
Comput Optim Appl (2010) 45: 181–203
DOI 10.1007/s10589-008-9169-6

OSiL: An instance language for optimization

Robert Fourer · Jun Ma · Kipp Martin

Received: 31 January 2006 / Revised: 30 August 2007 / Published online: 25 January 2008
© Springer Science+Business Media, LLC 2008

Abstract Distributed computing technologies such as Web Services are growing
rapidly in importance in today’s computing environment. In the area of mathemat-
ical optimization, it is common to separate modeling languages from optimization
solvers. In a completely distributed environment, the modeling language software,
solver software, and data used to generate a model instance might reside on different
machines using different operating systems. Such a distributed environment makes it
critical to have an open standard for exchanging model instances.

In this paper we present OSiL (Optimization Services instance Language), an
XML-based computer language for representing instances of large-scale optimization
problems including linear programs, mixed-integer programs, quadratic programs,
and very general nonlinear programs. OSiL has two key features that make it much
superior to current standard forms for optimization problem instances. First, it uses
the object-oriented features of XML schemas to efficiently represent nonlinear ex-
pressions. Second, its XML schema maps directly into a corresponding in-memory
representation of a problem instance. The in-memory representation provides a robust
application program interface for general nonlinear programming, facilitates reading

This work was supported in part by National Science Foundation grants CCR-0082807 and
DMI-0322580 to Northwestern University.

R. Fourer · J. Ma
Department of Industrial Engineering and Management Sciences, Northwestern University,
Evanston, IL 60208, USA

R. Fourer
e-mail: 4er@iems.northwestern.edu

J. Ma
e-mail: maj@iems.northwestern.edu

K. Martin (�)
Graduate School of Business, University of Chicago, Chicago, IL 60637, USA
e-mail: kipp.martin@chicagogsb.edu

mailto:4er@iems.northwestern.edu
mailto:maj@iems.northwestern.edu
mailto:kipp.martin@chicagogsb.edu

182 R. Fourer et al.

and writing postfix, prefix, and infix formats to and from the nonlinear expression
tree, and makes the expression tree readily available for function and derivative eval-
uations.

Keywords Linear programming · Nonlinear programming · Modeling languages ·
Information systems · Web services · XML

1 Introduction

Web Services and other distributed computing technology standards are becoming
increasingly important to Internet applications. This trend has growing implications
in large-scale optimization, where modeling language software, solver software, and
data used to generate a model instance might reside on different machines using dif-
ferent operating systems.

Such a distributed environment makes it critical to have an open standard for ex-
changing problem instances. By instance we mean a particular problem for which
answers can be sought in the form of specific values for decision variables, in con-
trast to a model that is a description of a broad class of optimization problems. Typ-
ically a model is a symbolic, general, concise, and understandable representation of
an optimization problem, whereas an instance is an explicit, specific, verbose, and
convenient description of a problem’s objective and constraints [14]. Thus a model
plus data is required to generate an instance. A linear programming model is typi-
cally described by linear algebraic expressions, for example, while the corresponding
instance is represented as a list of nonzero coefficients of variables in the objective
and constraint expressions, along with bounds on the variables and the constraint
expressions.

Current optimization software is hobbled by its reliance on a plethora of instance
input formats, as can be seen by even a cursory look at the list of solvers available on
the NEOS Server ([7, 9] or www-neos.mcs.anl.gov/neos). The nearly 50 solvers
in the NEOS lineup require instance inputs of about a dozen different kinds, includ-
ing MPS and LP formats for linear and integer programming, SMPS extensions to
the MPS format for stochastic programming, formats such as SDPA specific to semi-
definite programming, DIMACS min-cost flow and other formats for network linear
programming, and proprietary formats used by two modeling language processors.
Other solvers recognize input programmed as functions in various languages includ-
ing Fortran, C, C++, and Matlab.

This paper presents OSiL—Optimization Services instance Language—a text-
based format powerful and flexible enough to represent continuous and mixed-integer
instances of linear, quadratic, and very general nonlinear programs. Its underlying
principles are sufficiently powerful to allow for future extensions to such problem
areas as cone, constraint, disjunctive, and stochastic programming. Thus it has the
potential to serve as a new standard that subsumes the many currently used formats
for optimization instances.

OSiL’s definition as a so-called XML vocabulary makes it superior to current for-
mats for use in the increasingly common distributed optimization contexts that we

OSiL: An instance language for optimization 183

have cited. The OSiL standard also incorporates a corresponding data structure and
application programming interface (or API) that provide solvers with a standard way
of extracting instance data from files written in OSiL. The combination of a common
XML format for instance representation and a common API for data access offers
clear benefits to the optimization community. Modeling language developers are not
taxed with creating a separate “driver” for each supported solver, and solver devel-
opers can use essentially the same interface to connect to all modeling systems and
applications.

The demands of web services, object-oriented programming, and nonlinear prob-
lem types make the design of such a standard problem-instance representation much
more challenging than the design of formats for linear problems that were created
50 years ago with punch cards in mind. Thus the design of OSiL has properly been
the focus of a research project that has extended over several years. This paper is not
intended to be a user’s guide to OSiL, but rather a description of the major features
and key design decisions that were necessary to make OSiL workable. A user’s man-
ual is available at projects.coin-or.org/OS. Other documentation is available
at www.optimizationservices.org.

1.1 Related work

A number of new standards for instance representation have been proposed (if not
widely adopted) in recent years. Various extensions of the MPS format to nonlin-
ear programming have been put forward, notably the xMPS format described by
Halldórsson, Thorsteinsson and Kristjánsson [18]. We are also not the first to incor-
porate XML into this area. Fourer, Lopes and Martin [13] propose the LPFML XML
schema for representing instances of mixed-integer linear programs; Chang [6] and
Kristjánsson [19] have also proposed XML representations for linear programming
instances. Ezechukwu and Maros [10] describe an Algebraic Markup Language that
uses XML to describe the model rather than the instance, and Bradley [5] introduces
an XML markup grammar for networks. See also [4] for a good overview of the uses
of XML technologies in operations research.

One potential alternative to OSiL is Content MathML [25], which is also an XML
vocabulary capable of representing general nonlinear optimization. It is not specif-
ically designed for representing optimization problem instances, however, and after
some study we concluded that it would not be useful. For example, Content MathML
is considerably more verbose than OSiL when representing optimization instances.
This is particularly true when a large part of the model is linear or quadratic. Further-
more, Content MathML does not contain key optimization constructs. For example,
in Content MathML there is no built-in element to represent a decision variable with
a coefficient and an index. Content MathML is not under control of the optimization
community. This is perhaps the single most important reason not to use MathML.
We can add optimization-related features to OSiL as needed. Using MathML to sup-
port optimization features is awkward at best, and it is unlikely we can get the W3C
to adopt optimization-specific features in a timely fashion. Control of a standard for
optimization is better left to an organization under the control of the Operations Re-
search community. See [23] for considerably more detail on this decision. Another di-

184 R. Fourer et al.

alect, CapeML (A Common Model Exchange Language for Chemical Process Mod-
eling [3]), has been used in a system for solving dynamic optimization problems
via automatic differentiation, but is very domain specific and not designed for broad
classes of optimization. In summary, MathML is too broad and CapeML is too spe-
cific.

New API proposals have also been a subject of recent activity. The extensive
COIN-OR (COmputational INfrastructure for Operations Research) project (Lougee-
Heimer [21] or www.coin-or.org) includes the OSI (Open Solver Interface) li-
brary, an API for linear programming solvers, and NLPAPI, a subroutine library with
routines for building nonlinear programming problems. Another nonlinear interface,
MOI (Modeler-Optimizer Interface), is proposed along with xMPS in [18]; it speci-
fies the format for a callable library based on representing the nonlinear part of each
constraint and the objective function in postfix (reverse Polish) notation [1] and then
assigning integers to operators, characters to operands, and integer indices to vari-
ables so that the data structure corresponds to the implementation of a stack machine.
A similar interface is used in the LINDO API [20]. In comparison to other propos-
als, our OSiL instance representation is notable for its broader range of representa-
tional options, very flexible API based on an expression-tree representation, and open
source libraries founded on modern XML technology.

1.2 Outline

After providing the requisite background for XML in the next section, we present the
OSiL language in detail in Sect. 3. We first describe aspects of the language common
to all optimization instances, and then describe the OSiL representations of linear
programs, quadratic programs, and general nonlinear programs. A key aspect of our
approach to representing nonlinear terms in an optimization instance is to use XML
elements that all derive from one base type of element. This idea is developed in
Sect. 3.4.

An OSiL representation of an optimization problem instance may persist in a
repository of test problems, or may be encapsulated in a SOAP envelope for use
in a distributed computing environment. (SOAP stands for Simple Object Access
Protocol—a high-level networking protocol for encapsulating XML data.) To be use-
ful to solvers, however, a problem instance represented in OSiL must at some point
have an analogous in-memory representation. In Sect. 4 we describe the object class
OSInstance that we have designed for this purpose. The OSInstance class has an
API consisting of get() and set() methods that are used for extracting components
of an optimization instance, or for creating and modifying instances in memory. The
OSInstance class also has a set of calculate() methods for calculating function
values and derivatives (both gradients and Hessians). A key aspect of the in-memory
instance representation is the OSExpressionTree class, which is used for the in-
ternal representation of the nonlinear part of an optimization instance. As explained
in Sect. 4.2, OSExpressionTree is designed to allow for easy extraction of expres-
sions in postfix, prefix, and infix formats amenable to solvers, and also to facilitate
function and derivative evaluation as required by solvers during their execution.

In Sect. 5 we conclude by describing several directions in which this research is
continuing. We are extending OSiL to other problem types, designing and building

OSiL: An instance language for optimization 185

open-source libraries for reading and writing OSiL, and pursuing a broader Opti-
mization Services research agenda, described by Ma [23], which provides a host of
similarly-named XML languages for use in optimization over the Internet. The re-
sulting software is available as a project at the COIN-OR open-source repository for
operations research software. See projects.coin-or.org/OS.

2 XML background

The logic and advantages of using XML as a markup language to represent optimiza-
tion instances are set forth by Fourer, Lopes and Martin [13]. See also the excellent
general overview of XML by Skonnard and Gudgin [26]. This section introduces as-
pects of XML relevant to this paper, including the basics of XML files, parsing, and
schemas.

2.1 XML files

OSiL, our proposed standard, stores optimization problem instances as XML files.
Consider the following problem instance that is a modification of an example of
Rosenbrock [24]:

Minimize (1 − x0)
2 + 100(x1 − x2

0)2 + 9x1 (1)

Subject to x0 + 10.5x2
0 + 11.7x2

1 + 3x0x1 ≤ 25 (2)

ln(x0x1) + 7.5x0 + 5.25x1 ≥ 10 (3)

x0, x1 ≥ 0. (4)

We introduce XML by use of illustrations from the corresponding OSiL representa-
tion of this problem.

There are two continuous variables, x0 and x1, in this instance, each with a lower
bound of 0. Figure 1 shows how we propose to represent this information in an XML-
based OSiL file. Like all XML files, this is a text file that contains both markup and
data. In this case there are two types of markup, elements (or tags) and attributes
that describe the elements. Specifically, there are a <variables> element and two
<var> elements. Each <var> element has attributes lb, name, and type that de-
scribe properties of a decision variable: its lower bound, “name”, and domain type.

The actual values of the attributes, such as "0" (zero) for lb and "C" (denoting a
continuous domain) for type, are the data in the file. An attribute may also assume
a default value when it does not appear. For example, the <var> element has a ub

attribute that is absent in Fig. 1 and that consequently takes the default value "INF"
(denoting ∞).

Fig. 1 The <variables>
element for the example (1)–(4)

<variables numberOfVariables="2">
<var lb="0" name="x0" type="C"/>
<var lb="0" name="x1" type="C"/>

</variables>

186 R. Fourer et al.

2.2 XML schemas

To be useful for communication between solvers and modeling languages, OSiL in-
stance files must conform to a standard. An XML-based representation standard is
imposed through the use of a W3C XML Schema. The W3C, or World Wide Web
Consortium (www.w3.org), promotes standards for the evolution of the web and for
interoperability between web products. XML Schema (www.w3.org/XML/Schema)
is one such standard. A schema specifies the elements and attributes that define a
specific XML vocabulary. The W3C XML Schema is thus a schema for schemas; it
specifies the elements and attributes for a schema that in turn specifies elements and
attributes for an XML vocabulary such as OSiL. An XML file that conforms to a
schema is called valid for that schema.

By analogy to object-oriented programming, a schema is akin to a header file in
C++ that defines the members and methods in a class. Just as a class in C++ very
explicitly describes member and method names and properties, a schema explicitly
describes element and attribute names and properties.

Figure 2 is a piece of our schema for OSiL. In W3C XML Schema jargon, it
defines a complexType, whose purpose is to specify elements and attributes that are
allowed to appear in a valid XML instance file such as the one excerpted in Fig. 1.
In particular, Fig. 2 defines the complexType named Variables, which comprises
an element named <var> and an attribute named numberOfVariables. The num-
berOfVariables attribute is of a standard type positiveInteger, whereas the
<var> element is a user-defined complexType named Variable. Thus the complex-
Type Variables contains a sequence of <var> elements that are of complexType
Variable. OSiL’s schema must also provide a specification for the Variable com-
plexType, which is shown in Fig. 3.

We follow the convention that elements and attributes in the XML instance file
begin with lowercase letters, whereas the user-defined complexTypes begin with up-
percase letters. A complexType (such as Variable) is the XML schema analogue
of a class in an object-oriented programming language, while an element (such as
<var>) in the XML instance file corresponds to an instantiated object of a class.
Thus we will often refer to complexTypes as classes and to elements as objects. This
object-oriented analogy continues in Sect. 4 where we define an OSInstance class
that is the in-memory analogue of an OSiL instance file.

Our definition of the Variable complexType allows only the attributes listed
in Fig. 3 to be present in a <var> element. All of these attributes are specified as
optional. Characteristics of the attributes are explicitly defined: the lb attribute must
be a double precision number, for example, and the type must be a string value that

<xs:complexType name="Variables">
<xs:sequence>

<xs:element name="var" type="Variable" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="numberOfVariables"

type="xs:positiveInteger" use="required"/>
</xs:complexType>

Fig. 2 The Variables complexType in the OSiL schema

OSiL: An instance language for optimization 187

<xs:complexType name="Variable">
<xs:attribute name="name" type="xs:string" use="optional"/>
<xs:attribute name="init" type="xs:string" use="optional"/>
<xs:attribute name="type" use="optional" default="C">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="C"/>
<xs:enumeration value="B"/>
<xs:enumeration value="I"/>
<xs:enumeration value="S"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="lb" type="xs:double" use="optional" default="0"/>
<xs:attribute name="ub" type="xs:double" use="optional" default="INF"/>

</xs:complexType>

Fig. 3 The Variable complexType in the OSiL schema

is either C, B, I, or S. (These designate continuous, binary, integer, and string-valued
variables, respectively.) We discuss the OSiL schema in further detail in Sect. 3.

The key benefit of defining the OSiL schema is to impose a problem instance
standard that can be applied by parsers to validate instance files. If a problem in-
stance is valid then the parser knows, for example, exactly where in the instance file
to locate information on the constraint upper bounds or to determine if there are in-
teger variables present. Useful as validation is, however, it is concerned with syntax
rather than semantics. For example, a problem instance file may be valid for the OSiL
schema even though it contains a value for the attribute numberOfVariables in the
<variables> element that is not consistent with the number of <var> elements
in the <variables> section; to catch this error requires an additional check in the
parser.

3 The OSiL schema

Our approach is to write a nonlinear optimization problem as a linear program plus
collections of quadratic terms and more general nonlinear expressions. We begin by
describing the aspects of OSiL that are the same for all problem instances. Then we
describe how linear, quadratic, and general nonlinear problems are represented.

We describe OSiL in general terms via its XML schema, and more specifically by
use of the example given by (1)–(4). The actual schema file for OSiL resembles the
excerpts in Figs. 2 and 3, except that it is much longer and harder to read; it may be
found at www.optimizationservices.org/schemas/OSiL.xsd. In this paper
we depict the schema and its parts by means of tree diagrams, with schema elements
and attributes as the nodes. Specialized schema development software lets people
work directly with these graphical representations.

3.1 OSiL basics

Figure 4 depicts the top two levels of the OSiL schema in tree-diagram form, as drawn
by the <oXygen/> XML Editor (http://www.oxygenxml.com/). Solid rectangles

188 R. Fourer et al.

Fig. 4 The top two levels of the OSiL schema, in tree-diagram form

<?xml version="1.0" encoding="UTF-8"?>
<osil xmlns="os.optimizationservices.org">

<instanceHeader>
<name>Modified Rosenbrock</name>
<source>Computing Journal 3:175-184, 1960</source>
<description>Rosenbrock problem with constraints</description>

</instanceHeader>
<instanceData>

.......
</instanceData>

</osil>

Fig. 5 The root and <instanceHeader> elements for instance (1)–(4)

depict elements. Thus the <osil> root element is seen to have two child elements.
The first such element, <instanceHeader>, and its child elements are depicted in
Fig. 4, and the corresponding parts of the OSiL file for the instance (1)–(4) are shown
in Fig. 5.

In Fig. 4 the “ellipsoid” icon containing four small rectangles denotes a se-
quence of elements. Thus the <instanceHeader> element consists of a sequence
of <name>, <source>, and <description> elements. A plain rectangle indicates
an element that must appear exactly once, while a 0..1 icon beneath a rectangle in-
dicates an optional element that may appear at most once. Thus Fig. 4 implies that
a valid OSiL file must have exactly one <instanceHeader> element, which may
optionally have one child <name> element.

The second child element of the <osil> root element is the <instanceData>

element, illustrated in Fig. 6. This element holds all problem data, and so has a much
more complicated structure.

The first child element of <instanceData> is a <variables> element that com-
prises one numberOfVariables attribute and a sequence of <var> elements, one
for each variable in the problem instance. Attributes are distinguished from elements
by dotted boxes and the symbol @. Attributes of the <var> elements provide standard
information such as domain type, bounds, and optional names, as illustrated for our

OSiL: An instance language for optimization 189

Fig. 6 Detail of the instanceData element

example in Fig. 7. (We omit the schema diagrams for <var> and other elements that
have no significant child elements.)

The second child element of <instanceData> is an <objectives> element
that consists of a sequence of <obj> elements, one for each potential objective
function in the problem instance. Each <obj> has a set of attributes that include
name, maxOrMin, constant, and weight. If an objective function has linear terms,

190 R. Fourer et al.

<variables numberOfVariables="2">
<var lb="0" name="x0" type="C"/>
<var lb="0" name="x1" type="C"/>

</variables>
<objectives numberOfObjectives="1">

<obj maxOrMin="min" name="minCost" numberOfObjCoef="1">
<coef idx="1">9</coef>

</obj>
</objectives>
<constraints numberOfConstraints="2">

<con ub="25.0"/>
<con lb="10.0"/>

</constraints>

Fig. 7 The <variables>, <objectives>, and <constraints> elements for (1)–(4)

these are stored in the <coef> child elements of the <obj> element. For exam-
ple, in Fig. 7 the linear term 9x1 from the objective function (1) is represented by
<coef idx="1">9</coef>, with the attribute idx="1" indicating that x1 is the
variable whose coefficient is being specified as 9.

The third child element of <instanceData> is a <constraints> element that
consists of a sequence of <con> elements, one for each constraint in the problem
instance. The most important attributes of these elements are the constraint lower and
upper bounds, as also illustrated in Fig. 7. A constraint is an equality when its bounds
are equal, and is a one-sided inequality when one or the other bound is absent. Hence
the bound attributes provide the “right-hand side” values for the constraints.

Subsequent child elements of <instanceData> refer to the variables, objectives,
and constraints by index number. Variables and constraints are numbered increas-
ing from 0 according to the order in which they are defined by the <variables>

and <constraints> elements; objectives are similarly numbered but decreasing
from −1. Each constraint and objective thus has a unique index number, which will
be seen in Sects. 3.3 and 3.4 to be convenient for locating quadratic and nonlinear
terms. We considered requiring identification of variables, objectives, and constraints
by name rather than by index. However, we decided that the resulting representation
would be too verbose and thus names are treated as optional attributes. The main ad-
vantage of requiring names rather than indices would be to help people read OSiL
files, but OSiL is intended to be read by computers rather than by people.

The <variables> element is required and must contain at least one <var> el-
ement, as indicated by the 1..∞ icon beneath the rectangle for the latter in Fig. 6.
The <constraints> element is optional because OSiL allows for unconstrained
problems, which are of interest when nonlinear terms are specified in the objective as
explained in Sect. 3.4.

3.2 Representing linear constraints

Almost invariably, most of the linear constraint coefficients in a large optimization
problem are zero. Thus OSiL must adopt the usual approach of recording only the
nonzeros. This is done by use of Fig. 6’s <linearConstraintCoefficients>

element, which stores the coefficient matrix using three arrays as proposed in the
earlier LPFML schema [13]. There is a child element of <linearConstraintCo-
efficients> to represent each array: <value> for an array of nonzero coefficients,

OSiL: An instance language for optimization 191

Fig. 8 The
<linearConstraint-
Coefficients> element
for constraints (2) and (3)

<linearConstraintCoefficients numberOfValues="3">
<start>

<el>0</el><el>2</el><el>3</el>
</start>
<rowIdx>

<el>0</el><el>1</el><el>1</el>
</rowIdx>
<value>

<el>1.</el><el>7.5</el><el>5.25</el>
</value>

</linearConstraintCoefficients>

<rowIdx> or <colIdx> for a corresponding array of row indices or column indices,
and <start> for an array that indicates where each row or column begins in the
previous two arrays.

The choice element group icon immediately preceding the <rowIdx> and <col-

Idx> element rectangles indicates that only one of these may appear in any valid
OSiL representation. Thus the <linearConstraintCoefficients> element may
represent the constraint coefficients either by column or by row. With modern solvers
offering to set up the dual problem or to accelerate calculations by using both row-
wise and column-wise lists, it makes sense to allow for row-wise as well as column-
wise specification of coefficients in a new standard.

Individual array entries are specified by <el> children (not shown in Fig. 6) of
<value>, <rowIdx> or <colIdx>, and <start>. The <linearConstraintCo-

efficients> element for the constraints (2) and (3) of our example is shown (using
the column-wise option) in Fig. 8. There are three linear coefficients, one from the
linear part of the first constraint x0 + 10.5x2

0 + 11.7x2
1 + 3x0x1 ≤ 25, and two from

the linear part of the second constraint ln(x0x1) + 7.5x0 + 5.25x1 ≥ 10.

3.3 Representing quadratic terms

Any quadratic expression is easily represented as a general nonlinear expression us-
ing the format to be described in Sect. 3.4. Nevertheless there are good reasons for
including a special quadratic expression representation in OSiL. Each quadratic term
admits a particularly compact representation as a list of index-index-value triples.
This representation is also readily recognized by software that classifies or analyzes
optimization problems. Moreover there are numerous specialized solvers for the case
in which the objective and all constraints are linear or quadratic. These solvers look
for the quadratic as well as the linear terms to be passed to them in full at invoca-
tion, rather than being evaluated at particular iterates as would be required by solvers
that accept more general smooth nonlinear functions. A special representation of
quadratic terms in a problem instance facilitates passing the full list of quadratic
terms to the solver.

As seen in Fig. 6, OSiL represents quadratic terms by <qTerm> child elements of
the <quadraticCoefficients> element. A <qTerm> element has four required
attributes: an integer that indicates the constraint (if nonnegative) or objective to
which the term belongs, two nonnegative integers that specify the indices of the vari-
ables in the quadratic term, and a floating-point number that is the coefficient of the
term. Figure 9 illustrates a representation of the quadratic term for constraint (2) of
our example.

192 R. Fourer et al.

<quadraticCoefficients numberOfQuadraticTerms="3">
<qTerm idx="0" idxOne="0" idxTwo="0" coef="10.5"/>
<qTerm idx="0" idxOne="1" idxTwo="1" coef="11.7"/>
<qTerm idx="0" idxOne="0" idxTwo="1" coef="3."/>

</quadraticCoefficients>

Fig. 9 The <quadraticCoefficients> element for constraint (2)

We could instead have designed the quadratic representation to be more like the
linear one, with two arrays of variable indices, an array of coefficients, and an array
of pointers to indicate where each objective or constraint begins. Instead we decided
to adopt this more flexible approach, which is analogous to the representation that we
chose for nonlinear terms.

3.4 Representing nonlinear terms

General nonlinear terms are represented by the final child of <instanceData> in
Fig. 6, the <nonlinearExpressions> element. Our goal for this part of OSiL is to
represent a comprehensive collection of optimization problems while keeping parsing
relatively simple.

One of our most challenging design issues was to provide general nonlinear ex-
pressions with an XML-based representation that could be easily validated against
a schema. Clearly an expression tree or the equivalent is required for representing
each nonlinear term in a problem instance. As an example, Fig. 10 shows how the
nonlinear part of the objective function (1) is represented as an expression tree. The
corresponding representation in OSiL is given in Fig. 11. The root of the expression
tree is a <plus> element. For purposes of validation, any schema needs an explicit
description of the children allowed in a <plus> element, but it is clearly inefficient
to list every possible nonlinear operator or nonlinear function allowed as a child ele-
ment. Indeed, in our OSiL schema we define over two hundred nonlinear elements. In
general, if there are n allowable nonlinear elements (functions and operators), listing
every potential child element, of every potential nonlinear element, leads to O(n2)

possible combinations. This approach is obviously inefficient as the number of oper-
ators grows. Nevertheless, in order to validate the problem instance a schema must
know, for example, that the <plus> element requires exactly two children and that
each child element is an allowed operator or function.

Fortunately, the W3C XML Schema standard addresses this situation, by provid-
ing a construct very similar to that of an abstract class in an object oriented program-
ming language such as C++ or Java. The use of this construct, called a substitu-
tionGroup, in the XML schema for OSiL is illustrated in Fig. 12.

The first line of Fig. 12 defines OSnLNode to be an abstract element type. Think of
it as a “template” for a nonlinear element; in C++ an analogous statement would be

class OSnLNode{ ...
}

The following group of lines in Fig. 12 defines OSnLNodePlus to be an “extension”
of the “base” OSnLNode abstract type; the analogous C++ statement would be

OSiL: An instance language for optimization 193

Fig. 10 Conceptual expression tree for the nonlinear part of the objective (1)

<nl idx="-1">
<plus>

<power>
<minus>

<number value="1.0"/>
<variable coef="1.0" idx="0"/>

</minus>
<number value="2.0"/>

</power>
<times>

<power>
<minus>

<variable coef="1.0" idx="0"/>
<power>

<variable coef="1.0" idx="1"/>
<number value="2.0"/>

</power>
</minus>
<number value="2.0"/>

</power>
<number value="100"/>

</times>
</plus>

</nl>

Fig. 11 The <nl> element for the nonlinear part of the objective (1)

class OSnLNodePlus : public OSnLNode{ ...
}

This definition of OSnLNodePlus also specifies that it must have exactly two chil-
dren, each of which must be an OSnLNode. Thus we avoid the problem of explicitly

194 R. Fourer et al.

<xs:element name="OSnLNode" type="OSnLNode" abstract="true">

<xs:complexType name="OSnLNodePlus">
<xs:complexContent>

<xs:extension base="OSnLNode">
<xs:sequence minOccurs="2" maxOccurs="2">

<xs:element ref="OSnLNode"/>
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>

<xs:element name="plus" type="OSnLNodePlus" substitutionGroup="OSnLNode"/>

Fig. 12 Defining and using OSnLNode and its extension to OSnLNodePlus

Fig. 13 The <nl> element for
the constraint (3)

<nl idx="1">
<ln>

<times>
<variable idx="0"/>
<variable idx="1"/>

</times>
</ln>

</nl>

listing every type of nonlinear operator and function that may be a child of OSnLN-
odePlus. Finally, in the last line of Fig. 12 the actual element <plus> is declared,
to be of the type OSnLNodePlus that extends OSnLNode. Like an object that is in-
stantiated in an object-oriented programming language, the <plus> element is what
actually appears in the XML file. An analogous statement in C++ would be OSnLN-
odePlus *plus = new OSnLNodePlus().

Armed with the OSnLNode concept, we can represent each parse tree for a nonlin-
ear expression in an optimization instance as an OSiL element that is easily validated
against a schema. As seen in Fig. 6, the <nonlinearExpressions> element con-
tains a sequence of <nl> children, one for each constraint and objective that has
nonlinear terms. The idx attribute of each <nl> child identifies its corresponding
objective function (if negative) or constraint. Each <nl> element also has a single
child element, of type OSnLNode, that specifies the required nonlinear expression.

Figures 11 and 13 illustrate the <nl> elements for the nonlinear parts of the ob-
jective function (1) and constraint (3), respectively. The OSiL XML representation
in Fig. 11 corresponds exactly to the structure of the parse tree for the expression in
Fig. 10. There is an <nl> node with an index of −1, which indicates the first ob-
jective function. The single child of the <nl> element is a <plus> element which
is the root of the expression tree illustrated in Fig. 10. The root element has two
children, representing the two sub-expressions, 100(x1 − x2

0)2 and (1 − x0)
2, that are

added to form the nonlinear part of the objective function; the <power> child has also
two children, representing the sub-sub-expressions (1 − x0) and 2, that are the base
and the exponent of an exponentiation operator; and so forth. Similarly, in Fig. 13,
the <nl> element with index 1 (corresponding to the second constraint) has a single
child element <ln> whose child represents the expression whose natural logarithm is
to be taken.

Terminal tree elements have special attributes. The <number> element represents
the literal numerical value given by its value attribute, which must be a floating-

OSiL: An instance language for optimization 195

Fig. 14 Detail of the <variable> element, showing its optional child

point number. The <variable> element represents a variable whose index is given
by the nonnegative integer idx attribute; an optional floating-point coef attribute is
intended mainly for linear sub-expressions of nonlinear terms.

OSiL is intended to accommodate not only the mathematical operators and func-
tions of classical continuous optimization, but other “not linear” functions that can
be meaningful in formulations of optimization problems. The OSiL schema defines
over 200 OSnLNode elements, which fall into the following broad categories:

� Arithmetic operator elements: Standard binary arithmetic operators such as
<plus>, <times>, <power>, and <divide>, which take exactly two OSnLnode

children. We also define <sum> and <product> operators that allow an arbitrary
number of children, to avoid unnecessary nesting when there is a summation or
product with many terms.

� Elementary function elements: Standard functions such as <abs>, <ln>, <exp>,
<sin>, and <arctan>, which have exactly one OSnLNode child.

� Statistical and probability function elements: A large variety of statistical and
probability functions such as <mean>, <variance>, <uniform>, <normal>, and
<lognormal>, especially those relevant to applications in finance and operations
management.

� Operand (terminal) elements: The previously mentioned <number> element and
the constant elements <PI>, <E>, <EULERGAMMA>, <TRUE>, <FALSE>, <EPS>,
<INF>, and <NAN>. These have no child elements.

� Variable element: The <variable> element that represents decision variables in
an optimization instance. It may be a terminal element as previously described, or
may have a more general form (see Fig. 14) in which the index is specified through
an OSnLNode child element that evaluates to a nonnegative integer. The latter is
important to constraint programming formulations [22, 27] whose variables may
be indexed (“subscripted”) by expressions involving variables.

� Logic and relational operator elements: Operators to represent numerical relations
such as <leq> and <gt>, and logical relations such as <if>, <and>, and <or>.

� Special elements: Representations for user-defined functions, real time data, and
XPath data references, to be detailed in subsequent extensions.

196 R. Fourer et al.

We have drawn operator and function elements from the supported operators and
functions in Microsoft Excel, in Content MathML (Sandhu [25]), and in standard
solvers such as LINDO [20]. Our naming conventions are consistent with MathML
and Excel.

In the OSiL representation of (1)–(4) we have taken the linear and quadratic terms
in general nonlinear constraints and put them respectively into the <linearCon-
straintCoefficients> and <quadraticCoefficients> sections. This may be
desirable for taking advantage of structure, however this is not necessary and the lin-
ear and quadratic terms can all be put into the <nonlinearExpressions> section.

4 The OSInstance class

The OSiL schema defines an XML vocabulary for storing an optimization instance.
This instance may persist in a repository of test problems, or it may temporarily be
encapsulated in a SOAP envelope for use in a distributed computing environment.
However, at some point before the instance is optimized by a solver, it must be stored
in memory.

Our OSInstance class is the in-memory representation of an optimization in-
stance. This class has an API defined by a collection of get() methods for extract-
ing various components (such as bounds and coefficients) from a problem instance,
a collection of set() methods for modifying or generating an optimization instance,
and a collection of calculate() methods for function, gradient, and Hessian eval-
uations. We now describe the close relationship between the OSiL schema and the
OSInstance class.

4.1 Mapping rules

As shown in Fig. 15, the OSInstance class has two member classes, Instance-
Header and InstanceData. These correspond to the OSiL schema’s complexTypes
instanceHeader and instanceData (Fig. 4), and to the XML elements <in-
stanceHeader> and <instanceData> (Fig. 5).

Moving down one level, Fig. 16 shows that the InstanceData class has in
turn the member classes Variables, Objectives, Constraints, LinearCon-
straintCoefficients, QuadraticCoefficients, and NonlinearExpres-
sions, corresponding to the complexTypes in Fig. 6 and the elements in Figures 7,
8, 9, 11, 12 and 13.

Figure 17 uses the Variables class to provide a closer look at the correspondence
between schema and class. On the right, the Variables class contains a number data

Fig. 15 The OSInstance
class

class OSInstance{
public:

OSInstance();
InstanceHeader *instanceHeader;
InstanceData *instanceData;

}; //class OSInstance

OSiL: An instance language for optimization 197

class InstanceData{
public:

InstanceData();
Variables *variables;
Objectives *objectives;
Constraints *constraints;
LinearConstraintCoefficients *linearConstraintCoefficients;
QuadraticCoefficients *quadraticCoefficients;
NonlinearExpressions *nonlinearExpressions;

}; // class InstanceData

Fig. 16 The InstanceData class

Schema complexType In-memory class

<xs:complexType name="Variables"> <---> class Variables{

public:

<xs:sequence> Variables();

<xs:element name="var" type="Variable" maxOccurs="unbounded"/> <----------> Variable *var;

</xs:sequence>

<xs:attribute name="number" type="xs:positiveInteger" use="required"/> <----> int number;

</xs:complexType> }; // class Variables

<xs:complexType name="Variable"> <--> class Variable{

public:

Variable();

<xs:attribute name="name" type="xs:string" use="optional"/> <---------------> string name;

<xs:attribute name="init" type="xs:double" use="optional"/> <---------------> double init;

<xs:attribute name="initString" type="xs:string" use="optional"/> <---------> string initString;

<xs:attribute name="type" use="optional" default="C"> <---------------------> char type;

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="C"/>

<xs:enumeration value="B"/>

<xs:enumeration value="I"/>

<xs:enumeration value="S"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="lb" type="xs:double" use="optional" default="0"/> <-----> double lb;

<xs:attribute name="ub" type="xs:double" use="optional" default="INF"/> <---> double ub;

</xs:complexType> }; // class Variable

OSiL elements In-memory objects

<variables number="2"> OSInstance osinstance;

<var lb="0" name="x0" type="C"/> osinstance.instanceData.variables.number=2;

<var lb="0" name="x1" type="C"/> osinstance.instanceData.variables.var=new Variable[2];

</variables> osinstance.instanceData.variables.var[0].lb=0;

osinstance.instanceData.variables.var[0].name=x0;

osinstance.instanceData.variables.var[0].type=C;

osinstance.instanceData.variables.var[1].lb=0;

osinstance.instanceData.variables.var[1].name=x1;

osinstance.instanceData.variables.var[1].type=C;

Fig. 17 The <variables> element as an OSInstance object

member and a sequence of var objects of class Variable. The Variable class
has lb (double), ub (double), name (string), init (double), and type (char) data
members. On the left the corresponding XML complexTypes are shown, with arrows

198 R. Fourer et al.

indicating the correspondences. The following rules describe the mapping between
the OSiL schema and the OSInstance class.

� Each complexType in an OSiL schema corresponds to a class in OSInstance.

Thus the OSiL schema’s complexType Variable corresponds to OSInstance’s
class Variable. Elements in an actual XML file then correspond to objects in
OSInstance; for example, the <var> element that is of type Variable in an
OSiL file corresponds to a var object in class Variable of OSInstance.

� An attribute or element used in the definition of a complexType is a member
of the corresponding OSInstance class, and the type of the attribute or element
matches the type of the member. In Fig. 17, for example, lb is an attribute of the
OSiL complexType named Variable, and lb is a member of the OSInstance
class Variable; both have type double. Similarly, var is an element in the de-
finition of the OSiL complexType named Variables, and var is a member of
the OSInstance class Variables; the var element has type Variable and the
var member is a Variable object.

� A schema sequence corresponds to an array. For example, in Fig. 17 the complex-
Type Variables has a sequence of <var> elements that are of type Variable,
and the corresponding Variables class has a member that is an array of type
Variable.

General nonlinear terms are stored in the data structure as OSExpressionTree ob-
jects, which are the subject of the next section.

The OSInstance class has a set of get(), set(), and calculate() methods
that act as an API for the optimization instance. The get() methods are used by
other classes to access data in an existing object. For example, the method getOSIn-
stance() of the OSiLReader class parses an OSiL file and returns a corresponding
object osinstance of type OSInstance. Then the nonzero coefficient values in the
linear terms of the constraints are retrieved in column major form by

osinstance->getLinearConstraintCoefficientsInColumnMajor()->values

and in other forms by analogous calls. Similarly, the set() method provides an
API for creating or modifying an OSInstance. The calculate() methods are dis-
cussed in Sect. 4.2.2.

4.2 Nonlinear expressions

Perhaps the greatest challenge posed by OSInstance lies in the OSExpression-

Tree class, which provides the in-memory representation of the nonlinear terms.
Our goal in designing OSExpressionTree has been to allow for efficient parsing of
OSiL instances, while providing an API that meets the needs of diverse solvers.

Conceptually, any nonlinear expression in the objective or constraints is repre-
sented by a tree. The expression tree for the nonlinear part of the objective func-
tion (1), for example, has the form illustrated in Fig. 10. The choice of a data structure
to store such a tree—along with the associated methods of an API—is a key aspect
in the design of the OSInstance class.

OSiL: An instance language for optimization 199

double calculateFunction (expr *e, double x[]){

...

opnum = e->op

switch(opnum){

case PLUS_opno: ...

return(calculateFunction(e->L.e, x) + calculateFunction(e->R.e, x));

case MINU_opno: ...

...

}

}

Fig. 18 Excerpt from a function calculation method without polymorphism

One approach uses a C-style structure (a struct or union) for each node
in the expression tree. The ASL data structure [16] of the AMPL modeling lan-
guage [12, 15] has this form. The structure stores information as to operator or
operand type, along with pointers to child nodes. Thus a tree-walking method may
be used to perform operations on the expression such as function or derivative eval-
uations. Figure 18 illustrates the essential idea (from [11]) in the context of function
evaluation; expr is a C structure that represents nodes of the expression tree, *e is
a particular node passed to the function, and opnum is an integer value in the struc-
ture, denoting the node type. A fundamental problem with this approach is that every
method that operates on the expression tree requires a whole series of switch state-
ment case clauses, making for a very large function. Updating the code to reflect new
operators requires modifying every such method, risking the introduction of errors.

A second approach is to use an object-oriented language such as C++ or Java and
to define a class for each type of node in the expression tree: a “plus” node class, a
“minus” node class, an “exponential function” class, and so forth. So that switches
and complicated logic are avoided as much as possible, this is implemented by having
each node class extend a single fundamental node abstract class, OSnLNode, using
the object-oriented concept of polymorphism. We have adopted this alternative in our
implementation.

The design of the OSInstance API also provides the flexibility to work with
different types of nonlinear solvers. For example, the API has a method that can
return a list of OSnLNodes in postfix format, making it easy to communicate with a
solver such as LINDO that expects a postfix instruction list as part of its initial input.
A similar method returns a prefix instruction list. Another part of the API supplies
calculate() methods to work with solvers such as IPOPT and KNITRO that use
callbacks to evaluate function and derivative values at specific iterates, as described
in Sect. 4.2.2.

4.2.1 The OSnLNode class

As Sect. 3.4 has explained, all of an OSiL file’s operator and operand elements used
in defining a nonlinear expression are extensions of the base element type OSnLNode.
There is an element type OSnLNodePlus, for example, that extends OSnLNode; then
in an OSiL instance file, there are <plus> elements that are of type OSnLNodePlus.

The OSExpressionTree class and its API follow an identical design, based on
the abstract class OSnLNode. Specifically, each OSExpressionTree object contains

200 R. Fourer et al.

Fig. 19 The function
calculation method for the
“plus” node class with
polymorphism

double OSnLNodePlus::calculateFunction(double *x){
m_dFunctionValue =

m_mChildren[0]->calculateFunction(x) +
m_mChildren[1]->calculateFunction(x);

return m_dFunctionValue;
} //calculateFunction

a pointer to an OSnLNode object that is the root of the corresponding expression
tree. To every element that extends the OSnLNode type in an OSiL instance file,
there corresponds a class that derives from the OSnLNode class in an OSInstance

data structure. Thus we can construct an expression tree of homogenous nodes, and
methods that operate on the expression tree to calculate function values, derivatives,
postfix notation, and the like do not require switches or complicated logic.

The OSInstance class has a variety of calculate() methods, based on two
pure virtual functions in the OSInstance class. The first of these, calculateFunc-
tion(), takes an array of double values corresponding to decision variables, and
evaluates the expression tree for those values. Every class that extends OSnLNode
must implement this method. As an example, the calculateFunction method for
the OSnLNodePlus class is shown in Fig. 19. Because the OSiL instance file must be
validated against its schema, and in the schema each <OSnLNodePlus> element is
specified to have exactly two child elements, this calculateFunction method can
assume that there are exactly two children of the node that it is operating on. Thus
through the use of polymorphism and recursion the need for switches like those in
Fig. 18 is eliminated. This design makes adding new operator elements easy; it is sim-
ply a matter of adding a new class and implementing the calculateFunction()

method for it.

4.2.2 Automatic differentiation

Gradient and Hessian calculations via callbacks at specified iterates are carried out
by use of automatic differentiation (AD) [17]. This is the same approach used by
proprietary interfaces between modeling languages and nonlinear solvers; it can be
much faster than symbolic differentiation, but unlike finite differencing it gives up
nothing in accuracy.

To provide AD services, a second pure virtual function is introduced into the
OSInstance class. In our initial implementation this function, constructCppAD-
Tape(), builds an AD “tape” that is read by CppAD, a robust and efficient AD pack-
age developed by Bradley Bell [2]. Each differentiable operator class that extends
OSnLNode must implement a method based on this package, which makes heavy use
of C++ operator overloading; Fig. 20 illustrates taping the plus operator.

The calculate() methods in the OSInstance class for first and second deriv-
ative calculations are built on the CppAD facilities. These methods operate in two
phases, first constructing the tape and then using it to compute the requested deriva-
tives. For example, the API method calculateAllConstraintFunctionGradi-
ents() tapes an operation sequence by applying constructCppADTape() to the
nonlinear part of each objective function and constraint, then uses the CppAD method
Jacobian to calculate first partial derivatives. This method returns a SparseJaco-
bian object that contains the values of the partial derivatives, their sparsity pattern,

OSiL: An instance language for optimization 201

AD<double> OSnLNodePlus::constructCppADTape(std::map<int, int> *cppADIdx,
CppAD::vector< AD<double> > *XAD){

m_CppADTape =
m_mChildren[0]->constructCppADTape(cppADIdx, XAD) +
m_mChildren[1]->constructCppADTape(cppADIdx, XAD);

return m_CppADTape;
} //calculateCppADTape

Fig. 20 The AD function taping method for the “plus” node class

and information (useful to some solvers) on which partial derivatives are constant.
Likewise there is a method to return the sparsity pattern and second derivatives for
the Hessian of the Lagrangian function.

5 Conclusions and future work

OSiL is an XML-based language for representing general nonlinear optimization in-
stances. It represents a major advance over the old MPS format for linear and inte-
ger problems. There are open-source C++ libraries available at projects.coin-
or.org/OS that implement all of the features described in this paper including spe-
cial sparse treatments of linear and quadratic components of a model instance. These
libraries implement classes described in this paper for writing, validating, and pars-
ing optimization instances in the OSiL format. In addition, the OSInstance class with
its get(), set(), and calculate() methods provides a powerful API to interface
with modeling languages and solvers. It is the flexible design of the OSInstance

class with its underlying OSExpressionTree class (see Sect. 4.2) that provides first
and second derivative information for solver callback functions or the instance rep-
resentation in postfix or prefix instruction list format. Examples are given in a User’s
Manual available at https://projects.coin-or.org/OS.

The design of OSiL and the corresponding in-memory OSInstance class has also
facilitated the development of libraries for feeding any instance in OSiL format into
the following commercial and open-source solvers: Cbc, Clp, Cplex, DyLP, Glpk,
Knitro, Lindo, SYMPHONY, and Vol. On the modeling language side we have a
component amplClient that provides access from the AMPL modeling language
to any solver (including those mentioned above) that recognizes OSiL files, in much
the same way that the Kestrel client [8] provides access from AMPL to the NEOS
Server [7, 9].

It terms of future work, we are in the process of extending the OSiL schema to in-
clude other classes of optimization problems, such as optimization under uncertainty,
semidefinite and cone programming, constraint programming, disjunctive program-
ming, and optimization of simulations. Each class has its own special features that
pose new kinds of challenges.

Finally, OSiL is only one schema in a much larger OS—Optimization Services—
framework [23]. Of most immediate concern, the OS framework is planned to in-
corporate OSoL (Optimization Services option Language) for passing algorithmic
options to solvers, and OSrL (Optimization Services result Language) for passing re-
sults back to modelers and modeling systems. These languages are an initial part of

202 R. Fourer et al.

a complete system that allows for platform-independent synchronous and asynchro-
nous communication between client modeling systems and optimization solvers in a
distributed environment.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques and Tools. Addison-Wesley,
Reading (1986)

2. Bell, B.: CppAD: A package for C++ algorithmic differentiation. http://www.coin-or.org/CppAD/
(2006)

3. Bischof, C.H., Bücker, H.M., Marquardt, W., Petera, M., Wyes, J.: Transforming equation-based mod-
els in process engineering. In: Bücker, H.M., Corliss, G., Hovland, P., Naumann, U., Norris, B. (eds.)
Automatic Differentiation: Applications, Theory, and Implementations. Lecture Notes in Computa-
tional Science and Engineering, pp. 189–198. Springer, Berlin (2005)

4. Bradley, G.: Introduction to extensible markup language (XML) with operations research examples.
ICS Newsl. 24, 1–20 (2003)

5. Bradley, G.: Network and graph markup language (NaGML)—data file formats. Technical Report
NPS-OR-04-007, Department of Operations Research, Naval Postgraduate School, Monterey, CA,
USA (2004). Available from the author, bradley@nps.navy.mil

6. Chang, T.-H.: Modelling and presenting mathematical programs with xml:lp. Masters thesis, Depart-
ment of Management, University of Canterbury, Christchruch, NZ (2003)

7. Czyzyk, J., Mesnier, M.P., Moré, J.J.: The NEOS server. IEEE J. Comput. Sci. Eng. 5, 68–75 (1998)
8. Dolan, E.D., Fourer, R., Goux, J.-P., Munson, T.S., Sarich, J.: Kestrel: An interface from optimization

modeling systems to the NEOS server. Technical report, Optimization Technology Center, North-
western University, Evanston, IL and Mathematics & Computer Science Division, Argonne National
Laboratory, Argonne, IL (2006). http://www.optimization-online.org/DB_HTML/2007/01/1559.html

9. Dolan, E.D., Fourer, R., Moré, J.J., Munson, T.S.: Optimization on the NEOS server. SIAM News
35(6), 4–9 (2002).

10. Ezechukwu, O.C., Maros, I.: OOF: open optimization framework. Technical Report ISSN 1469-4174,
Department of Computing, Imperial College of London, London, UK (2003)

11. Fourer, R., Gay, D.M.: Extending an algebraic modeling language to support constraint logic pro-
gramming. INFORMS J. Comput. 14, 322–344 (2002)

12. Fourer, R., Gay, D.M., Kernighan, B.W.: A modeling language for mathematical programming.
Manag. Sci. 36, 519–554 (1990)

13. Fourer, R., Lopes, L., Martin, K.: LPFML: A W3C XML schema for linear and integer programming.
INFORMS J. Comput. 17, 139–158 (2005)

14. Fourer, R.: Modeling languages versus matrix generators for linear programming. ACM Trans. Math.
Softw. 9, 143–183 (1983)

15. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathematical Program-
ming, 2nd edn. Brooks/Cole, Pacific Grove (2003)

16. Gay, D.M.: Hooking your solver to AMPL (revised 1994, 1997). Technical report, Bell Laboratories,
Murray Hill, NJ (1993)

17. Griewank, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation.
SIAM, Philadelphia (2000)

18. Halldórsson, B.V., Thorsteinsson, E.S., Kristjánsson, B.: A modeling interface to non-linear program-
ming solvers an instance: xMPS, the extended MPS format. Technical report, Carnegie Mellon Uni-
versity and Maximal Software (2000)

19. Kristjánsson, B.: Optimization modeling in distributed applications: how new technologies such as
XML and SOAP allow OR to provide web-based services (2001). http://www.maximal-usa.com/
slides/Svna01Max/index.htm

20. Lindo Systems, Inc.: LINDO API user’s manual. Technical report, Lindo Systems, Inc. (2002). http:
//www.lindo.com/lindoapi_pdf.zip

21. Lougee-Heimer, R.: The Common Optimization INterface for operations research. IBM J. Res. Dev.
47(1), 57–66 (2003)

22. Lustig, I.J., Puget, J.-F.: Program �= program: Constraint programming and its relationship to mathe-
matical programming. Interfaces 31(6), 29–53 (2001)

http://www.coin-or.org/CppAD/
http://www.optimization-online.org/DB_HTML/2007/01/1559.html
http://www.maximal-usa.com/slides/Svna01Max/index.htm
http://www.maximal-usa.com/slides/Svna01Max/index.htm
http://http://www.lindo.com/lindoapi_pdf.zip
http://http://www.lindo.com/lindoapi_pdf.zip

OSiL: An instance language for optimization 203

23. Ma, J.: Optimization services (OS), a general framework for optimization modeling systems. Ph.D.
Dissertation, Department of Industrial Engineering & Management Sciences, Northwestern Univer-
sity, Evanston, IL (2005)

24. Rosenbrock, H.H.: An automatic method for finding the greatest or least value of a function. Com-
put. J. 3, 175–184 (1960)

25. Sandhu, P.: The MathML Handbook. Charles River Media, Hingham (2003)
26. Skonnard, A., Gudgin, M.: Essential XML Quick Reference. Pearson Education, Boston (2002)
27. Van Hentenryck, P.: Constraint and integer programming in OPL. INFORMS J. Comput. 14, 345–372

(2002)

	OSiL: An instance language for optimization
	Abstract
	Introduction
	Related work
	Outline

	XML background
	XML files
	XML schemas

	The OSiL schema
	OSiL basics
	Representing linear constraints
	Representing quadratic terms
	Representing nonlinear terms

	The OSInstance class
	Mapping rules
	Nonlinear expressions
	The OSnLNode class
	Automatic differentiation

	Conclusions and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

