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Abstract A state-constrained optimal control problem with nonlocal radiation inter-
face conditions arising from the modeling of crystal growth processes is considered.
The problem is approximated by a Moreau-Yosida type regularization. Optimality
conditions for the regularized problem are derived and the convergence of the regu-
larized problems is shown. In the last part of the paper, some numerical results are
presented.
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1 Introduction

The seeded sublimation growth technique, which is also known as “physical vapor
transport” (PVT), is nowadays widely used for producing semiconductor single crys-
tal. The most common design of PVT systems is to place the polycrystalline powder
source under a low-pressure inert gas atmosphere at the bottom of a cavity inside a
graphite crucible. At high temperatures of 2000–3000 K and low pressure, the poly-
crystalline powder sublimates, and the resulting gas diffuses to the relatively cold
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seed at top of the cavity. Hereafter, crystallization takes place, see [18, 19] for further
details. One of the main factors influencing the quality of the produced crystal is the
temperature distribution in the growth system. In particular, the temperature gradient
close to the surface of the growing crystal plays a significant role on the growth rate
as well as on the quality of the resulting crystal, cf. [25].

In the recent years, some efforts were made in optimizing the growth process. We
only refer to [21, 22], where the temperature gradient inside the cavity is optimized by
directly controlling the heat sources in the crucible. In [23], the corresponding model
is extended by including pointwise inequality constraints on the temperature to ensure
sublimation of the source powder and crystallization at the seed. As these additional
constraints represent pointwise state constraints, the extension significantly increases
the complexity of the problem. The first- and second-order analysis for the associated
control problem is performed in [23]. Based on these results, we here focus on the nu-
merical treatment of the problem. To be more precise, a regularization in the spirit of
[16] is under consideration. In our framework, we consider a fairly simplified geome-
try: The solid graphite crucible and the cavity inside the crucible are denoted by open
bounded domains �g and �s , respectively. The outer and interface boundaries de-
noted by �0 := ∂� and �r := �s ∩ �g , respectively. An exemplary two-dimensional
domain is depicted in Fig. 1.

As in [21–23], we optimize the gradient temperature in the gas phase �g by con-
trolling the heat source u in the solid phase �s . The objective functional, considered
here, reads as follows:

minimize J (u, y) := 1

2

∫
�g

|∇y − z|2 dx + β

2

∫
�s

u2 dx, (P)

where y denotes the temperature and the desired temperature gradient z ∈ L2(�g)
N

is assumed to be fixed. As it is essential to account for radiation due to the high
temperature, y is given by the solution of the stationary heat equation with radiation

Fig. 1 An exemplary
two-dimensional domain
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interface and boundary conditions on �r and �0, respectively:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−div(κs∇y) = u in �s ,

−div(κg∇y) = 0 in �g ,

κg

(
∂y

∂nr

)
g

− κs

(
∂y

∂nr

)
s

= qr on �r ,

κs

∂y

∂n0
+ εσ |y|3y = εσy4

0 on �0,

(SL)

where n0 is the outward unit normal on �0, and nr is the unit normal on �r fac-
ing outward with respect to �s . Furthermore, σ represents the Boltzmann radiation
constant, ε is the emissivity, and κs , κg denote the thermal conductivities in �s , �g ,
respectively. Moreover, qr denotes the additional radiative heat flux on �r . For a de-
tailed description of the model see [24]. In addition to the stationary semilinear heat
equation, the optimization is subject to the following pointwise state- and control-
constraints:

ua(x) ≤ u(x) ≤ ub(x) a.e. in �s,

ya(x) ≤ y(x) ≤ yb(x) a.e. in �g,

y(x) ≤ ymax(x) a.e. in �s.

(1.1)

Here, ua and ub reflect the minimum and maximum heating power. Furthermore, y|�s

has to be bounded by ymax to avoid melting of the solid components of crucible in �s .
Finally, as mentioned above, the state-constraints in �g are required to ensure subli-
mation of the polycrystalline powder and crystallization at the seed, respectively. The
first- and second-order analysis for (P) has been carried out quite recently in [23].
In order to obtain the Karush-Kuhn-Tucker (KKT) type optimality conditions, the
constraints, imposed on the state y in (1.1), have to be considered in the space of
continuous functions, denoted by C(�). In other words, we require the continuity of
the solutions to (SL) for the optimality conditions for (P). In fact, based on maxi-
mum elliptic regularity results (see [11, 12]), the continuity of the state y is shown
in [23]. Hereafter, first-order optimality conditions for (P) were derived. Furthermore,
second-order sufficient optimality conditions for (P) are presented in [23]. The cor-
responding arguments basically follow a recent work of Casas et al. [9]. As demon-
strated in [23], the Lagrange multipliers associated with the state-constraints of (P)
are elements of the dual space C(�)∗. Consequently, they are in general nonregular
and might have measure type components, cf. also [6, 7] or Alibert and Raymond [2]
for general state-constrained problems. Therefore, direct application of semismooth
Newton methods, or equivalently primal-dual active set strategies [14, 17] to the con-
trol problem (P) is not possible.

We overcome this obstacle by utilizing a “Moreau-Yosida” type regularization
approach that removes the pointwise state inequality constraints of (P) by adding a
penalty term to the objective functional of (P). Notice that the Moreau-Yosida type
regularization for state-constrained control problems was originally introduced by
Ito and Kunisch [16], see also [4, 5, 13, 15]. We investigate the regularized problem
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analytically. Essentially, we show the convergence of the regularized problems in the
following sense:

If ū ∈ L2(�s) is a local solution of (P) satisfying the second-order sufficient op-
timality conditions for (P), then there exists a sequence of local solutions of regular-
ized problems converging strongly in L2(�s) to ū, as the penalty parameter tends to
infinity.

In [16], it is proven for the linear-quadratic case that the Lagrange multipliers as-
sociated with the regularized problems converge weakly-∗ in C(�̄)∗ to the multipliers
of the original problem. Notice that one cannot expect a stronger convergence due to
the weak regularity of the Lagrange multipliers in the unregularized case. Moreover,
this result can hardly be confirmed by numerical experiments. Therefore, in order to
keep the discussion concise, we do not address this topic.

The paper is organized as follows: First, we introduce the general assumptions
as well as the notation used throughout the paper. Then, in Sects. 2 and 3, we recall
some important results concerning with the optimality conditions for (P). Afterwards,
a Moreau-Yosida type regularization is introduced in Sect. 4. Section 5 is devoted to
the convergence analysis. Finally, in the last part of the paper, some numerical results
are presented.

1.1 General assumptions and notation

We start by introducing the general assumptions of the problem statement including
the notation used throughout this paper. If V is a linear normed function space, then
we use the notation ‖ · ‖V for a standard norm used in V . The dual space of V is
denoted by V ∗ and for the associated duality pairing, we write 〈 . , . 〉V ∗,V . If it is ob-
vious in which spaces the respective duality pairing is considered, then the subscript
is occasionally neglected. Now, given another linear normed space Y , the space of
all bounded linear operators from V to Y is defined by B(V ,Y ). For an arbitrary
A ∈ B(V ,Y ), the associated adjoint operator of A is denoted by A∗ ∈ B(Y ∗,V ∗),
and for its inverse, if it exists, we write A−∗ := (A∗)−1. By C(�), we define all
continuous function on �. We identify the dual space C(�)∗ with the space of real
regular Borel measures on �, denoted by M(�). If a real number q > 1 is given,
then its conjugate exponent is denoted by q ′, i.e., 1

q
+ 1

q ′ = 1. Now, concerning the
data specified in (P), we impose the following assumptions:

Assumption 1.1

(A1) The domain � ⊂ R
N , N ∈ {2,3}, is a bounded open domain with a Lipschitz

boundary �0. Moreover, �g ⊂ � is an open subset of � with a boundary
�r ⊂ �. In two-dimensional case, �r is assumed to be a closed Lipschitz sur-
face and piecewise C 1,δ0 , with some δ0 > 0, whereas it is of class C 1 in the
three-dimensional case. The subdomain �s is defined by �s = � \ �g . The
distance of �r to �0 is supposed to be positive.

(A2) The desired temperature gradient z is given in L2(�g)
N and β > 0 is a fixed

constant.
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(A3) The fixed function κ ∈ L∞(�) in the semilinear equation (SL) is defined by

κ(x) =
{

κs(x) if x ∈ �s ,

κg(x) if x ∈ �g ,

where κs ∈ C(�s) and κg ∈ C(�g) representing the thermal conductivity of
solid and gas, respectively. Moreover, κ satisfies κ(x) ≥ κmin a.e. in � with a
fixed positive real number κmin.

(A4) By ε ∈ L∞(�0 ∪ �r), we denote the emissivity satisfying 0 < εmin ≤ ε(x) ≤ 1
a.e. on �r ∪�0. The term σ represents the Boltzmann radiation and is assumed
to be a positive real number. The inhomogeneity on the boundary �0 is given by
a fixed function y0 ∈ L∞(�0) satisfying y0(x) ≥ θ a.e. on �0 with θ ∈ R

+ \{0}.
(A5) The bounds in the state constraints are ymax ∈ C(�s) and ya, yb ∈ C(�g) with

ymax(x) ≥ θ for all x ∈ �s and yb(x) > ya(x) ≥ θ for all x ∈ �g . Further,
ymax(x) > ya(x) for all x ∈ �r . For the control-constraints, we assume ua,ub ∈
L∞(�) with 0 ≤ ua(x) < ub(x) a.e. in �s .

The trace operators on �r and �0 are denoted by τr and τ0, respectively. Through-
out the paper, they are considered with different domains and ranges. For simplicity,
the associated operators are always called τr and τ0 and we will mention their respec-
tive domains and ranges, if it is important.

2 Optimal control problem

Let us start by recalling some definitions regarding the nonlocal radiation on �r .

Definition 2.1 The radiative heat flux qr on �r is defined by

qr = (I − K)(I − (1 − ε)K))−1εσ |y3|y := �σ |y3|y,

where the integral operator K is defined by

(Ky)(x) =
∫

�r

ω(x, z)y(z) dsz,

with a symmetric kernel ω. In the case of a two-dimensional domain, the kernel ω is
given by

ω(x, z) = �(x, z)
[nr(z) · (x − z)][nr(x) · (z − x)]

2|z − x|3 , ∀x, z ∈ �r,

and in the case of a three-dimensional domain by

ω(x, z) = �(x, z)
[nr(z) · (x − z)][nr(x) · (z − x)]

π |z − x|4 , ∀x, z ∈ �r .
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Notice that � denotes the visibility factor which is defined by

�(x, z) =
{

0 if xz ∩ �g �= ∅,

1 if xz ∩ �g = ∅.

For the exemplary domain given in Fig. 1, it holds that �(x, z) = 1 for all x,
z ∈ �r . The visibility factor differs only from one in the case of nonconvex �g . For
the properties of ω and K , we refer the reader to Tiihonen and Laitinen, [26]. The
following lemma provides some significant properties of the operator �, which will
be useful for our analysis (see [20, Lemma 8] for the proof).

Lemma 2.1 The operator � := (I − K)(I − (1 − ε)K)−1ε is linear and bounded
from Lp(�r) to Lp(�r) for all 1 ≤ p ≤ ∞.

In the following, we define the weak formulation of the state equation (SL) that is
obtained by formal integration of (SL) by parts over the boundaries �r and �0.

Definition 2.2 Let q > N and q ′ > 0 such that 1
q

+ 1
q ′ = 1.

(i) The operator Aq : W 1,q (�) → W 1,q ′
(�)∗ is defined by

〈Aq(y), v〉 :=
∫

�

κ∇y · ∇v dx +
∫

�r

(�σ |y|3y)v ds

+
∫

�0

εσ |y|3yv ds ∀v ∈ W 1,q ′
(�), (2.1)

where we specify � : Ls(�r) → Ls(�r) with s ∈ R such that 1
s

+ 1
s′ = 1. Here,

s′ = (N−1)q ′
N−q ′ .

(ii) The operators Eq,s : L2(�s) → W 1,q ′
(�)∗ and Eq,0 : L∞(�0) → W 1,q ′

(�)∗
are defined by

〈Eq,su, v〉 :=
∫

�s

uv dx, ∀v ∈ W 1,q ′
(�),

〈Eq,0z, v〉 :=
∫

�0

zv ds, ∀v ∈ W 1,q ′
(�).

(iii) A function y ∈ W 1,q (�) is called a (weak) solution of (SL), if it satisfies

Aq(y) = Eq,su + Eq,0εσy4
0 in W 1,q ′

(�)∗. (2.2)

Notice that for q > N , W 1,q (�) is continuously embedded to C(�) and hence
y|�r

∈ L∞(�r) and y|�0
∈ L∞(�0) hold true for every y ∈ W 1,q (�). Furthermore, it

is well known that the trace operators τr is continuous from W 1,q ′
(�) to Ls′

(�r) for
s′ = (N−1)q ′

N−q ′ (s′ > 1 since q > N ). For this reason, (2.1) is well-defined for every y ∈
W 1,q (�). Further, we point out that Aq is twice-continuously Fréchet-differentiable
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from W 1,q (�) to W 1,q ′
(�)∗ (see [23]). Its first derivative at ȳ ∈ W 1,q (�) in an arbi-

trary direction y ∈ W 1,q(�) is given by

〈A′
q(ȳ)y, v〉 =

∫
�

κ∇y · ∇v dx + 4
∫

�r

(�σ |ȳ|3y)v ds

+4
∫

�0

εσ |ȳ|3yv ds ∀v ∈ W 1,q ′
(�). (2.3)

The second derivative of Aq at ȳ ∈ W 1,q (�) in the directions y1, y2 ∈ W 1,q(�) is
given by

〈A′′
q(ȳ)[y1, y2], v〉 = 12

∫
�r

(�σ |ȳ|ȳy1y2)v ds

+12
∫

�0

εσ |ȳ|ȳy1y2v ds ∀v ∈ W 1,q ′
(�). (2.4)

The investigation of existence and uniqueness of solutions to (2.2) has been carried
out in [23, Theorem 2.1], where it is shown there exists a q = q0 ∈ (N,6) such
that for every u ∈ L2(�s), the variational equation (2.2) admits a unique solution
y ∈ W 1,q (�). For the rest of this paper, we fix therefore q = q0 and hence its conju-
gate exponent is given by q ′ = 1 + 1

q−1 = 1 + 1
q0−1 . Let us now define the control-to-

state-operator by G : L2(�s) → W 1,q (�) that assigns to each u ∈ L2(�s) the weak
solution y ∈ W 1,q(�) of (SL). With this setting at hand, the optimal control prob-
lem (P) can equivalently be stated as follows:

⎧⎪⎨
⎪⎩

min
u∈U

f (u) := J (u, G(u))

subject to ya ≤ G(u) ≤ yb a.e. in �g,

G(u) ≤ ymax a.e. in �s,

(P)

where U := {u ∈ L2(�s) | ua ≤ u ≤ ub a.e. in �s}. Furthermore, the differentiabil-
ity of G was established in [23] by utilizing the Fredholm theorem. Let us con-
sider an arbitrarily fixed ū ∈ U and set ȳ = G(ū). We introduce a linear operator
F(ȳ) : L∞(�r) → W 1,q ′

(�)∗ by

〈F(ȳ)y, v〉 := 4
∫

�r

(�σ |ȳ|3y)v ds ∀v ∈ W 1,q ′
(�).

Moreover, we define the operator B(ȳ) : W 1,q (�) → W 1,q ′
(�)∗ by

〈B(ȳ)y, v〉 :=
∫

�

κ∇y · ∇v dx +
∫

�0

4εσ |ȳ|3yv ds, y ∈ W 1,q (�), v ∈ W 1,q ′
(�).

In [23, Lemma 2.1], it is shown that B(ȳ) is continuously invertible. Thus,

F (ȳ) := τrB(ȳ)−1F(ȳ)
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is well defined as an operator from L∞(�r) to L∞(�r). Notice that τr is compact
from W 1,q(�) to L∞(�r) (see [1]). Hence, F (ȳ) : L∞(�r) → L∞(�r) is compact
as well.

Definition 2.3 We say that ū ∈ L2(�s) satisfies the “eigenvalue restriction” if
λ = −1 is not an eigenvalue of F (ȳ).

In [23], it is shown that this assumption implies the Fréchet-differentiability of G .
We summarize the results in the following:

Theorem 2.1 Let ū ∈ L2(�s) with ū(x) ≥ 0 a.e. in �s and denote the associated
state by ȳ = G(ū).

(i) If ū satisfies the eigenvalue restriction, then the operator A′
q(ȳ) : W 1,q (�) →

W 1,q ′
(�)∗ is continuously invertible, i.e., A′

q(ȳ)−1 ∈ B(W 1,q ′
(�)∗,W 1,q (�)).

(ii) If A′
q(ȳ) : W 1,q (�) → W 1,q ′

(�)∗ is continuously invertible, then there exists an

open neighborhood B(ū) of ū in L2(�s) such that G : L2(�s) → W 1,q (�) is on
B(ū) twice continuously Fréchet-differentiable. The first derivative of G at ū is
given by G′(ū)u = y where y = A′

q(ȳ)−1Eq,su, i.e., y ∈ W 1,q (�) is the unique
solution of

∫
�

κ∇y∇v dx + 4
∫

�r

(�σ |yγ |3y)v ds + 4
∫

�0

εσ |yγ |3yv ds

=
∫

�s

uv dx ∀v ∈ W 1,q ′
(�).

For the details, we refer the reader to [23, Theorems 3.1, 3.2]. In view of the
inverse function theorem, we infer from the above theorem the following result:

Corollary 2.1 Let ū ∈ L2(�s) with ū(x) ≥ 0 a.e. in �s and let ȳ = G(ū). Further-
more, suppose that ū satisfies the eigenvalue restriction. Then, there exists an open
neighborhood Uȳ of ȳ in W 1,q(�) such that for every y ∈ Uȳ , A′

q(y) : W 1,q (�) →
W 1,q ′

(�)∗ is continuously invertible.

We close this section by presenting an auxiliary result that is useful for our analy-
sis.

Theorem 2.2 Let ū ∈ L2(�s) with ū(x) ≥ 0 a.e. in �s . Further, suppose that ū

satisfies the eigenvalue restriction. Then, there exists an open neighborhood Uū of ū

in L2(�s) such that: If uk ⇀ ũ ∈ Uū weakly in L2(�s), then G(uk) → G(ũ) strongly
in W 1,q(�).

Proof First of all, let us demonstrate that the linear operator Eq,s : L2(�s) →
W 1,q ′

(�)∗ is compact. To that end, consider its adjoint operator E∗
q,s : W 1,q ′

(�) →
L2(�s). This operator is given by E∗

q,s = χsEW 1,q′
(�)→L2(�)

where χs : L2(�) →
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L2(�s) denotes the restriction operator from � to �s and E
W 1,q′

(�)→L2(�)
is the

associated embedding operator. Since q ′ > 6
5 , the operator E

W 1,q′
(�)→L2(�)

is com-
pact and hence due to the continuity of χs , we obtain the compactness of E∗

q,s which
gives, in turn, the compactness of Eq,s .

We introduce next the operator T : W 1,q (�) × W 1,q ′
(�)∗ → W 1,q ′

(�)∗ by

T (y,ω) = Aq(y) − ω.

We define the element ω̄ ∈ W 1,q ′
(�)∗ by ω̄ = Eq,s ū + Eq,0εσy4

0 . Furthermore, we
set ȳ = G(ū), i.e., ȳ ∈ W 1,q (�) is the unique solution of

Aq(ȳ) = Eq,s ū + Eq,0 εσy4
0 .

Hence, we obtain T (ȳ, ω̄) = 0. Moreover, since ū satisfies the eigenvalue restric-
tion, Theorem 2.1 ensures that ∂yT (ȳ, ω̄)−1 = Aq(ȳ)−1 ∈ B(W 1,q ′

(�)∗,W 1,q (�)).
Consequently, the implicit function theorem implies the existence of an open neigh-
borhood Uw̄ of w̄ in W 1,q ′

(�)∗ and an open neighborhood Uȳ of ȳ in W 1,q (�) such
that the inverse operator

A−1
q : W 1,q ′

(�)∗ ⊃ Uw̄ → Uȳ ⊂ W 1,q(�)

is well-defined and continuous.
Since the operator Eq,s : L2(�s) → W 1,q ′

(�)∗ is continuous, there exists an open
neighborhood Uū of ū in L2(�s) such that

Eq,su + Eq,0 εσy4
0 ∈ Uw̄, ∀u ∈ Uū.

Let ũ ∈ Uū be arbitrarily fixed and define ỹ = G(ũ). Suppose now {un}∞n=1 ⊂ L2(�s)

is a sequence such that un ⇀ ũ weakly in L2(�s). Moreover, we set yn = G(un). We
show now that yn → ỹ strongly in W 1,q (�).

Since the linear operator Eq,s : L2(�s) → W 1,q ′
(�)∗ is compact and since un

converges weakly in L2(�s) to ũ, we have by standard arguments

lim
n→∞(Eq,sun + Eq,0εσy4

0) = Eq,s ũ + Eq,0εσy4
0 in W 1,q ′

(�)∗.

In particular, there exists n̄ ∈ N such that

(Eq,sun + Eq,0εσy4
0) ∈ Uw̄ ∀n ≥ n̄. (2.5)

On the other hand, based on the definition of G , yn ∈ W 1,q (�) is given by the unique
solution of

Aq(yn) = Eq,sun + Eq,0εσy4
0 .

Consequently, by (2.5)

yn = A−1
q (Eq,sun + Eq,0εσy4

0), ∀n ≥ n̄.
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Therefore, utilizing the continuity of A−1
q : Uw̄ → W 1,q (�) and the compactness of

the linear operator Eq,s : L2(�s) → W 1,q ′
(�)∗, we obtain:

lim
n→∞yn = lim

n→∞A−1
q (Eq,sun + Eq,0εσy4

0)

= A−1
q (Eq,s ũ + Eq,0εσy4

0) = G(ũ) = ỹ in W 1,q (�).

Thus, the assertion of the theorem is justified. �

3 Optimality conditions for (P)

In a standard way, one shows that (P) admits a solution provided that there exists a
feasible control u of (P). However, due to the nonlinearity of the state equation (SL),
we cannot expect the uniqueness of the solution to (P). Therefore, let us introduce the
notion of local solutions for (P):

Definition 3.1 A feasible control ū of (P) is called a local solution for (P), if there
exists a positive real number ε such that f (ū) ≤ f (u) holds for all feasible controls
u of (P) with ‖u − ū‖L2(�s)

≤ ε.

Thanks to the embedding W 1,q (�) ⊂ C(�), the following Slater assumption
makes sense:

Definition 3.2 Let ū ∈ U satisfy the eigenvalue restriction. Then, we say that ū sat-
isfies the linearized Slater condition for (P), if there exists an interior point u0 ∈ U
with respect to the L∞-topology such that

ya(x) + ρ ≤ G(ū)(x) + G′(ū)(u0 − ū)(x) ≤ yb(x) − ρ ∀x ∈ �g,

G(ū)(x) + G′(ū)(u0 − ū)(x) ≤ ymax(x) − ρ ∀x ∈ �s,

with a fixed positive real number ρ.

Let us now present the first-order necessary optimality system for (P), cf. [23,
Theorem 5.2].

Theorem 3.1 (First-order necessary optimality conditions for (P)) Let ū ∈ L2(�s)

be an optimal solution of (P) with the associated state ȳ = G(ū) ∈ W 1,q(�),
q > N . Suppose further that ū satisfies the eigenvalue restriction (Definition 2.3) and
the linearized Slater conditions (Definition 3.2). Then, there exist an adjoint state
p ∈ W 1,q ′

(�), q ′ < N
N−1 , and Lagrange multipliers μs ∈ M(�s), μa

g,μ
b
g ∈ M(�g)
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satisfying

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−div(κg∇p) = −�ȳ + div z + (μb
g − μa

g)|�g in �g ,

−div(κs∇p) = μs|�s in �s ,

κg

(
∂p

∂nr

)
g

− κs

(
∂p

∂nr

)
s

− 4σ |ȳ|3�∗p

= − ∂ȳ

∂nr

+ z · nr + (μb
g − μa

g + μs)|�r on �r ,

κs

∂p

∂n0
+ 4εσ |ȳ|3p = μs|�0 on �0,

(3.1)

μs ≥ 0, μa
g ≥ 0, μb

g ≥ 0, (3.2)
∫

�s

G(ū) − ymax dμs =
∫

�g

ya − G(ū) dμa
g =

∫
�g

G(ū) − yb dμb
g = 0, (3.3)

ū = Pad

{
− 1

β
p(x)

}
, (3.4)

where Pad : L2(�s) → L2(�s) denotes the pointwise projection operator on the ad-
missible set U .

Here, (3.1) is considered in a variational sense, cf. [23]. Next, we continue with
second-oder sufficient optimality conditions for (P) that was derived in [23].

Definition 3.3 Let ū ∈ U be a feasible control of (P) with the associated state
G(ū) = ȳ. Suppose that μa

g,μ
b
g ∈ M(�g), μs ∈ M(�s) and p ∈ W 1,q ′

(�), 1 ≤ q ′ <
N/(N − 1), satisfy (3.1–3.4).

(i) The convex, closed subset Hū ⊂ L2(�s) is given by:

Hū :=
{
h ∈ L2(�s)

∣∣∣∣h(x) =
{≥0 if ū(x) = ua(x)

≤0 if ū(x) = ub(x)

}
.

(ii) The subset Cū ⊂ Hū is defined as follows:

Cū = {h ∈ Hū | h satisfies (3.5, 3.6) and (3.7)}
h(x) = 0 if p(x) + βū(x) �= 0, (3.5)

yh(x) =

⎧⎪⎨
⎪⎩

≥0 if ȳ(x) = ya(x), x ∈ �g ,

≤0 if ȳ(x) = yb(x), x ∈ �g ,

≤0 if ȳ(x) = ymax(x), x ∈ �s ,

(3.6)

∫
�̄g

yh dμa
g =

∫
�̄g

yh dμb
g =

∫
�̄s

yh dμs = 0, (3.7)

where yh = G′(ū)h.
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(iii) The Lagrange functional associated with (P) L : U × M(�s) × M(�g) ×
M(�g) → R is defined by

L(u, ξs, ξ
a
g , ξb

g ) = f (u) +
∫

�s

(G(u) − ymax) dξs +
∫

�g

(ya − G(u)) dξa
g

+
∫

�g

(G(u) − yb) dξb
g .

(iv) We say that ū satisfies the second order sufficient condition (SSC) if

∂2 L
∂u2

(ū,μ)h2 > 0 (SSC)

holds true for every h ∈ Cū \ {0}.
Theorem 3.2 (Second-order sufficient optimality conditions for (P)) Let ū ∈ U be
a feasible control of (P) satisfying the eigenvalue restriction (Definition 2.3). Fur-
thermore, suppose that μa

g,μ
b
g ∈ M(�g), μs ∈ M(�s) and p ∈ W 1,q ′

(�), 1 ≤ q ′ <
N/(N −1) satisfy (3.1–3.4). If ū additionally satisfies (SSC), then there exist positive
real numbers ε and δ such that

f (ū) + δ

2
‖u − ū‖2

L2(�s)
≤ f (u),

holds true for every feasible control u of (P) with ‖u − ū‖L2(�s)
< ε.

We underline that the above result does not exhibit any two-norm discrepancy and
thus Theorem 3.2 guarantees local optimality in “L2-neighborhood”, cf. also [9].

4 Moreau-Yosida type regularization

As pointed out in the introduction, the basic concept of the Moreau-Yosida type regu-
larization is to remove the pointwise state constraints (1.1) and to add a corresponding
Lagrangian-type penalty to the objective functional of (P), cf. [16]. More precisely,
we regularize (P) in the following way:

{
min

u∈L2(�s)
fγ (u)

subject to ua ≤ u ≤ ub a.e. in �s.
(Pγ )

The objective functional in (Pγ ) is defined as follows:

fγ (u) := f (u) + 1

2γ1

∫
�g

max
(
0, γ1(G(u) − yb)

)2
dx

+ 1

2γ2

∫
�g

max
(
0, γ2(ya − G(u)

)
)2 dx

+ 1

2γ3

∫
�s

max
(
0, γ3(G(u) − ymax)

)2
dx, (4.1)
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where γ = (γ1, γ2, γ3) with γi > 0 for i = 1,2,3. Notice that we write γ > 0 if
and only if γi > 0 for all i = 1,2,3. Moreover, the notation γ → ∞ means that
(γ1, γ2, γ3) → (∞,∞,∞).

Hereafter, one obtains an optimal control problem (Pγ ) with pure control-
constraints. Since U is not empty, it can be shown by standard arguments that (Pγ ) is
solvable for all γ > 0. Similarly to (P), the solution to (Pγ ) is not necessarily unique.
Therefore, in our study we concentrate on investigating local solutions to (Pγ ).

Definition 4.1 Let γ > 0. A function uγ ∈ U is called a local solution to (Pγ ) if

fγ (uγ ) ≤ fγ (u)

holds true for all u ∈ U satisfying ‖u − uγ ‖L2(�s)
≤ ε, for some ε > 0.

Theorem 4.1 (First-order necessary optimality conditions for (Pγ )) Let γ > 0 and
let uγ ∈ L2(�s) be a local solution of (Pγ ) with the associated state yγ = G(uγ ).
Moreover, suppose that uγ satisfies the eigenvalue restriction (Definition 2.3). Then,
there exist an adjoint state pγ ∈ W 1,q ′

(�), Lagrange multipliers μa
g,γ ,μb

g,γ ∈
L2(�g) and μs,γ ∈ L2(�s) such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−div(κg∇pγ ) = −�yγ + div z + μb
g,γ − μa

g,γ in �g ,

−div(κs∇pγ ) = μs,γ in �s ,

κg

(
∂pγ

∂nr

)
g

− κs

(
∂pγ

∂nr

)
s

− 4(σ |yγ |3)�∗pγ = −∂yγ

∂nr

+ z · nr on �r ,

κs

∂pγ

∂n0
+ 4εσ |yγ |3pγ = 0 on �0,

(4.2)

μb
g,γ = max(0, γ1(yγ |�g

− yb)),

μa
g,γ = max(0, γ2(ya − yγ |�g

)),

μs,γ = max(0, γ3(yγ |�s
− ymax)),

uγ = Pad

{
− 1

β
pγ (x)

}
(4.3)

hold in variational sense.

Proof Let γ > 0 and let uγ ∈ L2(�s) be an optimal solution to (Pγ ) satisfying
the eigenvalue restriction. The associated state of uγ is denoted by yγ = G(uγ ) ∈
W 1,q (�) and we define:

μb
g,γ = max

(
0, γ1(yγ |�g

− yb)
)
,

μa
g,γ = max

(
0, γ2(ya − yγ |�g

)
)
,

μs,γ = max
(
0, γ3(yγ |�s

− ymax)
)
.
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By integrating formally by parts over the boundaries �r and �0, we obtain the weak
formulation of (4.2), given by

∫
�

κ∇pγ ∇v dx + 4
∫

�r

(σ |yγ |3)�∗pγ v ds + 4
∫

�0

εσ |yγ |3pγ v ds

=
∫

�g

(∇yγ − z) · ∇v dx +
∫

�g

(μb
g,γ − μa

g,γ )v dx

+
∫

�s

μs,γ v dx ∀v ∈ W 1,q (�). (4.4)

We point out that since yγ ∈ W 1,q(�), μb
g,γ ,μa

g,γ ∈ L2(�g), μs,γ ∈ L2(�s) and

z ∈ L2(�g)
N , the right hand side of (4.4) defines an element ξ ∈ W 1,q (�)∗ with

〈ξ, v〉 :=
∫

�g

(∇yγ − z) · ∇v dx +
∫

�g

(μb
g,γ − μa

g,γ )v dx

+
∫

�s

μs,γ v dx ∀v ∈ W 1,q(�).

Therefore, the weak formulation (4.4) can equivalently be written as follows (see the
representation of A′

q in (2.3)

A′
q(yγ )∗pγ = ξ in W 1,q(�)∗. (4.5)

Since uγ satisfies the eigenvalue restriction, Theorem 2.1 implies that A′
q(yγ ) is con-

tinuously invertible from W 1,q (�) to W 1,q ′
(�)∗ and hence A′

q(yγ )∗ is continuously

invertible from W 1,q ′
(�) to W 1,q (�)∗. Therefore, (4.4) admits a unique solution

pγ ∈ W 1,q ′
(�). It remains to show that the solution pγ of (4.4) satisfies the projec-

tion formula in (4.3).
According to Theorem 2.1, fγ is continuously differentiable at uγ and the deriva-

tive of fγ at uγ in the direction (u − uγ ) with an arbitrary u ∈ U is given by

f ′
γ (uγ )(u − uγ ) = (∇yγ − z,∇y)

L2(�g)
+ β(uγ ,u − uγ )

L2(�s )

+ (μb
g,γ − μa

g,γ , y)
L2(�g)

+ (μs,γ , y)
L2(�s )

, (4.6)

with y = G′(uγ )(u − uγ ). Hence by the definition of G′(uγ ) in Theorem 2.1, y ∈
W 1,q (�) is the unique solution of

∫
�

κ∇y∇v dx + 4
∫

�r

(�σ |yγ |3y)v ds + 4
∫

�0

εσ |yγ |3yv ds

=
∫

�s

(u − uγ )v dx ∀v ∈ W 1,q ′
(�). (4.7)
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Inserting v = pγ in (4.7), v = y in (4.4) and then subtracting the arising equations,
we find that∫

�s

(u−uγ )pγ dx =
∫

�g

(∇yγ −z) ·∇y dx +
∫

�g

(μb
g,γ −μa

g,γ )y dx +
∫

�s

μs,γ y dx.

Inserting this in (4.6), we infer hence that

f ′
γ (uγ )(u − uγ ) = (pγ + βuγ ,u − uγ )

L2(�s )
. (4.8)

On the other hand, since the admissible set U = {u ∈ L2(�s) | ua ≤ u ≤ ub a.e. in �s}
is convex, it is well-known that the necessary optimality condition to the optimal
solution uγ is given by the following variational inequality:

f ′
γ (uγ )(u − uγ ) ≥ 0 ∀u ∈ U . (4.9)

Therefore, since (4.8) holds true for all u ∈ U , we finally arrive at

(pγ + βuγ ,u − uγ )
L2(�s )

≥ 0 ∀u ∈ U ,

which implies by standard arguments the projection formula (4.3). �

Remark 4.1 We point out that if A′
q(yγ ) is invertible, then Theorem 4.1 remains true

without the eigenvalue restriction on the optimal control uγ .

5 Convergence analysis

The goal of this section is to study the convergence behavior of the regularized so-
lutions of (Pγ ) in the case of γ → ∞. The convergence of the Moreau-Yosida type
approach was originally proven by Ito and Kunisch in [16]. However, since we con-
sider nonlinear control problem (P) with a nonstandard objective functional f , the
convergence result from [16] is not directly applicable to (P).

It is well known that the unregularized problem (P) does not admit a unique global
solution. Moreover, optimization algorithms compute in general only local solutions.
For this reason, we focus mainly on the convergence of the regularized solutions
towards local solutions of the unregularized problem. Suppose that a local solution
ū of (P) is given. We aim at finding a sequence (uγ )γ of local solutions to (Pγ )

converging strongly to ū as γ → ∞. In fact, if ū satisfies the second order optimality
conditions (SSC), then the desired sequence can be found.

Assumption 5.1 Let ū ∈ U be a local solution to (P) in L2(�s) satisfying the eigen-
value restriction (Definition 2.3), the linearized Slater condition (Definition 3.2) and
the second order sufficient condition (SSC) (Definition 3.3).

Based on Assumption 5.1, Theorem 3.2 implies the existence of positive real num-
bers ε and δ such that

f (ū) + δ

2
‖u − ū‖2

L2(�s)
≤ f (u) (5.1)

holds true for every feasible control u of (P) with ‖u − ū‖L2(�s)
< ε.
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Remark 5.1 We point out that based on Assumption 5.1, Theorem 2.2 ensures the
existence of an open neighborhood Uū of ū in L2(�s) such that: If uk ⇀ û ∈ Uū

weakly in L2(�s), then G(uk) → G(û) strongly in W 1,q (�).

Let us introduce now the following auxiliary problem:
{

min fγ (u)

subject to u ∈ U r ,
(Pr

γ )

where U r = {u ∈ U | ‖u − ū‖L2(�s)
≤ r} with r ∈ R

+ \ {0} sufficiently small such
that r ≤ ε

2 and U r ⊂ Uū (cf. Remark 5.1). By the construction, ū is a feasible control
of (Pr

γ ), for all γ > 0. Thus, for every γ > 0, the control problem (Pr
γ ) admits a

global solution. We denote by (ur
γ )γ>0 ⊂ U r a sequence of global solutions of (Pr

γ ).
Our goal now is to show that ur

γ converges strongly to ū, as γ → ∞. It should be
underlined that the idea of considering an auxiliary problem of the form (Pr

γ ) is based
on Casas and Tröltzsch [8].

Lemma 5.1 Let Assumption 5.1 be satisfied. Then, every weak limit ũ ∈ L2(�s) of
any subsequence of (ur

γ )γ>0 is feasible for (P), i.e., ũ ∈ U holds true and the corre-
sponding state of ũ, denoted by ỹ, satisfies

ya ≤ ỹ ≤ yb a.e. in �g and ỹ ≤ ymax a.e. in �s.

Proof Assume that a subsequence of (ur
γ )γ>0, denoted w.l.o.g. again by (ur

γ )γ>0,

converges weakly to ũ in L2(�s). Since U r is weakly closed, the weak limit ũ belongs
to the admissible set U r . In particular, ũ ∈ U . Let us define ỹ = G(ũ). Our next goal
is to show that ỹ ∈ W 1,q (�) satisfies the state-constraints in (P).

Since ū is not only feasible for all (Pr
γ ) but also feasible for (P), we have

fγ (ur
γ ) ≤ fγ (ū) = f (ū) ∀γ > 0.

Hence, by the definition of fγ , we find a constant c > 0 independent of γ such that

γ1

2

∫
�g

max(0, G(ur
γ ) − yb)

2 dx ≤ c.

Consequently, we obtain:

lim
γ→∞‖max(0, G(ur

γ ) − yb)‖2
L2(�g)

= lim
γ→∞

∫
�g

max(0, G(ur
γ ) − yb)

2 dx = 0 (5.2)

or equivalently

lim
γ→∞ max(0, G(ur

γ )|�g − yb) = 0 in L2(�g). (5.3)

In addition, since ũ ∈ U r ⊂ Uū, we find that (see Remark 5.1):

lim
γ→∞ G(ur

γ ) = G(ũ) = ỹ in W 1,q (�) (5.4)
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and hence due to the continuity of M : L2(�) → L2(�), M(z) = max(0, z), it follows
that

lim
γ→∞ max(0, G(ur

γ )|�g − yb)

= max(0, G(ũ)|�g − yb) = max(0, ỹ|�g − yb) in L2(�g). (5.5)

Therefore, invoking (5.3), we come to the conclusion that

0 = max(0, ỹ|�g − yb)

which implies

ỹ ≤ yb a.e. in �g.

Concerning the other state constraints, one argues analogously such that the lemma
is verified. �

Theorem 5.1 Let Assumption 5.1 be satisfied. Then, the sequence (ur
γ )γ>0 converges

strongly in L2(�) to ū as γ → ∞.

Proof Since ur
γ ∈ U for all γ > 0, the sequence (ur

γ )γ>0 is uniformly bounded in

L2(�s). For this reason, there exists a subsequence of (ur
γ )γ>0, denoted w.l.o.g by

(ur
γ )γ>0, converging weakly to ũ in L2(�). By Lemma 5.1, the weak limit ũ is a

feasible control of (P).
Since ū is feasible for all (Pr

γ ) and also feasible for (P),

f (ur
γ ) ≤ fγ (ur

γ ) ≤ fγ (ū) = f (ū) (5.6)

holds true for all γ > 0. Therefore, owing to the lower semi-continuity of f , we have
by passing to the limit γ → ∞:

f (ũ) ≤ lim inf
γ→∞ f (ur

γ ) ≤ lim sup
γ→∞

f (ur
γ ) ≤ f (ū). (5.7)

On the one hand,

f (ū) + δ

2
‖u − ū‖2

L2(�s)
≤ f (u) (5.8)

holds true for every feasible control u of (P) with ‖u − ū‖L2(�s)
< ε. Moreover, by

Lemma 5.1, the weak limit ũ is a feasible control of (P) and it satisfies ũ ∈ U r , i.e.

‖ũ − ū‖L2(�s)
≤ r ≤ ε

2
.
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For this reason, (5.8) is particularly satisfied for the choice u = ũ and thus (5.7)
implies

f (ũ) + δ

2
‖ũ − ū‖2

L2(�s)
≤ f (ū) + δ

2
‖ũ − ū‖2

L2(�s)
≤ f (ũ).

Consequently, ũ = ū.
Now, let us show that (ur

γ )γ>0 converges strongly to ū as γ → ∞. Since f (ũ) =
f (ū) holds true, we infer from (5.7) that

1

2
‖∇ȳ − z‖2

L2(�g)
+ β

2
‖ū‖2

L2(�s)

= f (ū) = lim
γ→∞f (ur

γ ) = lim
γ→∞

(
1

2
‖∇G(ur

γ ) − z‖2
L2(�g)

+ β

2
‖ur

γ ‖2
L2(�s)

)
. (5.9)

Since ur
γ converges weakly to ū and since ū satisfies the eigenvalue restriction, The-

orem 2.2 implies that G(ur
γ ) converges strongly to ȳ in W 1,q (�) and consequently

lim
γ→∞‖∇G(ur

γ ) − z‖2
L2(�g)

= ‖∇ȳ − z‖2
L2(�g)

.

Thus, (5.9) implies

lim
γ→∞‖ur

γ ‖2
L2(�s)

= ‖ū‖2
L2(�s)

and hence due to the weak convergence of (ur
γ )γ>0 to ū as γ → ∞, the theorem is

verified. �

In the following, we show that for all sufficiently large γ > 0, ur
γ is a local solution

of (Pγ ).

Lemma 5.2 For all sufficient large γ > 0, ur
γ is a local solution of (Pγ ).

Proof Let u ∈ U with ‖u−ur
γ ‖L2(�s)

≤ r
2 . Then, for sufficient large γ > 0, we obtain

due to the strong convergence of ur
γ to ū, as γ → ∞:

‖u − ū‖L2(�s)
≤ ‖u − ur

γ ‖L2(�s)
+ ‖ur

γ − ū‖L2(�s)
≤ r

2
+ r

2
= r. (5.10)

Consequently, we have u ∈ U r and hence since ur
γ is a global solution to (Pr

γ ), we
infer:

fγ (ur
γ ) ≤ fγ (u).

Altogether, we have just shown for all sufficiently large γ > 0:
fγ (ur

γ ) ≤ fγ (u)

holds true for all u ∈ U ∩Br
2
(ur

γ ) with Br
2
(ur

γ ) = {u ∈ L2(�s) | ‖u−ur
γ ‖L2(�s)

≤ r
2 }.

Thus, ur
γ is a local solution of (Pγ ). �
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Collecting the results above, we finally arrive at the following theorem:

Theorem 5.2 Let ū be a local solution of (P) satisfying Assumption 5.1 and its cor-
responding state is denoted by ȳ. Then there exists a sequence (uγ )γ>0 of local solu-
tions to (Pγ ) such that as γ → ∞:

uγ → ū strongly in L2(�s),

yγ → ȳ strongly in L2(�),

∇yγ → ∇ȳ strongly in L2(�),

where yγ is the corresponding state of uγ . Moreover, for all sufficiently large γ , the
first-order necessary optimality conditions for (Pγ ) are satisfied for uγ .

Proof Let ū be a local solution of (P) satisfying Assumption 5.1. By Theorem 5.1 and
Lemma 5.2, we have shown the existence of a sequence (uγ )γ>0 of local solutions
to (Pγ ) converging strongly to ū as γ → ∞. Further, we define yγ = G(uγ ). Hence,
the continuity of G : L2(�s) → W 1,q(�) implies that yγ converges strongly to ȳ in
W 1,q (�), as γ → ∞. In particular, it holds that ∇yγ → ∇ȳ strongly in L2(�) as
γ → ∞. Now, since ū satisfies the eigenvalue restriction, Corollary 2.1 implies the
existence of a positive real number γ̄ such that A′

q(yγ ) is continuously invertible for
every γ > γ̄ . This particularly implies that for every γ > γ̄ , the first-order necessary
optimality conditions for (Pγ ) are satisfied for uγ , cf. Remark 4.1. �

6 Numerical verification

Mainly due to the lack of sufficient regularity of the Lagrange multipliers associated
to (P), the semismooth Newton method cannot directly be used to solve the model
problem (P). This difficulty was already overcome by the regularization. Thanks to
the L2-regularity of the Lagrange multipliers associated to (Pγ ), semismooth Newton
methods are applicable to (Pγ ), for all γ ∈ R

+. We point out that semismooth Newton
methods for nonlinear control-constrained control problems are basically equivalent
to the primal-dual active-set strategy, where the linearization of the optimality sys-
tem is solved only one time in the inner iteration, see Ito Kunisch [17] or [10]. In
our present paper, we do not intend to study Algorithm 6.1, below, in details, since
it would go beyond the scope of our framework. We basically follow [17]. Let us
present the complete algorithm for (Pγ ) in the following:

Algorithm 6.1

(1) Initialization: Choose y0,p0 ∈ L2(�) and set n = 1.
(2) Set

U n
a =

{
x ∈ �s

∣∣∣∣ua(x) + 1

β
pn−1(x) > 0

}
,

U n
b =

{
x ∈ �s

∣∣∣∣ − 1

β
pn−1(x) − ub(x) > 0

}
,
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An
a = {x ∈ �g | ya(x) − yn−1(x) > 0},

An
b = {x ∈ �g | yn−1(x) − yb(x) > 0},

An
s = {x ∈ �s | yn−1(x) − ymax(x) > 0}.

(3) Find the solution (yn,un,pn) of the following linearized problem

−div(κg∇yn) = 0 in �g,

−div(κs∇yn) = un in �s,

κg

(
∂yn

∂nr

)
g

− κs

(
∂yn

∂nr

)
s

− 4�σ |yn−1|3yn = −3�σ |yn−1|3yn−1 on �r,

κs

∂yn

∂n0
+ 4εσ |yn−1|3yn = 3εσ |yn−1|3yn−1 + εσy4

0 on �0,

−div(κg∇pn) = −�yn + divz + μb
g,n − μa

g,n in �g,

−div(κs∇pn) = μs,n in �s,

κg

(
∂pn

∂nr

)
g

− κs

(
∂pn

∂nr

)
s

− 4(σ |ȳn−1|3)�∗pn

= −∂yn

∂nr

+ z · nr − 12(σ |yn−1|yn−1)�
∗pn−1(yn − yn−1) on �r,

κs

∂p

∂n0
+ 4εσ |ȳn−1|3pn = −12εσ |yn−1|yn−1pn−1(yn − yn−1) on �0.

un+1 =

⎧⎪⎪⎨
⎪⎪⎩

ua in U n
a ,

ub in U n
b ,

− 1

β
pn in �s \ {U n

a ∪ U n
b },

μb
g,n =

{
yn|�g

− yb in An
b ,

0 in �g \ An
b ,

μa
g,n =

{
ya − yn|�g

in An
a ,

0 in �g \ An
a ,

μs,n =
{

yn|�s
− ymax in An

s ,

0 in �s \ An
s .

(4) Stop or set n = n + 1 and go to step (2).

The efficiency of Algorithm 6.1 for the numerical solution of problem (Pγ ) is
tested by two different examples which is depicted in the following. Before we spec-
ify test settings in detail, let us shortly describe the discretization of the PDEs in
step (3) of Algorithm 6.1. Here, all quantities are discretized by standard linear fi-
nite elements, in particular also μa

g , μb
g , and μs which is feasible since they are not

measures but proper functions due to the regularization (cf. Theorem 4.1). Concern-
ing the discretization of the integral operators K and �, we follow the lines of [3]
and apply a summarized midpoint rule in combination with an exact integration of
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Table 1 Matrial parameters for
the numerical tests κg ( W

m K ) κs ( W
m K ) ε σ ( W

m2K4 )

0.08 24.0 0.65 5.6696 × 10−8

Fig. 2 Control u in the first
example

the kernel ω (cf. Definition 2.1). A detailed description of this method can be found
in [21]. Furthermore, the algebraic equations in step (3) of Algorithm 6.1 are evalu-
ated in the nodes of the triangulation. The arising overall linear system of equations
is then solved by a direct sparse solver. For the computational domain, we choose a
square of side length 2 for � and a square of side length 1 for �g located in the mid-
dle of �. This domain is divided into a mesh consisting of 25061 nodes that is refined
five times around the interface �r . In contrast to the rather academic geometry, the
material parameters are close to approximate the realistic distributions given in [24].
The respective values are given in Table 1. Furthermore, the external temperature y0
is assumed to be constant and equal to 293.0 K. Throughout the following numerical
tests, the desired temperature gradient (in K

m ) is given by z ≡ (0,−20)T , and we took
ua ≡ 0, and ub ≡ 400000 for the control constraints (in W

m3 ). Due to the comparatively
large values of the control, one has to deal with rather small Tikhonov regularization
parameters to control the influence of the cost term within the objective functional.
Hence, we choose β = 10−8. Moreover, in both test examples, the lower bound in
the state constraints is set to ya ≡ 2000 K and we neglect the state constraints in �s

since, in all computations, the temperature stays by far below the melting temper-
ature of graphite. The two test cases differ in the value for the upper bound in the
state constraints. In the first test case we choose yb ≡ 2010 K, whereas yb is set to
2050 K in the second example. Moreover, the penalty parameters γi , i = 1,2, are
all fixed at γ = 104. To illustrate the influence of the regularization parameters, the
second test case is later on also performed with modified values of β and γ (see be-
low). In the first example, the desired temperature gradient of −20 in x2-direction
is not achievable with the values for ya and yb. Note in this context that �g has the
side length 1 such that the difference between ya and yb must be greater or equal
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Fig. 3 State y in the first
example

Fig. 4 Adjoint state p in the
first example

20 to allow for a temperature derivative of −20 a.e. in �g . Therefore, we expect the
state constraints to be active in the first test case. Figures 2–7 show the computed
solution for this example. We observe that the optimal control exhibits characteristic
peaks in the corners of �g . This finding agrees with the results of [22] where the
purely control constrained counterpart of (P) is investigated. A possible explanation
of this observation could be the strong cooling effect of the external temperature in
combination with the comparatively high thermal conductivity in �s which leads to
a large heat flow away from the gas phase, in particular in the corners of �g where
more graphite is concentrated than in the other points on �r . As the desired tempera-
ture gradient is fairly small, the optimal control tries to compensate for this effect by
means of the observed peaks. Since our aim is to control the temperature gradient in
the gas phase, we are naturally in particular interested in the isotherms in �g which
are depicted in Fig. 5. First one observes that the isotherms are nearly horizontal as
required. In contrast to that, the desired temperature difference of 20 K between the
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Fig. 5 Isotherms in �g in the
first example

Fig. 6 μa
g in the first example

lower and upper edge of �r is naturally not achieved due to the bounds on the state.
Nevertheless, the state attains the largest possible temperature difference of 10 K.

Figures 6 and 7 show μa
g and μb

g as approximations of the Lagrange multipliers
associated to the state constraints. It seems that μb

g tends to a line measure on {x ∈
�r | x2 = 0.5}, while μa

g tends to point measures in the upper corners of �g . This
observation corresponds to the weak regularity of Lagrange multipliers associated to
pointwise state constraints. To illustrate the convergence behavior of Algorithm 6.1
Table 2 presents the different contributions to the regularized objective functional fγ ,
as defined in (4.1), during the iteration. To be more precise, we define

f (y)
γ := 1

2

∫
�g

|∇y − z|2 dx, f (u)
γ := β

2

∫
�s

u2 dx,
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Fig. 7 μb
g in the first example

Table 2 Convergence of the objective functional in the first example

it f
(y)
γ f

(u)
γ f

(b)
γ f

(a)
γ δ

1 1.99e+02 1.15e+02 0.0 3.38e−01 5.38e+03

2 1.83e+02 2.98e+02 0.0 2.01e+01 1.78e+00

3 1.66e+02 4.10e+02 0.0 6.23e+00 2.95e−01

4 1.43e+02 4.34e+02 0.0 3.63e+00 2.69e−01

5 1.23e+02 4.39e+02 0.0 1.73e+00 2.98e−01

6 9.22e+01 4.43e+02 0.0 1.42e+00 2.96e−01

7 5.34e+01 4.49e+02 1.95e+03 1.53e+00 2.60e−01

8 7.38e+01 4.43e+02 5.69e+01 1.21e+00 5.19e−01

9 6.94e+01 4.42e+02 4.92e+00 7.26e−01 2.58e−01

10 6.49e+01 4.42e+02 1.09e+00 7.81e−01 3.03e−01

11 6.06e+01 4.42e+02 6.07e−01 8.36e−01 3.24e−01

12 5.42e+01 4.42e+02 5.30e−01 9.25e−01 2.18e−01

13 5.14e+01 4.42e+02 4.44e−01 9.46e−01 1.94e−01

14 5.16e+01 4.42e+02 3.39e−01 9.46e−01 1.18e−01

15 5.16e+01 4.42e+02 3.23e−01 9.46e−01 1.33e−02

16 5.16e+01 4.42e+02 3.23e−01 9.46e−01 1.19e−04

17 5.16e+01 4.42e+02 3.23e−01 9.46e−01 1.67e−09

f (b)
γ := γ

2

∫
�g

max(0, y − yb)
2 dx, f (a)

γ := γ

2

∫
�g

max(0, ya − y)2 dx.

In addition, Table 2 shows the relative difference between two iterates of Algo-
rithm 6.1 given by

δ := 1

3

(‖un+1 − un‖L2(�s)

‖un‖L2(�s)

+ ‖yn+1 − yn‖L2(�)

‖yn‖L2(�)

+ ‖pn+1 − pn‖L2(�)

‖pn‖L2(�)

)
,



Regularization of state-constrained elliptic optimal control problems 207

Fig. 8 Control u in the second
example

Fig. 9 State y in the second
example

which was used for the termination criterion of Algorithm 6.1. As a semismooth New-
ton method, Algorithm 6.1 is clearly just locally convergent, which is confirmed by
the fact that a significant speed up of convergence is observed after the 14th iteration
(see Table 2). Moreover, in accordance with Figs. 6 and 7, f (b)

γ and f
(a)
γ do not vanish

in the optimum indicating that the state constraints are indeed active. An interesting
aspect of the convergence behavior is illustrated by the seventh iteration step where
f

(y)
γ is fairly small but f

(b)
γ = 1950. Hence, the distance between the gradient of the

current state and the desired gradient is indeed comparatively small at this stage, but
the solution is still non-feasible.

Next, let us turn to the second example. As mentioned above, it nearly coincides
with the first one, except the upper bound which is now given by yb ≡ 2050 K such
that a temperature difference of 20 K between lower and upper edge of �r is possible.
The numerical solution is shown in Figs. 8–13. Again, the optimal control possesses
the characteristic peaks in the corners of �g . In comparison to the first example, the
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Fig. 10 Adjoint state p in the
second example

Fig. 11 Isotherms in �g in the
second example

x2-derivative of the state now agrees more with the desired one as Fig. 11 demon-
strates. However, especially in the corners of �g , the temperature profile still differs
noticeably from the desired one and a temperature difference of 20 K is not reached
completely yet. Moreover, the lower state constraint is violated in the upper corner
points of �g (see also Fig. 12). As described below, a modification of β and γ can
prevent these irregularities. Similarly to Tables 2, 3 shows the convergence history
for this example. We observe that, in principle, the algorithm provides the same con-
vergence behavior as in the first case such that number of iteration remains at the
same level. Furthermore, since the bounds ya and yb do now not contradict the de-
sired temperature gradient as in the first example, the values of f

(y)
γ , f

(a)
γ , and f

(b)
γ

are significantly reduced compared to the first case. According to Fig. 13, f
(b)
γ is

zero throughout the whole iteration. However, the objective functional is dominated
by the Tikhonov regularization part f

(u)
γ . The situation changes if β is reduced to
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Fig. 12 μa
g in the second

example

Fig. 13 μb
g in the second

example

β = 10−10 as the Table 4 illustrates. Here, we just present values of the last iteration,
as the other values contain only little information. The results of Table 4 are also
confirmed by Figs. 14 and 15 showing the control and the isotherms for this setting.
As one can see in Fig. 15, the difference between the desired temperature gradient

and the optimal one is significantly reduced. However, the reduction of the Tikhonov
regularization parameter β clearly causes irregularities in the control, in particular
on �r and in the corners of �g (cf. Fig. 14). Moreover, the value for f

(a)
γ in the

fifth column of Table 4 indicates that the lower state constraint is still active in a few
points. In this example, this can be prevented by increasing γ . To see this, we now
set γ = 106. The corresponding results are shown in Table 5. Again, we just show the
values of the last iteration. Furthermore, the plots of the solution are omitted since
they contain only little additional information. We observe that, with this setting, also
f

(a)
γ equals zero such that the optimal state is indeed feasible. Notice however that

the impact of the penalty terms f
(a)
γ and f

(b)
γ is increased by the magnification of γ
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Table 3 Convergence history in
the second example it f

(y)
γ f

(u)
γ f

(b)
γ f

(a)
γ δ

1 1.99e+02 1.15e+02 0.0 3.38e−01 5.38e+03

2 1.83e+02 2.98e+02 0.0 2.00e+01 1.78e+00

3 1.66e+02 4.10e+02 0.0 6.23e+00 2.95e−01

4 1.43e+02 4.34e+02 0.0 3.63e+00 2.69e−01

5 1.23e+02 4.39e+02 0.0 1.73e+00 2.99e−01

6 9.22e+01 4.43e+02 0.0 1.42e+00 2.96e−01

7 5.34e+01 4.49e+02 0.0 1.53e+00 2.60e−01

8 1.08e+01 4.55e+02 0.0 1.50e+00 7.27e−01

9 1.10e+01 4.55e+02 0.0 8.35e−01 2.91e−01

10 1.11e+01 4.55e+02 0.0 6.14e−01 2.72e−01

11 1.13e+01 4.55e+02 0.0 4.99e−01 1.98e−01

12 1.14e+01 4.55e+02 0.0 4.42e−01 1.11e−01

13 1.16e+01 4.55e+02 0.0 3.62e−01 1.03e−01

14 1.17e+01 4.55e+02 0.0 3.02e−01 9.37e−02

15 1.17e+01 4.55e+02 0.0 2.97e−01 2.82e−03

16 1.17e+01 4.55e+02 0.0 2.97e−01 3.89e−10

Table 4 Convergence history in
the second example with
β = 10−10 and γ = 104

it f
(y)
γ f

(u)
γ f

(b)
γ f

(a)
γ δ

18 2.12e+00 5.18e+00 0.0 9.30e−04 1.13e−08

Fig. 14 Control u in the second
example with β = 10−10 and
γ = 104

and consequently, the results for f
(y)
γ and f

(u)
γ are slightly worsened in comparison

to Table 4. Furthermore, the number of iterations is increased which indicates that
the computational effort of the algorithm grows with increasing γ . In order to avoid
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Fig. 15 Isotherms in �g in the
second example with β = 10−10

and γ = 104

Table 5 Convergence history in
the second example with
β = 10−10 and γ = 106

it f
(y)
γ f

(u)
γ f

(b)
γ f

(a)
γ δ

23 2.29e+00 5.60e+00 0.0 0.0 9.92e−09

this, the regularization parameters β and γ should not be chosen too small and large,
respectively.
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on the earlier version of this manuscript.
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