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Abstract In this paper, we present a detailed investigation for the properties of a
one-parametric class of SOC complementarity functions, which include the glob-
ally Lipschitz continuity, strong semismoothness, and the characterization of their
B-subdifferential. Moreover, for the merit functions induced by them for the second-
order cone complementarity problem (SOCCP), we provide a condition for each sta-
tionary point to be a solution of the SOCCP and establish the boundedness of their
level sets, by exploiting Cartesian P -properties. We also propose a semismooth New-
ton type method based on the reformulation of the nonsmooth system of equations
involving the class of SOC complementarity functions. The global and superlinear
convergence results are obtained, and among others, the superlinear convergence is
established under strict complementarity. Preliminary numerical results are reported
for DIMACS second-order cone programs, which confirm the favorable theoretical
properties of the method.
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1 Introduction

We consider the following conic complementarity problem of finding ζ ∈ R
n such

that

F(ζ ) ∈ K, G(ζ ) ∈ K, 〈F(ζ ), G(ζ )〉 = 0, (1)

where 〈·, ·〉 represents the Euclidean inner product, F and G are the mappings from
R

n to R
n which are assumed to be continuously differentiable, and K is the Cartesian

product of second-order cones (SOCs), also called Lorentz cones [10]. In other words,

K = Kn1 × Kn2 × · · · × Knm, (2)

where m,n1, . . . , nm ≥ 1, n1 + n2 + · · · + nm = n, and

Kni := {(x1, x2) ∈ R × R
ni−1 | x1 ≥ ‖x2‖},

with ‖·‖ denoting the Euclidean norm and K1 denoting the set of nonnegative real
numbers R+. We refer to (1)–(2) as the second-order cone complementarity problem
(SOCCP). In the sequel, corresponding to the Cartesian structure of K, we write
x = (x1, . . . , xm) with xi ∈ R

ni for any x ∈ R
n, and F = (F1, . . . ,Fm) and G =

(G1, . . . ,Gm) with Fi,Gi : R
n → R

ni .
An important special case of the SOCCP corresponds to G(ζ) = ζ for all ζ ∈ R

n.
Then (1) reduces to

F(ζ ) ∈ K, ζ ∈ K, 〈F(ζ ), ζ 〉 = 0, (3)

which is a natural extension of the nonlinear complementarity problem (NCP) where
K = K1 ×· · ·× K1. Another important special case corresponds to the Karush-Kuhn-
Tucker (KKT) conditions of the convex second-order cone program (SOCP):

min g(x)

s.t. Ax = b, x ∈ K,
(4)

where A ∈ R
m×n has full row rank, b ∈ R

m and g : R
n → R is a convex twice con-

tinuously differentiable function. From [6], the KKT conditions for (4), which are
sufficient but not necessary for optimality, can be written in the form of (1) and (2)
with

F(ζ ) := d +(I −AT (AAT )−1A)ζ, G(ζ ) := ∇g(F (ζ ))−AT (AAT )−1Aζ, (5)

where d ∈ R
n is any vector satisfying Ax = b. For large problems with a sparse A,

(5) has an advantage that the main cost of evaluating the Jacobian ∇F and ∇G lies
in inverting AAT , which can be done efficiently via sparse Cholesky factorization.

There have been various methods proposed for solving SOCPs and SOCCPs,
which include interior-point methods [1–3, 18, 19, 23, 26], non-interior smooth-
ing Newton methods [7, 13], smoothing-regularization methods [15], merit function
methods [6] and semismooth Newton methods [16]. Among others, the last four kinds
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of methods are all based on an SOC complementarity function or a smooth merit
function induced by it.

Given a mapping φ : R
l × R

l → R
l , we call φ an SOC complementarity function

associated with the cone Kl if for any (x, y) ∈ R
l × R

l ,

φ(x, y) = 0 ⇐⇒ x ∈ Kl , y ∈ Kl , 〈x, y〉 = 0. (6)

Clearly, when l = 1, an SOC complementarity function reduces to an NCP function,
which plays an important role in the solution of NCPs; see [24] and references therein.
A popular choice of φ is the Fischer-Burmeister (FB) function [11, 12], defined by

φFB(x, y) := (x2 + y2)1/2 − (x + y). (7)

More specifically, for any x = (x1, x2), y = (y1, y2) ∈ R × R
l−1, we define their Jor-

dan product associated with Kl as

x ◦ y := (〈x, y〉, y1x2 + x1y2). (8)

The Jordan product “◦”, unlike scalar or matrix multiplication, is not associative,
which is the main source on complication in the analysis of SOCCPs. The identity
element under this product is e := (1,0, . . . ,0)T ∈ R

l . We write x2 to mean x ◦ x and
write x + y to mean the usual componentwise addition of vectors. It is known that
x2 ∈ Kl for all x ∈ R

l . Moreover, if x ∈ Kl , then there exists a unique vector in Kl ,
denoted by x1/2, such that (x1/2)2 = x1/2 ◦ x1/2 = x. Thus, φFB in (7) is well-defined
for all (x, y) ∈ R

l ×R
l and maps R

l ×R
l to R

l . The function φFB was proved in [13]
to satisfy the equivalence (6), and therefore its squared norm, denoted by

ψFB(x, y) := 1

2
‖φFB(x, y)‖2,

is a merit function for the SOCCP. The merit function is shown to be continuously
differentiable by Chen and Tseng [6], and a merit function approach was proposed
by use of it.

Another popular choice of φ is the natural residual function φNR : R
l × R

l → R
l

given by

φNR(x, y) := x − [x − y]+,

where [·]+ means the minimum Euclidean distance projection onto Kl . The function
was studied in [13, 15] which is involved in smoothing methods for the SOCCP,
recently it was used to develop a semismooth Newton method for nonlinear SOCPs
by Kanzow and Fukushima [16]. We note that φNR induces a natural residual merit
function

ψNR(x, y) := 1

2
‖φNR(x, y)‖2,

but, compared to ψFB, it has a remarkable drawback, i.e. the non-differentiability.
In this paper, we consider a one-parametric class of vector-valued functions

φτ (x, y) := [(x − y)2 + τ(x ◦ y)]1/2 − (x + y) (9)
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with τ being any but fixed parameter in (0,4). The class of functions is a natural ex-
tension of the family of NCP functions proposed by Kanzow and Kleinmichel [17],
and has been shown in [4] to satisfy the characterization (6). It is not hard to see that
as τ = 2, φτ reduces to the FB function φFB in (7) while it becomes a multiple of
the natural residual function φNR as τ → 0+. With the class of SOC complemen-
tarity functions, clearly, the SOCCP can be reformulated as a nonsmooth system of
equations

�τ (ζ ) :=

⎛
⎜⎜⎜⎜⎜⎜⎝

φτ (F1(ζ ),G1(ζ ))
...

φτ (Fi(ζ ),Gi(ζ ))
...

φτ (Fm(ζ ),Gm(ζ ))

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0, (10)

which induces a natural merit function �τ : R
n → R+ given by

�τ (ζ ) = 1

2
‖�τ (ζ )‖2 =

m∑
i=1

ψτ (Fi(ζ ),Gi(ζ )), (11)

with ψτ being the natural merit function associated with φτ , i.e.,

ψτ (x, y) = 1

2
‖φτ (x, y)‖2. (12)

In [4], we studied the continuous differentiability of ψτ and showed that each sta-
tionary point of �τ is a solution of the SOCCP if ∇F and −∇G are column
monotone. In this paper, we concentrate on the properties of φτ , including the glob-
ally Lipschitz continuity, the strong semismoothness, and the characterization of the
B-subdifferential. Particularly, we provide a weaker condition than [4] for each sta-
tionary point of �τ to be a solution of the SOCCP and establish the boundedness of
the level sets of �τ , by using Cartesian P -properties. We also propose a semismooth
Newton method based on the system (10), and obtain the corresponding global and
the superlinear convergence results. Among others, the superlinear convergence is
established under strict complementarity.

Throughout this paper, I represents an identity matrix of suitable dimension,
and R

n1 × · · · × R
nm is identified with R

n1+···+nm . For a differentiable mapping
F : R

n → R
m, ∇F(x) denotes the transpose of the Jacobian F ′(x). For a symmet-

ric matrix A ∈ R
n×n, we write A  O (respectively, A � O) to mean A is positive

semidefinite (respectively, positive definite). Given a finite number of square matrices
Q1, . . . ,Qn, we denote the block diagonal matrix with these matrices as block diag-
onals by diag(Q1, . . . ,Qn) or by diag(Qi, i = 1, . . . , n). If J and B are index sets
such that J , B ⊆ {1,2, . . . ,m}, we denote PJ B by the block matrix consisting of the
sub-matrices Pjk ∈ R

nj ×nk of P with j ∈ J , k ∈ B, and by xB a vector consisting of
sub-vectors xi ∈ R

ni with i ∈ B.
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2 Preliminaries

In this section, we recall some background materials and preliminary results that will
be used in the subsequent sections. We begin with the interior and the boundary of Kl .
It is known that Kl is a closed convex self-dual cone with nonempty interior given by

int(Kl ) := {x = (x1, x2) ∈ R × R
l−1 | x1 > ‖x2‖}

and the boundary given by

bd(Kl ) := {x = (x1, x2) ∈ R × R
l−1 | x1 = ‖x2‖}.

For each x = (x1, x2) ∈ R × R
l−1, the determinant and the trace of x are defined by

det(x) := x2
1 − ‖x2‖2, tr(x) := 2x1.

In general, det(x ◦ y) �= det(x)det(y) unless x2 = αy2 for some α ∈ R. A vector
x ∈ R

l is said to be invertible if det(x) �= 0, and its inverse is denoted by x−1. Given
a vector x = (x1, x2) ∈ R × R

l−1, we often use the following symmetry matrix

Lx :=
[

x1 xT
2

x2 x1I

]
, (13)

which can be viewed as a linear mapping from R
l to R

l . It is easy to verify Lxy =
x ◦ y and Lx+y = Lx + Ly for any x, y ∈ R

l . Furthermore, x ∈ Kl if and only if
Lx  O , and x ∈ int(Kl ) if and only if Lx � O . Then Lx is invertible with

L−1
x = 1

det(x)

[
x1 −xT

2

−x2
det(x)

x1
I + 1

x1
x2x

T
2

]
. (14)

We recall from [13] that each x = (x1, x2) ∈ R × R
l−1 admits a spectral factoriza-

tion, associated with Kl , of the form

x = λ1(x) · u(1)
x + λ2(x) · u(2)

x ,

where λi(x) and u
(i)
x for i = 1,2 are the spectral values and the associated spectral

vectors of x, respectively, given by

λi(x) = x1 + (−1)i‖x2‖, u(i)
x = 1

2
(1, (−1)i x̄2) (15)

with x̄2 = x2/‖x2‖ if x2 �= 0, and otherwise x̄2 being any vector in R
l−1 satisfying

‖x̄2‖ = 1. If x2 �= 0, then the factorization is unique. The spectral decompositions
of x, x2 and x1/2 have some basic properties as below, whose proofs can be found
in [13].

Property 2.1 For any x = (x1, x2) ∈ R × R
l−1 with the spectral values λ1(x), λ2(x)

and spectral vectors u
(1)
x , u

(2)
x given as above, we have that
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(a) x ∈ Kl if and only if λ1(x) ≥ 0, and x ∈ int(Kl ) if and only if λ1(x) > 0.
(b) x2 = λ2

1(x)u
(1)
x + λ2

2(x)u
(2)
x ∈ Kl .

(c) x1/2 = √
λ1(x) u

(1)
x + √

λ2(x) u
(2)
x ∈ Kl if x ∈ Kl .

(d) det(x) = λ1(x)λ2(x), tr(x) = λ1(x) + λ2(x) and ‖x‖2 = [λ2
1(x) + λ2

2(x)]/2.

For the sake of notation, throughout the rest of this paper, we always let

w = (w1,w2) = w(x,y) := (x − y)2 + τ(x ◦ y),

z = (z1, z2) = z(x, y) := [(x − y)2 + τ(x ◦ y)]1/2 (16)

for any x = (x1, x2), y = (y1, y2) ∈ R × R
l−1. It is easy to compute

w1 = ‖x‖2 + ‖y‖2 + (τ − 2)xT y,

w2 = 2(x1x2 + y1y2) + (τ − 2)(x1y2 + y1x2).

Moreover, w ∈ Kl and z ∈ Kl hold by considering that

w = x2 + y2 + (τ − 2)(x ◦ y)

=
(

x + τ − 2

2
y

)2

+ τ(4 − τ)

4
y2 =

(
y + τ − 2

2
x

)2

+ τ(4 − τ)

4
x2. (17)

In what follows, we present several important technical lemmas. Since their proofs
can be found in [4], we here omit them for simplicity.

Lemma 2.1 [4, Lemma 3.4] For any x = (x1, x2), y = (y1, y2) ∈ R × R
l−1 and τ ∈

(0,4), let w = (w1,w2) be defined as in (16). If ‖w2‖ �= 0, then
[(

x1 + τ − 2

2
y1

)
+ (−1)i

(
x2 + τ − 2

2
y2

)T
w2

‖w2‖

]2

≤
∥∥∥∥
(

x2 + τ − 2

2
y2

)
+ (−1)i

(
x1 + τ − 2

2
y1

)
w2

‖w2‖
∥∥∥∥

2

≤ λi(w) for i = 1,2.

Furthermore, these relations also hold when interchanging x and y.

Lemma 2.2 [4, Lemma 3.2] For any x = (x1, x2), y = (y1, y2) ∈ R × R
l−1 and τ ∈

(0,4), let w = (w1,w2) be given as in (16). If w /∈ int(Kl ), then

x2
1 = ‖x2‖2, y2

1 = ‖y2‖2, x1y1 = xT
2 y2, x1y2 = y1x2; (18)

x2
1 + y2

1 + (τ − 2)x1y1 = ‖x1x2 + y1y2 + (τ − 2)x1y2‖
= ‖x2‖2 + ‖y2‖2 + (τ − 2)xT

2 y2. (19)

If, in addition, (x, y) �= (0,0), then ‖w2‖ �= 0, and moreover,

xT
2

w2

‖w2‖ = x1, x1
w2

‖w2‖ = x2, yT
2

w2

‖w2‖ = y1, y1
w2

‖w2‖ = y2. (20)
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Lemma 2.3 [4, Proposition 3.2] For any x = (x1, x2), y = (y1, y2) ∈ R × R
l−1, let

z(x, y) be defined by (16). Then z(x, y) is continuously differentiable at a point (x, y)

if and only if (x − y)2 + τ(x ◦ y) ∈ int(Kl), and furthermore,

∇xz(x, y) = L
x+ τ−2

2 y
L−1

z , ∇yz(x, y) = L
y+ τ−2

2 x
L−1

z ,

where

L−1
z =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎝ b c

wT
2‖w2‖

c w2‖w2‖ aI + (b − a)
w2w

T
2

‖w2‖2

⎞
⎠ if w2 �= 0;

(1/
√

w1)I if w2 = 0,

(21)

with

a = 2√
λ2(w) + √

λ1(w)
, b = 1

2

(
1√

λ2(w)
+ 1√

λ1(w)

)
,

c = 1

2

(
1√

λ2(w)
− 1√

λ1(w)

)
.

(22)

To close this section, we recall some definitions that will be used in the subsequent
sections. Given a mapping H : R

n → R
m, if H is locally Lipschitz continuous, the

set

∂BH(z) := {V ∈ R
m×n| ∃{zk} ⊆ DH : zk → z,H ′(zk) → V }

is nonempty and is called the B-subdifferential of H at z, where DH ⊆ R
n denotes

the set of points at which H is differentiable. The convex hull ∂H(z) := conv∂BH(z)

is the generalized Jacobian of H at z in the sense of Clarke [8]. For the concepts of
(strongly) semismooth functions, please refer to [21, 22] for details. We next present
definitions of Cartesian P -properties for a matrix M ∈ R

n×n, which are in fact special
cases of those introduced by Chen and Qi [5] for a linear transformation.

Definition 2.1 A matrix M ∈ R
n×n is said to have

(a) the Cartesian P -property if for any 0 �= x = (x1, . . . , xm) ∈ R
n with xi ∈ R

ni ,
there exists an index ν ∈ {1,2, . . . ,m} such that

〈xν, (Mx)ν〉 > 0;

(b) the Cartesian P0-property if for any 0 �= x = (x1, . . . , xm) ∈ R
n with xi ∈ R

ni ,
there exists an index ν ∈ {1,2, . . . ,m} such that

xν �= 0 and 〈xν, (Mx)ν〉 ≥ 0.

Some nonlinear generalizations of these concepts in the setting of K are defined
as follows.
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Definition 2.2 Given a mapping F = (F1, . . . ,Fm) with Fi : R
n → R

ni , F is said
to

(a) have the uniform Cartesian P -property if for any x = (x1, . . . , xm), y =
(y1, . . . , ym) ∈ R

n, there exists an index ν ∈ {1,2, . . . ,m} and a positive constant
ρ > 0 such that

〈xν − yν, Fν(x) − Fν(y)〉 ≥ ρ‖x − y‖2;
(b) have the Cartesian P0-property if for any x = (x1, . . . , xm), y = (y1, . . . , ym) ∈

R
n, there exists an index ν ∈ {1,2, . . . ,m} such that

xν �= yν and 〈xν − yν,Fν(x) − Fν(y)〉 ≥ 0.

If a continuously differentiable mapping F has the Cartesian P -properties, then
the matrix ∇F(x) at any x ∈ R

n enjoys the corresponding Cartesian P -properties.

3 Properties of the functions φτ and �τ

This section is devoted to investigating the favorable properties of φτ , which include
the globally Lipschitz continuity, the strong semismoothness and the characterization
of the B-subdifferential at any point. Based on these results, we also present some
properties of the operator �τ related to the generalized Newton method.

From the definition of φτ and z(x, y) given as in (9) and (16), respectively, we
have

φτ (x, y) = z(x, y) − (x + y) = z − (x + y) (23)

for any x = (x1, x2), y = (y1, y2) ∈ R × R
l−1. Recall that the vectors w = (w1,w2)

and z = (z1, z2) in (16) satisfy w,z ∈ Kl , and hence, from Property 2.1(b) and (c),

z =
(√

λ2(w) + √
λ1(w)

2
,

√
λ2(w) − √

λ1(w)

2
w̄2

)
, (24)

where w̄2 = w2‖w2‖ if w2 �= 0, and otherwise w̄2 is any vector in R
l−1 satisfying

‖w̄2‖ = 1. The following proposition states some favorable properties possessed
by φτ .

Proposition 3.1 The function φτ defined as in (9) has the following properties.

(a) φτ is continuously differentiable at a point (x, y) ∈ R
l × R

l if and only if
(x − y)2 + τ(x ◦ y) ∈ int(Kl ). Moreover,

∇xφτ (x, y) = L
x+ τ−2

2 y
L−1

z − I, ∇yφτ (x, y) = L
y+ τ−2

2 x
L−1

z − I.

(b) φτ is globally Lipschitz continuous with the Lipschitz constant independent of τ .
(c) φτ is strongly semismooth at any (x, y) ∈ R

l × R
l .

(d) ψτ defined by (12) is continuously differentiable everywhere.



A semismooth Newton method for SOCCPs based on 67

Proof (a) The proof directly follows from Lemma 2.3 and (23).
(b) It suffices to prove that z(x, y) is globally Lipschitz continuous by (23). Let

ẑ = (ẑ1, ẑ2) = ẑ(x, y, ε) := [(x − y)2 + τ(x ◦ y) + εe]1/2 (25)

for any ε > 0 and x = (x1, x2), y = (y1, y2) ∈ R×R
l−1. Then, applying Lemma A.1

in Appendix and the Mean-Value Theorem, we have

‖z(x, y) − z(a, b)‖ =
∥∥∥ lim

ε→0+ ẑ(x, y, ε) − lim
ε→0+ ẑ(a, b, ε)

∥∥∥
≤ lim

ε→0+ ‖ẑ(x, y, ε) − ẑ(a, y, ε) + ẑ(a, y, ε) − ẑ(a, b, ε)‖

≤ lim
ε→0+

∥∥∥∥
∫ 1

0
∇x ẑ(a + t (x − a), y, ε)(x − a)dt

∥∥∥∥

+ lim
ε→0+

∥∥∥∥
∫ 1

0
∇y ẑ(a, b + t (y − b), ε)(y − b)dt

∥∥∥∥

≤ √
2C‖(x, y) − (a, b)‖

for any (x, y), (a, b) ∈ R
l × R

l , where C > 0 is a constant independent of τ .
(c) From the definition of φτ and φFB, it is not hard to check that

φτ (x, y) = φFB

(
x + τ − 2

2
y,

√
τ(4 − τ)

2
y

)
+ 1

2
(τ − 4 + √

τ(4 − τ))y.

Note that φFB is strongly semismooth everywhere by Corollary 3.3 of [25], and the
functions x + τ−2

2 y, 1
2

√
τ(4 − τ)y and 1

2 (τ − 4 + √
τ(4 − τ))y are also strongly

semismooth at any (x, y) ∈ R
l × R

l . Therefore, φτ is a strongly semismooth func-
tion since by [12, Theorem 19] the composition of strongly semismooth functions is
strongly semismooth.

(d) The proof can be found in Proposition 3.3 of the literature [4]. �

Proposition 3.1(c) indicates that, when a smoothing or nonsmooth Newton method
is employed to solve the system (10), a fast convergence rate (at least superlinear) can
be expected. To develop a semismooth Newton method for the SOCCP, we need to
characterize the B-subdifferential ∂Bφτ (x, y) at a general point (x, y). The discussion
of B-subdifferential for φFB was given in [20]. Here, we generalize it to φτ for any
τ ∈ (0,4). The detailed derivation process is included in Appendix for completeness.

Proposition 3.2 Given a general point x = (x1, x2), y = (y1, y2) ∈ R × R
l−1, each

element in ∂Bφτ (x, y) is of the form V = [Vx − I Vy − I ] with Vx and Vy having the
following representation:

(a) If (x −y)2 + τ(x ◦y) ∈ int(Kl ), then Vx = L−1
z L

x+ τ−2
2 y

and Vy = L−1
z L

y+ τ−2
2 x

.

(b) If (x − y)2 + τ(x ◦ y) ∈ bd(Kl ) and (x, y) �= (0,0), then
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Vx ∈
{

1

2
√

2w1

(
1 w̄T

2

w̄2 4I − 3w̄2w̄
T
2

)(
Lx + τ − 2

2
Ly

)
+ 1

2

(
1

−w̄2

)
uT

}
,

(26)

Vy ∈
{

1

2
√

2w1

(
1 w̄T

2

w̄2 4I − 3w̄2w̄
T
2

)(
Ly + τ − 2

2
Lx

)
+ 1

2

(
1

−w̄2

)
vT

}

for some u = (u1, u2), v = (v1, v2) ∈ R × R
l−1 satisfying |u1| ≤ ‖u2‖ ≤ 1 and

|v1| ≤ ‖v2‖ ≤ 1, where w̄2 = w2‖w2‖ .
(c) If (x, y) = (0,0), then Vx ∈ {Lû},Vy ∈ {Lv̂} for some û = (û1, û2), v̂ =

(v̂1, v̂2) ∈ R × R
l−1 satisfying ‖û‖,‖v̂‖ ≤ 1 and û1v̂2 + v̂1û2 = 0, or

Vx ∈
{

1

2

(
1
w̄2

)
ξT + 1

2

(
1

−w̄2

)
uT + 2

(
0 0

(I − w̄2w̄
T
2 )s2 (I − w̄2w̄

T
2 )s1

)}
,

Vy ∈
{

1

2

(
1
w̄2

)
ηT + 1

2

(
1

−w̄2

)
vT + 2

(
0 0

(I − w̄2w̄
T
2 )ω2 (I − w̄2w̄

T
2 )ω1

)}

for some ‖w̄2‖ = 1, u = (u1, u2), v = (v1, v2), ξ = (ξ1, ξ2), η = (η1, η2) ∈ R ×
R

l−1 satisfying |u1| ≤ ‖u2‖ ≤ 1, |v1| ≤ ‖v2‖ ≤ 1, |ξ1| ≤ ‖ξ2‖ ≤ 1 and |η1| ≤
‖η2‖ ≤ 1, and s = (s1, s2), ω = (ω1,ω2) ∈ R×R

l−1 such that ‖s‖2 +‖ω‖2 ≤ 1.

In what follows, we focus on the properties of the operator �τ defined in (10). We
start with the semismoothness of �τ . Since �τ is (strongly) semismooth if and only
if all component functions are (strongly) semismooth, and since the composite of
(strongly) semismooth functions is (strongly) semismooth by [12, Theorem 19], we
obtain the following conclusion as an immediate consequence of Proposition 3.1(c).

Proposition 3.3 The operator �τ : R
n → R

n defined as in (10) is semismooth. More-
over, it is strongly semismooth if F ′ and G′ are locally Lipschitz continuous.

To characterize the B-subdifferential of �τ , in the rest of this paper, we let

Fi(ζ ) = (Fi1(ζ ),Fi2(ζ )), Gi(ζ ) = (Gi1(ζ ),Gi2(ζ )) ∈ R × R
ni−1

and wi : R
n → R

ni and zi : R
n → R

ni for i = 1,2, . . . ,m be given as follows:

wi = (wi1(ζ ),wi2(ζ )) = w(Fi(ζ ),Gi(ζ )),

zi = (zi1(ζ ), zi2(ζ )) = z(Fi(ζ ),Gi(ζ )).
(27)

Proposition 3.4 Let �τ : R
n → R

n be defined as in (10). Then, for any ζ ∈ R
n,

∂B�τ (ζ )T ⊆ ∇F(ζ )(A(ζ ) − I ) + ∇G(ζ)(B(ζ ) − I ), (28)

where A(ζ ) and B(ζ ) are possibly multivalued n × n block diagonal matrices whose
ith blocks Ai(ζ ) and Bi(ζ ) for i = 1,2, . . . ,m have the following representation:
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(a) If (Fi(ζ ) − Gi(ζ ))2 + τ(Fi(ζ ) ◦ Gi(ζ )) ∈ int(Kni ), then

Ai(ζ ) = L
Fi+ τ−2

2 Gi
L−1

zi
and Bi(ζ ) = L

Gi+ τ−2
2 Fi

L−1
zi

.

(b) If (Fi(ζ ) − Gi(ζ ))2 + τ(Fi(ζ ) ◦ Gi(ζ )) ∈ bd(Kni ) and (Fi(ζ ),Gi(ζ )) �= (0,0),
then

Ai(ζ ) ∈
{

1

2
√

2wi1

(
LFi

+ τ − 2

2
LGi

)(
1 w̄T

i2

w̄i2 4I − 3w̄i2w̄
T
i2

)
+ 1

2
ui(1,−w̄T

i2)

}

Bi(ζ ) ∈
{

1

2
√

2wi1

(
LGi

+ τ − 2

2
LFi

)(
1 w̄T

i2

w̄i2 4I − 3w̄i2w̄
T
i2

)
+ 1

2
vi(1,−w̄T

i2)

}

for some ui = (ui1, ui2), vi = (vi1, vi2) ∈ R×R
ni−1 satisfying |ui1| ≤ ‖ui2‖ ≤ 1

and |vi1| ≤ ‖vi2‖ ≤ 1, where w̄i2 = wi2‖wi2‖ .
(c) If (Fi(ζ ),Gi(ζ )) = (0,0), then

Ai(ζ ) ∈ {Lû1} ∪
{

1

2
ξi(1, w̄T

i2) + 1

2
ui(1,−w̄T

i2) +
(

0 2sT
i2(I − w̄i2w̄

T
i2)

0 2si1(I − w̄i2w̄
T
i2)

)}

Bi(ζ ) ∈ {Lv̂1} ∪
{

1

2
ηi(1, w̄T

i2) + 1

2
vi(1,−w̄T

i2) +
(

0 2ωT
i2(I − w̄i2w̄

T
i2)

0 2ωi1(I − w̄i2w̄
T
i2)

)}

for some ûi = (ûi1, ûi2), v̂i = (v̂i1, v̂i2) ∈ R × R
ni−1 satisfying ‖ûi‖,‖v̂i‖ ≤ 1

and ûi1v̂i2 + v̂i1ûi2 = 0, some ui = (ui1, ui2), vi = (vi1, vi2), ξi = (ξi1, ξi2),
ηi = (ηi1, ηi2) ∈ R × R

ni−1 with |ui1| ≤ ‖ui2‖ ≤ 1, |vi1| ≤ ‖vi2‖ ≤ 1, |ξi1| ≤
‖ξi2‖ ≤ 1 and |ηi1| ≤ ‖ηi2‖ ≤ 1, ω̄i2 ∈ R

ni−1 satisfying ‖ω̄i2‖ = 1, and si =
(si1, si2), ωi = (ωi1,ωi2) ∈ R × R

ni−1 such that ‖si‖2 + ‖ωi‖2 ≤ 1.

Proof Let �τ,i(ζ ) denote the ith subvector of �τ , i.e. �τ,i(ζ ) = φτ (Fi(ζ ),Gi(ζ ))

for all i = 1,2, . . . ,m. From Proposition 2.6.2 of [8], it follows that

∂B�τ (ζ )T ⊆ ∂B�τ,1(ζ )T × ∂B�τ,2(ζ )T × · · · × ∂B�τ,m(ζ )T , (29)

where the latter denotes the set of all matrices whose (ni−1 + 1) to ni th columns
with n0 = 0 belong to ∂B�τ,i(ζ )T . Using the definition of B-subdifferential and the
continuous differentiability of F and G, it is not difficult to verify that

∂B�τ,i(ζ )T = [∇Fi(ζ ) ∇Gi(ζ )]∂Bφτ (Fi(ζ ),Gi(ζ ))T , i = 1,2, . . . ,m. (30)

Using Proposition 3.2 and the last two equations, we get the desired result. �

Proposition 3.5 For any ζ ∈ R
n, let A(ζ ) and B(ζ ) be the multivalued block diago-

nal matrices given as in Proposition 3.4 Then, for any i ∈ {1,2, . . . ,m},
〈(Ai(ζ ) − I )�τ,i(ζ ), (Bi(ζ ) − I )�τ,i(ζ )〉 ≥ 0,
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with equality holding if and only if �τ,i(ζ ) = 0. Particularly, for the index i such that
(Fi(ζ ) − Gi(ζ ))2 + τ(Fi(ζ ) · Gi(ζ ) ∈ int(Kni )), we have

〈(Ai(ζ ) − I )υi, (Bi(ζ ) − I )υi〉 ≥ 0, for any υi ∈ R
ni .

Proof From Theorem 2.6.6 of [8] and Proposition 3.1(d), we have that

∇ψτ (x, y) = ∂Bφτ (x, y)T φτ (x, y).

Consequently, for any i = 1,2, . . . ,m, it follows that

∇ψτ (Fi(ζ ),Gi(ζ )) = ∂Bφτ (Fi(ζ ),Gi(ζ ))T φτ (Fi(ζ ),Gi(ζ )).

In addition, from Propositions 3.2 and 3.4, it is not hard to see that

[Ai(ζ )T − I Bi(ζ )T − I ] ∈ ∂Bφτ (Fi(ζ ),Gi(ζ )).

Combining with the last two equations yields that for any i = 1,2, . . . ,m,

∇xψτ (Fi(ζ ),Gi(ζ )) = (Ai(ζ ) − I )�τ,i(ζ ),

∇yψτ (Fi(ζ ),Gi(ζ )) = (Bi(ζ ) − I )�τ,i(ζ ).
(31)

Consequently, the first part of conclusions is a direct consequence of Proposition 4.1
of [4]. Notice that for any i ∈ O(ζ ) and υi ∈ R

ni ,

〈(Ai(ζ ) − I )υi, (Bi(ζ ) − I )υi〉
= 〈(L

Fi+ τ−2
2 Gi

− Lzi
)L−1

zi
υi, (L

Gi+ τ−2
2 Fi

− Lzi
)L−1

zi
υi〉

= 〈(L
Gi+ τ−2

2 Fi
− Lzi

)(L
Fi+ τ−2

2 Gi
− Lzi

)L−1
zi

υi, L−1
zi

υi〉. (32)

Using the same argument as Case (2) of [4, Proposition 4.1] then yields the second
part. �

4 Nonsingularity conditions

In this section, we show that all elements of the B-subdifferential ∂B�τ (ζ ) at a solu-
tion ζ ∗ of the SOCCP are nonsingular if ζ ∗ satisfies strict complementarity, i.e.,

Fi(ζ
∗) + Gi(ζ

∗) ∈ int(Kni ) for all i = 1,2, . . . ,m. (33)

First, we give a technical lemma which states that the multi-valued matrix
(Ai(ζ

∗) − I ) + (Bi(ζ
∗) − I ) is nonsingular if the i-th block component satisfies

strict complementarity.

Lemma 4.1 Let ζ ∗ be a solution of the SOCCP, and A(ζ ∗) and B(ζ ∗) be the mul-
tivalued block diagonal matrices characterized by Proposition 3.4. Then, for any
i ∈ {1,2, . . . ,m} such that Fi(ζ

∗) + Gi(ζ
∗) ∈ int(Kni ), we have that �τ,i(ζ ) is con-

tinuously differentiable at ζ ∗ and (Ai(ζ
∗) − I ) + (Bi(ζ

∗) − I ) is nonsingular.
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Proof Since ζ ∗ is a solution of the SOCCP, we have for all i = 1,2, . . . ,m

Fi(ζ
∗) ∈ Kni , Gi(ζ

∗) ∈ Kni , 〈Fi(ζ
∗),Gi(ζ

∗)〉 = 0.

It is not hard to verify that Fi(ζ
∗) + Gi(ζ

∗) ∈ int(Kni ) if and only if one of the three
cases shown as below holds.

Case (1) Fi(ζ
∗) ∈ int(Kni ) and Gi(ζ

∗) = 0. Under this case,

wi(ζ
∗) = (Fi(ζ

∗) − Gi(ζ
∗))2 + τ(Fi(ζ

∗) ◦ Gi(ζ
∗)) = Fi(ζ

∗)2 ∈ int(Kni ).

By Proposition 3.1(a), �τ,i(ζ ) is continuously differentiable at ζ ∗. Since zi(ζ
∗) =

wi(ζ
∗)1/2 = Fi(ζ

∗), from Proposition 3.4(a) it follows that

Ai(ζ
∗) = I and Bi(ζ

∗) = τ − 2

2
I,

which implies that (Ai(ζ
∗) − I ) + (Bi(ζ

∗) − I ) is nonsingular since 0 < τ < 4.

Case (2) Fi(ζ
∗) = 0 and Gi(ζ

∗) ∈ int(Kni ). Now, wi(ζ
∗) = Gi(ζ

∗)2 ∈ int(Kni ).
So, �τ,i(ζ ) is continuously differentiable at ζ ∗ by Proposition 3.1(a). Since

zi(ζ
∗) = wi(ζ

∗)1/2 = Gi(ζ
∗),

applying Proposition 3.4(a) yields that

Ai(ζ
∗) = τ − 2

2
I and Bi(ζ

∗) = I,

which immediately implies that (Ai(ζ
∗) − I ) + (Bi(ζ

∗) − I ) is nonsingular.

Case (3) Fi(ζ
∗)∈bd+(Kni ) and Gi(ζ

∗)∈bd+(Kni ), where bd+(Kni ):=bd(Kni )\{0}.
By Proposition 3.1(a), it suffices to prove wi(ζ

∗) ∈ int(Kni ). Suppose that
wi(ζ

∗) ∈ bd(Kni ). Then, from (18) in Lemma 2.2, it follows that

Fi1(ζ
∗)Gi1(ζ

∗) = Fi2(ζ
∗)T Gi2(ζ

∗).

Since Fi1(ζ
∗) = ‖Fi2(ζ

∗)‖ �= 0 and Gi1(ζ
∗) = ‖Gi2(ζ

∗)‖ �= 0, we have

‖Fi2(ζ
∗)‖ · ‖Gi2(ζ

∗)‖ = Fi2(ζ
∗)T Gi2(ζ

∗),

which implies that Fi2(ζ
∗) = αGi2(ζ

∗) for some constant α > 0. Consequently,
Fi(ζ

∗) = αGi(ζ
∗). Noting that 〈Fi(ζ

∗),Gi(ζ
∗)〉 = 0, we then get Fi(ζ

∗) =
Gi(ζ

∗) = 0. This clearly contradicts the assumptions that Fi(ζ
∗) �= 0 and

Gi(ζ
∗) �= 0. So, wi(ζ

∗) ∈ int(Kni ).
From the expression of Ai(ζ ) and Bi(ζ ) given by Proposition 3.4(a),

(Ai(ζ
∗) − I ) + (Bi(ζ

∗) − I ) = −L2zi (ζ
∗)− τ

2 (Fi(ζ
∗)+Gi(ζ

∗))L
−1
zi (ζ

∗).
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Therefore, to establish the nonsingularity of (Ai(ζ
∗) − I ) + (Bi(ζ

∗) − I ), it suffices
to prove that the matrix L2zi (ζ

∗)− τ
2 (Fi (ζ

∗)+Gi(ζ
∗)) is nonsingular. Note that

(2zi(ζ
∗))2 = 4wi(ζ

∗) = 2

[(
Fi(ζ

∗) + τ − 2

2
Gi(ζ

∗)
)2

+ τ(4 − τ)

4
Gi(ζ

∗)2

]

+ 2

[(
Gi(ζ

∗) + τ − 2

2
Fi(ζ

∗)
)2

+ τ(4 − τ)

4
Fi(ζ

∗)2

]
,

which means that

(2zi(ζ
∗))2 − τ 2

4
(Fi(ζ

∗) + Gi(ζ
∗))2

= τ(4 − τ)

2
[Gi(ζ

∗)2 + Fi(ζ
∗)2] + (4 − τ)2

4
(Fi(ζ

∗) − Gi(ζ
∗))2. (34)

On the other hand, wi(ζ
∗) ∈ int(Kni ) implies that (Fi(ζ

∗) − Gi(ζ
∗))2 ∈ int(Kni )

since Fi(ζ
∗) ◦ Gi(ζ

∗) = 0. From the above two sides, we immediately obtain that

(2zi(ζ
∗))2 − τ 2

4
(Fi(ζ

∗) + Gi(ζ
∗))2 ∈ int(Kni ).

Since zi(ζ
∗) = wi(ζ

∗)1/2 ∈ int(Kni ), using Proposition 3.4 of [13] yields that

2zi(ζ
∗) − τ

2
(Fi(ζ

∗) + Gi(ζ
∗)) ∈ int(Kni ).

This means that L2zi (ζ
∗)− τ

2 (Fi (ζ
∗)+Gi(ζ

∗)) � O , and so it is nonsingular. �

Given a solution ζ ∗ of the SOCCP, we know from [1] that, if ζ ∗ is a strict comple-
mentarity one, i.e. satisfies the conditions in (33), the following index sets

I := {i ∈ {1,2, . . . ,m} | Fi(ζ
∗) ∈ int(Kni ),Gi(ζ

∗) = 0},
B := {i ∈ {1,2, . . . ,m} | Fi(ζ

∗) ∈ bd+(Kni ),Gi(ζ
∗) ∈ bd+(Kni )}, (35)

J := {i ∈ {1,2, . . . ,m} | Fi(ζ
∗) = 0,Gi(ζ

∗) ∈ int(Kni )}

forms a partition of the set {1,2, . . . ,m}. Thus, suppose that ∇G(ζ ∗) is invertible,
then by rearrangement the matrix P(ζ ∗) = ∇G(ζ ∗)−1∇F(ζ ∗) can be rewritten as

P(ζ ∗) =
⎛
⎜⎝

P(ζ ∗)I I P(ζ ∗)I B P(ζ ∗)I J
P(ζ ∗)B I P(ζ ∗)B B P(ζ ∗)B J
P(ζ ∗)J I P(ζ ∗)J B P(ζ ∗)J J

⎞
⎟⎠ .

Now we are in a position to establish the nonsingularity of all elements in ∂B�τ (ζ
∗).
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Theorem 4.1 Let ζ ∗ be a strict complementarity solution of the SOCCP. Sup-
pose that ∇G(ζ ∗) is invertible and let P(ζ ∗) = ∇G(ζ ∗)−1∇F(ζ ∗). If P(ζ ∗)J J is
nonsingular and its Schur-complement, denoted by P̂ (ζ ∗)J J , in the matrix

(
P(ζ ∗)B B P(ζ ∗)B J
P(ζ ∗)J B P(ζ ∗)J J

)

has the Cartesian P -property, then all W ∈ ∂B�τ (ζ
∗) are nonsingular.

Proof By Proposition 3.4 and the invertibility of ∇G(ζ ∗), it suffices to show that any
matrix C belonging to ∇G(ζ ∗)−1∇F(ζ ∗)(A(ζ ∗) − I ) + (B(ζ ∗) − I ) is invertible.
Since ζ ∗ is a strict complementarity solution, it follows from Lemma 4.1 that the
matrix C can be written in the following partitioned form

C =
⎛
⎜⎝

τ−4
2 II I PI B(AB − IB B) τ−4

2 PI J
0B I PB B(AB − IB B) + (BB − IB B) τ−4

2 PB J
0J I PJ B(AB − IB B) τ−4

2 PJ J

⎞
⎟⎠ ,

where II I = diag(Iii , i ∈ I) with Iii being an ni × ni identity matrix, AB =
diag(Ai, i ∈ B) and BB = diag(Bi, i ∈ B). For the sake of notation, we here omit
the notation ζ ∗ in the functions. It is not hard to see that these C are nonsingular if
and only if

Cr =
(

PB B(AB − IB B) + (BB − IB B) τ−4
2 PB J

PJ B(AB − IB B) τ−4
2 PJ J

)

is nonsingular. Showing that Cr is nonsingular is equivalent to showing that the sys-
tem

−Cr

(
yB
yJ

)
= 0

for any y = (yB;yJ ) has only the zero solution. This system can be rewritten as
{

4−τ
2 PJ J yJ + PJ B(IB B − AB)yB = 0,

4−τ
2 PB J yJ + PB B(IB B − AB)yB = −(IB B − BB)yB.

Recall that PJ J is nonsingular, and we obtain from the last system that
{

yJ = − 2
4−τ

P −1
J J PJ B(IB B − AB)yB,

(PB B − PB J P −1
J J PJ B)(IB B − AB)yB = −(IB B − BB)yB.

(36)

Thus, by Lemma 4.1 and Proposition 3.5, using the same arguments as Theorem 4.1
of [20] yields the desired result. �

Observe that, when ni = 1 for all i = 1,2, . . . ,m, the assumption for P̂J J in
Theorem 4.1 is actually equivalent to requiring that P̂J J is a P -matrix, which is
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common in the solution of NCPs. Now, we are not clear whether the result of Theo-
rem 4.1 holds when removing the strict complementarity. We will leave it as a future
research topic.

From Theorem 4.1 and [21, Lemma 2.6], we readily obtain the following result.

Corollary 4.1 Suppose that ζ ∗ is a strict complementarity solution of the SOCCP
and the mappings F and G at the ζ ∗ satisfy the conditions of Theorem 4.1. Then,
there exists a neighborhood N (ζ ∗) of ζ ∗ and a constant C > 0 such that for any
ζ ∈ N (ζ ∗) and any W ∈ ∂B�τ (ζ ), W is nonsingular and satisfies ‖W−1‖ ≤ C.

5 Stationary point conditions and bounded level sets

In general a stationary point of a merit function is not a solution of the underlying
problem. In [4], we showed that, when ∇F and −∇G are column monotone, every
stationary point of the smooth merit function �τ (ζ ) is a solution of the SOCCP. In
this section, we provide a different stationary point condition by using the Cartesian
P0-property of a matrix, which, as shown later, is weaker than that of [4] when ∇G is
invertible. We also establish the boundedness of the level sets of �τ for the SOCCP
(3) under the condition that F(ζ ) has the uniform Cartesian P -property.

To present the first result of this section, we need the following technical lemma.

Lemma 5.1 Let ψτ : R
l × R

l → R+ be given by (12). Then, for any x, y ∈ R
l ,

φτ (x, y) �= 0 ⇐⇒ ∇xψτ (x, y) �= 0, ∇yψτ (x, y) �= 0.

Proof From Proposition 3.2 of [4], the sufficiency is obvious. Suppose that
φτ (x, y) �= 0. If either ∇xψτ (x, y) = 0 or ∇yψτ (x, y) = 0, then 〈∇xψτ (x, y),

∇yψτ (x, y)〉 = 0. From Proposition 4.1 of [4], it follows that φτ (x, y) = 0. This
gives a contradiction. �

Proposition 5.1 Let �τ : R
n → R+ be given as (11). Suppose ∇G is invertible and

∇G(ζ)−1∇F(ζ ) at any ζ ∈ R
n has the Cartesian P0-property. Then, every stationary

point of �τ is a solution of the SOCCP.

Proof Let ζ be an arbitrary stationary point of �τ (ζ ). Since �τ is continuously dif-
ferentiable by Proposition 3.1(d) and �τ is locally Lipschitz continuous, applying
Theorem 2.6.6 of Clarke [8] then gives that for any V ∈ ∂B�τ (ζ )T

0 = ∇�τ (ζ ) = V �τ (ζ ).

Let V be an element of ∂B�τ (ζ )T (⊆ ∂�τ (ζ )). Then from (29) it follows that there
exist matrices Vi ∈ ∂B�τ,i(ζ )T such that

V = V1 × V2 × · · · × Vm.
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In addition, for each Vi ∈ R
n×ni , by Proposition 3.2 there exist matrices Ai(ζ ) ∈

R
ni×ni and Bi(ζ ) ∈ R

ni×ni , as characterized by Proposition 3.4, such that

Vi = ∇Fi(ζ )(Ai(ζ ) − I ) + ∇Gi(ζ )(Bi(ζ ) − I ), i = 1,2, . . . ,m.

Let A(ζ ) = diag(A1(ζ ), . . . ,Am(ζ )) and B(ζ ) = diag(B1(ζ ), . . . ,Bm(ζ )). From the
last three equations, it then follows that

[∇F(ζ )(A(ζ ) − I ) + ∇G(ζ)(B(ζ ) − I )]�τ (ζ ) = 0.

By the invertibility of ∇G(ζ), the last equation is equivalent to

[∇G(ζ)−1∇F(ζ )(A(ζ ) − I ) + (B(ζ ) − I )]�τ (ζ ) = 0. (37)

Suppose that �τ (ζ ) �= 0. Then, there necessarily exists an index ν ∈ {1,2, . . . ,m}
such that �τ,ν(ζ ) = φτ (Fν(ζ ),Gν(ζ )) �= 0. Using Lemma 5.1 and (31) then yields

(Aν(ζ ) − I )�τ,ν(ζ ) �= 0 and (Bν(ζ ) − I )�τ,ν(ζ ) �= 0. (38)

In addition, from (37) it follows that

[∇G(ζ)−1∇F(ζ )(A(ζ ) − I )�τ (ζ )]ν + (Bν(ζ ) − I )�τ,ν(ζ ) = 0.

Making the inner product with (Aν(ζ ) − I )�τ,ν(ζ ) on both sides, we obtain

〈(Aν(ζ ) − I )�τ,ν(ζ ), [∇G(ζ)−1∇F(ζ )(A(ζ ) − I )�τ (ζ )]ν〉
+ 〈(Aν(ζ ) − I )�τ,ν(ζ ), (Bν(ζ ) − I )�τ,ν(ζ )〉 = 0.

Notice that the first term of the left hand side is nonnegative due to (38) and the
assumption that ∇G(ζ)−1∇F(ζ ) has the Cartesian P0-property at any ζ ∈ R

n, and
the second term is positive by Proposition 3.5 since �τ,ν(ζ ) �= 0. This leads to a
contradiction. Consequently, the proof is completed. �

Remark 5.1 (i) It is not hard to verify that ∇G(ζ)−1∇F(ζ ) has the Cartesian
P0-property if ∇G(ζ)−1∇F(ζ )  O . While, if ∇G(ζ) is invertible, the column
monotonicity of ∇F(ζ ) and −∇G(ζ) is equivalent to the positive semidefiniteness
of ∇G(ζ)−1∇F(ζ ). Thus, the condition in Proposition 5.1 is weaker than that of [4].

(ii) For the SOCCP (3), the condition of Proposition 5.1 is equivalent to requiring
that F has the Cartesian P0-property. If n1 = n2 = · · · = nm = 1, this reduces to the
common condition in the NCPs that F is a P0-function.

Lemma 5.2 Let ψτ be given by (12). Then, for any (x, y) ∈ R
l × R

l , we have

4ψτ (x, y) ≥ 2‖[φτ (x, y)]+‖2 ≥ (4 − τ)2

4
[‖(−x)+‖2 + ‖(−y)+‖2].

Proof Note that z(x, y)−(x + τ−2
2 y) ∈ Kl and z(x, y)−(y + τ−2

2 x) ∈ Kl . Following
the same proof line as Lemma 8 of [6] immediately yields the desired result. �
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Lemma 5.3 Let ψτ be defined as in (9) and {(xk, yk)} ⊆ R
l × R

l be a sequence

satisfying ‖xk‖ → +∞ and ‖yk‖ → +∞. If xk

‖xk‖ ◦ yk

‖yk‖ �→ 0, then ψτ (x
k, yk) →

+∞.

Proof For each k, let λk
1 ≤ λk

2 and μk
1 ≤ μk

2 denote the spectral values of xk and yk ,
respectively. Since ‖xk‖2 = 1

2 [(λk
1)

2 + (λk
2)

2] and ‖yk‖2 = 1
2 [(μk

1)
2 + (μk

2)
2], by the

given conditions, we only need consider the two cases shown as below.

Case (1): λk
1 → −∞ or μk

1 → −∞. From Lemma 5.2 and the following fact that

‖(−xk)+‖2 = 1

2

2∑
i=1

(min{0, λk
i })2, ‖(−yk)+‖2 = 1

2

2∑
i=1

(min{0,μk
i })2,

we immediately have ψτ (x
k, yk) → +∞.

Case (2): {λk
1} and {μk

1} are bounded below, but λk
2,μ

k
2 → +∞. We will proceed

the arguments by contradiction. Suppose that {ψτ (x
k, yk)} is bounded. Since

xk + yk = zk − φτ (x
k, yk) for each k,

where zk = z(xk, yk) with z(x, y) defined as in (16). Squaring the two sides of the
equality then yields that

(4 − τ)xk ◦ yk = −2zk ◦ φτ (x
k, yk) + (φτ (x

k, yk))2. (39)

Noting that, for each k,

0 ≤ zk
1

‖xk‖‖yk‖ ≤
√

2wk
1

‖xk‖‖yk‖ =
√

‖xk‖2 + ‖yk‖2 + (τ − 2)(xk)T yk

‖xk‖2‖yk‖2
,

we can verify that limk→+∞
zk

1
‖xk‖‖yk‖ = 0. Combining with zk

‖xk‖‖yk‖ ∈ Kl yields

lim
k→+∞

zk

‖xk‖‖yk‖ = 0.

Using (39) and the boundedness of {φτ (x
k, yk)}, it then follows that

lim
k→+∞

xk

‖xk‖ ◦ yk

‖yk‖ = 0,

which clearly contradicts the given assumption. The proof is complete. �

Now using Lemma 5.3 and the same arguments as Proposition 5.2 of [20], we can
establish the boundedness of the level sets of �τ (ζ ) for the SOCCP (3) under the
assumption that F has the uniform Cartesian P -property and satisfies the following
condition:
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Condition A For any sequence {ζ k} ⊆ R
n such that ‖ζ k‖ → +∞, if there exists

i ∈ {1, . . . ,m} such that λ1(ζ
k
i ), λ1(Fi(ζ

k)) > −∞ and λ2(ζ
k
i ), λ2(Fi(ζ

k)) → +∞,
then

lim sup
k→+∞

〈
ζ k
i

‖ζ k
i ‖ ,

Fi(ζ
k)

‖Fi(ζ k)‖
〉
> 0.

Consequently, we extend the coerciveness of the FB merit function to �τ .

Proposition 5.2 For the SOCCP (3), if F : R
n → R

n has the uniform Cartesian
P -property and satisfies Condition A, then the function �τ has bounded level sets.

6 Algorithm and numerical results

From the previous discussions, we see that the class of SOC complementarity func-
tion φτ with τ ∈ (0,4) possesses all nice features of the FB SOC complementarity
function. In this section we test the numerical performance of the class of SOC func-
tions by using the semismooth Newton method proposed by De Luca, Facchinei and
Kanzow [9], which is described as follows.

Algorithm 6.1

Step 0. Choose τ ∈ (0,4), ζ 0 ∈ R
n, γ > 0, p > 2, ρ ∈ (0,1), σ ∈ (0,1/2), and

ε > 0. Set k := 0.
Step 1. If ‖∇�τ (ζ

k)‖ ≤ ε, then stop.
Step 2. Select an element Wk ∈ ∂B�τ (ζ

k). Find a solution dk ∈ R
n of the linear

system

Wkd = −�τ (ζ
k). (40)

If the system is not solvable or if the descent condition

∇�τ (ζ
k)T dk ≤ −γ ‖dk‖p

is not satisfied, set dk := −∇�τ (ζ
k).

Step 3. Let mk be the smallest nonnegative integer m such that

�τ (ζ
k + ρmdk) ≤ �τ (ζ

k) + σρm∇�τ (ζ
k)T dk, (41)

and set ζ k+1 := ζ k + ρmkdk , k := k + 1, and go to Step 1.

The global and local convergence properties of Algorithm 6.1 are summarized in
the following theorem, in which we implicitly assume that the termination parameter
ε is equal to 0, i.e. the algorithm generates an infinite sequence.

Theorem 6.1 Suppose that {ζ k} is a sequence generated by Algorithm 6.1. Then,

(a) each accumulation point of {ζ k} is a stationary point of the merit function �τ .
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Table 1 Set of test problems

No. Problem n m # of nonzero elements Structure of SOCs

names of matrix A

1 nb 2383 123 192439 [4 × 1; 793 × 3]

2 nb-L1 3176 915 193104 [797 × 1; 793 × 3]

3 nb-L2-bessel 2641 123 209924 [4 × 1; 1 × 123; 838 × 3]

(b) If ζ ∗ is an isolated accumulation point of {ζ k}, then the entire sequence {ζ k}
converges to ζ ∗.

(c) If ζ ∗ is an accumulation point such that ζ ∗ is a strict complementarity solution
and F(ζ ) and G(ζ) at ζ ∗ satisfy the conditions of Theorem 4.1. Then,

(i) the whole sequence {ζ k} converges to ζ ∗;
(ii) the search direction dk is eventually given by the solution of (40);

(iii) the sequence {ζ k} converges to ζ ∗ Q-superlinearly;
(iv) if, in addition, F ′ and G′ are Lipschitz continuous at ζ ∗, then the rate of

convergence is Q-quadratic.

Proof Since the proofs are similar to that of [17, Theorem 4.2] or [9, Theorem 3.1]
by the results obtained in Sects. 3–5, we here omit them. �

Note that Theorem 6.1(a) and (b) only gives global convergence results to station-
ary points of the merit function �τ whereas we are much concerned with finding
a global minimizer of �τ and consequently a solution of the SOCCP. Fortunately,
Proposition 5.1 provides a rather weak condition to guarantee such a stationary point
is a solution of the SOCCP. The existence of an accumulation point and thus of a sta-
tionary point of �τ is guaranteed by Proposition 5.2. From Definition 2.2, we see that
the assumption from Proposition 5.2 may be satisfied by some monotone SOCCPs,
and our numerical experiments in the next section also verify this fact.

In what follows, we report the computational experience with solving some linear
SOCPs, which correspond to the SOCP (4) with g(x) = cT x, by Algorithm 6.1. From
the introduction, the class of problems can be reformulated as the SOCCP with F(ζ )

and G(ζ) given as in (5). The test instances are taken from the DIMACS Implementa-
tion Challenge library and described in Table 1 in which, the notation [4×1; 1×123;
838 × 3] in the column of structure of SOCs means that K consists of the product of
four K1, one K123, and 838 K3, and m × n specifies the size of the matrix A.

All experiments were done at a PC with 2.8 GHz CPU and 512 MB memory.
The computer codes were all written in Matlab 6.5. During the experiments, we re-
placed the standard Armijo linesearch rule in Algorithm 6.1 with a nonmonotone
linesearch as described in [14]. The motivation of adopting this variant is to circum-
vent very small stepsizes which will lead to the difficulty in the solution of SOCCPs.
In addition, the nonmonotone linesearch was proved in [14] to have better numerical
performance for the unconstrained minimization of smooth functions. Specifically,
we computed the smallest nonnegative integer m such that

�τ (ζ
k + ρmdk) ≤ Wk + σρm∇�τ (ζ

k)T dk,
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Table 2 Numerical results of Algorithm 6.1 for linear SOCPs with a different τ

No. τ Obj. NF k Time τ Obj. NF k Time

1 0.5 −0.0507101 177 59 644.1 1.5 −0.0507184 75 28 303.2

2.0 −0.0507130 85 29 313.8 2.5 −0.0507088 66 32 342.2

3.0 −0.0507256 74 29 311.2 3.5 −0.0507091 63 38 406.0

2 0.5 − − >200 − 1.5 −13.0122435 144 87 1587.4

2.0 −13.0120761 219 112 2047.2 2.5 −13.0121923 227 112 2149.3

3.0 −13.0121999 393 197 3762.1 3.5 − − >200 −
3 0.5 −0.1025695 35 18 235.3 1.5 −0.1025728 23 10 128.6

2.0 −0.1025766 15 9 113.7 2.5 −0.1025706 17 10 125.6

3.0 −0.1025695 21 14 181.4 3.5 −0.1025695 39 29 364.4

where

Wk := max{�τ (ζ
j ) | j = k − mk, . . . , k},

and where, for a given nonnegative integer m̂ and s, we set

mk =
{

0 if k ≤ s,

min{mk−1 + 1, m̂} otherwise.

Throughout the experiments, the following parameters were used in the algorithm:

γ = 10−8, p = 2.1, ρ = 0.5, σ = 10−4, m̂ = 5 and s = 5.

The starting point was chosen to be ζ 0 = 0. The method terminates whenever one of
the following conditions is satisfied

max{|F(ζ k)T G(ζ k)|,�τ (ζ
k)} ≤ 10−5, k > 200, αk < 10−15. (42)

The term |F(ζ k)T G(ζ k)| in the first condition aims to obtain a solution with a favor-
able dual gap. In addition, it also helps to stop the algorithm when the decrease of
�τ (ζ ) has little advantage in reducing the dual gap.

Numerical results are summarized in Table 2, where NF and k denote the number
of function evaluations and iterations for solving each test problem, Obj. means the
objective value of the test problems at the final iteration, and Time denotes the CPU
time in second that the iterates satisfy the termination condition.

From Table 2, we see that the semismooth Newton method proposed can solve
all test problems with τ ∈ [1.5,3] and has better numerical performance with τ ∈
[1.5,2.5] for all test problems. When τ tends to 0 or 4, the number of iteration has a
remarkable increase. For problem “nb-L1”, Algorithm 6.1 requires much more itera-
tions. After a check, the solution of this problem does not satisfy strict complemen-
tarity, and now we are not clear whether this takes charge in much more iterations.
We also observe that the parameter τ close to 4 often gives a better global conver-
gence, whereas the parameter τ close to 0 leads to a fast local convergence. Figure 1
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(a) τ = 0.1

(b) τ = 3.9

Fig. 1 The convergence of Algorithm 6.1 with different τ for ‘nb’

below displays the convergence of �τ for problem “nb” with τ = 0.1 and τ = 3.9,
respectively. The performance of �τ coincides with the case described by [17] for
the NCPs, which is very important for the use of the class of SOC complementarity
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functions. Based on this feature of φτ , we may adopt a dynamic choice of τ in the
algorithm by following a line similar to [17].

7 Conclusions

In this paper, we gave a detailed investigation for the properties of a one-parametric
class of SOC complementarity functions φτ , which includes the FB SOC complemen-
tarity function and the natural residual SOC complementarity function as a special
case. We showed that φτ is globally Lipschitz continuous and strongly semismooth
and characterized its B-subdifferential at any point. Furthermore, for the induced nat-
ural merit functions �τ , we provided a weaker condition than [4] to guarantee every
stationary point to be a solution of the SOCCP, and proved that it has bounded level
sets for the SOCCPs with the uniform Cartesian P -property. Thus, combining with
the results of [4], we extended most of favorable properties of the class of comple-
mentarity functions for the NCPs to the setting of the SOCCPs.

A semismooth Newton method was also proposed by the nonsmooth reformu-
lation (10) involving the class of SOC complementarity functions. The superlinear
convergence of the algorithm was established by requiring the solution to be strict
complementarity. The condition is stronger than the counterpart in the NCPs, and we
will consider to weaken this condition in the future research work.

Acknowledgements The authors would like to thank the two anonymous referees for their helpful com-
ments which improved the presentation of this paper.

Appendix

Lemma A.1 Let ẑ(x, y, ε) be defined as in (25) for any ε > 0. Then ẑ(x, y, ε) is
continuously differentiable everywhere, and there exists a scalar C > 0 such that

‖∇x ẑ(x, y, ε)‖F ≤ C, ‖∇y ẑ(x, y, ε)‖F ≤ C (43)

for all (x, y) ∈ R
l × R

l , where ‖A‖F denotes the Frobenius norm of the matrix A.

Proof Since (x − y)2 + τ(x ◦ y) + εe ∈ int(Kl ) for any (x, y) ∈ R
l × R

l and ε > 0,
by Lemma 2.3 the function ẑ(x, y, ε) is continuously differentiable everywhere and

∇x ẑ(x, y, ε) =
(

Lx + τ − 2

2
Ly

)
L−1

ẑ
, ∇y ẑ(x, y, ε) =

(
Ly + τ − 2

2
Lx

)
L−1

ẑ
.

(44)

We next prove the bound in (43). For convenience, write

ŵ = (ŵ1, ŵ2) = ŵ(x, y, ε) := (x − y)2 + τ(x ◦ y) + εe.
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Case (1) w2 �= 0. Then, ŵ2 �= 0 since ŵ2 = w2. Let g = (g1, g2) := x + τ−2
2 y. By

(44) and the formula of L−1
ẑ

given by (21), we can compute that

∇x ẑ(x, y, ε) =
⎛
⎜⎝

b̂g1 + ĉ
gT

2 w2
‖w2‖ ĉ

g1w
T
2‖w2‖ + âgT

2 + (b̂ − â)gT
2

w2w
T
2

‖w2‖2

b̂g2 + ĉg1
w2‖w2‖ ĉ

g2w
T
2‖w2‖ + âg1I + (b̂ − â)g1

w2w
T
2

‖w2‖2

⎞
⎟⎠ ,

where â, b̂ and ĉ are defined as in (22) with w = ŵ. Notice that

g1 = x1 + τ−2
2 y1, g2 = x2 + τ−2

2 y2;
λ1(ŵ) = λ1(w) + ε, λ2(ŵ) = λ2(w) + ε.

Using the expression of â, b̂ and ĉ and the result of Lemma 2.1 then yields that

∣∣∣∣b̂g1 + ĉgT
2

w2

‖w2‖
∣∣∣∣

≤ 1

2
√

λ2(w)

∣∣∣∣g1 + gT
2

w2

‖w2‖
∣∣∣∣ +

1

2
√

λ1(w)

∣∣∣∣g1 − gT
2

w2

‖w2‖
∣∣∣∣ ≤ 1,

∥∥∥∥∥ĉ
g1w

T
2

‖w2‖ + b̂
gT

2 w2w
T
2

‖w2‖2

∥∥∥∥∥

≤ 1

2
√

λ2(w)

∣∣∣∣g1 + gT
2

w2

‖w2‖
∣∣∣∣ +

1

2
√

λ1(w)

∣∣∣∣g1 − gT
2

w2

‖w2‖
∣∣∣∣ ≤ 1,

∥∥∥∥∥âgT
2 − âgT

2 w2
wT

2

‖w2‖2

∥∥∥∥∥

≤ ‖2g2‖√‖x‖2 + ‖y‖2 + (τ − 2)xT y
·
∥∥∥∥∥I − w2w

T
2

‖w2‖2

∥∥∥∥∥
F

≤ 2(l − 1),

∥∥∥∥b̂g2 + ĉg1
w2

‖w2‖
∥∥∥∥

≤ 1

2
√

λ2(w)

∥∥∥∥g2 + g1
w2

‖w2‖
∥∥∥∥ + 1

2
√

λ1(w)

∥∥∥∥g2 − g1
w2

‖w2‖
∥∥∥∥ ≤ 1,

∥∥∥∥∥ĉ
g2w

T
2

‖w2‖ + b̂
g1w2w

T
2

‖w2‖2

∥∥∥∥∥
F

≤ 1

2
√

λ2(w)

∥∥∥∥g2 + g1
w2

‖w2‖
∥∥∥∥ + 1

2
√

λ1(w)

∥∥∥∥g2 − g1
w2

‖w2‖
∥∥∥∥ ≤ 1,

∥∥∥∥∥âg1I − âg1
w2w

T
2

‖w2‖2

∥∥∥∥∥
F

≤ 2|g1|√‖x‖2 + ‖y‖2 + (τ − 2)xT y
·
∥∥∥∥∥I − w2w

T
2

‖w2‖2

∥∥∥∥∥
F

≤ 2(l − 1).
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The above inequalities imply that the first inequality in (43) holds under this case.

Case (2) w2 = 0. In this case, from Lemma 2.3 it follows that

∇x ẑ(x, y, ε) = 1√
ŵ1

(
Lx + τ − 2

2
Ly

)
= 1√

ŵ1
Lg.

Since ŵ1 = ‖x + τ−2
2 y‖2 + τ(4−τ)

4 ‖y‖2 + ε, we have |g1|/
√

ŵ1 ≤ 1 and ‖g2‖/√
ŵ1 ≤ 1, which implies the first inequality in (43). Thus, we complete the proof for

the first inequality. By the symmetry of x and y in ẑ(x, y, ε), the second inequality
clearly holds. �

Proof of Proposition 3.2

Proof Throughout the proof, let Dφτ denote the set of points where φτ is differen-
tiable. Recall that this set is characterized by Proposition 3.1(a). Write

φ′
τ,x(x, y) = ∇xφτ (x, y)T and φ′

τ,y(x, y) = ∇yφτ (x, y)T .

From Proposition 3.1(a), it then follows that for any (x, y) ∈ Dφτ ,

φ′
τ,x(x, y) = L−1

z L
x+ τ−2

2 y
− I, φ′

τ,x(x, y) = L−1
z L

y+ τ−2
2 x

− I. (45)

Moreover, we observe from (21) that, when w2 �= 0, L−1
z can be expressed as the sum

of

L1(w) = 1

2
√

λ1(w)

(
1 −w̄T

2

−w̄2 w̄2w̄
T
2

)

and

L2(w) = 1

2
√

λ2(w)

⎛
⎝ 1 w̄T

2

w̄2
4
√

λ2(w)(I−w̄2w̄
T
2 )√

λ2(w)+√
λ1(w)

+ w̄2w̄
T
2

⎞
⎠ ,

where ŵ2 = w2/|w2‖, and consequently φ′
τ,x and φ′

τ,y in (45) can be rewritten as

φ′
τ,x(x, y) = (L1(w) + L2(w))L

x+ τ−2
2 y

− I,

φ′
τ,y(x, y) = (L1(w) + L2(w))L

y+ τ−2
2 x

− I.
(46)

(a) Under the given assumption, φτ is continuously differentiable at (x, y) by
Proposition 3.1(a). Consequently, the B-subdifferential ∂Bφτ (x, y) consists of only
one element,

φ′
τ (x, y) = [φ′

τ,x(x, y) φ′
τ,y(x, y)].

Substituting the formulas in (45) into it, we immediately obtain the conclusion.
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(b) Assume that (x, y) �= (0,0) satisfies (x − y)2 + τ(x ◦ y) ∈ bd(Kl ). Let
{(xk, yk)} ⊆ Dφτ be an arbitrary sequence converging to (x, y). Let wk = (wk

1,w
k
2) =

w(xk, yk) and zk = z(xk, yk), where w(x,y) and z(x, y) are defined as in (16). From
the given assumption on (x, y), we have w ∈ bd(Kl ) and w1 > 0, which means that
λ2(w) > λ1(w) = 0 and ‖w2‖ = w1 > 0. Hence, we assume without loss of general-
ity that wk

2 �= 0 for each k. Using the formulas in (46), it then follows that

φ′
τ,x(x

k, yk) = (L1(w
k) + L2(w

k))L
xk+ τ−2

2 yk − I,

φ′
τ,y(x

k, yk) = (L1(w
k) + L2(w

k))L
yk+ τ−2

2 xk − I.
(47)

Notice that limk→+∞ λ2(w
k) = 2w1 > 0 and limk→+∞ λ1(w

k) = λ1(w) = 0, which,
together with limk→+∞ Lxk = Lx , limk→+∞ Lyk = Ly and limk→+∞ wk

2 = w2,
yields that

lim
k→+∞L2(w

k)L
xk+ τ−2

2 yk = C(w)

(
Lx + τ − 2

2
Ly

)
,

lim
k→+∞L2(w

k)L
yk+ τ−2

2 xk = C(w)

(
Ly + τ − 2

2
Lx

)
,

(48)

where C(w) is defined as follows:

C(w) = 1

2
√

2w1

(
1 w̄T

2

w̄2 4I − 3w̄2w̄
T
2

)
with w̄2 = w2

‖w2‖ .

In addition, by a simple computation, we have that

L1(w
k)L

xk+ τ−2
2 yk = 1

2

(
uk

1 (uk
2)

T

−uk
1w̄

k
2 −w̄k

2(u
k
2)

T

)
,

L1(w
k)L

yk+ τ−2
2 xk = 1

2

(
vk

1 (vk
2)T

−vk
1w̄k

2 −w̄k
2(v

k
2)T

)
,

where w̄k
2 = wk

2/‖wk
2‖ for each k, and

uk
1 = 1√

λ1(wk)

[(
xk

1 + τ − 2

2
yk

1

)
−

(
xk

2 + τ − 2

2
yk

2

)T

w̄k
2

]
,

uk
2 = 1√

λ1(wk)

[(
xk

2 + τ − 2

2
yk

2

)
−

(
xk

1 + τ − 2

2
yk

1

)
w̄k

2

]
,

vk
1 = 1√

λ1(wk)

[(
yk

1 + τ − 2

2
xk

1

)
−

(
yk

2 + τ − 2

2
xk

2

)T

w̄k
2

]
,

vk
2 = 1√

λ1(wk)

[(
yk

2 + τ − 2

2
xk

2

)
−

(
yk

1 + τ − 2

2
xk

1

)
w̄k

2

]
.
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By Lemma 2.1, |uk
1| ≤ ‖uk

2‖ ≤ 1 and |vk
1 | ≤ ‖vk

2‖ ≤ 1. So, taking the limit (possibly
on a subsequence) on L1(w

k)L
xk+ τ−2

2 yk and L1(w
k)L

yk+ τ−2
2 xk , we have

L1(w
k)L

xk+ τ−2
2 yk → 1

2

(
u1 uT

2

−u1w̄2 −w̄2u
T
2

)
= 1

2

(
1

−w̄2

)
uT ,

L1(w
k)L

yk+ τ−2
2 xk → 1

2

(
v1 vT

2

−v1w̄2 −w̄2v
T
2

)
= 1

2

(
1

−w̄2

)
vT

(49)

for some u = (u1, u2), v = (v1, v2) ∈ R × R
l−1 with |u1| ≤ ‖u2‖ ≤ 1 and |v1| ≤

‖v2‖ ≤ 1, where w̄2 = w2/‖w2‖. In fact, u and v are some accumulation point of the
sequences {uk} and {vk}, respectively. From (47)–(49), we obtain that

φ′
τ,x(x

k, yk) → C(w)

(
Lx + τ − 2

2
Ly

)
+ 1

2

(
1

−w̄2

)
uT − I,

φ′
τ,y(x

k, yk) → C(w)

(
Ly + τ − 2

2
Lx

)
+ 1

2

(
1

−w̄2

)
vT − I,

This shows that as k → +∞, φ′
τ (x

k, yk) → [Vx − I Vy − I ] with Vx , Vy satisfy-
ing (26).

(c) Assume (x, y) = (0,0). Let {(xk, yk)} ⊂ Dφτ be an arbitrary sequence con-
verging to (x, y). Let wk = (wk

1,wk
2) and zk be defined as in Case (b). From the

given assumptions, we have w = 0. Therefore, we may assume without any loss of
generality that wk

2 = 0 for all k or wk
2 �= 0 for all k. We proceed the arguments by the

two cases.

Case (1): wk
2 = 0 for all k. From (45) and Lemma 2.3, it follows that

φ′
τ,x(x

k, yk) = 1√
wk

1

(
xk

1 + τ−2
2 yk

1 (xk
2 + τ−2

2 yk
2 )T

xk
2 + τ−2

2 yk
2 (xk

1 + τ−2
2 yk

1)I

)
− I,

φ′
τ,y(x

k, yk) = 1√
wk

1

(
yk

1 + τ−2
2 xk

1 (yk
2 + τ−2

2 xk
2 )T

yk
2 + τ−2

2 xk
2 (yk

1 + τ−2
2 xk

1)I

)
− I.

Since

wk
1 =

∥∥∥∥xk + τ − 2

2
yk

∥∥∥∥
2

+ τ(4 − τ)

4
‖yk‖2 =

∥∥∥∥yk + τ − 2

2
xk

∥∥∥∥
2

+ τ(4 − τ)

4
‖xk‖2,

every element in the above φ′
τ,x(x

k, yk) and φ′
τ,y(x

k, yk) are bounded. Thus, tak-
ing limit (possibly on a subsequence) on φ′

τ,x(x
k, yk) and φ′

τ,y(x
k, yk), respectively,

gives

∇xφτ (x
k, yk) →

(
û1 ûT

2

û2 û1I

)
− I, ∇yφτ (x

k, yk) →
(

v̂1 v̂T
2

v̂2 v̂1I

)
− I
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for some û = (û1, û2), v̂ = (v̂1, v̂2) ∈ R × R
l−1 satisfying ‖û‖ ≤ 1, ‖v̂‖ ≤ 1 and

û1v̂2 + v̂1û2 = 0. This shows that φ′
τ (x

k, yk) → [Vx − I Vy − I ] with Vx ∈ {Lû},
Vy ∈ {Lv̂}.

Case (2): wk
2 �= 0 for all k. Now φ′

τ,x(x
k, yk) and φ′

τ,x(x
k, yk) are given as in (47).

Using the same arguments as part (b) and noting that {w̄k
2} is bounded, we have

L1(w
k)L

xk+ τ−2
2 yk → 1

2

(
1

−w̄2

)
uT , L1(w

k)L
yk+ τ−2

2 xk → 1

2

(
1

−w̄2

)
vT

(50)
for some vectors u = (u1, u2), v = (v1, v2) ∈ R × R

l−1 satisfying |u1| ≤ ‖u2‖ ≤ 1
and v1 ≤ ‖v2‖ ≤ 1, and w̄2 ∈ R

l−1 satisfying ‖w̄2‖ = 1. We next compute the limit
of L2(w

k)L
xk+ τ−2

2 yk and L2(w
k)L

yk+ τ−2
2 xk . By the definition of L2(w),

L2(w
k)L

xk+ τ−2
2 yk

= 1

2

(
ξk

1 (ξk
2 )T

ξk
1 w̄k

2 + 4(I − w̄k
2(w̄

k
2)T )sk

2 w̄k
2(ξ

k
2 )T + 4(I − w̄k

2(w̄
k
2)

T )sk
1

)
,

L2(w
k)L

yk+ τ−2
2 xk

= 1

2

(
ηk

1 (ηk
2)

T

ηk
1w̄

k
2 + 4(I − w̄k

2(w̄
k
2)

T )ωk
2 w̄k

2(η
k
2)

T + 4(I − w̄k
2(w̄

k
2)T )ωk

1

)

where

ξk
1 = 1√

λ2(wk)

[(
xk

1 + τ − 2

2
yk

1

)
+ −

(
xk

2 + τ − 2

2
yk

2

)T

w̄k
2

]
,

ξ k
2 = 1√

λ2(wk)

[(
xk

2 + τ − 2

2
yk

2

)
+ −

(
xk

1 + τ − 2

2
yk

1

)
w̄k

2

]
,

(51)

ηk
1 = 1√

λ2(wk)

[(
yk

1 + τ − 2

2
xk

1

)
+

(
yk

2 + τ − 2

2
xk

2

)T

w̄k
2

]
,

ηk
2 = 1√

λ2(wk)

[(
yk

2 + τ − 2

2
xk

2

)
+

(
yk

1 + τ − 2

2
xk

1

)
w̄k

2

]
,

and

sk
1 = (xk

1 + τ−2
2 yk

1)√
λ2(wk) + √

λ1(wk)
, sk

2 = (xk
2 + τ−2

2 yk
2 )√

λ2(wk) + √
λ1(wk)

;
(52)

ωk
1 = (yk

1 + τ−2
2 xk

1)√
λ2(wk) + √

λ1(wk)
, ωk

2 = (yk
2 + τ−2

2 xk
2 )√

λ2(wk) + √
λ1(wk)

.
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By Lemma 2.1, |ξk
1 | ≤ ‖ξk

2 ‖ ≤ 1 and |ηk
1| ≤ ‖ηk

2‖ ≤ 1. In addition,

‖sk‖2 + ‖ωk‖2 = ‖xk + τ−2
2 yk‖2 + ‖yk + τ−2

2 xk‖2

2[‖xk‖2 + ‖yk‖2 + (τ − 2)(xk)T yk] + 2
√

λ2(wk)
√

λ1(wk)
≤ 1.

Taking the limit on L2(w
k)L

xk+ τ−2
2 yk and L2(w

k)L
yk+ τ−2

2 xk , we have

L2(w
k)L

xk+ τ−2
2 yk

→ 1

2

(
ξ1 ξ2

ξ1w̄2 + 4(I − w̄2w̄
T
2 )s2 w̄2ξ

T
2 + 4(I − w̄2w̄

T
2 )s1

)

= 1

2

(
1
w̄2

)
ξT + 2

(
0 0

(I − w̄2w̄
T
2 )s2 (I − w̄2w̄

T
2 )s1

)
, (53)

L2(w
k)L

yk+ τ−2
2 xk

→ 1

2

(
η1 η2

η1w̄
T
2 + 4(I − w̄2w̄

T
2 )ω2 w̄2η

T
2 + 4(I − w̄2w̄

T
2 )ω1

)

= 1

2

(
1
w̄2

)
ηT + 2

(
0 0

(I − w̄2w̄
T
2 )ω2 (I − w̄2w̄

T
2 )ω1

)
(54)

for some vectors ξ = (ξ1, ξ2), η = (η1, η2) ∈ R × R
l−1 satisfying |ξ1| ≤ ‖ξ2‖ ≤ 1

and |η1| ≤ ‖η2‖ ≤ 1, and s = (s1, s2), ω = (ω1,ω2) ∈ R × R
l−1 satisfying ‖s‖2 +

‖ω‖2 ≤ 1. From (50), (53) and (54), it follows that as k → +∞,

φ′
τ,x(x

k, yk)

→ 1

2

(
1
w̄2

)
ξT + 1

2

(
1

−w̄2

)
uT + 2

(
0 0

(I − w̄2w̄
T
2 )s2 (I − w̄2w̄

T
2 )s1

)
− I,

φ′
τ,x(x

k, yk)

→ 1

2

(
1
w̄2

)
ηT + 1

2

(
1

−w̄2

)
vT + 2

(
0 0

(I − w̄2w̄
T
2 )ω2 (I − w̄2w̄

T
2 )ω1

)
− I.

This shows that as k → +∞, φ′
τ (x

k, yk) → [Vx − I Vy − I ] with Vx and Vy satisfy-
ing the characterization in Proposition 3.2(c). Combining with Case (1), the desired
result then follows. �
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