
Comput Optim Appl (2010) 47: 61–76
DOI 10.1007/s10589-008-9206-5

Solving job shop scheduling problems utilizing
the properties of backbone and “big valley”

Panos M. Pardalos · Oleg V. Shylo ·
Alkis Vazacopoulos

Received: 14 March 2007 / Revised: 3 September 2008 / Published online: 20 September 2008
© Springer Science+Business Media, LLC 2008

Abstract In this paper, a new metaheuristic for the job shop scheduling problem is
proposed. Our approach uses the backbone and “big valley” properties of the job shop
scheduling problem. The results of the computational experiments have demonstrated
the high efficiency of our approach. New upper bounds have been obtained for many
problems.

Keywords Job shop scheduling problem · Makespan · Backbone · Big valley ·
Metaheuristic

1 Introduction

The goal of this paper is to introduce a new metaheuristic approach for the minimum
makespan problem of the job shop scheduling problem (JSP), which uses proper-
ties of the search space such as backbone and “big valley” to accelerate the search.
The algorithm was proposed not in order to beat previous highly sophisticated pro-
cedures, but to investigate the potential of certain search principles (i.e. algorithm
with two phases: intensification and diversification, an accumulation of the search

Research partially supported by NSF and AirForce grants.

P.M. Pardalos · O.V. Shylo (�)
Dept. of Industrial and Systems Engineering, University of Florida, 303 Weil Hall, Gainesville, FL,
32611, USA
e-mail: shylo@ufl.edu

P.M. Pardalos
e-mail: pardalos@ufl.edu

A. Vazacopoulos
Dash Optimization Inc., 560 Sylvan Avenue, Englewood Cliffs, NJ, 07632, USA
e-mail: av@dashoptimization.com

mailto:shylo@ufl.edu
mailto:pardalos@ufl.edu
mailto:av@dashoptimization.com

62 P.M. Pardalos et al.

space properties and utilization of those properties in the algorithm dynamics). In our
opinion, such principles are crucial for an effective optimization technique and the
computational results support this assertion.

The JSP minimizes the completion time needed for processing all jobs J on a
set of machines M subject to the following constraints: (i) each job has a predefined
processing order through all machines (precedence constraints), and (ii) each ma-
chine can process at most one job at a time (resource constraints). If a machine starts
processing a job it must finish it without any interruption (non-preemptive). This
problem is known to be NP-hard [12]. Exact methods were successfully applied to
job shop problems of small dimensions, but for problems with more than 15 machines
and 15 jobs high quality solutions cannot be found with reasonable computational ef-
fort. For large dimensions there is a need for good approximation algorithms. Local
search based methods were successfully applied to such problems. These methods
include tabu search methods [15, 23, 26], greedy randomized adaptive search [3],
simulated annealing [24], global equilibrium search [19], and guided local search
with shifting bottleneck procedure [2]. A detailed review of the methods for the JSP
can be found in [9] and [13].

Among these approaches, the tabu search and global equilibrium search method
dominate all other approaches. However, the metaheuristic presented in this paper is
able to achieve the same level of performance on a wide set of benchmark instances.

2 Mathematical model and notations

Let M = {M1,M2, . . . ,Mm} be a set of machines and O = {σ0, σ1, . . . , σN+1} denote
the set of operations, where σ0 and σN+1 denote fictitious “start” and “finish” oper-
ations. Each operation σ ∈ O has two properties: a machine M(σ) ∈ M that must
process it and its processing time p(σ) (p(σ0) = p(σN+1) = 0). Additionally, let A

denote the set of ordered pairs of operations which are tied by the precedence con-
straints, and let Ek denote the set of all pairs of operations which require machine
Mk for their processing (k = 1, . . . ,m).

Further, let s(σ) denote the start time of the operation σ , and let s(σ0) = 0. The
problem is to find a starting time for each operation σ ∈ O (schedule) such that

max
σ∈O

[s(σ) + p(σ)] (1)

is minimized subject to

s(σ) ≥ 0, ∀σ ∈ O (2)

s(ω) − s(σ) ≥ p(σ), ∀(σ,ω) ∈ A (3)

s(ω) − s(σ) ≥ p(σ) ∨ s(σ) − s(ω) ≥ p(ω)

∀(ω,σ) ∈ Ek , k = 1, . . . ,m (4)

The value given in (1) is often referred to as the makespan of the schedule repre-
sented by starting times of operations from O .

Solving job shop scheduling problems utilizing the properties 63

This problem can be described using the disjunctive graph model of Roy and Suss-
mann [20]. Let G = (O,A,E) denote the disjunctive graph, where O is a set of nodes
(a node for each operation), A is a set of directed arcs ((σ0, σ) ∈ A and (σ,σN+1) ∈ A

for all σ ∈ O), and E = ⋃m
k=1 Ek is a set of undirected arcs. The weight of each node

is given by the processing time of the corresponding operation. Let S (selection) de-
note a set of directed arcs which is obtained from E by choosing the direction for
each of its arcs. Then let GS = (O,A∪S) be a directed graph that corresponds to the
selection S. If GS is an acyclic graph, then it defines a set of feasible schedules for
the problem (1)–(4). The best solution from this set can be obtained by setting s(σ)

equal to the longest path from σ0 to σ in GS .
The following notation is useful for our discussion. Let JP (σ) (JS(σ)) denote

an operation such that (JP (σ), σ) ∈ A ((σ, JS(σ)) ∈ A). In other words, JP (σ)

(JS(σ)) is an operation that belong to the same job and has to be processed directly
before (after) σ . Assuming S is a feasible selection, let MP(σ) denote an operation
such that (MP(σ), σ) ∈ S, and for any operation ω �= σ if (MP(σ),ω) ∈ S then
(σ,ω) ∈ S. Let MS(σ) denote an operation such that MP(MS(σ)) = σ . In other
words, MP(σ) (MS(σ)) is an operation that is processed on the same machine and
directly before (after) σ .

Let q(σ) be the length of the longest path from σ to σN+1 (tail), and s(σ) be the
length of the longest path from σ0 to σ (head). The longest path in GS is referred to
as the critical path, and the operations which belong to this path are called critical op-
erations. Thus, the critical operations possess the property that any delay of a critical
operation will result in an delay of the whole schedule. We can decompose any crit-
ical path into a set of critical blocks. We say that critical operations σ (σ �= σ0) and
ω (ω �= σN+1 and s(σ) < s(ω)) belong to the same critical block if there is a path of
length l between them, such that all its arcs belong to S and s(σ) + p(σ) + l = s(ω).

3 Implementation of the local search

In contrast to most recent local search based methods for the JSP, our local search
is based on the N4 move operator proposed by Grabowski et al. [7] (we use the
neighborhood notation introduced in [4]). The N4-neighborhood consists of solutions
obtained by moving a critical operation either to the beginning or to the end of its
critical block.

In many applications the priority has been given to the highly restricted N5 move
operator. The solutions from the N5-neighborhood are obtained by changing the
processing order of two consecutive critical operations such that at least one of them
is either the first or the last operation of its critical block. The main drawback of
such a restriction is that the resulting search space becomes disconnected, i.e. the
existence of the path, with respect to the N5, from any arbitrary solution to the opti-
mum is not guaranteed. On the contrary, the N4 move operator induces the connected
search space. Additionally, as the N5 move operator is just a restriction of the N4
move operator, it is clear that the latter provides a more thorough search.

Nowicki and Smutnicki proposed an effective method of the makespan calculation
for the N5 move operator [17], which significantly decreases the overall time spent on

64 P.M. Pardalos et al.

move evaluations. Based on their approach, we use the similar accelerator for the N4
move operator. The details of such acceleration are simple, but quite cumbersome,
thus we refer the reader to [19] for the details. As a result of such acceleration, the
move evaluations are performed up to 3 times faster.

In order to provide an even more thorough search, we introduce a procedure, which
has some common features with the iterated local search technique [14, 25].

Whenever an operation is moved either to the beginning or the end of the block,
the reason that such move does not improve the solution is because of a constraint
coming from the job predecessor of some operation which belonged to the same
critical block as the moved operation.

Therefore, after identifying such an operation, we push its job predecessors back
in the processing order to remove this specific constraint. After the transformation is
finished, the local search starts from the obtained solution (see Fig. 1). This procedure
was discussed in [19] and is used in our studies as an enhancement of the local search.
The investigation of its impact on the algorithm performance was provided in [19].

Whenever two solutions have the same makespan value, we consider the total
processing time of their critical operations. The solution with smaller total processing
time is considered an improving solution. This rule allows us to take into account
cases where we encounter multiple critical paths (Fig. 1: line 27).

4 Description of an algorithm

The algorithm described below uses ideas and concepts introduced by the simulated
annealing technique [11] and the global equilibrium search method [21].

The general framework of the algorithm is presented in the Fig. 2. This algorithm
will be referred to as Distance Based Search (DBS). The main cycle of the DBS is
performed until some stopping criteria is satisfied. In our implementation we stopped
DBS after a certain amount of computational time. The main cycle consists of a series
of temperature cycles (Fig. 2: line 4). During a temperature cycle the DBS generates
a set of random solutions (Fig. 2: line 16). These random solutions are generated
based on the rejection probability value, that changes during the cycle (Fig. 2: line 6).
Instead of generating the solutions from scratch, a number of simple moves is applied
using the N4 and the N1 move operators to the previously encountered solution (the
N1-neighborhood consists of solutions obtained by swapping two consecutive critical
operations). The acceptance or rejection of a certain move is based on the solutions
from the set P (the pool of solutions). If the move leads to a solution that is further
from P than the current solution, then it is rejected with probability given by a rejec-
tion value. In our studies, 40 temperature cycles were used and 100 solutions were
generated at each temperature stage.

After the new solution is generated, we apply local search and improvement pro-
cedures (see Fig. 1) in order to find better solutions in its vicinity (Fig. 2: line 17).
The best solution found by the improvement procedures is used to update all mem-
ory structures. Lines 8–14 and 24–29 (Fig. 2) allow us to intensify the search in the
vicinity of solutions from P (in our tests we used the pool of size 5). Whenever the

Solving job shop scheduling problems utilizing the properties 65

Input: x—a local minimum
1: Let M =N4(x) (Grabowski’s neighborhood)
2: while M �= ∅ do
3: choose randomly y ∈ M
4: M = M − y

5: let B be a set of operations σ,ω for which
6: y(σ,ω) �= x(σ,ω)

7: find an operation σ ∈ B such that
8: end(JP (σ)) = head(σ)

9: if σ �= ∅ then
10: ω = JP (σ)

11: while σ �= ω do
12: if head(JS(ω)) �= end(ω) then
13: ω = JS(ω)

14: else if JP (ω) �= ∅ and end(JP (ω)) = head(ω) then
15: ω = JP (ω)

16: else if MP(ω) �= ∅ then
17: Switch MP(ω) and ω in y

18: if makespan of the resulting solution is worse then
19: break
20: end if
21: else
22: break
23: end if
24: end while
25: end if
26: y = localSearchN4(y) {Starting in y}
27: if f (y) < f (x) or f (y) = f (x) and y is an improving solution then
28: RETURN y {Improvement!}
29: end if
30: end while
31: RETURN x {No improvement}

Fig. 1 Improvement procedure

temperature is larger than T ′, instead of using the whole set P ′ to determine the dy-
namics of the transformation procedure, we use a single solution from the set P ′. At
this stage the behavior of the algorithm is similar to the path-relinking procedure.

4.1 “Big valleys” and backbones

The theoretical and empirical aspects of the backbone properties are getting more
attention in literature [5, 18, 22]. Our algorithm uses information about the backbones
to organize a more effective search.

66 P.M. Pardalos et al.

1: Initialize algorithm’s parameters
2: while Stopping criteria is not satisfied do
3: x = GenerateRandomSolution()
4: for cycle = 0 to maxnfail do
5: for temp = 0 to maximal temperature do
6: Calculate rejection probabilities
7: Define the percentage of edges to fix, and define Bf

8: if temp > T ′ then
9: Choose random solution S from P ′′

10: P = {S}
11: P ′′ = P ′′ − {S}
12: else
13: P = P ′
14: end if
15: for gen = 1 to number of generations do
16: x = TransformSolution(x, Bf , P , temp, maxmoves)
17: x = ImproveSolution(x)
18: if f (x) < f ∗ then
19: cycle = 0
20: f ∗ = f (x)

21: end if
22: Include x to the pool of solution P ′, if eligible
23: end for
24: if temp > T ′ AND |P ′′| > 0 then
25: temp = temp − 1 (repeat with the same temperature)
26: end if
27: if temp > T ′ AND |P ′′| = 0 then
28: |P ′′ = P ′|
29: end if
30: end for
31: end for
32: f ∗ = ∞
33: end while
34: RETURN Best solution found

Fig. 2 Pseudo-code of the algorithm

For the JSP, the backbone is a set B of directed arcs which is obtained by fixing
the orientation of some arcs from E, such that for any globally optimal selection S:
S ∩ B = B . In other words, it is the set of solution features common to all global
optima.

The selection is called ρ-optimal, if the corresponding makespan is less than
or equal to the ρ percentage of the optimal makespan value. We can define the
ρ-backbone B(ρ) as a set of directed arcs which is obtained by fixing the ori-

Solving job shop scheduling problems utilizing the properties 67

entation of some arcs from E, such that for any ρ-optimal selection S, we have
S ∩ B(ρ) = B(ρ).

In our algorithm we use another interesting property of the JSP: the distribution
of local optima has the structure, which is referred to as “big valley” (i.e. the so-
lutions of high quality tend to be clustered together with respect to the Hamming
distance between solutions). This property has been successfully used in the algo-
rithm of Nowicki and Smutnicki [17]. In [22] the authors provide a formal definition
of this concept.

4.2 Use of backbone property

Let �∗ be some subset of feasible solutions, and let S∗ be the best solution from this
set. Then �∗ determines the approximation of backbone:

B∗(ρ) = {∩S|S : f (S) < ρ · f (S∗), S ∈ �∗}
One can set �∗ equal to the set of local optima encountered by a single run of

the algorithm. This approximation is used in our algorithm to fix a certain number of
edge orientations.

Through computational experiments we found that such limitation of the search
space allows us to increase the efficiency of the search.

One of the parameters used in our studies is q , which is the percentage of edges to
fix. Using this value, we define a set of fixed edges. Formally, this procedure consists
of the following steps:

1. Find ρ1, ρ2 such that |B∗(ρ1)| ≤ q · |S| ≤ |B∗(ρ2)|,
ρ1 ≤ ρ for any ρ such that |B∗(ρ)| ≤ q · |S|,
ρ2 ≥ ρ for any ρ such that |B∗(ρ)| ≥ q · |S|.

2. Set Bf = B∗(ρ1).
3. Select randomly �q · |S| − |B∗(ρ1)|� elements from the set given by B∗(ρ2) −

B∗(ρ1) and add them to Bf .

As the result of the above steps, the set Bf contains �q · |S|� edge orientations to
be fixed.

4.3 Use of the “big valley” property

In order to use the “big valley” property of the JSP, we use a mechanism similar to
the path-relinking procedure [1].

In our approach we use the value of the Hamming distance between some subset
of the solutions as the main decision criteria, and the cost of the solutions is used to
define such a subset (given two selections S1 and S2 representing two schedules, the
Hamming distance is defined as |S1\S2|). In this paper we refer to this subset as the
pool of solutions.

The pool of solutions is used to keep track of the best solution encountered by the
algorithm and to intensify search in its vicinity. The main criteria for an inclusion
into the pool is the solution quality and the distance to other solutions in the pool. In

68 P.M. Pardalos et al.

contrast to the elite set in path-relinking applications, the pool of solutions is more
volatile, i.e. it changes more frequently.

In order to determine whether to include a solution into the pool or not, we intro-
duce the notion of the quality of the pool, which is given by a quality function. If the
size of the pool is less than a maximal size, then all solutions are inserted into the
pool. When the pool reaches its maximal size, then we try to substitute each solution
in the pool with the new solution, and if the quality of the pool increases after such
a substitution, then the pool is changed (i.e. the new solution substitutes the solution
from the pool).

Let P denote a set of solutions which belong to the pool. The quality function is
defined as:

Q(P) =
∑

S′′∈P

min{|S′′\S′| : S′ ∈ P,S′ �= S′′}

A pool which consists of more diverse solutions has a higher quality function
value. Thus, the choice of this function was made in order to encourage the algorithm
to keep the diverse set of solutions in the pool.

In order to avoid situations in which the pool is populated with low-quality solu-
tions, we use two threshold values θ1 and θ2, which are changed dynamically. A so-
lution can enter the pool only if its makespan value is smaller than θ1. A parameter
θ2 is used to identify the solutions which should be removed from the pool, i.e. after
each update of the threshold values, the solutions with makespan larger than θ2 are
excluded from the pool.

These threshold values are reset every three temperature cycles. In our implemen-
tation, θ1 is set to 1.01∗CMaxbest and θ2 is set to 1.015∗CMaxbest, where CMaxbest is
the best makespan value found by the algorithm since the last reset of the threshold.

4.4 Rejection probabilities

In order to control the generation of new solutions, we use the so-called tempera-
ture values, which are integers from the interval [0, maximal temperature]. At the
first temperature stage, the value of the temperature is zero, at the beginning of every
subsequent stage the temperature value increases by one. When the value of the tem-
perature reaches the maximal value, the temperature cycle is finished. The rejection
probability for a temperature t is given by:

Pr{rejection}(t) = 1 − 0.5 exp(−alpha ∗ t)

The parameter alpha controls the speed of the convergence. We use a simple rule to
adjust it in order to make a smooth convergence for any problem solved. If during
the previous temperature stage, more than 10% of the solutions were the same as the
previous solutions, then the new value of alpha is set to 0.9 ∗ alpha. On the other
hand, if the algorithm was not able to find the best solution from the pool during
the last five stages of the temperature cycle, then the new value of alpha is set to
1.1 ∗ alpha. In order to determine, whether or not the solution was previously visited,
we use the hash table with capacity to store 10000 keys. Each key is a sum of the
weighted elements of the solution vector (in a binary form). All entries are removed
from the hash table after every three temperature cycles.

Solving job shop scheduling problems utilizing the properties 69

Input: S—initial solution, Bf —set of fixed edges, P —current pool of solutions,
t—current temperature, maxmoves—maximal # of moves

Function:
1: N = N4(S) ∪ N1(S)

2: nmoves = 0
3: while |N | �= 0 and nmoves < maxmoves do
4: Choose randomly S′ ∈ N

5: N = N − S′
6: accept = false
7: if |S′ ∩ Bf | ≥ |S ∩ Bf | then
8: accept = true
9: end if

10: if min{|S′ − Se| : Se ∈ P } > min{|S − Se| : Se ∈ P } then
11: rand =uniform(0,1)
12: if rand > p(t) then
13: accept = true
14: end if
15: else
16: accept = true
17: end if
18: if accept = true then
19: nmoves = nmoves + 1
20: S = S′
21: N = N4(S) ∪ N1(S)

22: end if
23: end while

Fig. 3 Transformation procedure

4.5 Transformation procedure

The transformation procedure allows the algorithm to escape from the local optima
by subsequently applying the N4 and the N1 move operators. Additionally, it allows
us to move towards solutions with some specific properties. As discussed earlier, we
are exploiting the properties of backbone and “big valley” to organize an effective
search. To do this, we simply encourage moves that lead to the solutions with edge
orientations common to backbone and which are close to the solutions from the pool.
The pseudo-code of this procedure is presented in Fig. 3.

5 Computational results

The algorithm described in this paper was implemented in C language. All computa-
tional experiments were conducted using a personal computer Pentium 2.8 GHz with
512 Mb of RAM.

70 P.M. Pardalos et al.

The parameters of the algorithm were the same for all computational experi-
ments: maxnfail = 3, maximal temperature K = 40, T ′ = 35, number of generations
ngen = 100, initial value of α is set to 2.0. There was no sophisticated tuning involved
in the definition of the algorithm’s parameters. The choice of these parameters was
made in such a way that algorithm returns high quality solution within a reason-
able ammount of time (i.e. one cycle in 60 seconds for “small” sized problems). The
choice of initial α is not significant, since the DBS updates this parameter based on
the search results. The value of parameter maxmoves is set to the number of jobs of
the problem solved, the main criteria for such choice was to allow an escape from the
local minimum when the trasformation is applied. The proposed algorithm does not
involve a large number of parameters and those parameter do not require any sophis-
ticated tuning procedures. The specific choice of the parameters is not important for
our investigation. We wanted to show that the techniques that involve the ideas intro-
duced by the SA can be efficiently used in scheduling (without complicated tuning
procedures) as long as the proper search organization is used (i.e. an intensification
stage and a diversification stage, an accumulation of the search space properties and
utilization of those properties in the algorithm dynamics).

The proposed algorithm has been tested on Taillard’s benchmark problems taken
from the OR-library. This set contains 80 problems denoted by (TA1–TA80) due
to Taillard [23]. Optimal solutions are known for 47 problems from this class. The
problems TA51–TA80 are the easiest problems, therefore we limited our testing to
the problems TA01–TA50.

The other set of problems we used for computational experiments was proposed
in [6]. This set contains 80 problems, denoted as DMU1–DMU80. The optimal solu-
tions are only known for 22 of these problems.

The computational results are given in Tables 1 and 2 below. For the problems with
an unknown optimal solution, we provide its lower bound (LB) and upper bound
(UB), taken from [8] and [10]. “Alg5” corresponds to the DBS algorithm with the
pool of size 5. There was no fixed edges for these version of the algorithm. (Bf = ∅).
As for the algorithm “AlgFix”, we fixed 15% of edges after 5000 seconds of running
time. For every algorithm we set up a time limit of 10000 seconds. The results for
shorter running times are provided for problems TA01–Ta10 (see 5.1 Comparison
with the algorithm of Nowicki and Smutnicki). Most of the algorithms proposed for
the job shop scheduling have a very significant drawback. The increase of compu-
tational effort used to solve the problem (i.e. long computational times: sometime
weeks of computations) do not provide any improvement in terms of solution quality.
Thus, the long time runs where reported in order to provide an evidence of the algo-
rithm’s capability of avoiding stagnation in low quality solutions (the reported new
UBs prove this assertion). In our opinion, the ability of an approximate algorithm to
provide better solution when long run times are involved is very crucial, especially
when parallelization of such techniques is considered.

The data presented in the tables corresponds to the best solutions found by the
algorithm. The “GES” column corresponds to the result obtained by the GES based
algorithm in [19]. The best solutions found by the algorithm described in the current
paper were put into brackets (i.e. DMU6—new upper bound found by DMS is 3244).
These solutions are available at [10]. For a majority of other test instances the algo-
rithm finds the best known solutions. It is interesting to note the performance of the

Solving job shop scheduling problems utilizing the properties 71

Table 1 Results for TA1–TA50
Prob |J | × |M| (LB, UB) Alg5 AlgFix GES

ta01 15×15 1231 1231 1231 1231

ta02 15×15 1244 1244 1244 1244

ta03 15×15 1218 1218 1218 1218

ta04 15×15 1175 1175 1175 1175

ta05 15×15 1224 1224 1224 1224

ta06 15×15 1238 1238 1238 1238

ta07 15×15 1227 1228 1228 1228

ta08 15×15 1217 1217 1217 1217

ta09 15×15 1274 1274 1274 1274

ta10 15×15 1241 1241 1241 1241

ta11 20×15 (1323, 1357) 1359 1358 1357

ta12 20×15 (1351, 1367) 1367 1367 1367

ta13 20×15 (1282, 1342) 1342 1342 1344

ta14 20×15 1345 1345 1345 1345

ta15 20×15 (1304, 1339) 1339 1339 1339

ta16 20×15 (1302, 1360) 1360 1360 1360

ta17 20×15 1462 1473 1473 1469

ta18 20×15 (1369, 1396) 1396 1396 1401

ta19 20×15 (1297, 1332) 1332 1332 1332

ta20 20×15 (1318, 1348) 1348 1348 1348

ta21 20×20 (1539, 1644) 1647 [1643] 1647

ta22 20×20 (1511, 1600) 1600 1600 1602

ta23 20×20 (1472, 1557) 1557 1557 1558

ta24 20×20 (1602, 1646) 1647 1646 1653

ta25 20×20 (1504, 1595) 1595 1595 1596

ta26 20×20 (1539, 1645) 1649 1647 1647

ta27 20×20 (1616, 1680) 1685 1686 1685

ta28 20×20 (1591, 1603) 1603 1613 1614

ta29 20×20 (1514, 1625) 1625 1625 1625

ta30 20×20 (1472, 1584) 1584 1584 1584

ta31 30×15 1764 1766 1766 1764

ta32 30×15 (1774, 1793) 1803 [1790] 1793

ta33 30×15 (1778, 1791) 1798 1791 1799

ta34 30×15 (1828, 1829) 1832 1832 1832

ta35 30×15 2007 2007 2007 2007

ta36 30×15 1819 1819 1819 1819

ta37 30×15 1771 1778 1784 1779

ta38 30×15 1673 1677 1673 1673

ta39 30×15 1795 1798 1795 1795

ta40 30×15 (1631, 1674) 1682 1979 1680

ta41 30×20 (1859, 2014) 2036 2022 2022

ta42 30×20 (1867, 1949) 1963 1953 1956

72 P.M. Pardalos et al.

Table 1 (Continued)
Prob |J | × |M| (LB, UB) Alg5 AlgFix GES

ta43 30×20 (1809, 1858) 1868 1869 1870

ta44 30×20 (1927, 1983) 1990 1992 1991

ta45 30×20 (1997, 2000) 2005 2000 2004

ta46 30×20 (1940, 2011) 2023 2011 2011

ta47 30×20 (1789, 1900) 1911 1902 1903

ta48 30×20 (1912, 1949) 1964 1962 1962

ta49 30×20 (1915, 1967) 1974 1974 1969

ta50 30×20 (1807, 1926) 1927 1927 1931

algorithm “AlgFix” on the larger and “tougher” instances from the set DMU. As it
can be seen from Table 2, “AlgFix” obtained better solutions with respect to “Alg5”
in 23 cases, and “Alg5” was able to get better solution in 18 cases. Therefore, the idea
of fixing the orientations of some edges in order to intensify the local search in the
vicinity of good solutions, appears to be promising for the larger problem instances,
but not very effective for small sized instances.

5.1 Comparison with the algorithm of Nowicki and Smutnicki

To our knowledge, one of the best algorithms to date for job shop scheduling was pro-
posed by Nowicki and Smutnicki [16, 17]. One type of computational results given
in their paper is based on average performance on a subset of equally sized prob-
lems.

A test on the problems Ta01–Ta10 was performed to provide a comparison of
short running times. We run Alg5 for 100 seconds on each problem from this set.
For every problem we calculated the following value, RE[i] = 100%(CMax[i] −
CMax*[i])/CMax*[i], where CMax[i] is the best makespan value obtained by our
algorithm for the ith problem in the set, CMax*[i]—is the optimal makespan value
for ith problem. For the problems Ta01–Ta10, our algorithm provides an average of
RE[i] equal to 0.08%, and the average time to the best solution is equal to 24.6 sec-
onds. These values are comparable to the values provided in the paper of Nowicki
and Smutnicki [16]: 0.11% and 26 seconds, respectively. Hence, one can see, that the
relationship between running times versus the quality of solutions is comparable.

The other data, provided in [16, 17] are the new upper bounds obtained by the
tabu search algorithm. These bounds were obtained during numerous time consum-
ing experiments with different parameters of the tabu search algorithm. Therefore,
this data does not represent the results for a single set of parameters, and there is
no data available on the computational times spent to acquire those bounds. Never-
theless, our approach allowed us to improve most of these upper bounds in a sin-
gle run of our algorithm. For the problems DMU1–DMU8, there are 60 new upper
bounds reported in [16], but the single run of Alg5 together with single run of Al-
gFix was able to improve 44 bounds, and for 3 problems we found the same bounds.
The fact that all of our improvements were found in a two runs of algorithm with no
tuning for each particular instance, suggests the high effectiveness of the proposed
approach.

Solving job shop scheduling problems utilizing the properties 73

Table 2 Results for
DMU1–DMU80 Prob |J | × |M| (LB, UB) Alg5 AlgFix

DMU1 20×15 (2501, 2563) 2563 2563

DMU2 20×15 (2651, 2706) 2706 2706

DMU3 20×15 2731 2731 2731

DMU4 20×15 (2601, 2669) 2669 2669

DMU5 20×15 2749 2749 2749

DMU6 20×20 (2834, 3250) [3244] [3244]

DMU7 20×20 (2677, 3053) [3046] [3046]

DMU8 20×20 (2901, 3197) [3188] [3188]

DMU9 20×20 (2739, 3092) 3092 3096

DMU10 20×20 (2716, 2984) 2984 2984

DMU11 30×15 (3395, 3453) 3457 3455

DMU12 30×15 (3481, 3518) 3519 3522

DMU13 30×15 (3681, 3697) [3683] 3687

DMU14 30×15 3394 3394 3394

DMU15 30×15 (3332, 3343) 3343 3343

DMU16 30×20 (3726, 3781) 3781 [3772]

DMU17 30×20 (3697, 3848) 3841 [3836]

DMU18 30×20 (3844, 3849) 3850 3852

DMU19 30×20 (3650, 3807) [3775] [3775]

DMU20 30×20 (3604, 3739) 3731 [3712]

DMU21 40×15 4380 4380 4380

DMU22 40×15 4725 4725 4725

DMU23 40×15 4668 4668 4668

DMU24 40×15 4648 4648 4648

DMU25 40×15 4164 4164 4164

DMU26 40×20 (4647, 4667) 4688 4688

DMU27 40×20 4848 4848 4848

DMU28 40×20 4692 4692 4692

DMU29 40×20 4691 4691 4691

DMU30 40×20 4732 4741 4749

DMU31 50×15 5640 5640 5640

DMU32 50×15 5927 5927 5927

DMU33 50×15 5728 5728 5728

DMU34 50×15 5385 5385 5385

DMU35 50×15 5635 5635 5635

DMU36 50×20 5621 5621 5621

DMU37 50×20 5851 5851 5851

DMU38 50×20 5713 5713 5713

DMU39 50×20 5747 5747 5747

DMU40 50×20 5577 5577 5577

74 P.M. Pardalos et al.

Table 2 (Continued)
Prob |J | × |M| (LB, UB) Alg5 AlgFix

DMU41 20×15 (2839, 3267) [3264] 3278

DMU42 20×15 (3066, 3401) 3404 3412

DMU43 20×15 (3121, 3443) 3450 3450

DMU44 20×15 (3112, 3489) 3489 3489

DMU45 20×15 (2930, 3273) 3273 3273

DMU46 20×20 (3424, 4099) [4043] 4071

DMU47 20×20 (3353, 3972) 3953 [3950]

DMU48 20×20 (3317, 3810) [3808] 3813

DMU49 20×20 (3369, 3754) [3724] 3725

DMU50 20×20 (3379, 3768) [3737] 3742

DMU51 30×15 (3839, 4202) 4216 [4202]

DMU52 30×15 (4012, 4353) 4357 [4353]

DMU53 30×15 (4108, 4419) 4424 [4419]

DMU54 30×15 (4165, 4424) [4413] [4413]

DMU55 30×15 (4099, 4331) [4303] 4321

DMU56 30×20 (4366, 5049) 5017 [4985]

DMU57 30×20 (4182, 4779) 4727 [4709]

DMU58 30×20 (4214, 4829) [4787] [4787]

DMU59 30×20 (4199, 4694) [4638] [4638]

DMU60 30×20 (4259, 4888) [4827] [4827]

DMU61 40×15 (4886, 5293) 5310 5310

DMU62 40×15 (5004, 5342) 5358 [5330]

DMU63 40×15 (5049, 5431) 5467 5431

DMU64 40×15 (5130, 5367) 5406 5385

DMU65 40×15 (5072, 5269) [5242] 5322

DMU66 40×20 (5357, 5902) [5864] 5886

DMU67 40×20 (5484, 6012) 5967 [5938]

DMU68 40×20 (5423, 5934) 5861 [5840]

DMU69 40×20 (5419, 5891) 5882 [5868]

DMU70 40×20 (5492, 6072) [6023] 6028

DMU71 50×15 (6050, 6302) 6452 6437

DMU72 50×15 (6223, 6571) 6624 6604

DMU73 50×15 (5935, 6283) 6361 6343

DMU74 50×15 (6015, 6376) 6432 6467

DMU75 50×15 (6010, 6380) [6379] 6397

DMU76 50×20 (6329, 6974) 7021 6975

DMU77 50×20 (6399, 6930) 6940 6949

DMU78 50×20 (6508, 6962) 6911 [6928]

DMU79 50×20 (6593, 7158) 7091 [7083]

DMU80 50×20 (6435, 6824) 6880 6861

Solving job shop scheduling problems utilizing the properties 75

6 Concluding remarks

The goal of our research was to show that techniques similar to simulated annealing
can be efficiently used for obtaining approximate solutions for the JSP. The proposed
algorithm was able to obtain new upper bounds for Taillard’s and Demirkol’s in-
stances, which are considered one of the most difficult test sets for the JSP.

The Job Shop Scheduling problem (JSP) is discussed in the present paper. The
publicly available instances of the JSP exhibit some specific features of the distri-
bution of the high-quality solutions in the search space (the backbone property and
the “big valley” property). The goal of this paper was to show that these properties
can be effectively used to design the approximate algorithms for the JSP. The dynam-
ics of the proposed approach are based on the notion of Hamming distance between
some subset of locally optimal solutions. The computational results revealed the high
effectiveness of the proposed technique both in terms of quality and computational
time, when comparing with the best techniques known up-to-date. Several new upper
bounds were obtained for the benchmark instances discussed in the literature.

References

1. Aiex, R., Binato, S., Resende, M.: Parallel grasp with path-relinking for job shop scheduling. Parallel
Comput. 29, 393–430 (2003)

2. Balas, E., Vazacopoulos, A.: Guided local search with shifting bottleneck for job shop scheduling.
Manag. Sci. 44, 262–275 (1998)

3. Binato, S., Hery, W., Loewenstern, D., Resende, M.: A GRASP for job shop scheduling. In: Essays
and Surveys on Metaheuristics, pp. 59–79. Kluwer Academic, Dordrecht (2001)

4. Blazewicz, J., Domschke, W., Pesch, E.: The job-shop scheduling problem: Conventional and new
solution techniques. Eur. J. Oper. Res. 93(1), 1–33 (1996)

5. Darwen, P.J.: Looking for the big valley in the fitness landscape of single machine scheduling with
batching, precedence constraints, and sequence-dependent setup times. In: 5th Australasia-Japan Joint
Workshop University of Otago, Dunedin, New Zealand, 19–21 November 2001

6. Demirkol, E., Mehta, S., Uzsloy, R.: Benchmarks for job shop scheduling problems. Eur. J. Oper. Res.
109, 137–141 (1997)

7. Grabowski, J., Nowicki, E., Smutnicki, C.: Block algorithm for scheduling of operations in job-shop
system. Prz. Stat. 35, 67–80 (1988) (in Polish)

8. Internet: Home page Eric Taillard http://www.eivd.ch/ina/collaborateurs/etd/default.htm (2008). Ac-
cessed 22 January 2008

9. Jain, A., Meeran, S.: Deterministic job shop scheduling: Past, present and future. Eur. J. Oper. Res.
113, 390–434 (1999)

10. Internet: Job Shop Scheduling webpage http://plaza.ufl.edu/shylo/jobshopinfo.html (2008). Accessed
22 January 2008

11. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598),
671–680 (1983)

12. Lawler, E.L., Lenstra, J.-K., Rinnooy Kan, A.: Recent Developments in Deterministic Sequencing
and Scheduling, pp. 35–73. Reidel, Dordrecht (1982)

13. Lee, C.-Y., Pinedo, M.: Optimization and heuristic scheduling. In: Pardalos, P.M., Resende, M.G.C.
(eds.) Handbook of Applied Optimization, pp. 569–584. Oxford University Press, London (2002)

14. Lourenco, H., Martin, O., Stützle, T.: Iterated local search. In: Glover, F., Kochenberger, G. (eds.)
Handbook of Metaheuristics. Kluwer Academic, Dordrecht (2003)

15. Nowicki, E., Smutnicki, C.: A fast tabu search algorithm for the job-shop problem. Manag. Sci. 42(6),
797–813 (1996)

16. Nowicki, E., Smutnicki, C.: An advanced tabu search algorithm for the job shop problem. J. Sched.
8(2), 145–159 (2005)

http://www.eivd.ch/ina/collaborateurs/etd/default.htm
http://plaza.ufl.edu/shylo/jobshopinfo.html

76 P.M. Pardalos et al.

17. Nowicki, E., Smutnicki, C.: Some new ideas in TS for job shop scheduling. In: Operations Re-
search/Computer Science Interfaces Series, vol. 30, pp. 165–190. Springer, Berlin (2005). Part II

18. Nowicki, E., Smutnicki, C.: Some aspects of scatter search in the flow-shop problem. EJOR 169(2),
654–666 (2006)

19. Pardalos, P., Shylo, O.: An algorithm for the job shop scheduling problem based on global equilibrium
search techniques. Comput. Manag. Sci. 3(4), 331–348 (2006)

20. Roy, B., Sussman, B.: Les problèm d’ordonnancement avec contraintes disjonctives. Note DS9 bis,
SEMA, Paris (1964) (in French)

21. Shylo, V.: A global equilibrium search method. Kybern. Syst. Anal. 1, 74–80 (1999) (in Russian)
22. Streeter, J., Smith, S.: How the landscape of random job shop scheduling instances depends on the

ratio of jobs to machines. J. Artif. Intell. Res. 26, 247–287 (2006)
23. Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64, 278–285 (1993)
24. Van Laarhoven, P., Aarts, E., Lenstra, J.: Job shop scheduling by simulated annealing. Oper. Res. 40,

113–125 (1992)
25. Watson, J., Howe, A., Whitley, L.: An analysis of iterated local search for job-shop scheduling. In:

Fifth Metaheuristics International Conference (MIC 2003), September 2003
26. Watson, J.-P., Beck, J., Howe, A., Whitley, L.: Problem difficulty for tabu search in job-shop schedul-

ing. Artif. Intell. 143(2), 189–217 (2003)

	Solving job shop scheduling problems utilizing the properties of backbone and "big valley"
	Abstract
	Introduction
	Mathematical model and notations
	Implementation of the local search
	Description of an algorithm
	"Big valleys" and backbones
	Use of backbone property
	Use of the "big valley" property
	Rejection probabilities
	Transformation procedure

	Computational results
	Comparison with the algorithm of Nowicki and Smutnicki

	Concluding remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

