
Comput Optim Appl (2010) 45: 111–141
DOI 10.1007/s10589-008-9170-0

Heuristics for the facility location and design
(1|1)-centroid problem on the plane

J.L. Redondo · J. Fernández · I. García ·
P.M. Ortigosa

Received: 14 March 2007 / Revised: 24 January 2008 / Published online: 20 February 2008
© Springer Science+Business Media, LLC 2008

Abstract A chain (the leader) wants to set up a single new facility in a planar market
where similar facilities of a competitor (the follower), and possibly of its own chain,
are already present. The follower will react by locating another single facility after
the leader locates its own facility. Fixed demand points split their demand probabilis-
tically over all facilities in the market in proportion to their attraction to each facility,
determined by the different perceived qualities of the facilities and the distances to
them, through a gravitational model. Both the location and the quality (design) of the
new leader’s facility are to be found. The aim is to maximize the profit obtained by
the leader following the follower’s entry. Four heuristics are proposed for this hard-
to-solve global optimization problem, namely, a grid search procedure, an alternating
method and two evolutionary algorithms. Computational experiments show that the
evolutionary algorithm called UEGO_cent.SASS provides the best results.

Keywords Continuous location · Competition · Centroid problem · Stackelberg
problem · Evolutionary algorithms

This paper has been sponsored by the Ministry of Education and Science of Spain under the research
projects SEJ2005-06273/ECON and TIN2005-00447, in part financed by the European Regional
Development Fund (ERDF).

J.L. Redondo · I. García · P.M. Ortigosa
Department of Computer Architecture and Electronics, University of Almería, Almería, Spain

J. Fernández (�)
Facultad de Matemáticas, Universidad de Murcia, 30100 Espinardo, Murcia, Spain
e-mail: josefdez@um.es

J. Fernández
Department of Statistics and Operations Research, University of Murcia, Murcia, Spain

mailto:josefdez@um.es

112 J.L. Redondo et al.

1 Introduction

Location science deals with the location of one or more facilities in a way that opti-
mizes a certain objective (minimization of transportation costs, minimization of so-
cial costs, maximization of the market share, etc.) See [9, 10, 14, 21] for an introduc-
tion to the topic. According to their feasible set, location problems are classified as
discrete, on networks or continuous, and the mathematical formulations and solution
methods of the problems vary substantially depending on the type of problem. In this
paper we deal with continuous problems. Continuous location theory is very vast.
Since the pioneering works of Weber [29] in 1909 and Weiszfeld [30] in 1937, the
literature on that topic has been increasing constantly, specially since the 1970s, to the
point that it has now its own entry (90B85) in the Mathematics Subject Classification
used by Mathematical Reviews and Zentralblatt für Mathematik.

In particular, we consider here a competitive facility location (and design) prob-
lem. Competitive location deals with the problem of locating facilities to provide a
service (or goods) to the customers (or consumers) of a given geographical area where
other competing facilities offering the same service are already present (or will en-
ter the market in the near future). Many competitive location models are available in
the literature, as can be seen, for instance, in survey papers [12, 19, 24]. They vary
in the ingredients which form the model. For instance, we may want to locate just
a single facility or more than one new facility. The demand (usually supposed to be
concentrated in a discrete set of points, called demand points) can be either inelastic
or elastic, depending on whether the goods are essential or inessential. The patron-
izing behavior of the customers can be either deterministic, when the full demand
of the customer is served by the facility to which he/she is attracted most (leading
to Hotelling-type models) or probabilistic, when the customer splits his/her demand
among all the existing facilities (leading to Huff-type models). The attraction (or
utility) function of a customer towards a given facility, which usually depends on the
distance between the customer and the facility, as well as on other characteristics of
the facility which determine its quality, is also a key factor to be specified. The market
share captured by the facilities depends on all those factors. Furthermore, the compe-
tition may be static, which means that the competitors are already in the market, the
owner of the new facility knows their characteristics and no reaction is expected from
them, or with foresight, in which the competitors are assumed to react after the new
facility enters. Furthermore, if the competitors can change their decisions, then we
have a dynamic model, in which the existence of equilibrium situations is of major
concern.

The scenario considered in this paper is that of a duopoly. A chain (the leader)
wants to set up a single new facility in a planar market where similar facilities of a
competitor (the follower), and possibly of its own chain, are already present. Fixed
demand points split their demand (supposed to be inelastic) probabilistically over all
facilities in the market in proportion to their attraction to each facility, determined by
the different perceived qualities of the facilities and the distances to them, through
a gravitational or Huff-type model. Both the location and the quality (design) of the
new facility are to be found. Several types of constraints and costs are also considered.
After the location of the leader’s facility, the competitor will react by locating another

Heuristics for the facility location and design (1|1)-centroid problem 113

new facility at the place that maximizes its own profit. The objective of the leader
is to find the location and the quality of its facility that maximizes its profit (to be
understood as the income resulting from the market share captured by the chain minus
its operational costs), following the location of the facility of the follower.

These types of problems are known as Stackelberg problems in economic liter-
ature and as Simpson’s problems in voting theory. In Location literature they were
introduced by Hakimi [16]. He introduced the terms medianoid for the follower
problem, and centroid for the leader problem. More precisely, an (r|Xp) medianoid
problem refers to the follower’s problem of locating r new facilities in the presence
of p leader’s facilities located at a set of points Xp . And an (r|p) centroid prob-
lem refers to the leader’s problem of locating p new facilities, knowing that the fol-
lower will react positioning r new facilities by solving an (r|Xp) medianoid prob-
lem.

The literature on centroid problems is scarce (see [11] for a review on the topic
until 1996), and to our knowledge, among the existing papers only four of them
deal with continuous problems. This is mostly due to the complexity of that type
of bilevel programming problems. Drezner [8] solved the (1|1) centroid problem
for the Hotelling model and Euclidean distances exactly, through a geometric-based
approach. Bhadury et al. [2] also considered the (r|p) centroid problem for the
Hotelling model with Euclidean distances, and gave an alternating heuristic to cope
with it. Drezner and Drezner [5] considered the Huff model, and proposed three
heuristic approaches for handling the (1|1) centroid problem (see also [6]).

All the papers dealing with the centroid problem make use of procedures for solv-
ing the corresponding medianoid problem. However, the medianoid problem is also
a hard-to-solve global optimization problem (as most competitive location problems
are). Things become even more complicated when we consider the quality of the
facility as an additional variable of the problem, such as we do in this paper. Little
research has been done on this kind of problem with simultaneous decisions on loca-
tion and quality in continuous space. Under a deterministic (or Hotelling) customer
behavior, the (1|X1) medianoid problem has been studied in [25], and for a prob-
abilistic, or Huff, customer behavior in [13]. In [4], a closely related multifacility
problem with probabilistic customer behavior is analyzed.

Deterministic methods to solve some of the medianoid problems exactly can be
found in the literature, see for instance [7] for a branch-and-bound method to solve
the (1|X1) medianoid problem with Huff patronizing behavior when the quality of
the new facility is supposed to be given in advance, and [13] for an interval branch-
and-bound method when the quality is also a variable of the problem. However, the
interval B&B method in [13] is not suited for solving the centroid problem, since it is
time-consuming, and can make the procedure inoperative (usually, to solve a single
centroid problem many medianoid subproblems have to be solved). Hence, heuristic
(but reliable) methods are needed to be used within the algorithms for solving our
centroid problem. A multistart Weiszfeld-like method was presented in [3] to solve
the (1|X1) medianoid problem with Huff patronizing behavior when the quality of
the new facility is supposed to be fixed, and it was extended in [13] to handle the case
where the quality is also variable and there are constraints in the problem. Recently, in
[26], the evolutionary algorithm UEGO (Universal Evolutionary Global Optimizer),

114 J.L. Redondo et al.

described in [23], was proposed for the (1|X1) medianoid problem, and it proved to
be more reliable than the multistart heuristic introduced in [13]. Other metaheuristics,
such as tabu search, have also been proposed to cope with medianoid problems when
the feasible space is a network (see [1]).

In this paper we study several procedures for solving a constrained (1|1) cen-
troid problem with Huff patronizing behavior, in which the design of the facility
is considered a third variable. In Sect. 2 the facility location and design problem
is formally introduced. The heuristics used to solve the corresponding medianoid
problem are presented in Sect. 3. In the next section we explain several heuristics
specifically devised to cope with the centroid problem, namely, a grid search pro-
cedure, an alternating procedure and two adaptations of the evolutionary algorithm
UEGO (see [23]). In Sect. 5 we present some computational studies to compare the
performance of these algorithms. As we will show, an adaptation of UEGO, which
uses the stochastic hill climber SASS (Single Agent Stochastic Search) [28] as lo-
cal optimizer, is the algorithm which provides the best results. It is important to
highlight that UEGO can be easily adapted to handle many and diverse (location)
problems. The paper ends in Sect. 6 with some conclusions and guidelines for future
research.

2 A Huff-like (1|1)-centroid problem with decisions in both location and design

A chain, the leader, wants to locate a single new facility in a given area of the plane,
where m facilities offering the same goods or product already exist. The first k of
those m facilities belong to the chain, and the other m − k to a competitor chain, the
follower. The leader knows that the follower, as a reaction, will subsequently position
a new facility too. The demand, supposed to be inelastic, is concentrated at n demand
points, whose locations pi and purchasing power wi are known. The location fj and
quality of the existing facilities is also known.

The following notation will be used throughout this paper:

Indices
i index of demand points, i = 1, . . . , n.

j index of existing facilities, j = 1, . . . ,m (the first k of those m facilities
belong to the leader’s chain, and the rest to the follower’s).

Variables
z1 = (x1, y1) location of the new leader’s facility.
α1 quality of the new leader’s facility.
nf1 = (z1, α1) variables of the new leader’s facility.
z2 = (x2, y2) location of the new follower’s facility.
α2 quality of the new follower’s facility.
nf2 = (z2, α2) variables of the new follower’s facility.

Data
pi location of the i-th demand point.
wi demand (or purchasing power) at pi .
fj location of the j -th existing facility.
εi minimum distance from pi at which the new facilities can be lo-

cated.

Heuristics for the facility location and design (1|1)-centroid problem 115

dij distance between pi and fj .
αij quality of fj as perceived by pi .
gi(·) a non-negative non-decreasing function.
αij /gi(dij) attraction that pi feels for fj .
γi weight for the quality of the new facilities as perceived by demand

point pi .
S1 location space where the leader will locate its new facility.
S2 location space where the follower will locate its new facility.
qmin

1 minimum allowed quality for the new leader’s facility.
qmax

1 maximum allowed quality for the new leader’s facility.
qmin

2 minimum allowed quality for the new follower’s facility.
qmax

2 maximum allowed quality for the new follower’s facility.

Miscellaneous
dizl

distance between pi and zl, l = 1,2.
γiαl/gi(dizl

) attraction that pi feels for nfl, l = 1,2.
M1(nf1, nf2) market share obtained by the leader after the location of the new

facilities.
M2(nf1, nf2) market share obtained by the follower after the location of the

new facilities.
�1(nf1, nf2) profit obtained by the leader after the location of the new facili-

ties.
�2(nf1, nf2) profit obtained by the follower after the location of the new fa-

cilities.

The use of a general non-negative and non-decreasing function, gi , in the attrac-
tion functions generalizes the proposals found in literature, such as gi(d) = dλi (see
[3, 18]) or gi(d) = eλid (see [17]), with λi > 0, a given parameter which might dif-
fer between demand points. Note that when gi(d) = 0, which may only happen for
some gi functions if d = 0, i.e., the facility coincides with the demand point, the at-
traction becomes +∞, which in the current model would mean that all demand will
be attracted by that facility only. Therefore we may assume that gi(dij) > 0 ∀i, j ,
because any demand point i for which some gi(dij) = 0 would be totally lost to the
new facilities, so it may simply be left out of the model.

In the spirit of Huff [18], we consider that the patronizing behavior of customers
is probabilistic, that is, demand points split their purchasing power among the facili-
ties proportionally to the attraction they feel for them. Using these assumptions, the
market share attracted by the leader’s chain after the location of the leader and the
follower’s new facilities is

M1(nf1, nf2) =
n∑

i=1

ωi

γiα1
gi(diz1)

+ ∑k
j=1

γiαj

gi (dij)

γiα1
gi (diz1)

+ γiα2
gi(diz2)

+ ∑m
j=1

αij

gi (dij)

and the corresponding market share attracted by the follower’s chain is

M2(nf1, nf2) =
n∑

i=1

ωi

γiα2
gi (diz2)

+ ∑m
j=k+1

γiαj

gi (dij)

γiα1
gi (diz1)

+ γiα2
gi(diz2)

+ ∑m
j=1

αij

gi (dij)

.

116 J.L. Redondo et al.

Given nf1, the problem of the follower is the (1|nf1) medianoid problem:

(FP(nf1))

⎧
⎪⎨

⎪⎩

max �2(nf1, nf2) = F2(M2(nf1, nf2)) − G2(nf2)

s.t. z2 ∈ S2,
diz2 ≥ εi, i = 1, . . . , n,
α2 ∈ [qmin

2 , qmax
2],

whose objective is the maximization of the profit obtained by the follower (once the
leader has set up its new facility at nf1), to be understood as the difference between
the revenues obtained from the captured market share minus the operating costs of
the new facility (see [13]). Note that we may ignore the operating costs of the ex-
isting facilities of the follower, since these are considered to be constant. F2(·) is
a strictly increasing function which transforms the market share into expected sales
and G2(nf2) is a function which gives the operating cost for the follower of a facility
located at z2 with quality α2. Since it is rather likely that the closer to the demand
points the follower is, the higher the operating costs of the facility will be due to the
property value (this will make the cost of buying or renting the location higher), then
the function G2(nf2) should increase as z2 approaches any demand point. On the
other hand, the more quality we require of the facility, the higher the costs will be,
at an increasing rate, so G2 should be a nondecreasing and convex function in the
variable α2.

Let us denote by nf ∗
2 (nf1) an optimal solution of (FP(nf1)). The problem for the

leader is the (1|1) centroid problem:

(LP)

⎧
⎪⎨

⎪⎩

max �1(nf1, nf
∗
2 (nf1)) = F1(M1(nf1, nf

∗
2 (nf1))) − G1(nf1)

s.t. z1 ∈ S1,
diz1 ≥ εi, i = 1, . . . , n,
α1 ∈ [qmin

1 , qmax
1],

where F1 and G1 are the corresponding expected sales and operating costs functions,
respectively, for the leader’s chain.

In our computational studies we made the following choices:

• Functions Fl, l = 1,2, are linear, Fl(M) = cl · M , where cl is the income per unit
of goods sold.

• Usually, the operating costs of a new facility consist of the sum of the locational
costs and the costs related to reaching a given level of quality. Therefore func-
tions Gl, l = 1,2, are assumed to be separable, i.e. Gl(nfl) = Ga

l (zl) + Gb
l (αl).

In particular, we have considered Ga
l (zl) = ∑n

i=1 �i
l (dizl

), with �i
l (dizl

) =
wi/((dizl

)φ
i0
l + φi1

l), φi0
l , φi1

l > 0 and Gb
l (αl) = exp(α/ξ0

l + ξ1
l) − exp(ξ1

l), with
ξ0
l > 0 and ξ1

l ∈ R as given values.

A more detailed explanation of these functions, as well as other possible expressions
for Gl(nfl) can be found in [13]. Of course, other functions might be more suitable
depending on the real problem considered, and for each real application the most
appropriate Fl and Gl functions should be discovered.

As we can see, the leader problem (LP) is much more difficult to solve than the fol-
lower problem (FP(nf1)). Notice, for instance, that to evaluate its objective function

Heuristics for the facility location and design (1|1)-centroid problem 117

Fig. 1 Plot of �1 when
α1 = 0.5 (top), 3.75 (middle)
and 5.0 (bottom) for a problem
with setting (n = 50, m = 8,
k = 4)

�1 at a given point nf1, we have to first solve the corresponding medianoid problem
(FP(nf1)) to obtain nf ∗

2 (nf1). Furthermore, in order to compute the objective value
of �1 at nf1 accurately, the follower problem (FP(nf1)) has to be precisely solved,
since otherwise, the error of the approximate value can be considerable, even if it is
optimal given the non-optimal follower’s solution (see Sect. 4.3.3).

To the extent of our knowledge, when considering Huff patronizing behavior, the
centroid problem has only been addressed in [5], where a simplified version of the
problem considered here was studied (in [5] the qualities of the new facilities were
assumed to be known in advance, the objective was the maximization of the market
share, and no constraints were allowed). In Fig. 1, for a given problem with n = 50,
m = 8 and k = 4, the shape of the objective function �1 for three fixed values of α1

is shown. As we can see, for a fixed value of α1 the objective function is very moun-
tainous, with many local maxima and minima, and depending on the value of α1, the
shape changes considerably. This can give us an idea of the complexity of the prob-
lem at hand, and it also shows the importance of considering quality as an additional
variable of the problem.

118 J.L. Redondo et al.

In the following sections we present heuristics for solving leader problem (LP),
but first, in the next section, we discuss how to solve the follower problem.

3 Solving the medianoid problem

3.1 WLM: a Weiszfeld-like algorithm

A local method is proposed in [13] (see also [26]) for solving the follower problem.
The algorithm is a steepest descent type method which takes discrete steps along
the search directions and, usually, converges to a local optimum. In this method, the
derivatives of the objective function are equated to zero and the next iterate is obtained
by implicitly solving these equations. In location literature these types of methods are
known as Weiszfeld-like methods, in honor of E. Weiszfeld, who first proposed that
strategy [30].

In the medianoid problem, the follower wants to locate a new facility, knowing the
location and the quality of all the facilities of the competitor (the leader). However,
throughout the paper, we will also be sometimes interested in solving the opposite
problem, in which the leader wants to locate a new facility, assuming that the location
and the quality of all the facilities of the competitor (the follower) are fixed. In this
case, the leader also has to solve a medianoid problem, but, in which the roles of
the leader and the follower are interchanged. We will call this problem a reverse
medianoid problem.

To take both cases into account, in Appendix A we describe the Weiszfeld-like
algorithm (WLM) to solve the medianoid problem, regardless the chain acting as
follower. The input parameter of WLM is the set of facilities currently considered.

It is important to note that the Weiszfeld-like algorithm WLM is a local procedure.
Thus, usually, the algorithm ends at a local maximum (not necessarily at the global
one). Thus, in order to have a good chance of finding the optimal solution, in [13] it is
recommended to apply the algorithm repeatedly using (100 or 1000) different starting
points, and then select the solution that obtains the maximum profit. However, this
still does not guarantee a global optimal solution.

Next, we present another heuristic procedure, UEGO, introduced in [26], which is
rather robust, in the sense that it usually finds the global optimum. Furthermore, its
running times are competitive, for small to medium size problems, with the multistart
technique starting from 1000 points, and it can handle big size problems without any
difficulties.

3.2 UEGO_med: UEGO for the medianoid problem

UEGO is a general evolutionary algorithm designed to solve many kinds of multi-
modal global optimization problems. Some of the real applications that were solved
using UEGO were the detection of deformable objects in digital images [15] and the
image translational alignment in electron microscopy [27].

In multimodal optimization, the optimizer should discover the structure of the lo-
cal optima to reach the global optimum. Time should thus be spent in discovering new

Heuristics for the facility location and design (1|1)-centroid problem 119

and promising regions rather than exploring the same region multiple times. UEGO
uses non-overlapping sets of clusters which define sub-domains of the search space.
As the algorithm progresses, the search process can be directed towards smaller re-
gions by creating new sets of non-overlapping clusters defining smaller sub-domains.
This process is a kind of cooling method similar to simulated annealing [20]. A par-
ticular cluster is not a fixed part of the search domain; it can move through the space
as the search proceeds. The non-overlapping property of the set of clusters is main-
tained. UEGO is abstract in the sense that the ‘cluster-management’ and the cooling
mechanism have been logically separated from the optimization algorithm. There-
fore, any kind of optimizer can be used as the optimizer to work inside a cluster.
A more detailed description of UEGO can be found in Appendix B.

When dealing with the medianoid problem, WLM is used as local optimizer
within UEGO. The resulting algorithm, introduced in [26], will be called UEGO_med
throughout this paper. WLM is used during the Optimize_species process where
UEGO_med tries to optimize every species from its species list. In this procedure,
every species calls the Weiszfeld-like algorithm once, using the center of the caller
species as the initial point. The Weiszfeld-like algorithm finishes when one of the
stopping criteria of WLM is satisfied. If, during the execution of the Weiszfeld-like
algorithm, a new point with a better objective function is found, then this new point
becomes the center of the species. As a consequence, at the end of the optimization
process, the species from the species list can move towards the locations of the local
optima.

UEGO_med will be used to solve medianoid problems as well as reverse me-
dianoid problems. The first input parameter of UEGO_med allows to distinguish
the type of problem being solved: Follower means that a medianoid problem is be-
ing considered while Leader stands for a reverse medianoid problem. The m pre-
existing facilities are always taken into account by UEGO_med, but in addition to
them, sometimes an additional facility is also considered in the (reverse) medianoid
problems. That additional facility, if any, is passed as the second input parameter
to UEGO_med. For instance, UEGO_med(Follower, nf1) means that the procedure
is used to solve the medianoid problem in which nf1 is also taken into account;
UEGO_med(Leader, nf2) means that the procedure is used to solve a reverse me-
dianoid problem in which nf2 is also taken into account; and UEGO_med(Leader,∅)
means that the procedure is used to solve a reverse medianoid problem in which only
the m pre-existing facilities are taken into account.

4 Solving the centroid problem

In this section we present four heuristics devised to cope with the leader problem,
namely, a grid search procedure, an alternating procedure and two adaptations of the
evolutionary algorithm UEGO.

4.1 GS: a grid search procedure

The first method that we have used to cope with the centroid problem is a simple Grid
Search procedure (GS). A grid of points that cover the leader’s searching region is

120 J.L. Redondo et al.

generated. For each point nf1 of the grid we first check its feasibility. If it is feasi-
ble, we evaluate the objective function �1(nf1,UEGO_med(Follower, nf1)). Notice
that in order to do it, we first have to solve the corresponding medianoid problem by
calling UEGO_med to obtain an optimal solution for the follower. When all the fea-
sible points of the grid have been evaluated, a second finer grid is constructed in the
vicinity of the point of the first grid having the best objective value. In our first grid,
the length of the step between two adjacent points was 0.25 units in each coordinate
(1/40 the length of the search space), and in the second grid, 0.02 units (1/500 the
length of the search space). Of course, depending on the size of the search region the
grid size may vary; the rule to follow is that the first grid has to be small enough to
densely cover the whole region but without doing the process impractical, and the
second grid has to be small enough to achieve a reasonable precision.

4.2 AlternatMed: an alternating leader-follower medianoid procedure

The second approach is based on some results in the literature that suggest that a
repeated alternate optimization process may lead to a Nash equilibrium, that is, to
a solution in which neither the leader nor the follower has an incentive to change
its current decision. In continuous competitive location, this principle has already
been used in [2], where the (r|p) centroid problem is considered with a Hotelling-
type patronizing behavior (see also [22]). In pseudocode form, the alternating leader-
follower medianoid procedure (AlternatMed) is described by Algorithm 1.

Two stopping criteria have been considered in Algorithm 1. The first stopping rule
which considers the distance between two iteration vectors was implemented as in
WLM (see Appendix A), and similarly the second stopping criterion sets a maximum
on the number of iterations, icmax. As an initialization step, Line 2 of Algorithm 1
solves the reverse medianoid problem considering the original m existing facilities.
Then, at every iteration, a medianoid and a reverse medianoid problem are solved.

A similar algorithm can be devised starting the process by first locating the fol-
lower’s facility (solving the medianoid problem taking the original m existing facil-
ities into account). In fact, in Step 2, we could set nf

(0)
1 equal to a random feasible

point. However, in a series of preliminary computational studies all the variants pro-
duced the same final solutions and required a similar CPU time.

In general, it is unknown whether this type of alternating process always converges
to a Nash equilibrium. It is also unknown whether a Nash equilibrium (if any) is an
optimal solution of the Stackelberg problem. For our competitive location problem,

Algorithm 1: Algorithm AlternatMed
1 Set iteration counter ic = 0
2 nf

(ic)
1 = UEGO_med(Leader,∅)

3 WHILE Stopping criteria are not met DO
4 nf

(ic)
2 = UEGO_med(Follower, nf (ic)

1)

5 nf
(ic+1)
1 = UEGO_med(Leader, nf (ic)

2)
6 ic = ic + 1

Heuristics for the facility location and design (1|1)-centroid problem 121

the alternating process may not converge: the leader’s solution may alternate between
two different feasible solutions as the follower’s solution does the same. That is why
we also stop AlternatMed if the number of iterations is greater than a given value
icmax.

Furthermore, as we will see in Sect. 5, the solutions offered by AlternatMed are
not necessarily optimal solutions to the leader problem (LP). In the computational
studies, the problems for which AlternatMed did not stop according to the first crite-
rion, we set icmax equal to a value in which the CPU time employed by AlternatMed
was similar to that of the UEGO type algorithms described next.

4.3 UEGO_cent: an evolutionary procedure to solve the centroid problem

In view of the excellent results obtained by UEGO when applied to the medianoid
problem (algorithm UEGO_med, see [26]), in this section we will describe two al-
gorithms for solving the centroid problem based on the UEGO structure. These algo-
rithms will be called UEGO_cent.WLM and UEGO_cent.SASS. In view of the diffi-
culty of the centroid problem, we have had to make several modifications in UEGO
to adapt it to the problem at hand. Next, we describe these modifications:

Species definition A species will be represented by a vector in the form (nf1, nf2, r),
where nf1 refers to the leader point, nf2 to the follower point, and r to the radius of
the species. There exists a relationship between nf1 and nf2: nf2 is the solution of
the medianoid problem when taking the original m existing facilities and nf1 into
account, i.e. nf2 = UEGO_med(Follower, nf1).

Species creation A species-list is maintained by the algorithm. Initially, a feasible
point nf1 is randomly chosen, and from it, the first species is constructed. Later on,
in a given iteration, we do what follows. For every species in the species-list, we
randomly generate feasible points for the leader’s facility within the radius of at-
traction of the species. Then, for each pair of those points, we compute the midpoint
of the segment connecting them. If the approximate objective value (fitness value)
for the leader problem at the midpoint is greater than at the extreme points, then
the midpoint becomes a candidate point to generate a new species. Otherwise, if
the value of the objective function at both extreme points is greater than at the mid-
point then both extreme points are inserted in the sublist of candidate points. The
approximate objective values for the leader problem at the points mentioned above
are computed considering as follower’s facility the one inherited from the species
from which they were generated (i.e., we do not solve the corresponding medianoid
problem associated to each new point to obtain the correct follower’s facility). After
this process, for every species in the species-list we have a sublist of ‘candidate’
points to generate new species. Notice that this process is different from the one
used in UEGO_med, since now the center of the species is never replaced by any
other point, because we cannot compare the objective value at the midpoints or at
the endpoints to the objective value at the center of the species, since the objective
value at those points is only an approximation.
Unfortunately, this process may generate a large number of candidate points. In or-
der to reduce it, the candidate points are fused as described in the next paragraph.

122 J.L. Redondo et al.

Fig. 2 Species creation

After that, for each candidate point in this reduced list we compute its correspond-
ing follower’s facility (applying UEGO_med) and then evaluate the correct objec-
tive value for the leader’s facility. The new species (with the corresponding radius
according to the iteration) are inserted in the species-list (see Fig. 2).

Fuse process If the leader’s facilities of two species from the species-list are closer to
each other than the given radius ri , then the two species are fused. The new leader’s
facility will be the one with the best objective value, and the follower’s facility will
be the corresponding one, while the level will be the minimum of the levels of the
original species.

Optimization process For every species in the list a local optimization process is ap-
plied. Notice that a local optimizer usually assumes that the configuration of the
problem during the optimization process does not change. However, for the cen-
troid problem this is not true, since every time that the leader’s facility changes, so
does the follower’s facility. Thus, the value of the objective function of the leader’s
problem may change if the new configuration is taken into account. This means that
the new follower’s facility should be computed every time that the leader’s facility
changes. However, obtaining the exact new follower’s facility using UEGO_med
would make the process very time-consuming. That is why we have designed two
variants of a new local optimization procedure. The general structure of this proce-
dure is described in Algorithm 2 (LeaderOpt), later on we will provide details of the
variants of this procedure.

In Line 2 of Algorithm LeaderOpt, LO + WLM is a local search which tries to
obtain a better value of the choice of the leader (nf1) based on the current choice of

Heuristics for the facility location and design (1|1)-centroid problem 123

Algorithm 2: Algorithm LeaderOpt
1 Let (nf1, nf2, r) be the species to be optimized
2 opt_nf1 = LO + WLM(nf1, nf2, r)
3 opt_nf2 = UEGO_med(Follower,opt_nf1)
4 IF opt_nf1 = nf1 THEN
5 IF �2(nf1, nf2) > �2(nf1,opt_nf2) THEN opt_nf2 = nf2
6 Update the original species to (nf1,opt_nf2, r)

7 ELSE IF �1(opt_nf1,opt_nf2) > �1(nf1, nf2) THEN
8 Update the original species to (opt_nf1,opt_nf2, r)

the follower (nf2). It also takes into account the radius (r) of the species which is
being optimized. We have designed two variants of the local optimizer LO + WLM,
called WLM + WLM and SASS + WLM, and these form the only difference between
UEGO_cent.WLM and UEGO_cent.SASS.

4.3.1 WLM + WLM variant of LeaderOpt

WLM + WLM procedure uses WLM as a local optimizer for updating both the leader
and the follower’s facilities. In pseudo-code form, WLM + WLM is described in Al-
gorithm 3. Two stopping rules are considered; the first one takes the distance between
two iteration vectors (nf (ic−1)

1 and nf
(ic)
1) into account and it was implemented as in

WLM (see Appendix A). The second one is based on the maximum number of itera-
tions icmax. Notice that whereas Steps 3 and 4 are just one iteration of WLM applied
to the reverse medianoid problem, Step 5 calls the complete algorithm WLM to solve
the corresponding medianoid problem, where SF is the set of the m existing facilities.
Next, we explain the rationale for those steps.

WLM is an algorithm that uses the locations and qualities of all the existing facil-
ities as input parameters to calculate the coordinates of a new facility in an iterative
and deterministic way. Those locations and qualities are assumed to be fixed, and
should be as precise as possible in order to obtain a good solution. In WLM + WLM,
at each iteration, the leader’s facility is modified and hence, the corresponding fol-
lower’s facility changes accordingly. As a consequence, applying the whole WLM
algorithm to the leader’s facility without modifying the follower’s facility will lead to
an incorrect solution. That is why, at each iteration, after modifying the leader’s so-
lution, algorithm WLM must be run to solve the corresponding medianoid problem.
Notice that the solution provided by WLM to the medianoid problem may be a local
(and not a global) one. This means that the information about the follower’s location
is not always precise, and therefore the calculation of the solution of the leader at the
next iteration, nf

(ic+1)
1 , may not be precise either.

Also notice that in WLM the solution point at each iteration is always updated
without evaluating the objective function at the new point. This is because in the de-
terministic way of calculating the coordinates, the new point has a better objective
value for the current setting than the previous one (WLM is a type of steepest de-
scent method). In particular, this means that the leader’s facility is updated at each

124 J.L. Redondo et al.

Algorithm 3: Algorithm WLM + WLM(nf1, nf2, r)

1 Set iteration counter ic = 0; nf
(0)
1 = nf1 and nf

(0)
2 = nf2

2 WHILE Stopping criteria are not met DO
3 Compute the next iterate nf

(ic+1)
1 by equations (A.1) to (A.3) (see

Appendix A)
4 IF nf

(ic+1)
1 infeasible THEN nf

(ic+1)
1 is computed as a point in the segment

[nf (ic)
1 , nf

(ic+1)
1] at the border of the feasible region

5 nf
(ic+1)
2 = WLM(SF ∪ nf

(ic+1)
1)

6 ic = ic + 1
7 RETURN nf

(ic)
1

iteration and that the final solution is different from the initial one nf
(0)
1 . For this rea-

son, the condition in Step 4 of Algorithm 2 is never met with this local search. How-
ever, although in WLM + WLM, at iteration ic, the calculation of the leader’s facility
nf

(ic+1)
1 makes use of the value of the follower’s facility from the previous iteration,

nf
(ic)
2 , the algorithm does not take the follower’s facility nf

(ic+1)
2 into account to de-

cide whether to replace nf
(ic)
1 by nf

(ic+1)
1 or not (comparing their objective values

�1(nf
(ic+1)
1 , nf

(ic+1)
2) and �1(nf

(ic)
1 , nf

(ic)
2)). It is the Algorithm LeaderOpt, the

common local search used in UEGO_cent.WLM and in UEGO_cent.SASS, which
does it (see Steps 7 and 8 of Algorithm 2), after evaluating the correct position for
the follower (in Step 3).

4.3.2 WLM + SASS variant of LeaderOpt

The second variant of the local procedure of LeaderOpt, uses the heuristic
SASS + WLM to improve the leader’s facility. SASS + WLM uses the stochastic
hill climber SASS (see [28]), for updating the leader’s facility and WLM for updat-
ing the follower’s.

Algorithm SASS is a derivative-free optimization algorithm that can be applied
to maximize an arbitrary function over a bounded subset of R

N , although internally
SASS assumes that the range in which each variable is allowed to vary is the interval
[0,1]. Since this is not our case, when necessary we use a function to rescale (normal-
ize) the variable values to the interval [0,1], and the function denorm to invert this
process. The way the heuristic SASS + WLM works is described in Algorithm 4.

In SASS + WLM the new points are generated using a Gaussian perturbation
ξ ∈ R

3 over the search point nf1 and a normalized bias term b ∈ R
3 to direct the

search. In this way, given nf1, a first trial point, nf1 + ξ is considered, and if its ob-
jective value is better than that at nf1, then nf1 + ξ becomes the new search vector.
Otherwise, another trial point nf1 − ξ is considered and a similar updating procedure
is performed.

The coefficient values 0.4 and 0.2 in Steps 13 and 18, used for updating the bias
term b are retained from Solis and Wets’ results [28]. The standard deviation σ spec-
ifies the size of the sphere that most likely contains the perturbation vector, whereas

Heuristics for the facility location and design (1|1)-centroid problem 125

Algorithm 4: Algorithm SASS + WLM(nf1, nf2, σub)

1 Set ic = 1, nf
(ic)
1 = nf1, nf

(ic)
2 = nf2, b(ic) = 0, scnt = 0, fcnt = 0,

σ (0) = σub, σlb = max{σub/1000,10−5}
2 Fix ex, ct, Scnt, Fcnt, Maxfcnt, icmax
3 WHILE ic < icmax and fcnt < Maxfcnt DO
4 σ (ic) = σ (ic−1)

5 IF scnt > Scnt THEN σ (ic) = ex · σ (ic−1)

6 IF fcnt > Fcnt THEN σ (ic) = ct · σ (ic−1)

7 IF σ (ic) < σlb THEN σ (ic) = σub and b(ic) = 0
8 IF σ (ic) > σub THEN σ (ic) = σub

9 Generate a multivariate Gaussian random vector ξ
(ic)
aux = N(b(ic), σ (ic)I)

and set ξ (ic) = denorm(ξ
(ic)
aux)

10 IF �1(nf
(ic)
1 + ξ (ic), nf

(ic)
2) > �1(nf

(ic)
1 , nf

(ic)
2) THEN

11 nf
(ic+1)
2 = WLM(SF ∪ {nf (ic)

1 + ξ (ic)})
12 IF �1(nf

(ic)
1 + ξ (ic), nf

(ic+1)
2) > �1(nf

(ic)
1 , nf

(ic)
2) THEN

13 nf
(ic+1)
1 = nf

(ic)
1 + ξ (ic); b(ic+1) = 0.4ξ

(ic)
aux + 0.2b(ic),

scnt = scnt + 1, fcnt = 0
14 ELSE
15 IF �1(nf

(ic)
1 − ξ (ic), nf

(ic)
2) > �1(nf

(ic)
1 , nf

(ic)
2) THEN

16 nf
(ic+1)
2 = WLM(SF ∪ {nf (ic)

1 − ξ (ic)})
17 IF �1(nf

(ic)
1 − ξ (ic), nf

(ic+1)
2) > �1(nf

(ic)
1 , nf

(ic)
2) THEN

18 nf
(ic+1)
1 = nf

(ic)
1 − ξ (ic), b(ic+1) = b(ic) − 0.4ξ

(ic)
aux ,

scnt = scnt + 1, fcnt = 0
19 ELSE nf

(ic+1)
1 = nf

(ic)
1 , nf

(ic+1)
2 = nf

(ic)
2 , b(ic+1) = 0.5b(ic),

fcnt = fcnt + 1, scnt = 0
20 ic = ic + 1
22 RETURN nf

(ic)
1

the bias term b locates the center of the sphere based on directions of past successes.
The size of the standard deviation of the normalized perturbation ξaux is controlled
by the repeated number of successes, scnt, or failures, fcnt, of increasing the objec-
tive function �1. The contraction ct and expansion ex constants, as well as the upper
bound σub on the standard deviation σ are set by the user.

The stopping rules are determined by the maximum number of iterations (icmax)
and by the maximum number of consecutive failures (Maxfcnt). Notice that 2 · icmax

is a lower bound of the minimum number of function evaluations made by the algo-
rithm.

When solving the centroid problem, it is very important to have an optimal so-
lution for the follower’s facility in order to correctly evaluate the leader’s objective
function �1. Otherwise, the leader’s solution may be completely wrong both in the
location and the value of the objective function. That is why in Steps 11 and 16
of Algorithm SASS + WLM, before taking a decision about a possible updating of

126 J.L. Redondo et al.

the leader solution nf
(ic)
1 , the algorithm WLM is applied to solve the corresponding

medianoid problem that takes the original m existing facilities and nf
(ic)
1 + ξ (ic) or

nf
(ic)
1 − ξ (ic), respectively, into account. Although the follower’s solution nf

(ic)
2 may

be only an approximation of the global solution, it is useful to evaluate the function
�1 at the new leader’s choice using it, and then to take a decision about the updating
of the leader’s facility nf

(ic)
1 accordingly.

SASS + WLM is called (through LeaderOpt) by UEGO_cent.SASS in the opti-
mization process when optimizing the species list. Bearing in mind that in the opti-
mization process a species has assigned a budget for the number of function evalua-
tions (ni/M), SASS + WLM sets icmax equal to ni/M iterations. As for the species
radius, it is mentioned in Appendix B that a species can be seen as a window whose
aim is to focus the optimizer, in such a way that any single step taken by the optimizer
in a given species is no longer than the radius of the species. Since in SASS + WLM
the standard deviation σ specifies the size of the sphere that most likely contains the
normalized perturbation vector, its upper bound σub should have the same value than
the normalized radius of the caller species. That is why the parameter σub is also
considered an argument of SASS + WLM.

Contrary to WLM + WLM, in SASS + WLM, it may happen that opt_nf1 ≡ nf1

(if the algorithm is not able to find a new solution that improves the current solution,
the final solution may coincide with the initial one). This usually happens when the
initial point nf1 is a local or global maximum. When the condition of Step 4 in Algo-
rithm 2 holds, two followers’ choices nf2 and opt_nf2 for the same leader choice nf1

are considered. Both choices are usually quite similar but not the same. In this case,
in order to get the best evaluation of the leader’s objective function �1, the follower’s
choice that maximizes �2 must be selected.

4.3.3 On the solution of the medianoid problems

For both UEGO_cent.WLM and UEGO_cent.SASS to work properly, it is very im-
portant to find the global optimum (and not a local one) of the medianoid problems.
If they are not solved optimally (even if the solutions are very close to optimality in
the value of the objective function but are in significantly different locations) then
the objective value for the leader will be completely wrong, overestimated, and this
even if the leader’s problem is solved optimally given the non-optimal follower’s so-
lution. This will make imposible to determine whether a given point is a true local
or global maximum. In fact, in preliminary computational studies where we used the
local procedure WLM for solving the medianoid problems the solutions obtained by
both UEGO_cent.WLM and UEGO_cent.SASS were in some cases wrong. That is
why we have used UEGO_med in Step 3 of Algorithm 2 for solving the medianoid
problems: in a large set of test problems solved in [26], UEGO_med always obtained
the optimal solution.

Heuristics for the facility location and design (1|1)-centroid problem 127

5 Computational studies

All the computational results in this paper have been obtained under Linux on a Xeon
IV with 2.4 GHz CPU and 1 GB memory. The algorithms have been implemented in
C++.

5.1 The test problems

To study the performance of the algorithms, we have generated different types of
problems, varying the number n of demand points, the number m of existing facili-
ties and the number k of those facilities belonging to the leader’s chain. The actual
settings (n,m, k) employed are detailed in the first column of Table 10.

For every setting, the problems were generated by randomly choosing the parame-
ters of the problems uniformly within the following intervals:

• pi, fj ∈ ([0,10], [0,10]),
• ωi ∈ [1,10],
• γi ∈ [0.75,1.25],
• αij ∈ [0.5,5],
• c1 = c2 ∈ [1,2], the parameter for Fl(Ml(∗)) = cl · Ml(∗), l = 1,2,
• G1 = G2 = G, with G(nfl) = ∑n

i=1 �i(dizl
) + Gb(αl) where

• �i(dizl
) = wi

1
(dizl

)φ
i0+φi1

with φi0 = φ0 = 2 and φi1 ∈ [0.5,2],

• Gb(αl) = e
αl

ξ0 +ξ1

− eξ1
with ξ0 ∈ [7,9] and ξ1 ∈ [4,4.5],

• dizl
= √

b1(xl − pi1)2 + b2(yl − pi2)2, l = 1,2, with b1, b2 ∈ [1,2].
The searching space for every problem was

zl = (xl, yl) ∈ S1 = S2 = ([0,10], [0,10]), l = 1,2,

αl ∈ [0.5,5], l = 1,2.

5.2 UEGO parameter setting

In [26] it was found that a good parameter setting for UEGO_med was N = 106,
M = 150, L = 30 and rL = 0.025. UEGO_med has been used for solving the (re-
verse) medianoid problems.

However, for solving the centroid problem the parameter setting has been modified
by reducing the number of levels to L = 10 (the remaining parameters keep the same
value as in UEGO_med). This modification has been introduced to reduce the number
of iterations and therefore the computational cost. Remember that one evaluation of
the objective function of the centroid problem implies the execution of UEGO_med
to find the corresponding follower’s facility. And the optimization process implies the
running of a local optimization algorithm that also needs to optimize the follower’s
facility. So the centroid problem requires a quite expensive computational cost. The
smaller the number of levels is, the smaller the number of iterations, and therefore the
smaller the number of times that the optimization process is called. The value L = 10
still allows to obtain very good results when solving the centroid problem.

128 J.L. Redondo et al.

5.3 Comparing the performance of the algorithms

Before presenting some tables summarizing the computational studies, there are some
remarkable facts that deserve to be highlighted.

5.3.1 GS may get trapped on a local maximum

Grid search methods are commonly thought to be reliable (although rather time-
consuming) methods. However, there is no guarantee that a grid search method will
result in a global optimum. If the objective function value increases dramatically in a
small neighborhood around the global optimum and the grid is not dense enough, the
second finer grid can focus around a local optimum. Something similar can happen
if a local optimum exists whose objective value is close to the global optimum value
and the grid is not dense enough. The risk of failure is even higher in the presence
of constraints, as happens in our centroid problem, since it may occur that the global
optimum is surrounded (in part) by infeasible areas, and the grid may not have a fea-
sible point near to the global optimum. Of course, the finer the grids, the higher the
possibilities for the method to find the optimum, but one never knows how small the
distance between two adjacent points in the grid should be, and regardless how small
that distance is, it may still happen that the search does not reach the global optimum.
For six out of fourteen problems we have solved, GS was not able to find the global
optimum.

As an example, in Table 1 we give the results for a problem with n = 50, m = 5 and
k = 0. Since each run of AlternatMed, UEGO_cent.WLM and UEGO_cent.SASS
may provide a different solution, each of those heuristics has been run five times for
each problem. In the column labelled ‘Time’ we give, for each of them, the average
time in the five runs (in seconds), in ‘Best solution’ column the best solution found in
the five runs, in ‘MaxDist’ column the maximum Euclidean distance between any pair
of solutions provided by the algorithm (this gives us an idea of how far the solutions
provided by an algorithm in different runs can be), the next three columns give the
minimum, the average and the maximum objective value in the five runs, and in ‘Dev’
the standard deviation. GS has been run only once, thus, for that algorithm we give
the corresponding values obtained with it.

The best solution obtained by the different algorithms are also depicted (projected
onto the two-dimensional locational space) in Fig. 3. In that figure, and also in the

Table 1 Results for a problem with setting (n = 50, m = 5, k = 0)

Algorithm Time
(s)

Best solution MaxDist Objective function Dev

x1 y1 α1 Min Av Max

GS 247510 2.480 7.360 4.180 – 86.703 86.703 86.703 –

AlternatMed 1407 5.461 6.660 5.000 0.010 77.381 77.670 77.700 0.159

UEGO_cent.WLM 1391 5.430 7.101 4.647 3.410 81.406 84.485 92.759 4.221

UEGO_cent.SASS 1133 5.417 6.906 4.851 0.010 93.652 93.894 94.044 0.147

Heuristics for the facility location and design (1|1)-centroid problem 129

Fig. 3 Example with n = 50, m = 5, k = 0. GS = ×, AlternatMed = +, UEGO_cent.WLM = • and
UEGO_cent.SASS = ∗

Table 2 Results for a problem with setting (n = 50, m = 5, k = 1)

Algorithm Time
(s)

Best solution MaxDist Objective function Dev

x1 y1 α1 Min Av Max

GS 371445 3.090 7.260 2.440 – 132.296 132.296 132.296 –

AlternatMed 1804 4.038 6.123 3.598 0.050 121.225 121.511 121.761 0.172

UEGO_cent.WLM 1793 4.558 5.943 3.910 0.468 124.482 131.475 136.070 4.969

UEGO_cent.SASS 1719 4.917 5.150 3.418 0.002 143.197 143.488 143.498 0.144

rest of the figures in this section, the black triangles (�) give the locations of the ex-
isting leader’s facilities, the black squares (�) correspond to the locations of the ex-
isting follower’s facilities, the symbol × gives the solution found by GS, and the plus
sign +, the bullet • and the start ∗ give the best solution obtained by AlternatMed,
UEGO_cent.WLM and UEGO_cent.SASS, respectively, in the five runs. Light gray
ovals represent the forbidden areas around the existing demand points, which are at
the center of those ovals (the greater the oval, the greater the purchasing power at the
demand point). Notice that in Fig. 3 there are no triangles since k = 0.

As we can see, in this example the solution provided by GS is far from the area
were the optimal solution seems to be. It focuses on a local maximum whose objective
value is close to the optimal one. Notice also that quite close points may yield very
different objective values (see the best points found by the last three algorithms and
their corresponding objective values in the ninth column), showing that the objective
function can locally be quite steep.

In Table 2 and Fig. 4 we can see another problem, with setting (n = 50, m = 5,
k = 1), where GS fails to find the global optimum, although this time the reason
seems to be that the global optimum is between two unfeasible regions and none
of the grid points close to it is feasible. This example clearly shows that the grid
procedure is not a good strategy when the feasible set is a highly restricted region. In

130 J.L. Redondo et al.

Fig. 4 Example with n = 50, m = 5, k = 1. GS = ×, AlternatMed = +, UEGO_cent.WLM = • and
UEGO_cent.SASS = ∗

Table 3 Results for a problem with setting (n = 50, m = 6, k = 3)

Algorithm Time
(s)

Best solution MaxDist Objective function Dev

x1 y1 α1 Min Av Max

GS 429389 1.200 4.240 3.770 – 292.337 292.337 292.337 –

AlternatMed 187 1.161 4.222 3.525 0.002 292.412 292.449 292.490 0.027

UEGO_cent.WLM 1309 1.164 4.223 3.528 0.109 292.328 292.413 292.500 0.061

UEGO_cent.SASS 1376 1.161 4.222 3.663 0.102 292.509 292.530 292.554 0.015

fact, it may happen that no feasible grid point exists. One way to try to avoid this is
to reduce the grid size, but one never knows how much it should be reduced.

5.3.2 AlternatMed may not converge and may get trapped on a local maximum

Although in some problems AlternatMed converges quickly to the global optimum
(see for instance the results for a problem with setting (n = 50, m = 6, k = 3) in
Table 3), there are instances in which the alternating process does not converge: the
leader’s solution alternate between two different points as the follower’s solution does
the same. Consider, for instance, the problem with setting (n = 50, m = 8, k = 4) de-
picted in Fig. 5 and whose results are summarized in Table 4. In that problem the
leader’s facility jumps from point (1.899, 4.401, 2.183) to point (5.849, 2.690, 2.847)
and the objective varies from 201.904 to 211.660, respectively. Accordingly, the fol-
lower’s facility jumps from point (5.958, 2.232, 3.017) to point (1.899, 4.401, 2.824).
Although in this example the points between which the leader’s facility alternates are
close to those between which the follower’s facility alternates, there are other prob-
lems in which the alternating points of the leader and the follower are far from each
other. Notice that when AlternatMed alternates between two points, then the objective
function value goes up and down accordingly. In these cases, the solution proposed
by AlternatMed is the one offering the highest profit.

Heuristics for the facility location and design (1|1)-centroid problem 131

Fig. 5 Example with n = 50, m = 8, k = 4. GS = ×, AlternatMed = +, UEGO_cent.WLM = • and
UEGO_cent.SASS = ∗

Table 4 Results for a problem with setting (n = 50, m = 8, k = 4)

Algorithm Time
(s)

Best solution MaxDist Objective function Dev

x1 y1 α1 Min Av Max

GS 433918 5.970 2.240 3.750 – 219.718 219.718 219.718 –

AlternatMed 2789 5.849 2.690 2.847 0.030 211.648 211.660 211.682 0.014

UEGO_cent.WLM 2738 5.796 2.747 2.863 3.723 214.648 220.111 222.291 2.854

UEGO_cent.SASS 2954 5.893 2.629 2.864 0.242 221.368 222.775 223.983 1.040

Table 5 Results for a problem with setting (n = 50, m = 6, k = 3)

Algorithm Time
(s)

Best solution MaxDist Objective function Dev

x1 y1 α1 Min Av Max

GS 371290 4.050 3.050 4.240 – 230.239 230.239 230.239 –

AlternatMed 2496 4.636 3.033 4.300 0.000 229.687 229.688 229.688 0.000

UEGO_cent.WLM 1336 4.638 3.034 4.300 0.006 230.149 230.152 230.154 0.002

UEGO_cent.SASS 2140 4.103 3.055 4.255 0.047 230.238 230.257 230.329 0.036

There are also problems in which AlternatMed converges, but to a local maximum,
as can be seen in Table 5, which gives the results for another problem with setting
(n = 50, m = 6, k = 3). The results are depicted in Fig. 6.

5.3.3 UEGO_cent.WLM may get trapped on a local maximum

Contrary to SASS + WLM, the local optimizer WLM + WLM does not adapt itself
well enough to the problem at hand. It does not explore the complete neighborhood
around the point to be optimized, but just tries to improve along one direction. Since
the configuration of the problem changes every time the leader changes its facility,

132 J.L. Redondo et al.

Fig. 6 Example with n = 50, m = 6, k = 3. GS = ×, AlternatMed = +, UEGO_cent.WLM = • and
UEGO_cent.SASS = ∗

Table 6 Results for a problem with setting (n = 50, m = 6, k = 3)

Algorithm Time
(s)

Best solution MaxDist Objective function Dev

x1 y1 α1 Min Av Max

GS 390625 7.160 2.980 4.140 – 209.831 209.831 209.831 –

AlternatMed 1779 7.161 2.979 4.000 0.050 183.535 183.893 184.234 0.224

UEGO_cent.WLM 1485 4.492 5.055 3.844 4.570 200.801 204.878 208.724 3.227

UEGO_cent.SASS 1818 7.151 3.487 3.123 0.008 212.045 212.170 212.358 0.154

this may provoke the algorithm UEGO_cent.WLM to stop at a local maximum. Some
problems in which UEGO_cent.WLM has become trapped on a local maximum are
those considered in Tables 1, 2, 5 and the one considered in Table 6.

5.3.4 Summarizing results

In Table 7 we can see the average results for the nine problems with n = 50 de-
mand points that we have solved. As we can see, UEGO_cent.SASS is the algorithm
which provides the best results (in fact, in all the problems, it was the algorithm giv-
ing the best results), followed by GS and UEGO_cent.WLM, which provide very
similar results. AlternatMed is the algorithm providing the worst results. In both
UEGO_cent.SASS and AlternatMed the different runs usually attain the same so-
lution, whereas UEGO_cent.WLM is more erratic, and may provide different solu-
tions in each run (see the values of MaxDist and Dev), thus confirming that it can get
trapped in local maxima.

In Table 8 we can see the average results for three problems with n = 100 demand
points that we have solved, and in Table 9 the average results when considering all the
problems with n = 50 and 100 demand points, and two more problems with n = 21.
Similar conclusions can be inferred from those tables. Notice that the increase from
n = 50 to n = 100 makes the problems much harder to solve, as we can see from the

Heuristics for the facility location and design (1|1)-centroid problem 133

Table 7 Average results for all the problems with n = 50

Algorithm Time
(s)

MaxDist Objective function Dev

Min Av Max

GS 358316 – – 164.528 – –

AlternatMed 1534 0.027 158.173 158.287 158.367 0.080

UEGO_cent.WLM 1495 1.503 161.338 163.675 165.838 1.782

UEGO_cent.SASS 1728 0.128 166.975 167.225 167.425 0.184

Table 8 Average results for the problems with n = 100

Algorithm Time
(s)

MaxDist Objective function Dev

Min Av Max

GS 560019 – – 160.787 – –

AlternatMed 4156 0.027 160.587 160.599 160.621 0.014

UEGO_cent.WLM 8344 0.111 160.838 160.868 160.884 0.016

UEGO_cent.SASS 8305 0.031 160.881 160.887 160.896 0.006

Table 9 Average results considering all the problems

Algorithm Time
(s)

MaxDist Objective function Dev

Min Av Max

GS 351576 – – 208.964 – –

AlternatMed 1927 0.020 204.163 204.207 204.242 0.033

UEGO_cent.WLM 3484 0.831 207.932 208.970 210.133 0.863

UEGO_cent.SASS 3481 0.111 210.560 210.696 210.830 0.116

CPU times needed to solve them. This seems to suggest that a parallelization of the
algorithm may be appropiate when handling larger problems.

5.4 The cost of a myopic decision

To measure how important it is to take the follower’s reaction into account, we have
conducted a final study in which, for each of the fourteen problems generated for
the studies of the previous subsections, we have calculated the leader’s profit in
case the leader did not take the future facility that the follower will set up into ac-
count. With this aim, we have first solved the corresponding reverse medianoid prob-
lem taking the original m facilities into account. If we denote its optimal solution
with nf

(myop)

1 , then we have solved the corresponding medianoid problem taking

the existing m facilities and nf
(myop)

1 into account. And finally, we have evaluated

�
(myop)

1 = �1(nf
(myop)

1 , UEGO_med(Follower, nf (myop)

1)).
In Table 10 we can see the results obtained. In the first column we can see the

setting of the problems solved (for three settings more than one problem was gener-

134 J.L. Redondo et al.

Table 10 Comparison between the myopic and the long term view

(n,n, k) nf
(myop)
1 �

(myop)
1 nf ∗

1 �∗
1 % lost

x1 x2 α1 x1 x2 α1

(21, 5, 2) 2.234 3.352 1.524 226.645 2.981 4.482 2.218 228.394 0.76

(21, 5, 3) 3.024 6.576 0.536 363.451 2.234 3.352 1.162 379.943 4.34

(50, 5, 0)a 6.082 2.378 2.230 9.156 6.082 2.378 2.230 9.156 0.00

(50, 5, 0)b 5.419 6.411 5.000 67.569 5.417 6.906 4.851 94.044 28.15

(50, 5, 1) 4.452 5.920 3.839 116.424 4.917 5.150 3.418 143.498 18.87

(50, 5, 2)a 2.264 2.096 2.421 189.113 2.228 2.138 2.122 189.653 0.28

(50, 5, 2)b 3.573 4.044 2.554 109.514 3.572 4.044 2.549 111.246 1.56

(50, 6, 3)a 1.122 3.362 3.224 291.052 1.161 4.222 3.663 292.554 0.51

(50, 6, 3)b 1.733 5.848 3.991 194.486 7.151 3.487 3.123 212.358 8.42

(50, 6, 3)c 6.851 3.459 4.486 218.890 4.103 3.055 4.255 230.329 4.97

(50, 8, 4) 5.677 2.830 2.973 198.546 5.893 2.629 2.864 223.983 11.36

(100, 2, 0) 4.471 4.704 5.000 168.430 4.724 4.591 5.000 169.717 0.76

(100, 2, 1) 3.379 6.298 5.000 271.951 3.255 6.366 5.000 272.027 0.03

(100, 10, 0) 2.758 5.119 5.000 40.944 2.758 5.119 5.000 40.944 0.00

ated, and we have added the letters a, b, and c at the end of the setting to highlight it),
in the second and third columns we give nf

(myop)

1 and �
(myop)

1 , in the following two
columns we give the facility (nf ∗

1) and profit (�∗
1) obtained with UEGO_cent.SASS,

and in the last column the loss in profit caused by the myopic decision as compared
to the long term decision, in percentage.

As we can see, although in half of the problems the loss is almost negligible (less
than 1%), in 6 out of 14 problems it is over 4%, and in three of them over 11%. This
clearly indicates the usefulness of anticipating a competitive entry, since the gains that
can be achieved are substantial. Furthermore, this is true regardless the configuration
(n,m, k) of the problem: the number of existing facilities belonging to the leader as
compared to the total number of existing facilities has no influence on this (in fact, the
two extreme cases, with 0% loss and 28.15% loss, have the same configuration (50,
5, 0)). What matters is the actual distribution of the demand points over the region
and the actual locations and qualities of the existing facilities: as we can see, nf (myop)

1

is usually close to nf ∗
1 , whereas in some problems the value of �

(myop)

1 is also close
to �∗

1, in other problems the difference is very high.

6 Conclusions and future research

In this study we have dealt with a type of competitive facility location problem in
continuous space which, due to its difficulty, has only been addressed in very few
papers before. The problem is known as (1|1)-centroid (Stackelberg or Simpson)
problem and can be described as follows. A chain (the leader) wants to set up a single
new facility in a planar market where similar facilities of a competitor (the follower),

Heuristics for the facility location and design (1|1)-centroid problem 135

and possibly of its own chain, are already present. After the location of the leader’s
facility, the competitor will react by locating another new facility at the place that
maximizes its own profit. The objective of the leader is to find the location and the
quality of its facility that maximizes its profit following the reaction of the follower.
The patronizing behavior of customers is assumed to be probabilistic. Notice that
contrary to what is commonly done in existing literature, we not only consider the
decision in location but also in quality (design of the new facility). This is the first
paper in which that general centroid problem is considered.

We have introduced four heuristics for handling the problem, namely, a grid search
procedure, an alternating method and two evolutionary algorithms. The computa-
tional studies have shown that the problem is very difficult to solve, with many local
maxima and in some instances with very different objective values at quite close
feasible points. These facts, together with the presence of constraints, provoke that
in some problems the heuristics become trapped in local solutions. Only the evo-
lutionary algorithm called UEGO_cent.SASS seems to be able to overcome those
difficulties. This is in part due to the use of SASS as local optimizer within UEGO.
The configuration of the problem changes every time that the leader changes the lo-
cation and/or the quality of the new facility, and whereas other local optimizers do
not capture those changes well enough, SASS carries out a more exhaustive search
over the region which allows it to adapt itself to the changes.

The computational studies have also shown that it is very important to take the
future reaction of the follower into account, since the loss in profit when this is not
done can be very high (in some cases the loss can be greater than 25%).

In the future we plan to parallelize UEGO_cent.SASS, so that it can solve larger
problems and quicker. We also plan to carry out a sensitivity analysis of the optimal
solution of the problem to change in the different parameters that define the problem.

Appendix A: Weiszfeld-like algorithm WLM

In this section we describe the Weiszfeld-like algorithm to solve the medianoid prob-
lem, regardless the chain acting as follower. With this aim, let us denote nf = (z,α) =
(x, y,α) the location and quality of the new facility to be located, m̂ the number of
existing facilities (the first k̂ of those facilities belong to the chain that wants to lo-
cate the new facility), ŜF the set of the m̂ facilities, S the location space where the
new facility has to be located, and qmin (resp. qmax) the minimum (resp. maximum)
allowed quality for the new facility. The objective function is assumed to be given by
�(nf) = F(M(nf)) − ∑n

i=1 �i(z) − Gb(α). Let us also denote

si =
m̂∑

j=1

αij

gi(dij)
, ti = wi

m̂∑

j=k̂+1

αij

gi(dij)
,

Hi(nf) = ∂�

∂diz

= − dF

dM
· αγitig

′
i (diz)

(γiα + sigi(diz))2
− d�i

ddiz

,

136 J.L. Redondo et al.

Algorithm 5: WLM(ŜF). Weiszfeld-like algorithm
1 Set iteration counter ic = 0
2 Initialize nf (0) = (x(0), y(0), α(0))

3 WHILE Stopping criteria are not met DO
4 Update nf (ic+1) = (x(ic+1), y(ic+1), α(ic+1))

5 IF nf (ic+1) infeasible THEN nf (ic+1) is computed as a point in the segment
[nf (ic), nf (ic+1)] at the border of the feasible region

6 ic = ic + 1

where diz is a distance function such that

∂diz

∂x
= xAi1(z) − Bi1(z),

∂diz

∂y
= yAi2(z) − Bi2(z),

where Ait (z) and Bit (z) are functions of z. Then the Weiszfeld-like algorithm for
solving the corresponding medianoid problem is described by Algorithm 5 (for more
details see [13]).

Values of x(ic+1) and y(ic+1) in Algorithm 5 are obtained as:

x(ic+1) =
∑n

i=1 Hi(nf
(ic))Bi1(z

(ic))∑n
i=1 Hi(nf (ic))Ai1(z(ic))

, (A.1)

y(ic+1) =
∑n

i=1 Hi(nf
(ic))Bi2(z

(ic))∑n
i=1 Hi(nf (ic))Ai2(z(ic))

, (A.2)

and α(ic+1) as a solution of the equation:

dF

dM
·

n∑

i=1

γitigi(diz(ic+1))

(γiα + rigi(diz(ic+1)))2
− dG2

dα
= 0. (A.3)

Two stopping rules are applied in WLM. The first stopping criterion stops the al-
gorithm if ‖(x(ic−1), y(ic−1)) − (x(ic), y(ic))‖2 < ε1 and |α(ic−1) − α(ic)| < ε2, for
given tolerances ε1, ε2 > 0. The second stopping criterion, which sets a maximum
number of iterations icmax, is needed because the convergence of the algorithm can-
not be guaranteed. In our computational studies we have set ε1 = ε2 = 10−3 and
icmax = 400.

Appendix B: UEGO algorithm

This section shows a description of the evolutionary algorithm UEGO, one of whose
core parts is ‘cluster-management’, as mentioned in Sect. 2. It consists of procedures
for creating, merging and eliminating clusters during the whole optimization process.
The concept of cluster, which is fundamental in UEGO, is renamed species. A species
can be thought of as a window on the whole search space (see Fig. 7). This window

Heuristics for the facility location and design (1|1)-centroid problem 137

Fig. 7 Concept of species

is defined by its center and a radius. The center is a solution, and the radius is a
positive number. In particular, for the (reverse) medianoid problems a species is an
array of the form (nf, r) (we also store information about the objective value at the
center of the species). Taking into account that the center is a solution, a species
could be equivalent to an individual in a standard evolutionary algorithm. However,
a species has an attraction area, defined by its radius, that covers a region of the
search space and therefore multiple solutions, so a species would be equivalent to
a sub-population or cluster in an evolutionary algorithm based on sub-populations
(clustering algorithm).

This definition assumes a distance defined over the search space. The role of this
window is to ‘focus’ the optimizer that is always called by a species so that it can
‘see’ only within the window, so every new sample is taken from there. This means
that any single step made by the optimizer in a given species is no larger than the
radius of the given species. If the value of a new solution is better than that of the old
center, the new solution becomes the center and the window is moved while it keeps
the same radius value (see Fig. 7).

The radius of a species is not arbitrary; it is taken from a list of decreasing radii,
the radius list, that follows a cooling schedule. The first element of this list is the
diameter of the search space. If the radius of a species is the ith element of the list,
then the level of the species is said to be i. Given the smallest radius and the largest
one (rL and r1), the radii in the list are expressed by the exponential function

ri = r1

(
rL

r1

) i−1
L−1

(i = 2, . . . ,L).

The parameter L indicates the maximal number of levels in the algorithm, i.e. the
number of different ‘cooling’ stages. Every level i (with i ∈ [1,L]) has a radius value
(ri) and two maxima on the number of function evaluations, namely newi (maximum
number of function evaluations allowed when creating new species) and ni (maxi-
mum number of function evaluations allowed when optimizing individual species).

During the optimization process, a list of species is kept by UEGO. This con-
cept, species-list, would be equivalent to the term population in an evolutionary
algorithm. UEGO is in fact a method for managing this species-list (i.e. creating,
deleting and optimizing species). The maximal length of the species list is given by
max_spec_num (maximum population size).

138 J.L. Redondo et al.

B.1 Input parameters

In UEGO the most important parameters are those defined at each level: the radii (ri)
and the maximum number of function evaluations for species creation (newi) and
optimization (ni). These parameters are computed from some user-given parameters
that are easier to understand:

• evals (N): The maximal number of function evaluations for the whole optimization
process. Note that the actual number of function evaluations is usually less than this
value.

• levels (L): The maximum number of levels (i.e. cooling stages).
• max_spec_num (M): The maximum length of the species list or the maximum

allowed population size.
• min_r (rL): The radius that is associated with the maximum level, i.e., levels.

The reader is referred to [23] for an in-depth description of these input parameters
and their relationship to the parameters at each level.

B.2 The algorithm

A global description of UEGO is given in Algorithm 6.
In the following, the different key stages of the algorithm are described:

• Init_species_list: A species list, consisting of a single species with a random center
at level 1, is created.

• Create_species(creat_evals): For every species in the list, random trial points in
the ‘window’ of the species are created. Those trial points are combined to form
all the possible pairs of potential species. For every pair of points the objective
function is evaluated at the midpoint of the segment connecting the pair (see
Fig. 8). If the objective value at the midpoint is better than at the center of the
species, the center is replaced by the midpoint (hence, the species moves towards
an optimum). Furthermore, if the value of the objective function at the midpoint
is worse than the values at the members of the pair, then the members of the
pair are inserted into the species list. As a consequence of this procedure, the

Algorithm 6: Algorithm UEGO
1 Init_species_list
2 Optimize_species(n1)

3 FOR i = 2 to levels
4 Determine ri , newi , ni

5 Create_species(newi) # budget_per_species = newi/length(species_list)
6 Fuse_species(ri)
7 Shorten_species_list(max_spec_num)

8 Optimize_species(ni) # budget_per_species = ni/max_spec_num
9 Fuse_species(ri)

Heuristics for the facility location and design (1|1)-centroid problem 139

Fig. 8 Creation procedure in UEGO_med

same members of a pair may appear in the species_list several times. Neverthe-
less, the Fuse_species procedure described below will eliminate the possible du-
plicates. Every newly inserted species is assigned the current level value (i). Al-
though each one of the pairs (and its corresponding midpoint) is evaluated inde-
pendently of the remaining ones, the total number of functions evaluations per
species for this process is bounded in advance (every species in the list has a fixed
maximum number of function evaluations for the creation of new points, equal
to budget_per_species = newi/length(species_list)). Hence, the process is always
under control.

As a result of this procedure the species list will possibly contain several species
with different levels (hence different radii).

The motivation behind this method is to create species that are on different
‘hills’ thereby ensuring that there is a valley between the new species. The para-
meter of this procedure (creat_evals) is an upper bound of the number of function
evaluations. In terms of genetic algorithms, it could be thought that, in this proce-
dure, a single parent (species) is used to generate offspring (new species), and all
parents are involved in the procedure of generating offspring.

• Fuse_species(radius): If the centers of any pair of species from the species list are
closer to each other than the given radius, the two species are merged (see Fig. 9).
The center of the new species will be the one with the best function value while the
level will be the minimum of the levels of the original species (so the radius will
be the largest one).

140 J.L. Redondo et al.

Fig. 9 Fusion procedure

• Shorten_species_list(max_spec_num): It deletes species to reduce the length of
the list to the given value (max_spec_num). Higher level species are deleted first,
therefore species with larger radii are always kept. For this reason one species at
level 1 whose radius is equal to the diameter of the search domain always exists,
making it possible to escape from local optima.

• Optimize_species(opt_evals): It executes a local optimizer for every species us-
ing a given number of evaluations (budget_per_species) (see Fig. 7). At level i,
budget_per_species is computed as ni /max_spec_num, i.e., and it depends on the
maximum population size.

Note that UEGO may terminate simply because it has executed all of its levels. The
final number of function evaluations thus depends on the complexity of the objective
function. This is qualitatively different from genetic algorithms, which typically run
up to a limit on the number of function evaluations.

References

1. Benati, S., Laporte, G.: Tabu search algorithms for the (r|Xp)-medianoid and (r|p)-centroid prob-
lems. Location Sci. 2(4), 193–204 (1994)

2. Bhadury, J., Eiselt, H.A., Jaramillo, J.H.: An alternating heuristic for medianoid and centroid prob-
lems in the plane. Comput. Oper. Res. 30(4), 553–565 (2003)

3. Drezner, T.: Optimal continuous location of a retail facility, facility attractiveness, and market share:
an interactive model. J. Retail. 70(1), 49–64 (1994)

4. Drezner, T.: Location of multiple retail facilities with limited budget constraints in continuous space.
J. Retail. Consum. Serv. 5(3), 173–184 (1998)

5. Drezner, T., Drezner, Z.: Facility location in anticipation of future competition. Location Sci. 6(1),
155–173 (1998)

6. Drezner, T., Drezner, Z.: Retail facility location under changing market conditions. IMA J. Manag.
Math. 13(4), 283–302 (2002)

7. Drezner, T., Drezner, Z.: Finding the optimal solution to the Huff based competitive location model.
Comput. Manag. Sci. 1(2), 193–208 (2004)

8. Drezner, Z.: Competitive location strategies for two facilities. Reg. Sci. Urban Econ. 12(4), 485–493
(1982)

9. Drezner, Z.: Facility Location: A Survey of Applications and Methods. Springer, Berlin (1995)
10. Drezner, Z., Hamacher, H.W.: Facility Location. Applications and Theory. Springer, Berlin (2002)
11. Eiselt, H.A., Laporte, G.: Sequential location problems. Eur. J. Oper. Res. 96(2), 217–231 (1997)
12. Eiselt, H.A., Laporte, G., Thisse, J.F.: Competitive location models: a framework and bibliography.

Transp. Sci. 27(1), 44–54 (1993)
13. Fernández, J., Pelegrín, B., Plastria, F., Tóth, B.: Solving a Huff-like competitive location and design

model for profit maximization in the plane. Eur. J. Oper. Res. 179(3), 1274–1287 (2007)
14. Francis, R.L., McGinnis, L.F., White, J.A.: Facility Layout and Location: An Analytical Approach.

Prentice Hall, Englewood Cliffs (1992)

Heuristics for the facility location and design (1|1)-centroid problem 141

15. González-Linares, J.M., Guil, N., Zapata, E.L., Ortigosa, P.M., García, I.: Deformable shapes de-
tection by stochastic optimization. In: 2000 IEEE International Conference on Image Processing
(ICIP’2000). Vancouver, Canada, 2000

16. Hakimi, S.L.: On locating new facilities in a competitive environment. Eur. J. Oper. Res. 12(1), 29–35
(1983)

17. Hodgson, M.J.: A location–allocation model maximizing consumers’ welfare. Reg. Stud. 15(6), 493–
506 (1981)

18. Huff, D.L.: Defining and estimating a trading area. J. Mark. 28(3), 34–38 (1964)
19. Kilkenny, M., Thisse, J.F.: Economics of location: a selective survey. Comput. Oper. Res. 26(14),

1369–1394 (1999)
20. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598),

671–680 (1983)
21. Love, R.F., Morris, J.G., Wesolowsky, G.O.: Facilities Location. Models and Methods. North-

Holland, Amsterdam (1988)
22. Okabe, A., Suzuki, A.: Stability of spatial competition for a large number of firms on a bounded

two-dimensional space. Environ. Plan. A 19(8), 1067–1082 (1987)
23. Ortigosa, P.M., García, I., Jelasity, M.: Reliability and performance of UEGO, a clustering-based

global optimizer. J. Glob. Optim. 19(3), 265–289 (2001)
24. Plastria, F.: Static competitive facility location: an overview of optimisation approaches. Eur. J. Oper.

Res. 129(3), 461–470 (2001)
25. Plastria, F., Carrizosa, E.: Optimal location and design of a competitive facility. Math. Program.

100(2), 247–265 (2004)
26. Redondo, J.L., Fernández, J., García, I., Ortigosa, P.M.: A robust and efficient global optimiza-

tion algorithm for planar competitive location problems. Ann. Oper. Res. (2008, to appear). DOI:
10.1007/s10479-007-0233-x

27. Redondo, J.L., Ortigosa, P.M., García, I., Fernández, J.J.: Image registration in electron microscopy.
A stochastic optimization approach. In: Proceedings of the International Conference on Image Analy-
sis and Recognition, ICIAR 2004. Lecture Notes in Computer Science, vol. 3212(II), pp. 141–149
(2004)

28. Solis, F.J., Wets, R.J.B.: Minimization by random search techniques. Math. Oper. Res. 6(1), 19–30
(1981)

29. Weber, A.: Uber den Standort der Industrien 1. Teil: Reine Theorie des Standortes. Tübingen,
Niemeyer (1909)

30. Weiszfeld, E.: Sur le point pour lequel la somme des distances de n points donnés est minimum.
Tohoku Math. J. 43, 355–386 (1937)

http://dx.doi.org/10.1007/s10479-007-0233-x

	Heuristics for the facility location and design (1|1)-centroid problem on the plane
	Abstract
	Introduction
	A Huff-like (1|1)-centroid problem with decisions in both location and design
	Solving the medianoid problem
	WLM: a Weiszfeld-like algorithm
	UEGO_med: UEGO for the medianoid problem

	Solving the centroid problem
	GS: a grid search procedure
	AlternatMed: an alternating leader-follower medianoid procedure
	UEGO_cent: an evolutionary procedure to solve the centroid problem
	WLM+WLM variant of LeaderOpt
	WLM+SASS variant of LeaderOpt
	On the solution of the medianoid problems

	Computational studies
	The test problems
	UEGO parameter setting
	Comparing the performance of the algorithms
	GS may get trapped on a local maximum
	AlternatMed may not converge and may get trapped on a local maximum
	UEGO_cent.WLM may get trapped on a local maximum
	Summarizing results

	The cost of a myopic decision

	Conclusions and future research
	Appendix A: Weiszfeld-like algorithm WLM
	Appendix B: UEGO algorithm
	Input parameters
	The algorithm

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

