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Abstract A generalized Nash game is an m-person noncooperative game in which
each player’s strategy depends on the rivals’ strategies. Based on a quasi-variational
inequality formulation for the generalized Nash game, we present two projection-
like methods for solving the generalized Nash equilibria in this paper. It is shown
that under certain assumptions, these methods are globally convergent. Preliminary
computational experience is also reported.
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1 Introduction

Game theory is a mathematical theory of socio-economic phenomena exhibiting in-
teraction among decision-makers, called players, whose actions affect each other. The
fundamental assumptions that underlie the theory are that players pursue well-defined
exogenous objectives and take into account their knowledge, or expectations, of other
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players’ behavior. So far the theory has been applied in the fields of economics, po-
litical science, evolutionary biology, computer science, statistics, accounting, social
psychology, law, and branches of philosophy such as epistemology and ethics.

A game is a model of strategic interaction among a number of players, which in-
cludes the constraints on the actions that players can take and the players’ interest, but
does not specify the actions that players do take. A solution is a systematic descrip-
tion of the outcomes that may emerge in a game. The most commonly encountered
solution concept in game theory is that of Nash equilibrium (NE) named after John
Nash. This notion expresses a kind of optimal collective strategy in a game, where no
player has anything to gain by changing only his or her own strategy. If each player
has chosen a strategy and no player can benefit by changing his or her strategy while
the other players keep theirs unchanged, then the current set of strategy choices and
the corresponding payoffs constitute a Nash equilibrium. The concept of Nash equi-
librium is not exactly original to Nash (e.g., Antoine Augustin Cournot [4] showed
how to find what we now call the Nash equilibrium of the Cournot duopoly game).
However, Nash showed for the first time in his dissertation [14, 15] that Nash equi-
libria must exist for all finite games with any number of players. Until Nash, this
had only been proved for 2-player zero-sum games by John von Neumann and Os-
kar Morgenstern [24]. This result has been generalized by Arrow and Debreu [1] and
McKenzie [13] to an abstract economy in which each player’s strategy space may de-
pend on the strategy of the other players (a situation which may also occur in coalition
games). The Nash equilibrium for this case was called generalized Nash equilibrium
(GNE). Generally speaking, the generalized Nash equilibrium problem (GNEP) is an
extension of the standard Nash equilibrium problem, in which each player’s strategy
set is dependent on the rival players’ strategies.

It is by now a well-known fact that the Nash equilibrium problem in which each
player solves a convex program can be formulated and solved as a finite-dimensional
variational inequality (VI), to which a host of computational methods are applica-
ble [5]. The connection between the generalized Nash games and quasi-variational
inequalities (QVIs) was recognized by Bensoussan [2] as early as 1974 who studied
these problems with quadratic functionals in a Hilbert space. Harker [7] revised these
problems in Euclidean spaces. Robinson [19, 20] discussed an application of a gener-
alized Nash problem in a two-sided game model of combat. Kocvara and Outrata [10]
discussed a class of QVIs with applications to engineering. Wei and Smeers [26] in-
troduced a QVI formulation of a spatial oligopolistic electricity model with Cournot
generators and regulated transmission prices. Cash [3] studied a special class of gen-
eralized Nash equilibrium problem with applications to Cournot oligopoly problem.
Pang [17] recently analyzed the computational resolution of the generalized Nash
game by a penalization method for the noncooperative multi-leader-follower games.
To our knowledge, there is only a handful of papers that address QVI in finite di-
mensions in terms of existence of solutions and solution methods. As being pointed
in [18], “the study of the QVI to date is in its infancy at best”. So, computing a
generalized Nash equilibrium remains a challenging task up-to-date. As such, it is in-
teresting to develop efficient computational methods for solving a GNEP by the QVI
formulation.

The main purpose of this paper is to investigate some alternative approaches to
solving a GNEP. It is well known that the class of projection methods is one of the
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fundamental tools for solving convex optimization problems and monotone varia-
tional inequality problems. The projection type of methods possesses some advan-
tages. Firstly, it is easy to implement (especially, for the optimization problem or
the variational inequality problem with simple bound constraints), uses little stor-
age, and can readily exploit any sparsity or separable structure in the corresponding
mapping or the constrained set of the problem. Secondly, it is able to drop and add
many constraints from and to the active set at each iteration. Due to its structural and
theoretical advantages, various projection-type methods [8, 9, 12, 21, 25, 27, 28],
such as the basic projection algorithm, the extragradient algorithm and its variants,
and the hyperplane projection algorithm, have been designed to solve different con-
vex optimization problems or monotone variational inequality problems. Interested
readers may consult the monograph by Facchinei and Pang [5]. In this paper, based
on the QVI reformulation of a GNEP, we present two projection-like algorithms for
solving a GNEP. The global convergence of these algorithms is proved under certain
conditions. Some numerical results are given to demonstrate the viability of the two
algorithms.

The rest of this paper is organized as follows. Section 2 states the QVI formula-
tion for the generalized Nash game. Section 3 describes some definitions, background
material on projection and basic assumptions employed in the sequel. Section 4 gives
a projection-like algorithm and shows its convergence. Section 5 presents another al-
gorithm that may calculate fewer number of projections in each iteration, and proves
its convergence. The numerical results are given in Sect. 6.

2 QVI formulation

The generalized Nash game can be defined as follows [7]. Let N be the set of m

players, where m is finite, Xi ⊆ �ni be the strategy set of player i (i = 1, . . . ,m),

that we assume to be convex, and X = ∏
j∈N Xj ⊆ �n, where n = ∑m

i=1 ni , and

XN\i = ∏
j∈N,j �=i X

j , that is, X represents the full Cartesian product of the strategy

sets, and XN\i means this full set except the ith player’s feasible region.
Let Ki : XN\i → Xi be a point-to-set mapping which represents the ability of all

players j �= i to affect the feasible strategies of player i. Then

Ki(z) ⊆ Xi, ∀z ∈ XN\i .

Let K denote the mapping formed from the Ki , ∀i ∈ N ; i.e., for all x ∈ X,

K(x) =
∏

i∈N

Ki(xN\i ), (1)

where xN\i represents the vector x with the ith subvector xi removed. Finally,
let the cost function for player i be represented by the function ui : grKi → �,
where grKi denotes the graph of the mapping Ki and has dimension n. The gen-
eralized Nash game is thus defined by the data {Xi,Ki,ui}i∈N , and an equilibrium
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of this game, called a generalized Nash equilibrium (GNE), is defined as a point
x∗ = (x∗1, x∗2, . . . , x∗m) ∈ X such that

x∗i ∈ Ki(x∗N\i ), ∀i ∈ N,

ui(x∗) ≤ ui(yi, x∗N\i ), ∀yi ∈ Ki(x∗N\i ), i ∈ N.
(2)

In a word, x∗ is a GNE if it is feasible with respect to each mapping Ki and if it is a
minimizer of each player’s cost function over the feasible set (2).

Assume that ui(·, xN\i ) is convex and continuously differentiable in �ni and that
Ki(xN\i ) ⊆ Xi is a closed and convex subset of �ni for each i ∈ N . Then from the
analysis above, the generalized Nash game is to find a tuple x∗ ∈ �n, that is a GNE,
such that for each i = 1, . . . ,m, x∗i is an optimal solution of the convex optimization
problem in the variable xi with xN\i fixed at x∗N\i :

min
s.t. xi∈Ki(x∗N\i )

ui(xi, x∗N\i ).

Defining

F(x) = (∇xi ui(x))mi=1 ∈ �n

and by (1), we see that x∗ is a GNE if and only if x∗ ∈ K(x∗) and

〈F(x∗), y − x∗〉 ≥ 0, ∀y ∈ K(x∗). (3)

The problem (3) is an instance of the quasi-variational inequality problem (QVI).

3 Preliminaries

In this section, we state some definitions, background material on projection and basic
assumptions which will be used later.

For a given nonempty closed convex set � in �n, the orthogonal projection from
�n onto � is defined by

P�(x) = argmin{‖x − y‖|y ∈ �}, x ∈ �n.

It has the following well-known properties.

Lemma 3.1 ([29]) Let � be a nonempty closed convex subset in �n. Then a vector
w is the projection of the vector x onto � if and only if

〈w − x, z − w〉 ≥ 0, for all z ∈ �.

Furthermore, P� is nonexpansive, that is, for all x, y ∈ �n,

‖P�(x) − P�(y)‖ ≤ ‖x − y‖.
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Let M be a mapping from �n into �n. For any x ∈ �n and α > 0, define

x(α) = P�(x − αM(x)), e(x,α) = x − x(α).

Lemma 3.2 ([6, 22]) For any given vector x and its mapping M(x) in �n,

(a) ‖x − x(α)‖ is nondecreasing with respect to α > 0;
(b) ‖x−x(α)‖

α
is nonincreasing with respect to α > 0.

From Lemma 3.2, we immediately conclude a useful lemma.

Lemma 3.3 Let M be a continuous mapping from �n into �n. For any x ∈ �n and
α > 0, we have

min{1, α}‖e(x,1)‖ ≤ ‖e(x,α)‖ ≤ max{1, α}‖e(x,1)‖.

It is easy to get a necessary and sufficient condition for a point x∗ to be a solution
of the QVI problem (3) from Lemma 3.1.

Lemma 3.4 A point x∗ is a solution of the QVI problem (3) if and only if

rK(x∗)(x
∗) def= ‖x∗ − PK(x∗)(x

∗ − F(x∗))‖ = 0.

Now we give some concepts for the continuity of the point-to-set mapping K

defined by (1).

Definition 3.1 Let x̄ ∈ X. The mapping K(·) is said to be

(a) upper semicontinuous (or closed) at x̄ if

{xk} ∈ X and xk → x̄ (k → ∞)

yk ∈ K(xk)

yk → ȳ (k → ∞)

⎫
⎬

⎭
⇒ ȳ ∈ K(x̄);

(b) lower semicontinuous at x̄ if xk ∈ X and xk → x̄ implies that for any ȳ ∈ K(x̄),
there exists a sequence {yk} with yk ∈ K(xk), such that yk → ȳ (k → ∞);

(c) continuous at x̄ if it is both upper semicontinuous and lower semicontinuous at x̄;
(d) continuous on X if and only if it is continuous at every point of X.

Definition 3.2 A point-to-point mapping F(·) is said to be

(a) pseudo monotone on X if for all vectors x and y in X,

〈F(y), x − y〉 ≥ 0 ⇒ 〈F(x), x − y〉 ≥ 0;
(b) monotone on X if

〈F(x) − F(y), x − y〉 ≥ 0, ∀x, y ∈ X.
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Definition 3.3 Let x̄ ∈ X. A point-to-point mapping F(·) is said to be

(a) monotone at x̄, if for any x ∈ X,

〈F(x) − F(x̄), x − x̄〉 ≥ 0;
(b) strictly monotone at x̄ if

〈F(x) − F(x̄), x − x̄〉 > 0, ∀x ∈ X and x �= x̄.

We suppose the following assumption for problem (3) is satisfied.

Assumption (H)

(i) S∗ def= {x ∈ S|〈F(x), y − x〉 ≥ 0,∀y ∈ S̄} �= ∅, where S = ⋂
x∈X K(x) and S̄ =⋃

x∈X K(x);
(ii) F(·) is monotone (or pseudo monotone) on X;

(iii) K(·) is continuous on X.

It is not easy to test the part (i) of Assumption (H) in practice. But it gives a
sufficient condition to guarantee that the solution set of QVI (3) is nonempty. When
for all x ∈ X, K(x) ≡ K , i.e., K(x) is a constant set, the QVI reduces to the classical
VI. In this case, the part (i) of Assumption (H) is to say that the solution set of
the VI problem is nonempty. So, in some sense, the part (i) is a generalization of
nonemptyness of the solution set from VI to QVI problems.

4 The first projection-like algorithm

In this section, we will give a projection-like algorithm and prove its convergence.
First we formally state the algorithm.

Algorithm 1

Step 1 Given constants γ > 0, l ∈ (0,1), μ ∈ (0,1), and ρ ∈ (0,2). Take x−1 ∈ X.
Choose arbitrarily an x0 ∈ K(x−1). Set k = 0.

Step 2 If rK(xk)(xk) = 0 then stop. Otherwise, let

x̄k = PK(xk)(xk − αkF (xk)),

where αk = γ lmk and mk is the smallest nonnegative integer m such that

αk〈F(xk) − F(x̄k), xk − x̄k〉 ≤ μ‖xk − x̄k‖2. (4)

Step 3 Set

xk+1 = PK(xk)(xk − βk(xk − x̄k + αkF (x̄k))),

where βk is given by

βk = ρ(1 − μ)
‖xk − x̄k‖2

‖xk − x̄k + αkF (x̄k)‖2
.
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Step 4 Set k := k + 1 and go to Step 2.

In order to better understand the above algorithm, we make the following remarks.
(1) Algorithm 1 and the subsequent Algorithm 2 are projection-like algorithms

that make two projections per iteration. We may regard x̄k as a predictor and xk+1
as a corrector. This class of technique is often used to solve monotone VIs, see for
example [8, 9, 11, 12, 21, 28]. Although in each iteration the amount of computation
is nearly doubled, the benefit is significant because these algorithms can be conver-
gent using inexact line search and weakening the request that F is strongly monotone
to monotone (or pseudo monotone) only. Compared with the projection-like algo-
rithm proposed in [28], Algorithm 1 uses the projection PK(xk) formed by the current
iterative point xk , rather than a fixed projection PK . The new iterative point xk+1
produced is in K(xk), while xk is not necessarily in K(xk), which prevents us from
using some existing results about the projection and makes the convergence proof of
the algorithm difficult.

(2) If rK(xk)(xk) = 0, then from Lemma 3.4, we get that xk is a solution to the QVI
problem (3), that is, xk is a GNE.

(3) By the following Lemmas 4.1 and 4.2, we know that Algorithm 1 is well de-
fined.

Lemma 4.1 Let x ∈ X be arbitrary. Define

xK(x)(α) = PK(x)(x − αF(x)).

Then for any μ ∈ (0,1), when α is a sufficiently small positive number, we have

α〈F(x) − F(xK(x)(α)), x − xK(x)(α)〉 ≤ μ‖x − xK(x)(α)‖2. (5)

Proof First we know that xK(x)(α) = PK(x)(x − αF(x)) → PK(x)(x) as α → 0.
If there exists an α̃ > 0 such that x = xK(x)(α̃), then from the first result of

Lemma 3.1, we obtain that x = xK(x)(α) for all α > 0. In this case, (5) holds for
all α > 0 trivially.

If x �= xK(x)(α) for all α > 0, we shall prove that (5) holds for all sufficiently small
α > 0 by contradiction. If the conclusion does not hold, then there exists a positive
sequence {αi} (i = 1,2, . . .) which tends to zero such that for any αi ,

αi〈F(x) − F(xK(x)(αi)), x − xK(x)(αi)〉 > μ‖x − xK(x)(αi)‖2.

Using the above inequality and Cauchy-Schwartz inequality, we have

αi‖F(x) − F(xK(x)(αi))‖ > μ‖x − xK(x)(αi)‖. (6)

Two cases are to be considered.
Case 1: x /∈ K(x). Then αi‖F(x)−F(xK(x)(αi))‖ would tend to zero while μ‖x−

xK(x)(αi)‖ would tend to a positive number as αi → 0, which contradicts (6).
Case 2: x ∈ K(x). In this case, it is obvious that x = PK(x)(x). Since F is continu-

ous and xK(x)(αi) → PK(x)(x) = x as αi → 0, ‖F(x)−F(xK(x)(αi))‖ would tend to
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zero while ‖x−xK(x)(αi )‖
αi

will be not smaller than the positive number ||x − xK(x)(1)||
as αi → 0 by the conclusion (b) of Lemma 3.2, which also contradicts (6).

The proof is completed. �

Lemma 4.2 If rK(xk)(xk) �= 0, then

‖xk − x̄k + αkF (x̄k)‖ �= 0.

Proof Let x∗ be an element of the set S∗. Then by the definition of S∗ and the fact
that xk ∈ K(xk−1) and x̄k ∈ K(xk), we have

〈F(x∗), xk − x∗〉 ≥ 0, (7)

and

〈F(x∗), x̄k − x∗〉 ≥ 0. (8)

By (7), (8) and the monotonicity (or the pseudo monotonicity) of F , we have

〈F(xk), xk − x∗〉 ≥ 0, (9)

and

〈F(x̄k), x̄k − x∗〉 ≥ 0. (10)

Since x̄k = PK(xk)(xk − αkF (xk)), by Lemma 3.1 and the fact that x∗ ∈ K(xk), we
get

〈xk − αkF (xk) − x̄k, x̄k − x∗〉 ≥ 0. (11)

Thus, by (4), (9), (10) and (11), we obtain

〈xk − x̄k + αkF (x̄k), xk − x∗〉
= 〈xk − x̄k, xk − x∗〉 + αk〈F(x̄k), xk − x∗〉
= 〈xk − x̄k − αkF (xk) + αkF (xk), xk − x∗〉 + αk〈F(x̄k), xk − x̄k + x̄k − x∗〉
= 〈xk − x̄k − αkF (xk), xk − x∗〉 + αk〈F(xk), xk − x∗〉 + αk〈F(x̄k), xk − x̄k〉

+αk〈F(x̄k), x̄k − x∗〉
≥ 〈xk − x̄k − αkF (xk), xk − x∗〉 + αk〈F(x̄k), xk − x̄k〉
= 〈xk − x̄k − αkF (xk), xk − x̄k + x̄k − x∗〉 + αk〈F(x̄k), xk − x̄k〉
= 〈xk − x̄k − αkF (xk), xk − x̄k〉 + 〈xk − x̄k − αkF (xk), x̄k − x∗〉

+αk〈F(x̄k), xk − x̄k〉
≥ 〈xk − x̄k − αkF (xk), xk − x̄k〉 + αk〈F(x̄k), xk − x̄k〉
= 〈xk − x̄k − αk(F (xk) − F(x̄k)), xk − x̄k〉
= ‖xk − x̄k‖2 − αk〈F(xk) − F(x̄k), xk − x̄k〉
≥ (1 − μ)‖xk − x̄k‖2. (12)
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If rK(xk)(xk) �= 0, then again by the first result of Lemma 3.1, we know that
xk �= x̄k . Thus, from (12), xk − x̄k + αkF (x̄k) �= 0.

This completes the proof. �

Now, we establish the convergence of Algorithm 1.

Theorem 4.1 Suppose Assumption (H) holds. Let {xk} be a sequence generated by
Algorithm 1. Then {xk} is bounded, and any accumulation point of {xk} is a solution
to the QVI problem (3).

Proof Let x∗ be an element of the set S∗. Then by Lemma 3.1, (12) and the definition
of βk in Algorithm 1, we have

‖xk+1 − x∗‖2

= ‖PK(xk)(xk − βk(xk − x̄k + αkF (x̄k))) − x∗‖2

≤ ‖xk − x∗ − βk(xk − x̄k + αkF (x̄k))‖2

= ‖xk − x∗‖2 − 2βk〈xk − x∗, xk − x̄k + αkF (x̄k)〉 + β2
k ‖xk − x̄k + αkF (x̄k)‖2

≤ ‖xk − x∗‖2 − 2(1 − μ)βk‖xk − x̄k‖2 + β2
k‖xk − x̄k + αkF (x̄k)‖2

= ‖xk − x∗‖2 − 2ρ(1 − μ)2 ‖xk − x̄k‖4

‖xk − x̄k + αkF (x̄k)‖2

+ρ2(1 − μ)2 ‖xk − x̄k‖4

‖xk − x̄k + αkF (x̄k)‖2

= ‖xk − x∗‖2 − ρ(2 − ρ)(1 − μ)2 ‖xk − x̄k‖4

‖xk − x̄k + αkF (x̄k)‖2
, (13)

which implies that the sequence {‖xk − x∗‖} is monotonically decreasing and hence
convergent. So, {xk} is bounded. Consequently we get from (13) that

lim
k→∞

‖xk − x̄k‖2

‖xk − x̄k + αkF (x̄k))‖ = 0. (14)

Moreover, it is easy to show that {x̄k} is bounded. In fact,

‖x̄k‖ = ‖PK(xk)(xk − αkF (xk))‖
= ‖PK(xk)(xk − αkF (xk)) + x∗ − PK(xk)(x

∗)‖
≤ ‖x∗‖ + ‖xk − x∗ − αkF (xk)‖
≤ ‖x∗‖ + ‖xk − x∗‖ + αk‖F(xk)‖,

which, together with the boundedness of {xk}, deduces the desired result. So the se-
quence {‖xk − x̄k + αkF (x̄k)‖} is also bounded. Thus, from (14) we have

lim
k→∞‖xk − x̄k‖ = 0. (15)
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Assume that x̄ is an accumulation point of {xk}. Then there exists a subsequence
{xk}k∈ℵ, where ℵ ⊆ {0,1, . . .}, such that

lim
k∈ℵ,k→∞xk = x̄.

We are ready to prove that x̄ is a solution to the QVI problem (3).
First we show that x̄ ∈ K(x̄). From (15) we have

lim
k∈ℵ,k→∞ x̄k = x̄,

which, together with the upper semicontinuity of K(·) and the fact that x̄k ∈ K(xk),
deduces the desired result.

Next we need to show 〈F(x̄), y − x̄〉 ≥ 0, ∀y ∈ K(x̄). To do so, we first prove that
there exists at least a subsequence {‖ek(xk,1)‖}k∈ℵ̄ (where ℵ̄ ⊆ ℵ) of {‖ek(xk,1)‖}
such that

lim
k∈ℵ̄,k→∞

‖ek(xk,1)‖ = 0, (16)

where ek(xk,α) = xk − PK(xk)(xk − αF(xk)).
Two cases are to be considered.
Case 1: infk∈ℵ{αk} = αmin > 0. Then from Lemma 3.3, we have

‖ek(xk,1)‖ ≤ ‖xk − x̄k‖
min{1, αk} ,

which, together with (15), implies that

lim
k∈ℵ,k→∞‖ek(xk,1)‖ ≤ lim

k∈ℵ,k→∞
‖xk − x̄k‖

min{1, αmin} = 0.

Case 2: infk∈ℵ{αk} = αmin = 0. Since αmin = 0, there must exist a subsequence
{αk}k∈ℵ̄, where ℵ̄ ⊆ ℵ, such that limk∈ℵ̄,k→∞ αk = 0. Thus, for all sufficiently small
αk , αk

l
must violate the search rule (4), that is

αk

l

〈

xk − xk

(
αk

l

)

,F (xk) − F

(

xk

(
αk

l

))〉

> μ

∥
∥
∥
∥xk − xk

(
αk

l

)∥
∥
∥
∥

2

,

where xk(
αk

l
) = PK(xk)(xk − αk

l
F (xk)). Again from Cauchy-Schwartz inequality and

Lemma 3.3 we get

μ‖ek(xk,1)‖ ≤ μ
‖xk − xk(

αk

l
)‖

αk

l

<

∥
∥
∥
∥F(xk) − F

(

xk

(
αk

l

))∥
∥
∥
∥,

that is,

‖ek(xk,1)‖ <
1

μ

∥
∥
∥
∥F(xk) − F

(

xk

(
αk

l

))∥
∥
∥
∥.
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Moreover, we can get that
∥
∥
∥
∥xk − xk

(
αk

l

)∥
∥
∥
∥ =

∥
∥
∥
∥xk − x̄k + x̄k − PK(xk)

[

xk − αk

l
F (xk)

]∥
∥
∥
∥

≤ ‖xk − x̄k‖ +
∥
∥
∥
∥
αk

l
F (xk) − αkF (xk)

∥
∥
∥
∥

= ‖xk − x̄k‖ +
(

1

l
− 1

)

αk‖F(xk)‖

→ 0 (k ∈ ℵ̄, k → ∞)

which reduces that

lim
k∈ℵ̄,k→∞

∥
∥
∥
∥F(xk) − F

(

xk

(
αk

l

))∥
∥
∥
∥ = 0.

Thus, we have

lim
k∈ℵ̄,k→∞

‖ek(xk,1)‖ = 0.

From the analysis above, we get the desired conclusion.
Now, we continue to prove the main result.
Since K(·) is lower semicontinuous, for any y ∈ K(x̄), there exists a sequence

{yk} with yk ∈ K(xk) such that

lim
k∈ℵ̄,k→∞

yk = y.

From the fact that xk − ek(xk,1) = PK(xk)(xk − F(xk)), we have

〈F(xk) − ek(xk,1), yk − xk + ek(xk,1)〉 ≥ 0,

that is,

〈F(xk), yk − xk〉 + 〈F(xk), ek(xk,1)〉 − 〈ek(xk,1), yk − xk〉 − ‖ek(xk,1)‖2 ≥ 0.

Letting k → ∞(k ∈ ℵ̄), due to (16) and the boundedness of {xk} and {yk}, we deduce
that

〈F(x̄), y − x̄〉 ≥ 0.

From the arbitrariness of y, we conclude that x̄ is a solution to problem (3).
This completes the proof. �

Theorem 4.2 Suppose Assumption (H) holds. Let {xk} be a sequence generated by
Algorithm 1. If F is strictly monotone at an accumulation point of {xk}, say x̄, then

lim
k→∞xk = x̄.
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Proof Since x̄ is an accumulation point of {xk}, there exists a subsequence {xk}k∈ℵ,
where ℵ ⊆ {0,1, . . .}, such that

lim
k∈ℵ,k→∞xk = x̄. (17)

From Theorem 4.1, we know that x̄ is a solution to problem (3).
Let x∗ be an element of the set S∗. Then from the definition of S∗, we have

〈F(x∗), x̄k − x∗〉 ≥ 0.

Letting k → ∞ (k ∈ ℵ), taking (17) and (15) into account, we get

〈F(x∗), x̄ − x∗〉 ≥ 0, (18)

which, together with the monotonicity (or the pseudo monotonicity) of F , implies
that

〈F(x̄), x̄ − x∗〉 ≥ 0. (19)

On the other hand, from the fact that x∗ ∈ K(xk), using the upper semicontinuity
of K(·) and (17), we obtain

x∗ ∈ K(x̄).

Because x̄ is a solution to the QVI problem (3), we have

〈F(x̄), x∗ − x̄〉 ≥ 0. (20)

Thus, from (19) and (20), we obtain

〈F(x̄), x∗ − x̄〉 = 0. (21)

From the monotonicity (or the pseudo monotonicity) of F and (21), we have

〈F(x∗), x∗ − x̄〉 ≥ 0. (22)

(22) and (18) give that

〈F(x∗), x∗ − x̄〉 = 0.

Thus,

〈F(x̄), x∗ − x̄〉 = 〈F(x∗), x∗ − x̄〉 = 0.

It follows that

〈F(x∗) − F(x̄), x∗ − x̄〉 = 0.

From the assumption that F is strictly monotone at x̄, we get that x̄ = x∗ ∈ S∗.
Thus we may use x̄ in place of x∗ in (13), and obtain that {‖xk − x̄‖} is convergent.

Because there exists a subsequence {‖xk − x̄‖}k∈ℵ converging to 0,

lim
k→∞xk = x̄.

This completes the proof. �
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5 Another algorithm

In Sect.4 we have given an algorithm which requires an Armijo-like line search pro-
cedure to obtain the step size and asks a projection at each trial point until the step
length is determined. This sometimes is computationally expensive. To overcome this
defect, adopting the technology of [25], we now give another algorithm in which only
two projections are needed in each iteration.

Algorithm 2

Step 1. Given constants l ∈ (0,1), μ ∈ (0,1), and ρ ∈ (0,2). Take x0 ∈ X. Set k = 0.
Step 2. If rK(xk)(xk) = 0 then stop. Otherwise, let

zk = PK(xk)(xk − F(xk)),

yk = (1 − αk)xk + αkzk,

where αk = lmk and mk is the smallest nonnegative integer m such that

〈F(xk) − F((1 − lm)xk + lmzk), xk − zk〉 ≤ μ‖xk − zk‖2. (23)

Step 3. Set

xk+1 = PK(xk)(xk − βkdk),

where dk and βk are given by

dk = xk − zk + F(yk)

αk

and

βk = ρ(1 − μ)
‖xk − zk‖2

‖dk‖2
,

respectively.
Step 4. Set k := k + 1 and go to Step 2.

In this section, the following assumption is imposed:

(A) x ∈ K(x), ∀x ∈ X.

In order to prove the feasibility of Algorithm 2, we need the following two lemmas.

Lemma 5.1 Let x ∈ X be arbitrary. For any α ∈ (0,1), define

z = PK(x)(x − F(x)), y(α) = (1 − α)x + αz.

Then for any given μ ∈ (0,1), when α > 0 is sufficiently small, we have

〈F(x) − F(y(α)), x − z〉 ≤ μ‖x − z‖2.
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Proof It is easy to get the desired result by the continuity of the mapping F(·). �

This lemma shows that Step 2 is well defined.

Lemma 5.2 Suppose Assumptions (H) and (A) hold. If rK(xk)(xk) �= 0, then dk �= 0.

Proof Let x∗ be an element of the set S∗. Then by the definition of S∗ and the fact
that xk ∈ K(xk) and yk ∈ K(yk), we have

〈F(x∗), xk − x∗〉 ≥ 0, (24)

and

〈F(x∗), yk − x∗〉 ≥ 0. (25)

By (24), (25) and the monotonicity (or the pseudo monotonicity) of F , we have

〈F(xk), xk − x∗〉 ≥ 0, (26)

and

〈F(yk), yk − x∗〉 ≥ 0. (27)

Since zk = PK(xk)(xk − F(xk)), by Lemma 3.1 and the fact that x∗ ∈ K(xk), we get

〈xk − F(xk) − zk, zk − x∗〉 ≥ 0. (28)

Thus, by (23), (26), (27) and (28), we obtain

〈dk, xk − x∗〉 =
〈

xk − zk + F(yk)

αk

, xk − x∗
〉

= 〈xk − zk, xk − x∗〉 +
〈
F(yk)

αk

, xk − x∗
〉

= 〈xk − F(xk) − zk, xk − x∗〉 + 〈F(xk), xk − x∗〉
+ 1

αk

〈F(yk), xk − yk〉 + 1

αk

〈F(yk), yk − x∗〉

≥ 〈xk − F(xk) − zk, xk − zk〉 + 〈xk − F(xk) − zk, zk − x∗〉
+ 1

αk

〈F(yk), xk − yk〉

≥ 〈xk − F(xk) − zk, xk − zk〉 + 1

αk

〈F(yk),αk(xk − zk)〉
= 〈xk − F(xk) − zk, xk − zk〉 + 〈F(yk), xk − zk〉
= 〈xk − zk − (F (xk) − F(yk)), xk − zk〉
= ‖xk − zk‖2 − 〈F(xk) − F(yk), xk − zk〉
≥ (1 − μ)‖xk − zk‖2. (29)
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If rK(xk)(xk) �= 0, that is, xk �= zk , then from (29), dk �= 0.
This completes the proof. �

Now, we establish the convergence of Algorithm 2.

Theorem 5.1 Suppose Assumptions (H) and (A) hold. Let {xk} be a sequence gener-
ated by Algorithm 2. Then {xk} is bounded, and any accumulation point of {xk} is a
solution to problem (3).

Proof Let x∗ be an element of the set S∗. Then by Lemma 3.1, (29) and the definition
of βk in Algorithm 2, we have

‖xk+1 − x∗‖2 = ‖PK(xk)(xk − βkdk) − x∗‖2

≤ ‖xk − x∗ − βkdk‖2

= ‖xk − x∗‖2 − 2βk〈xk − x∗, dk〉 + β2
k ‖dk‖2

≤ ‖xk − x∗‖2 − 2βk(1 − μ)‖xk − zk‖2 + β2
k ‖dk‖2

= ‖xk − x∗‖2 − 2ρ(1 − μ)2 ‖xk − zk‖4

‖dk‖2
+ ρ2(1 − μ)2 ‖xk − zk‖4

‖dk‖2

= ‖xk − x∗‖2 − ρ(2 − ρ)(1 − μ)2 ‖xk − zk‖4

‖dk‖2

≤ ‖xk − x∗‖2, (30)

which implies that the sequence {‖xk − x∗‖} is monotonically decreasing and hence
{xk} is bounded. Consequently we get from (30) that

lim
k→∞

‖xk − zk‖2

‖dk‖ = 0. (31)

Moreover, it is easy to show that {zk} is bounded. In fact,

‖zk − x∗‖ = ‖PK(xk)(xk − F(xk)) − x∗‖
≤ ‖xk − F(xk) − x∗‖
≤ ‖xk‖ + ‖F(xk)‖ + ‖x∗‖

which, together with the boundedness of {xk} and the continuity of F , deduces the
boundedness of {zk}. So {yk} and {F(yk)} are also bounded.

Assume that x̄ is an accumulation point of {xk}. Then there exists a subsequence
{xk}k∈ℵ, where ℵ ⊆ {0,1, . . .}, such that

lim
k∈ℵ,k→∞xk = x̄. (32)
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We claim that there exists at least a subsequence {‖xk − zk‖}k∈ℵ̄ (where ℵ̄ ⊆ ℵ) such
that

lim
k∈ℵ̄,k→∞

‖xk − zk‖ = 0. (33)

We consider two cases.
Case 1: infk∈ℵ{αk} = αmin > 0. In this case, from the boundedness of {xk}, {zk}

and {F(yk)}, we know that the sequence {dk}k∈ℵ is bounded. Thus from (31) we get

lim
k∈ℵ,k→∞‖xk − zk‖ = 0.

Case 2: infk∈ℵ{αk} = αmin = 0. Since αmin = 0, there must exist a subsequence
{αk}k∈ℵ̄, where ℵ̄ ⊆ ℵ, such that

lim
k∈ℵ̄,k→∞

αk = 0. (34)

Thus, for all sufficiently small αk with k ∈ ℵ̄, αk

l
must violate the search rule (23),

that is,
〈

F(xk) − F

((

1 − αk

l

)

xk + αk

l
zk

)

, xk − zk

〉

> μ‖xk − zk‖2.

Using Cauchy-Schwarz inequality, we have
∥
∥
∥
∥F(xk) − F

((

1 − αk

l

)

xk + αk

l
zk

)∥
∥
∥
∥ > μ‖xk − zk‖, ∀k ∈ ℵ̄.

Using (34) and the continuity of F(·), we obtain

lim
k∈ℵ̄,k→∞

‖xk − zk‖ = 0.

So, the claim is true.
Now, we are ready to prove that x̄ is a solution to problem (3).
First we show that x̄ ∈ K(x̄). From (32) and (33) we have

lim
k∈ℵ̄,k→∞

zk = x̄, (35)

which, together with the upper semicontinuity of K(·) and the fact that zk ∈ K(xk),
deduces the desired result.

Next we need to show that 〈F(x̄),w − x̄〉 ≥ 0, ∀w ∈ K(x̄). Since K(·) is lower
semicontinuous, for any w ∈ K(x̄), there exists a sequence {wk} with wk ∈ K(xk)

(k ∈ ℵ̄) such that

lim
k∈ℵ̄,k→∞

wk = w.

From the fact that zk = PK(xk)(xk − F(xk)), we have

〈zk − xk + F(xk),wk − zk〉 ≥ 0,
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that is

〈F(xk),wk − zk〉 + 〈zk − xk,wk − zk〉 ≥ 0.

Letting k → ∞ (k ∈ ℵ̄), taking into account (33), (35) and the boundedness of {zk}
and {wk}, we deduce that

〈F(x̄),w − x̄〉 ≥ 0.

From the arbitrariness of w, we conclude that x̄ is a solution to the QVI problem.
This completes the proof. �

Following the same line as what in the proof of Theorem 4.2, we have the follow-
ing theorem about the convergence of the whole sequence {xk} generated by Algo-
rithm 2.

Theorem 5.2 Suppose Assumptions (H) and (A) hold. Let {xk} be a sequence gener-
ated by Algorithm 2. If F is strictly monotone at an accumulation point of {xk}, say
x̄, then

lim
k→∞xk = x̄.

6 The numerical results

To give some insight into the behavior of the algorithms presented in this paper, we
implemented them in MATLAB to solve two examples of generalized Nash games
which have appeared in the literature. We terminate the algorithms if rK(xk)(xk) < ε

holds for an iterate xk , and all experiments end successfully by satisfying this crite-
rion.

Throughout the computational experiments, we set the parameters used in Algo-
rithms 1 and 2 as ε = 10−6, γ = 1, l = 0.5, μ = 0.3, and ρ = 1.99. In the results
reported below, all CPU times are in seconds. The approximate solution is referred to
the last iterative point. The symbol “ / ” means that the number of iterations exceeds
1000 or the CPU time exceeds 300 seconds.

Example 1 This example was used by Harker [7, 23] and Outrata [16]. Consider a
two-person game, in which each player picks a number xi between 0 and 10 and
the sum of their numbers must be less than or equal to 15. The cost functions and
mappings Ki are defined by

u1(x1, x2) = (x1)2 + 8

3
x1x2 − 34x1,

u2(x1, x2) = (x2)2 + 5

4
x1x2 − 24.25x2,

K1(x̄2) = {0 ≤ x1 ≤ 10, x1 ≤ 15 − x̄2},
K2(x̄1) = {0 ≤ x2 ≤ 10, x2 ≤ 15 − x̄1}.
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Table 1 The results of Example 1

Starting Number of iterations CPU (s) Approximate solution

point Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2

(0,0)T 201 261 0.0678 0.0759 (5,9)T (5,9)T

(10,0)T / / 83.2922 / (10,5)T (10,5)T

(10,10)T 206 266 0.0755 0.0667 (5,9)T (5,9)T

(0,10)T 177 187 0.0595 0.0430 (5,9)T (5,9)T

(5,5)T 235 265 0.0771 0.0674 (5,9)T (5,9)T

Now consider the QVI formulation of this problem. The function F is defined by

F 1(x) = 2x1 + 8

3
x2 − 34,

F 2(x) = 2x2 + 5

4
x1 − 24.25.

The set of GNE solutions is composed of the point (5,9)T and the line segment
[(9,6)T , (10,5)T ]. The test results for this example are listed in Table 1 using differ-
ent starting points.

Example 2 This example is a modification of the Stackelberg-Cournot-Nash equilib-
ria problem tested in [16]. Consider an oligopolistic market in which m firms supply a
homogeneous product in a noncooperative fashion. Let p : int�+ → int�+ assign to
the overall quantity Q of the product on the market the unit price at which consumers
will purchase this quantity of products. This function p is called the inverse demand
curve. The production cost is represented by a cost function fi, i = 1,2, . . . ,m.

The function fi (i = 1, . . . ,m) and p are taken as the following forms:

fi(x
i) = cix

i + βi

βi + 1
τ

− 1
βi

i (xi)
1+βi
βi , (36)

where ci , βi , τi , i = 1,2, . . . ,m, are given positive parameters; Furthermore, let

p(Q) = 5000
1
η Q

− 1
η , (37)

where the positive parameter η is termed demand elasticity.
We consider the generalized Nash equilibria of an oligopolistic market in which

the productions xi are subject to not only the mutually independent production con-
straints xi ∈ Xi , i = 1,2, . . . ,m, but also a joint production bound

m∑

i=1

xi ≤ N.
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Table 2 Parameter specification for production costs

Firm 1 Firm 2 Firm 3 Firm 4 Firm 5

ci 10 8 6 4 2

τi 5 5 5 5 5

βi 1.2 1.1 1.0 0.9 0.8

Table 3 The results of Example 2

Two CPU Number of Approximate solution

algorithms (s) iterations Firm 1 Firm 2 Firm 3 Firm 4 Firm 5

Algorithm 1 24.9760 86 36.9325 41.8181 43.7066 42.6592 39.1790

Algorithm 2 27.5000 148 36.9325 41.8181 43.7066 42.6592 39.1790

Carefully speaking, a generalized Nash equilibria is a vector (x∗1, x∗2, . . . , x∗m)T

such that x∗i , i = 1,2, . . . ,m, is a solution of the optimization problem

min
s.t.xi∈X̄i

fi(x
i) − xip

(

xi +
m∑

j=1,j �=i

x∗j

)

, (38)

where

X̄i =
{

xi |xi ∈ Xi, x
i +

m∑

j=1,j �=i

x∗j ≤ N

}

.

In (38) each firm maximizes its profit subject to its production constraints and
the joint production constraint under the assumption that the remaining firms stick at
their equilibria productions.

Using the functions fi and p given by (36) and (37), and following the same line
of the transformation process of Sect. 2, this problem can be converted to a QVI. We
take m = 5 in the test. The function F is defined by

F i(x) = ci +
(

xi

τi

) 1
βi +

(
5000

Q

) 1
η
(

xi

ηQ
− 1

)

, i = 1, . . . ,5,

where Q = ∑5
i=1 xi . All firms have the same lower production bound 1 and upper

production bound 150, that is,

Xi = {xi |1 ≤ xi ≤ 150}, i = 1, . . . ,5.

The parameters of the production cost functions are given in Table 2.

Table 3 lists the results of Algorithm 1 and Algorithm 2 when they are applied to
Example 2 with initial point x0 = (50,50,50,50,50)T , η = 1.1 and N = 700.
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Table 4 The results of Example 2 with another initial point

Two CPU Number of Approximate solution

algorithms (s) iterations Firm 1 Firm 2 Firm 3 Firm 4 Firm 5

Algorithm 1 19.9480 99 36.9325 41.8181 43.7066 42.6592 39.1790

Algorithm 2 14.8210 138 36.9325 41.8181 43.7066 42.6592 39.1790

Table 5 The results of Example 3

Starting Number of iterations CPU (s) Approximate solution

point Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2

(0,0)T 244 259 0.0630 0.0470 (5,9)T (5,9)T

(10,0)T 247 252 0.0620 0.0320 (5,9)T (5,9)T

(10,10)T 184 199 0.0470 0.0310 (5,9)T (5,9)T

(0,10)T 177 165 0.0310 0.0320 (5,9)T (5,9)T

(5,5)T 235 246 0.0470 0.0630 (5,9)T (5,9)T

When the initial point is chosen as x0 = (10,10,10,10,10)T , the result is given
in Table 4.

When an additional joint constraint is added, similar numerical performance is
observed. We omit the details. We notice that in Examples 1, 2 above, all joint con-
straints are shared by all players. How about numerical performance for the examples
in which not all joint constraints are shared by all players? To answer this question,
we construct a simple example which is a modification of Example 1 as follows.

Example 3 In this example, the set K2(x̄1) = {0 ≤ x2 ≤ 10, x2 ≤ 15 − x̄1} in Exam-
ple 1 is replaced by K2(x̄1) = {2 ≤ x2 ≤ 10}.

Table 5 lists the results for Algorithms 1 and 2 being applied to Example 3 with
different initial points. We see that in all cases CPU times are reduced comparing
with Example 1.

We know that choice of parameter values affects performance of a method in prac-
tice. As this is not the main objective of the paper, we would not give detailed test
in this aspect. The numerical experiments tested for the three simple problems are
used to demonstrate the viability of the methods proposed in this paper. A remark-
able characteristic of the algorithms is the computational simplicity, which makes the
algorithms easy to be implemented.
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