
Comput Optim Appl (2010) 45: 143–158
DOI 10.1007/s10589-008-9172-y

Fast paths in large-scale dynamic road networks

Giacomo Nannicini · Philippe Baptiste ·
Gilles Barbier · Daniel Krob · Leo Liberti

Received: 29 August 2007 / Revised: 29 January 2008 / Published online: 23 February 2008
© Springer Science+Business Media, LLC 2008

Abstract Efficiently computing fast paths in large-scale dynamic road networks
(where dynamic traffic information is known over a part of the network) is a prac-
tical problem faced by traffic information service providers who wish to offer a real-
istic fast path computation to GPS terminal enabled vehicles. The heuristic solution
method we propose is based on a highway hierarchy-based shortest path algorithm
for static large-scale networks; we maintain a static highway hierarchy and perform
each query on the dynamically evaluated network, using a simple algorithm to propa-
gate available dynamic traffic information over a larger part of the road network. We
provide computational results that show the efficacy of our approach.

Keywords Shortest paths · Dynamic arc costs · Real-time data · Road networks

G. Nannicini (�) · P. Baptiste · D. Krob · L. Liberti
LIX, École Polytechnique, 91128 Palaiseau, France
e-mail: giacomo.n@gmail.com

P. Baptiste
e-mail: baptiste@lix.polytechnique.fr

D. Krob
e-mail: dk@lix.polytechnique.fr

L. Liberti
e-mail: liberti@lix.polytechnique.fr

G. Nannicini · G. Barbier
Mediamobile, 10 rue d’Oradour sur Glane, Paris, France

G. Nannicini
e-mail: giacomo.nannicini@v-trafic.com

G. Barbier
e-mail: gilles.barbier@m4x.org

mailto:giacomo.n@gmail.com
mailto:baptiste@lix.polytechnique.fr
mailto:dk@lix.polytechnique.fr
mailto:liberti@lix.polytechnique.fr
mailto:giacomo.nannicini@v-trafic.com
mailto:gilles.barbier@m4x.org

144 G. Nannicini et al.

1 Introduction

A large number of cars is now fitted with a Global Positioning System (GPS) ter-
minal which gives the exact geographic location of the vehicle on the surface of
the earth. All of these GPS terminals are now endowed with detailed road network
databases which allow them to compute the shortest path (in terms of distance) be-
tween the current vehicle location (source) and another location given by the driver
(destination). Naturally, drivers are more interested in the source-destination fastest
path (i.e. shortest in terms of travelling time). The greatest difficulty to overcome is
that the travelling time depends heavily on the amount of traffic on the chosen road.
Currently, some state agencies as well as commercial enterprises are charged with
monitoring the traffic situation in certain pre-determined strategic places. Further-
more, traffic reports are collected from police cars as well as some taxi services. The
dynamic traffic information, however, is as yet limited to a small proportion of the
whole road network.

The problem faced by traffic information providers is currently that of offering
GPS terminal enabled drivers a source-destination path subject to the following con-
straints: (a) the path should be fast in terms of travelling time subject to dynamic
traffic information being available on part of the road network; (b) traffic informa-
tion data are updated approximately each minute; (c) answers to path queries should
be computed in real time. Given the data communication time and other overheads,
constraint (c) practically asks for a shortest path computation time of no more than
1 second. Constraint (b) poses a serious problem, because it implies that the fastest
source-destination path may change each minute, giving an on-line dimension to
the problem. A source-destination query spanning several hundred kilometers, which
would take several hours to travel, would need a system recomputing the fastest path
each minute; this in turn would mean keeping track of each query for potentially sev-
eral hours. As the estimated computational cost of this requirement is superior to the
resources usually devoted to the task, a system based on dynamic traffic information
will not, in practice, ever compute the on-line fastest path. As a typical national road
network for a large European country usually counts millions of junctions and road
segments, constraint (c) implies that a straight Dijkstra’s algorithm is not a viable
option. In view of constraint (a), in our solution method fast paths can be efficiently
computed by means of a point-to-point hierarchy-based shortest path algorithm for
static large-scale networks, where the hierarchy is built using static information and
each query is answered on the dynamically evaluated network.

This paper makes three original scientific contributions: (i) We extend a known
hierarchy-based shortest path algorithm for static large-scale undirected graphs (the
Highway Hierarchies algorithm [16]) to the directed case. The method has been de-
veloped and tested on real road network data taken from the TeleAtlas France data-
base [15]. We note that the original authors of [16] have extended the algorithm to
work on directed graphs in a slightly different way than ours (see [17]). (ii) We model
the problem taking into account the propagation of the partial traffic information on a
subset of the road segments to the rest of the network. (iii) We propose a method for
efficiently finding fast paths on a large-scale dynamic road network where arc travel-
ling times are updated in quasi real-time (meaning very often but not continuously).

Fast paths in large-scale dynamic road networks 145

In the rest of this section, we discuss the state of the art as regards shortest path
algorithms in dynamic and large-scale networks, and we describe the proposed solu-
tion. The rest of the paper is organized as follows. In Sect. 2 we discuss the propaga-
tion of the partial dynamic traffic information to a larger part of the road network. In
Sect. 3 we briefly review the highway hierarchy-based shortest path algorithm for sta-
tic large-scale networks, which is one of the important building blocks of our method,
and discuss the extension of the existing shortest-path algorithm to the directed case.
Section 4 discusses the computational results, and Sect. 5 concludes the paper.

1.1 Shortest path algorithms in road networks

The problem of computing fastest paths in graphs whose arc weights change over
time is termed the DYNAMIC SHORTEST PATH PROBLEM (DSPP). The work that
laid the foundations for solving the DSPP is [6] (a good review of this paper can be
found in [10], p. 407): Dijkstra’s algorithm is extended to the dynamic case through
a recursion formula based on the assumption that the network G = (V ,A) has the
FIFO property: for each pair of time instants t, t ′ with t < t ′:

∀(u, v) ∈ A τuv(t) + t ≤ τuv(t
′) + t ′,

where τuv(t) is the travelling time on the arc (u, v) starting from u at time t . The
FIFO property is also called the non-overtaking property, because it basically says
that if A leaves u at time t and B at time t ′ > t , B cannot arrive at v before A using
the arc (u, v). The shortest path problem in dynamic FIFO networks is therefore poly-
nomially solvable [3], even in the presence of traffic lights [1]. Dijkstra’s algorithm
applied to dynamic FIFO networks has been optimized in various ways [2, 3]; the A∗
one-to-one shortest path algorithm has also been extended to dynamic networks [4].
The DSPP is NP-hard in non-FIFO networks [7].

Although in this paper we do not assume any knowledge about the statistical dis-
tribution of the arc weights in time, it is worth mentioning that a considerable amount
of work has been carried out for computing shortest paths in stochastic networks.
A good review is [11].

The computation of exact shortest paths in large-scale static networks has received
a good deal of attention [5, 19]. The established practice is to delegate a consider-
able amount of computation to a preprocessing phase (which may be very slow) and
then perform fast source-destination shortest path queries on the pre-processed data.
Recently, the concept of highway hierarchy was proposed in [16, 17, 20]. A highway
hierarchy of L levels of a graph G = (V ,A) is a sequence of graphs G = G0, . . . ,GL

with vertex sets V 0 = V,V 1 ⊇ · · · ⊇ V L and arc sets A0 = A,A1 ⊇ · · · ⊇ AL; each
arc has maximum hierarchy level (the maximum i such that it belongs to Ai) such
that for all pairs of vertices there exists between them a shortest path (a1, . . . , ak),
where ai are the consecutive path arcs, whose search level first increases and then de-
creases, and each arc’s search level is not greater than its maximum hierarchy level.
A more precise description is given in Sect. 3. The A∗ algorithm has also been ex-
tended to use a concept, reach, which has turned out to be closely related to highway
hierarchies (see [12]).

146 G. Nannicini et al.

1.2 Description of the solution method

The solution method we propose in this paper efficiently finds fast paths by deploy-
ing Dijkstra-like queries on a highway hierarchy built using the static arc weights
found in the road network database, but used with the dynamic arc weights reflect-
ing quasi real-time traffic observations. This implies using two main building blocks:
highway hierarchy construction (the Highway Hierarchies1 algorithm extended to di-
rected graphs), and the query algorithm applied to real-time and propagated traffic
information.

• Highway hierarchy. Apply the directed graph extension of the HH algorithm (see
Sect. 3) to construct a highway hierarchy using the static road network information.
In particular, arc travelling times are average estimations found in the database.
This is a preprocessing step that has to be performed only when the topology of
the road network changes. The CPU time taken for this step is not an issue.

• Propagation of dynamic traffic information. Every minute, the travelling times of
a subset D of the arcs A are updated with dynamic traffic information. Propagate
the dynamic travelling times on D to a larger arc subset D̄ ⊇ D using an algorithm
which first computes a congestion index for each arc where real-time information
is available, and then propagates this information on adjacent arcs (see Sect. 2.2).
This algorithm is carried out every minute, and its running time must be limited to
a few seconds at worst.

• Efficient path queries. Efficiently address source-destination fast path requests by
employing a multi-level bidirectional Dijkstra’s algorithm on the dynamically eval-
uated graph using the highway hierarchy structure constructed during preprocess-
ing. This algorithm is carried out each time a path request is issued; its running
time must be as fast as possible, in any case not over 1 second.

2 Propagation of dynamic traffic information

The problem of finding fast paths in large-scale dynamically changing road networks
is naturally modelled by a digraph G = (V ,A) describing the network topology,
weighted by an arc cost function τ : A → R associating each arc to the time taken to
travel on the arc. In order to express the fact that the network changes dynamically in
quasi real-time, τ also depends on the particular time instant: we shall thus call τuv(t)

the time taken to travel the arc (u, v) ∈ A at time instant t , or simply τuv whenever
the time instant t is clear from the context. Ideally, given a point-to-point path query
one would like to compute the shortest (fastest) path between the given nodes in a low
time—less than one second, in any case; however, as this may not always be possi-
ble due to the difficulty of this problem when traffic information changes frequently,
finding a path which connects the two nodes and has a real-time cost very close to the
optimal solution is good enough for practical applications. One issue complicates the
matters: at each time t , there is a proper subset D(t) ⊂ A of arcs over which the trav-
elling time function τ(t) is known (in practice, |D(t)| is considerably smaller than

1From now on, simply HH.

Fast paths in large-scale dynamic road networks 147

|A|): for the rest of the arcs in A \ D(t), the corresponding dynamic travelling time
is unknown, the only known quantity being a static travelling time (reference time)
function σ : A → R contained in the road network database.

Since only a subset of arc travelling times is updated with quasi real-time traffic
data, we need to propagate this information to the rest of the graph in a consistent
way; to this end, we developed a simple propagation algorithm which stems from
practical considerations. For all matters regarding dynamic travelling times propaga-
tion we have ignored all arcs that correspond to minor roads; this decision is based
on the observation of real data and on common knowledge, in particular the fact that
traffic in small roads can be subject to local instability and is much less related to
the traffic situation in a neighbourhood than traffic on highways and national roads.
Intuitively, the algorithm computes a congestion index for each arc where real-time
information is available, comparing dynamic travelling time and reference time, and
then propagates this information to all adjacent arcs in a breadth-first manner. We
point out that our first approach to this problem was based on a flow model, where
each arc had an associated traffic flow whose value was proportional to an estimation
of the number of vehicles on that arc and their speed (see [14]), and flows were prop-
agated using the flow conservation laws; however, this approach wasn’t effective in
practice, and we obtained better results with the heuristic approach described below.
This is probably due to the fact that we do not know the true number of vehicles on a
road, and our rough estimations could have been subject to severe errors.

2.1 A heuristic model

Given a directed graph G = (V ,A), for v ∈ V we let δ−(v) ⊂ A be the backward
star and δ+(v) ⊂ A be the forward star of v; we let δ̄−(v) ⊂ V be the backward
vertex star and δ̄+(v) ⊂ V be the forward vertex star. For each node u ∈ V such that
∃v ∈ V : (u, v) ∈ D(t) ∨ (v,u) ∈ D(t) we define its congestion index C(u) as

C(u) =
∑

a∈(δ+(u)∪δ−(u))∩D(t) λaC(a)
∑

a∈(δ+(u)∪δ−(u))∩D(t) λa

,

where λa is a measure of arc a’s relative importance, and C(a) is the congestion
index of arc a. The main idea, here, is that a node (that is, a junction between two
or more roads) is congested if incident arcs are congested; in order to properly take
into account different road types we weight each arc’s contribution by a value which
expresses that arc’s importance. Again, we remark that this model has originated from
the practical considerations; a very simple and intuitive way to model λa and C(a)

is:

• λa = number of lanes of arc a,
• C(a) = min{ τa

σa
,1},

where τa is the dynamic (real-time) travelling time on arc a, and σa is its reference
time, i.e. the static travelling time. The min function in the definition of C(a) helps
avoiding unrealistic results due to noise or to vehicles cruising at a speed above the
maximum allowed speed on that road’s type.

148 G. Nannicini et al.

2.2 The propagation algorithm

After having defined a measure of congestion for each node incident to one or more
arcs with dynamic information, we now propagate that information using a simple
model. This model is based on the assumption that if a junction is congested then in-
cident arcs are likely to be congested too; this, combined with the previous definition
of node congestion, results in the assumption that if some arcs (and especially those
corresponding to large roads, i.e. with many lanes) incident on a node experience a
traffic increase then all other arcs incident on that node are subject to traffic increase.

At each propagation step i, let Di−1 be the set of arcs with dynamic information,
with D0 = D(t), and let Ni−1 be the set of nodes incident to at least one arc in Di−1,
that is Ni−1 = {u|(u, v) ∈ Di−1 ∨ (v,u) ∈ Di−1}; we want to calculate Di , where
Di = Di−1 ∪ D∗

i for some D∗
i ⊂ A \ D(t). The algorithm at step i works as follows:

1. Compute congestion index for each arc (u, v) ∈ Di−1.
2. Compute congestion index for each node u ∈ Ni−1.
3. Given positive constants wb,wf ≤ 1 such that wb + wf = 1, for each arc (u, v) ∈

A \ (Di−1) such that u ∈ Ni−1 ∨ v ∈ Ni−1 let

C((u, v)) =
⎧
⎨

⎩

C(u) ifv /∈ Ni−1,

C(v) ifu /∈ Ni−1,

wf C(u) + wbC(v) otherwise.

4. Given a positive constant p ≤ 1, for each arc (u, v) ∈ A \ (Di−1) for which we
computed C((u, v)) at the previous step, we compute its propagated travelling
time

τuv = pi−1σuvC((u, v)) + (1 − pi−1)σuv

and add (u, v) to D∗
i .

5. Di = Di−1 ∪ D∗
i ; if some terminating condition is not met, increment i and go to

line 1.

For this algorithm we have used a few constants: wb,wf ≤ 1 such that wb + wf = 1
measure the relative importance of information propagated, respectively, backwards
or forwards on arcs, while p ≤ 1 is a measure of confidence in the information prop-
agated at each step after the first, i.e. the relative importance of propagated travelling
times and reference times. As a stopping condition we simply put a limit on the num-
ber of iteration steps. This algorithm was shown to perform well in practice, allowing
fast propagation of dynamic times. To validate our algorithm, we built a benchmark
as follows: we kept a subset B ⊂ D(t) for validation, propagated travelling times us-
ing only arcs in D(t) \ B , and then compared propagated travelling times on arcs in
B with the real values, computing for each arc the relative absolute error

|τprop − τreal|
τreal

.

Over several days of validation and different values of the parameters, we recorded an
average error of 23% with a variance of 0.92, obtained with parameters wb = 0.75,

Fast paths in large-scale dynamic road networks 149

p = 0.75 and 2 propagation steps (i.e. two iterations of the propagation algorithm);
for comparison, using no propagation at all (that is, using static times regardless of
traffic situation) yields an average error of 50% with a variance of 0.03, while a
flow model recorded an average error of 177% with a variance of 96.47. Also, our
heuristic model performs in all situations better than using no dynamic travelling
times propagation at all, and thus seems a reasonable choice in practice.

3 Highway Hierarchies algorithm on dynamic directed graphs

The Higways Hierarchies algorithm [16, 20] is a fast, hierarchy-based shortest paths
algorithm which works on static undirected graphs. HH algorithm is specially suited
to efficiently finding shortest paths in large-scale networks. Since the HH algorithm
is one of our main building blocks, we briefly review the necessary concepts.

The HH algorithm is heavily based on Dijkstra’s algorithm [9], which finds the
tree of all shortest paths from a root vertex r to all other vertices v ∈ V of a weighted
digraph G = (V ,A) by maintaining a heap H of reached (or explored) vertices u

with their associated (current) shortest path length c(u). Vertices which have not yet
entered the heap (i.e. which are still unvisited) are unreached, and vertices which
have already exited the heap (i.e. for which a shortest path has already been found)
are settled. A bidirectional Dijkstra algorithm works by keeping track of two Dijkstra
search scopes: one from the source, and one from the destination working on the
reverse graph. When the two search scopes meet it can be shown that the shortest path
passes through a vertex that has been reached from both nodes ([20], p. 30). A set of
shortest paths is canonical2 if, for any shortest path p = 〈u1, . . . , ui, . . . , uj , . . . , uk〉
in the set, the canonical shortest path between ui and uj is a subpath of p.

The HH algorithm works in two stages: a time-consuming pre-processing stage
to be carried out only once, and a fast query stage to be executed at each shortest
path request. Let G0 = G. During the first stage, a highway hierarchy is constructed,
where each hierarchy level Gl , for l ≤ L, is a modified subgraph of the previous
level graph Gl−1 such that no canonical shortest path in Gl−1 lies entirely outside the
current level for all sufficiently distant path endpoints: this ensures that all queries
between far endpoints on level l−1 are mostly carried out on level l, which is smaller,
thus speeding up the search. Each shortest path query is executed by a multi-level
bidirectional Dijkstra algorithm: two searches are started from the source and from
the destination, and the query is completed shortly after the search scopes have met;
at no time do the search scopes decrease hierarchical level. Intuitively, path optimality
is due to the fact that by hierarchy construction there exist no canonical shortest path
of the form 〈a1, . . . , ai, . . . , aj , . . . , ak, . . .〉, where ai, aj , ak ∈ A and the search level
of aj is lower than the level of both ai, ak ; besides, each arc’s search level is always
lower or equal to that arc’s maximum level, which is computed during the hierarchy
construction phase and is equal to the maximum level l such that the arc belongs
to Gl . The speed of the query is due to the fact that the search scopes occur mostly
on a high hierarchy level, with fewer arcs and nodes than in the original graph.

2Dijkstra’s algorithm can easily be modified to output a canonical shortest paths tree (see [20], Appen-
dix A.1—can be downloaded from http://algo2.iti.uka.de/schultes/hwy/).

http://algo2.iti.uka.de/schultes/hwy/

150 G. Nannicini et al.

3.1 Highway hierarchy

As the construction of the highway hierarchy is the most complicated part of HH
algorithm, we endeavour to explain its main traits in more detail. Given a local ex-
tensionality parameter H (which measures the degree at which shortest path queries
are satisfied without stepping up hierarchical levels) and the maximum number of
hierarchy levels L, the iterative method to build the next highway level l + 1 starting
from a given level graph Gl is as follows:

1. For each v ∈ V , build the neighbourhood Nl
H (v) of all vertices reached from v

with a simple Dijkstra search in the l-th level graph up to and including the H -st
settled vertex. This defines the local extensionality of each vertex, i.e. the extent
to which the query “stays on level l”.

2. For each v ∈ V :
(a) Build a partial shortest path tree B(v) from v, assigning a status to each vertex.

The initial status for v is “active”. The vertex status is inherited from the parent
vertex whenever a vertex is reached or settled. A vertex w which is settled on
the shortest path 〈v,u, . . . ,w〉 (where v �= u �= w) becomes “passive” if

|Nl
H (u) ∩ Nl

H (w)| ≤ 1. (1)

The partial shortest path tree is complete when there are no more active
reached but unsettled vertices left.

(b) From each leaf t of B(v), iterate backwards along the branch from t to v:
all arcs (u,w) such that u �∈ Nl

H (t) and w �∈ Nl
H (v), as well as their adjacent

vertices u,w, are raised to the next hierarchy level l + 1.
3. Select a set of bypassable nodes on level l + 1; intuitively, these nodes have low

degree, so that the benefit of skipping them during a search outweights the draw-
backs (i.e., the fact that we have to add shortcuts to preserve the algorithm’s cor-
rectness). Specifically, for a given set Bl+1 ⊂ Vl+1 of bypassable nodes, we de-
fine the set Sl+1 of shortcut edges that bypass the nodes in Bl+1: for each path
p = (s, b1, b2, . . . , bk, t) with s, t ∈ Vl+1 \ Bl+1 and bi ∈ Bl+1,1 ≤ i ≤ k, the set
Sl+1 contains an edge (s, t) with c(s, t) = c(p). The core G′

l+1 = (V ′
l+1,E

′
l+1) of

level l+1 is defined as: V ′
l+1 = Vl+1 \Bl+1, E′

l+1 = (El+1 ∩(V ′
l+1 ×V ′

l+1))∪Sl+1.

The result of the contraction is the contracted highway network G′
l+1, which can be

used as input for the following iteration of the construction procedure. It is worth
noting that higher level graphs may be disconnected even though the original graph
is connected.

3.2 Extension to directed graphs

The original description of the HH algorithm [16] applies to undirected graphs only;
in this section we provide an extension to the directed case. It should be noted that
the HH algorithm was extended to the directed case by the authors (see [17]) in a
way which is very similar to that described here. However, we believe our slightly
different exposition helps to clarify these ideas considerably.

Fast paths in large-scale dynamic road networks 151

The algorithm for hierarchy construction, as explained in Sect. 3.1, works with
both undirected and directed graphs. However, storing all neighbourhoods Nl

H (v)

for each v and l has prohibitive memory requirements. Thus, the original HH im-
plementation for checking whether a vertex v is in Nl

H (u) is based on comparing
the distance d(u, v) with the “distance-to-border” (also called slack) from u to the
border of its neighbourhood Nl

H (u). The “distance-to-border” dl
H (u) is a measure

of a neighbourhood’s radius, and is defined as the distance d(u, v) where v is the
farthest node in Nl

H (u), i.e. the cost of the shortest path from u to the H -th settled
node when applying Dijkstra’s algorithm on node u at level l. This is the basis of the
slack-based method in [20], p. 19 (from which we draw our notation). In the partial
shortest paths tree B(s0) computed in Step 2 of the algorithm in Sect. 3.1, the slack
�(u) is recursively computed for all u ∈ B(s0) starting from the leaves t0 of B(s0),
as follows.

1. Initialise a FIFO queue Q to contain all nodes u of B(s0), ordering them from the
farthest one to the nearest one with respect to s0.

2. Set �(u) = dl
H (u) for u a leaf of B(s0) and +∞ otherwise.

3. If Q is empty, terminate.
4. Remove u from Q, and let p be its predecessor in B(s0).
5. If �(p) = +∞ and p �∈ Nl

H (s0), p is added to Q.
6. Let �(p) = min(�(p),�(u) − d(p,u)).
7. If �(p) < 0, the edge (p,u) is lifted to the higher hierarchical level.
8. Return to Step 3.

The algorithm works because Theorem 2 in [20] proves that condition �(p) < 0 is
equivalent to the condition of Step 2 of the algorithm in Sect. 3.1. The cited theorem
is based on the following assumption:

∀u ∈ V (u �∈ Nl
H (t0) → dl

H (t0) − d(u, t0) < 0). (2)

This condition may fail to hold for directed graphs, since d(u, t0) �= d(t0, u).
To make assumption (2) hold, we have to consider a neighbourhood radius com-

puted on the reverse graph, that is the graph G = (V ,A) such that (u, v) ∈ A ⇔
(v,u) ∈ A. Thus, we modified the original implementation to compute, for each node,

a reverse neighbourhood N
l

H (v) (see Fig. 1), so that we are able to store the corre-

sponding reverse neighbourhood radius d
l

H (u) ∀u ∈ V . We replace Step 2 in the
algorithm above by:

2a. Set �(u) = d
l

H (u) for u a leaf of B(s0) and +∞ otherwise.

We are now going to prove our key lemma.

Lemma 3.1 Let u, s ∈ V and t a leaf in B(s). If u �∈ N
l

H (t) then d
l

H (t)−d(u, t) < 0.

Proof Suppose d(u, t) ≤ d
l

H (t). By definition, this means that there is a shortest path

in N
l

H (t) which connects u to t . Therefore, u ∈ N
l

H (t) against the hypothesis. �

152 G. Nannicini et al.

Fig. 1 An example which shows neighbourhoods and reverse neighbourhoods with H = 3; only solid
arcs are lifted to a higher level in the hierarchy. Note that arcs (p, t) and (p′, t) are not lifted even if

p,p′ �∈ Nl
H

(t); this is because p,p′ ∈ N
l
H (t), and for target node we consider the reverse neighbourhood

It is now straightforward to amend Theorem 2 in [20] to hold in the directed case;

all other theorems in [20] need similar modifications, replacing Nl
H (t) with N

l

H (t)

and dl
H (t) with d

l

H (t) whenever t is target node or is “on the right side” of a path—it
will always be clear from the context. The query algorithm must me modified to cope

with these differences, using d
l

H (t) instead of dl
H (t) whenever we are searching in

the backward direction.
Interestingly, the problem with the slack-based method was first detected when our

original implementation of the HH algorithm failed to construct a correct hierarchy
for the Paris urban area. This shows that the extension of the algorithm to the directed
case actually arises from real needs.

3.3 Heuristic application to dynamic networks

The original Highway Hierarchies algorithm, as described above, finds shortest paths
in networks whose arc weights do not change in time. By forsaking the optimality
guarantee, we adapt the algorithm to the case of networks whose arc weights are
updated in quasi real-time. Whereas the highway hierarchy is constructed using the
static arc travelling times from the road network database, each point-to-point path
query is deployed on a dynamically evaluated version of the highway hierarchy where
the arcs are weighted using the quasi real-time traffic information. In particular, in all
tests that involved a comparison with neighbourhood radius we use the static arc
travelling times, while for all evaluations of path lengths or of node distances we
use the real-time (dynamic) travelling times. This means that the static travelling
times are used to determine neighbourhood’s crossings, and thus to determine when
to switch to a higher level in the hierarchy, while the key for the priority queue for
HH algorithm is computed using only dynamic travelling times. We can prove that
this approach yields correct paths, although it does not guarantee to find the shortest
path.

Proposition 3.2 Given source and target nodes s, t ∈ V , if a s → t path exists in the
original graph then the modified algorithm applied on a dynamic network finds an
s → t path.

Proof Let p = (s = v0, . . . , vn = t) be the shortest s → t path in the original (static)
graph as computed by the original HH algorithm; by correctness of the HH algorithm,

Fast paths in large-scale dynamic road networks 153

this path exists. An entrance point is defined as a node where, during the multilevel
bidirectional query, the search is switched to a higher level in the hierarchy or it enters
the core of the current level (see [17, 20]); let h and k be the number of entrance
points on p for, respectively, the forward and backward search, and let respectively
f0 = s, f1, . . . , fh and bk, . . . , b1, b0 = t be those entrance points. Path p is then of
the form p = (s = f0, . . . , f1, . . . , fh, . . . , bk, . . . , b1, . . . , b0 = t). Let �(u) be the
hierarchy level at which node u is explored.

We have that fi+1 ∈ N
�(fi)
H (fi) ∀i = 0, . . . , h − 1 and bi+1 ∈ N

�(bi)

H (bi)∀i =
0, . . . , k−1; besides, there exists a node m ∈ N

�(fh)
H (fh)∩N

�(bk)

H (bk). Since the mod-
ified algorithm uses static arc weights and static neighbourhood radii to determine
whether a node belongs to a given neighbourhood, then the whole neighbourhood
N

�(f0)
H (f0) = N0

H (f0) is explored, which means that f1 added to the search queue
(its status becomes reached). The same argument holds to prove that, unless a shorter
s → t path is found, each of the nodes f1, . . . , fh, m becomes reached in the forward
search and each of the nodes b1, . . . , bk,m becomes reached in the backward search;
thus a valid s → t path is eventually found by the modified algorithm applied on a
dynamic network. �

Let c be the static cost function, i.e. the function that uses the original arc weights,
and let c′ be the dynamic cost function, i.e. the function that uses the quasi real-time
arc weights; we can prove a weak result on the solution quality.

Proposition 3.3 Given source and target nodes s, t ∈ V , let p be the shortest s → t

path on the static graph as computed by the original HH algorithm. Then the modified
algorithm computes a path q such that c′(q) ≤ c′(p).

Proof Let f0, . . . , fh,m,bk, . . . , b0 ∈ p be as in the proof of Proposition 3.2. If the
forward search does not explore all fi for i = 0, . . . , h then the modified algorithm
has found a path q such that c′(q) ≤ c′(p), and Proposition 3.3 is true; otherwise,
it explores all neighbourhoods N

�(fi)
H (fi) for i = 0, . . . , h. For i = 0, . . . , h − 1 let

p|fi→fi+1 be the subpath of p from fi to fi+1, and r|fi→fi+1 be the best path from
fi to fi+1 as computed by the modified algorithm when applied to s and t ; since the
modified algorithm uses the real-time cost function c′ to apply Dijkstra’s algorithm
in each neighbourhood, we have that c′(r|fi→fi+1) ≤ c′(p|fi→fi+1) because r|fi→fi+1

is optimal within N
�(fi)
H (fi). The same reasoning applies to prove that c′(r|fh→m) ≤

c′(p|fh→m), and for the backward search. Thus c′(r|f0→f1) + · · · + c′(r|fh→m) +
c′(r|m→bk

)+· · ·+c′(r|b1→b0) ≤ c′(p|f0→f1)+· · ·+c′(p|fh→m)+c′(p|m→bk
)+· · ·+

c′(p|b1→b0) = c′(p), which completes the proof. �

Proposition 3.3 states that the modified algorithm applied on a dynamic network
performs no worse than the naive idea of computing the shortest path on the static
graph and then applying dynamic arc weights, without modifying the solution; we
have no guarantees, however, that it will perform better, although it sounds reasonable
because within each neighbourhood the modified algorithm computes locally optimal
shortest path with respect to the dynamic weights.

154 G. Nannicini et al.

4 Computational results

In this section we discuss the computational results obtained by our implementa-
tion. As there seems to be no other readily available software with equivalent func-
tionality, the computational results are not comparative. However, we establish the
quality of the heuristic solutions by comparing them against the fastest paths found
by a plain Dijkstra’s algorithm. We mention here two different approaches: dynamic
highway-node routing [18], which uses a selection of nodes operated by the HH algo-
rithm to build an overlay graph (see [13]), and dynamic ALT [8], which is a dynamic
landmark-based implementation of A∗. Both approaches, however, although very per-
forming with respect to query times, require a computationally heavy update phase
(which takes time in the order of minutes), and thus are not suitable for our scenario,
where, supposedly, each arc can have its cost changed every 2 minutes (roughly).

We performed the tests on the entire road network of France, using a highway
hierarchy with H = 65 and L = 9. The original network has 7778913 junctions and
17154042 road segments; the number of nodes and arcs in each level is reported in
Table 1.

We show the results for queries on the full graph without dynamic travelling times
in Table 2; in this case, all paths computed with the HH algorithm are fastest paths.
In Table 3, instead, we record our results on a graph with dynamic travelling times;
we also report the relative distance of the solution found with our heuristic version of
the HH algorithm and the fastest path computed with Dijkstra, and, for comparative

Table 1 Number of nodes and edges at different levels of a Highway Hierarchy

Level 0 1 2 3 4 5 6 7 8 9

Nodes 7778913 1517291 433286 182474 91888 53376 34116 23338 16445 11790

Arcs 17154042 3461385 1283000 583380 308249 183659 119524 81170 57235 41092

Table 2 Computational results
on the static graph: average
values

Dijkstra’s algorithm HH algorithm

settled nodes 2275563 18966

explored nodes 2587112 36200

Query time [s] 11.830 0.099

Table 3 Computational results on the graph with dynamic times: average values

Dijkstra’s algorithm HH algorithm HH algorithm

(naive approach) (heuristic version)

settled nodes 2280872 19174 19099

explored nodes 2594361 36581 36492

Query time [s] 11.917 0.100 0.099

Distance from optimum (variance) 0% 2.00% (5.00) 0.55% (0.45)

Fast paths in large-scale dynamic road networks 155

reasons, the results of the naive approach which consists in computing the traffic-free
optimal solution with the HH algorithm (i.e., on the static graph) and then applying
dynamic times on the so-found solution. Dynamic travelling times were taken choos-
ing, for each query, one out of five sets of values recorded in different times of the
day for each of the 29384 arcs with dynamic information. reading both true real-time
and propagated costs, with the propagation algorithm in Sect. 2.2 with3 6 propaga-
tion iterations, wb = 0.75 and p = 1; on average,4 we started with 6947 dynamic arcs
with real-time traffic information, and propagated another 22437.

Although this number is small with respect to the total number of arcs in the
graph, it should be noted that almost all these arcs correspond to very important road
segments (highways and national roads). All arcs (i, j) that did not have a dynamic
travelling time were assigned a different weight at each query, chosen at random
with a uniform distribution over [τij ,15τij], where τij is the reference time for arc
(i, j). This choice has been made in order to recreate a difficult scenario for the query
algorithm: even if the number of arcs with real traffic information is still small, it is
going to increase rapidly as the means for obtaining dynamic information increase
(e.g. number of road cameras, etc.), and thus, to simulate an instance where most
arcs have their travelling time changed several times per hour, we generated each
arc’s cost at random. The interval [τij ,15τij] is simply a rough estimation of a likely
cost interval, based on the analysis of historical data. All tables report average values
over 5000 queries. All computational results in Tables 2 and 3 have been obtained
using one CPU of a multiprocessor Intel Xeon 2.6 GHz with 8 GB RAM running
Microsoft Windows Server 2003, compiling with Microsoft Visual Studio 2005 and
optimization level 2.

Computational results show that, although with no guarantee of optimality, our
heuristic version of the algorithm works well in practice, with 0.55% average devia-
tion from the optimal solution and a recorded maximum deviation of 17.59%; query
times do not seem to be influenced by our changes with respect to the original ver-
sion of the algorithm. The naive approach of computing the shortest path on the static
graph, and then applying dynamic times, records an average error of 2%, but it has a
much higher variance, and a maximum error of 27.95%; although the average error is
not high, it’s still almost 4 times the average error of the more sofisticated approach,
and the high variance suggests lack of stability in the solution’s quality. The low value
recorded for the average error with the naive approach (in absolute terms) can be ex-
plained as a consequence of the following two facts: travelling times generated at
random on arcs without real-time traffic information cannot simulate real traffic situ-
ation, because they lack spatial coherence (i.e. they do not simulate congested nearby
zones) and traffic behaviour information (i.e. the fact that during peak hours impor-
tant road segments are likely to be congested, while less important roads are not),
thus making the task of finding a fast path easier; besides, the average query on such

3Parameters used in this section are not optimized with respect to the minimization of the validation error;
however, they allow us to propagate dynamic information on a great number of arcs, thus providing realistic
data.
4Dynamic information comes from different sources, so the number of dynamically evaluated travelling
times is time-dependent.

156 G. Nannicini et al.

a large graph corresponds to a very long path (296 minutes on the traffic-free graph,
2356 minutes on the dynamic graph), and on long paths it is usually necessary to use
highways or national roads regardless of their congestion status—which is exactly
what the HH algorithm does. This last sentence is supported by the fact that, if we
consider only the 500 shortest queries in terms of path length, the average error of the
naive approach increases to 3.60%, while the average error of the heuristic version
increases to 0.97%; this is in accord with the fact that on short paths the influence
of traffic is greater, because alternative routes that do not use highways are more ap-
pealing, while on long paths using highways is often a necessary step. However, in
relative terms, the heuristic version of the HH algorithm performs significantly better
than the naive approach proposed for comparison, and we expect the difference to
increase (in favour of the heuristic algorithm) if applied to a graph fully covered with
real traffic information.

Figure 2 shows how the optimal and the heuristic path may differ; since the hi-
erarchy built on the static graph emphasizes important roads, the heuristic algorithm
applied on the dynamically weighted graph still tends to use highways and national
roads even when they are congested (up to a certain degree), thus sometimes losing
optimality.

Fig. 2 Fast paths calculated with different algorithms; each number identifies a path, paths are partially
overlapping. 1: Dijkstra’s algorithm (optimal solution) with real-time arc costs; dynamic travelling time:
24 minutes and 6 seconds. 2: HH algorithm (heuristic solution) with real-time arc costs; dynamic travelling
time: 25 minutes and 5 seconds. 3: HH algorithm without real-time arc costs (traffic-free optimal solution);
dynamic travelling time: 37 minutes and 5 seconds

Fast paths in large-scale dynamic road networks 157

Fig. 3 Highway hierarchy near the Champs Elysées, Paris; colour intensity and line width increase with
hierarchy level, in that order (a wide line with a lighter colour has a higher hierarchy level than a thin line
with dark colour)

Figure 3 is a graphical representation of the Highway Hierarchy used for the com-
putational experiments in the zone near the Champs Elysées, Paris.

5 Conclusion

We present a heuristic algorithm for efficiently finding fast paths in large-scale par-
tially dynamically weighted road networks, and benchmark its performance on real-
world data. The proposed solution is based on fast multi-level bidirectional Dijk-
stra queries on a highway hierarchy built on the statically weighted version of the
network using the Highway Hierarchies algorithm, and deployed using the dynamic
arc weights. As the dynamic information covers a (small) subset of the whole road
network, we also discuss the propagation of the dynamic information through an
algorithm based on practical considerations which has shown to perform well. Com-
putational results show that, although with no guarantee of optimality, the proposed
solution works well in practice, computing near-optimal fast paths quickly enough
for our purposes.

Acknowledgements We are grateful to Ms. Annabel Chevaux, Mr. Benjamin Simon and Mr. Benjamin
Becquet for invaluable practical help with Oracle and the real data, and to the rest of the Mediamobile’s
energetic and youthful staff for being always friendly and helpful.

158 G. Nannicini et al.

References

1. Ahuja, R., Orlin, J., Pallottino, S., Scutellà, M.: Dynamic shortest paths minimizing travel times and
costs. Networks 41(4), 197–205 (2003)

2. Buriol, L., Resende, M., Thorup, M.: Speeding up dynamic shortest path algorithms. INFORMS J.
Comput. (2008). DOI: 10.1287/ijoc.1070.0231

3. Chabini, I.: Discrete dynamic shortest path problems in transportation applications: complexity and
algorithms with optimal run time. Transp. Res. Rec. 1645, 170–175 (1998)

4. Chabini, I., Shan, L.: Adaptations of the A∗ algorithm for the computation of fastest paths in deter-
ministic discrete-time dynamic networks. IEEE Trans. Intell. Transp. Syst. 3(1), 60–74 (2002)

5. Chan, E., Zhang, N.: Finding shortest paths in large network systems. In: GIS’01: Proceedings of the
9th ACM International Symposium on Advances in Geographic Information Systems, pp. 160–166.
Assoc. Comput. Mach., New York (2001)

6. Cooke, K., Halsey, E.: The shortest route through a network with time-dependent internodal transit
times. J. Math. Anal. Appl. 14, 493–498 (1966)

7. Dean, B.: Shortest paths in FIFO time-dependent networks: theory and algorithms. Technical Report,
MIT, Cambridge, MA (2004)

8. Delling, D., Wagner, D.: Landmark-based routing in dynamic graphs. In: Demetrescu, C. (ed.)
WEA 2007—Workshop on Experimental Algorithms. Lecture Notes in Computer Science, vol. 4525.
Springer, New York (2007)

9. Dijkstra, E.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)
10. Dreyfus, S.: An appraisal of some shortest-path algorithms. Oper. Res. 17(3), 395–412 (1969)
11. Flatberg, T., Hasle, G., Kloster, O., Nilssen, E., Riise, A.: Dynamic and stochastic aspects in vehicle

routing—a literature survey. Technical Report STF90A05413, SINTEF, Oslo, Norway (2005)
12. Goldberg, A., Kaplan, H., Werneck, R.: Reach for A∗: Efficient point-to-point shortest path algo-

rithms. In: Demetrescu, C., Sedgewick, R., Tamassia, R. (eds.) ALENEX 2005. SIAM, Philadelphia
(2005)

13. Holzer, M., Schulz, F., Wagner, D.: Engineering multi-level overlay graphs for shortest-path queries.
In: Proceedings of the 8th Workshop on Algorithm Engineering. Lecture Notes in Computer Science,
vol. 129, pp. 156–170. SIAM, Philadelphia (2006)

14. Kerner, B.S.: The Physics of Traffic. Springer, Berlin (2004)
15. NV, T.: Tele Atlas Multinet ShapeFile 4.3.1 Format Specifications. TeleAtlas NV, May 2005
16. Sanders, P., Schultes, D.: Highway hierarchies hasten exact shortest path queries. In: Stølting Brodal,

G., Leonardi, S. (eds.) ESA. Lecture Notes in Computer Science, vol. 3669, pp. 568–579. Springer,
Berlin (2005)

17. Sanders, P., Schultes, D.: Engineering highway hierarchies. In: ESA 2006. Lecture Notes in Computer
Science, vol. 4168, pp. 804–816. Springer, Berlin (2006)

18. Sanders, P., Schultes, D.: Dynamic highway-node routing. In: Demetrescu, C. (ed.) WEA 2007—
Workshop on Experimental Algorithms. Lecture Notes in Computer Science, vol. 4525, pp. 66–79.
Springer, New York (2007)

19. Sanders, P., Schultes, D.: Engineering fast route planning algorithms. In: Demetrescu, C. (ed.) WEA
2007—Workshop on Experimental Algorithms. Lecture Notes in Computer Science, vol. 4525,
pp. 23–36. Springer, New York (2007)

20. Schultes, D.: Fast and exact shortest path queries using highway hierarchies. Master Thesis, Infor-
matik, Universität des Saarlandes, June 2005

http://dx.doi.org/10.1287/ijoc.1070.0231

	Fast paths in large-scale dynamic road networks
	Abstract
	Introduction
	Shortest path algorithms in road networks
	Description of the solution method

	Propagation of dynamic traffic information
	A heuristic model
	The propagation algorithm

	Highway Hierarchies algorithm on dynamic directed graphs
	Highway hierarchy
	Extension to directed graphs
	Heuristic application to dynamic networks

	Computational results
	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

