after ten seconds of
transient, when spheres are at steady state and form a dense packing, because this is
a nontrivial configuration that requires significant CPU efforts. The linear-time com-
plexity is a consequence of the loop in the fifth step of the algorithm, which is O(p)
with p reaction forces γi if a maximum number of iterations is enforced (40 iterations
in this example). Note that the fourth step of the algorithm, performing a computation
that is linear in terms of number of rigid bodies, has a moderate or negligible impact
on overall performance. Despite the fact that the theoretical complexity of the algo-
rithm for fixed number of iterations is linear, some deviation from linearity can be
experienced in complex applications when large amounts of contacts are simulated,
because CPU cache misses can become more frequent as the memory access starts to
become more and more intense.
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Fig. 7 Number of contact
constraints, increasing while
pouring spheres in the shaker

Fig. 8 Average CPU time used
to compute a step of simulation,
as a function of the number of
contacts

Figure 7 show that only a portion of the potential contacts will be active (i.e.,
with nonzero reaction force) after the CCP solution. Since the computational effort is
proportional to the number of potential contacts entering the CCP solver, regardless
of the active/inactive outcome, a proper collision detection algorithm should take
care to report the smallest number of potential contacts, that is, only the surface pairs
that may give interpenetration in a single time step given the actual state of bodies.
This precaution would keep the active contacts as a relatively fixed percentage of the
number of potential constraints.

5.2 Granular flow from a silo

The numerical method proposed in this article can be used to simulate dense granular
flows in silos. This problem arises in many engineering applications, most notice-
ably in the development of the promising fourth-generation uranium-based, graphite-
moderated, helium-cooled very high temperature nuclear reactor, where thousands of
graphite fuel pebbles drain very slowly in a continuous refueling process [13].



An iterative approach for cone complementarity problems 231

Fig. 9 Frames from the simulation of 36,000 rigid bodies with frictional contacts flowing from a
three-dimensional funnel. On a T2600 2 GHz processor, each solution of the CCP problem (nearly half
a million of variables, including constraint multipliers and speeds) with 140 iterations, took 19 s of CPU
time on average

Pebble flow in such pebble-bed reactors (PBRs) is not easily accessible to exper-
iments, and no reliable continuum model is yet available for analytical approaches.
These facts motivate the development of fast numerical methods. Simulations of PBR
reactors have been recently performed with DEM discrete-element methods [33];
however, the DEM approach is based on a stiff spring-dashpot contact model which
requires a very small time step in order to guarantee the stability of the integration.
Conversely, the method proposed here can enforce rigid contacts without the need
of artificial stiffness; hence larger timesteps can be used. For example, the flow sim-
ulation of Fig. 9, representing 11 seconds of drainage from a silo 3.5 m wide with
36,000 uranium-graphite spheres with d = 0.06 m and friction coefficient μ = 0.6,
exploited a timestep h = 0.01 s that is three orders of magnitude larger than the
timestep required by the DEM method in [33]. The simulation took about four hours
to complete for 5 seconds of simulated time, with a penetration error comparable
to the one in the size segregation case. But timing is perhaps less relevant since it
depends on items such as cache management that can vastly change with different
optimization than the fact that the simulation completed with low penetration error
for a fixed (and relatively small) number of iterations, 140, for a very high density
configuration. The maximum number of contacts for which the problem was bench-
marked was almost half a million, which in turn resulted in more than two millions
of variables for the CCP. This is a promising approach to the simulation of full-scale
reactors and other large granular flow problems, though further tests are needed to de-
termine whether the maximum penetration error does not increase with an increasing
number of uranium-graphite spheres.

6 Conclusions

Aiming at a linear-time solution of dynamical systems with thousands of constraints
and contacts, we have presented a novel method for solving the cone constrained
subproblems that appear in a time-stepping approach recently proposed in [1]. The
method has the flavor of a Gauss-Seidel with overrelaxation and is proven to converge
under fairly standard assumptions about the configuration of the system.
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We implemented this method into the HyperOctant library of our multibody
project, Chrono::Engine [39]. Our method is able to handle large simulations with
tens of thousands of colliding rigid bodies and hundreds of thousands of constraint
impulse variables and scales well in this range. In previous work [3, 40] we have
shown that simplex-like methods do not scale well for systems in configurations of
the type solved here. In future work, and as appropriate software packages become
available, we will carry out comparisons with interior-point methods for optimization
problems with conic constraints.

Because of the low computational overhead of our method, we foresee that it
could be endorsed even in the emerging application fields of physical engines for
videogames and virtual interactive environments, which can exploit the benefits of
the method for real-time performance.

Acknowledgements We thank Paul Tseng for technical discussions concerning block coordinate de-
scent methods. We are profoundly grateful to the two referees and to Dan Negrut for their constructive
comments. Mihai Anitescu was supported by Contract No. W-31-109-ENG-38 of the U.S. Department of
Energy.

Appendix A: Notations

A.1 Multibody system

• n: number of bodies.
• m = 6n: dimension of the position state vector.
• M : Mass matrix, positive definite, of size m × m.
• q: vector of generalized positions of dimension m.
• v: vector of generalized velocites of dimension m.
• t : time of the system.
• h: time step used by the time-stepping scheme.
• ft (t, q, v), fe(t, q, v), fc(q, v): the total, external, and, respectively, Coriolis

forces acting on the system, vectors of dimension m.
• p: number of contact constraints that can become active (no more than

(
n
2

)
).

• A(ql, ε) set of ε-active contact constraints, a set with no more than p elements.
• nA: dimension of set A(ql, ε).
• D: aggregate matrix of normal and tangential directions at the contact in general-

ized coordinates, a matrix of dimension m × 3nA.

A.2 Contact and friction model

• �(q): the gap function, which indicates whether a contact constraint is active.
• n, t1, t2: the normal and tangential vectors at a contact, three-dimensional vectors.
• FN, FT : the normal and tangential force at a contact, three-dimensional vectors.
• vT : the tangential velocity, a three-dimensional vector.
• γ̂n, γ̂u, γ̂v : normal and tangential force multipliers.
• γn, γu, γv : normal and tangential impulse multipliers.
• Dn,Du,Dv : the normal and tangential vectors at a contact in generalized coordi-

nates, m-dimensional vectors.
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• FN,FT : the normal and tangential force in generalized coordinates, m-dimensional
vectors.

• μ: the friction coefficient.
• F C : the Coulomb friction cone, a subset of a three-dimensional space.

A.3 Cone complementarity problems

• nk : number of cones ϒi whose direct sum give the total constraint cone of the cone
complementarity problem.

• ni : dimension of the vector space R
ni in which the component ϒi is embedded.

• nc = ∑nk

i=1 ni : dimension of the unknown vector of the cone complementarity
problem.

• ϒ : the total constraint cone of the cone complementarity problem, a subset of R
nc .

• N : matrix of the cone complementarity problem of dimension nc × nc .
• d : free term of the cone complementarity problem, a vector of dimension nc.
• C◦: the polar cone of a convex cone C.
• C(·): the projection operator on a closed, convex cone C.

A.4 Iterative scheme

• K : a strict block upper or lower triangular matrix.
• B: a block diagonal matrix, with multiple of identity blocks.
• ω, λ: scalar parameters of the iterative scheme.
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