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Abstract The Lagrangian dual of an integer program can be formulated as a min-
max problem where the objective function is convex, piecewise affine and, hence,
nonsmooth. It is usually tackled by means of subgradient algorithms, or multiplier
adjustment techniques, or even more sophisticated nonsmooth optimization methods
such as bundle-type algorithms.

Recently a new approach to solving unconstrained convex finite min-max prob-
lems has been proposed, which has the nice property of working almost indepen-
dently of the exact evaluation of the objective function at every iterate-point.

In the paper we adapt the method, which is of the descent type, to the solution
of the Lagrangian dual. Since the Lagrangian relaxation need not be solved exactly,
the approach appears suitable whenever the Lagrangian dual must be solved many
times (e.g., to improve the bound at each node of a branch-and-bound tree), and
effective heuristic algorithms at low computational cost are available for solving the
Lagrangian relaxation.

We present an application to the Generalized Assignment Problem (GAP) and dis-
cuss the results of our numerical experimentation on a set of standard test problems.
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1 Introduction

The objective of the paper is to extend a recently proposed incremental method [6]
for solving convex finite min-max problems to the solution of the Lagrangian dual
[14] of integer programs of the max-type.

The new incremental method presented in [6] is devoted to solve problems of the
min-max type by working on the basis of “incomplete knowledge” of the objective
function. In particular, at each step of the minimization process it is not necessarily
required to calculate the exact value of the objective function (the maximum), but
possibly only one of the functions that are involved into the maximization process.
This can be very useful whenever the Lagrangian dual of an integer program is to be
solved. The Lagrangian dual of an integer program of the max-type is in fact a min-
max problem, where the evaluation of the objective function (the inner maximization)
requires solution of the Lagrangian relaxation of the original integer program. In our
approach such a problem need not be solved exactly, allowing us to use heuristic
techniques instead of exact algorithms in dealing with the relaxed problem, with-
out impairing the possibility of finding the exact solution to the Lagrangian dual, if
required.

The application of the method appears suitable whenever the Lagrangian relax-
ation of the original integer program is not solvable in polynomial time, but there
exist heuristic algorithms at low computational cost for obtaining a good feasible
solution to it.

The method can be used, of course, to obtain the solution of the Lagrangian dual,
but, also, can be embedded into any enumerative approach to tackle the original inte-
ger program, when at each node of the enumeration tree the Lagrangian relaxation is
the tool adopted to find an upper bound, and the quality of the bound is then improved
through some appropriate multiplier updating technique. In the latter case subgradi-
ent methods, or multiplier adjustment techniques, or more sophisticated nonsmooth
optimization algorithms, such as bundle-type methods, are usually adopted. All such
methods require exact solution of the Lagrangian relaxation for each configuration of
the multipliers, which is not always the case for the proposed method.

In order to prove effectiveness of our approach, as well as to show its practical
use, we will particularly concentrate our attention on the Lagrangian dual of the Gen-
eralized Assignment Problem (GAP), an extensively studied integer program known
to be NP-hard. In fact, a lot of exact and heuristic algorithms have been developed in
the last thirty years. A survey of algorithms developed until 1992 can be found in [3].
More recent work on these topics can be found in [12, 15–17].

Exact algorithms designed for GAP are often of the branch-and-bound type. In
this context it is very important to find good bounds by using different types of relax-
ations. Moreover a dual descent method is necessary to tighten the bound obtained
at each node, in order to possibly discard the related subproblem. One of the most
used algorithm in this context is the subgradient method, but also “ad hoc” heuristic
algorithms have been developed for GAP, one of the most important being the multi-
plier adjustment method presented in [5]. An extensive description of the Lagrangian
relaxations of GAP and relative algorithms can be found in [11].

The paper is organized as follows. In Sect. 2, to make the paper selfcontained, the
incremental algorithm proposed in [6], which falls in the class of bundle methods
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for convex nonsmooth optimization problems [10], is shortly described. We refer the
interested reader to [2] for a general discussion on the online (incremental) approach,
and to [9, 13] for the analysis of the convergence properties and for an extensive
bibliography. In Sect. 3 we particularize our algorithm in order to make it suitable for
solving a Lagrangian dual of an integer program of the max type. Next, in Sect. 4,
we show practical application of the method for solving the Lagrangian dual of GAP.
Finally, in Sect. 5 we report on the numerical results obtained by applying the method
to some standard GAP test problems.

For the sake of readability, we have adopted throughout the paper notations as
close as possible to the ones commonly adopted in the literature related to each differ-
ent context involved. Consequently, when confusion cannot occur, the same symbol
has been used, in different parts of the paper, with fairly different meanings.

2 An incremental method for min-max problems

As previously announced, first we briefly review the structure of the incremental
method presented in [6], along with some underlying theoretical results. The method
is of the bundle type and is based on the cutting-plane approach to minimize convex
functions. It is particularly tailored to solve the following unconstrained minimization
problem of the min-max type

min
x∈Rn

f (x), (1)

where f : R
n �→ R is the pointwise maximum over all the functions fi : R

n �→ R,

with i ∈ I
�= {1, . . . ,m}, that is

f (x)
�= max

i∈I
fi(x).

Each function fi is said a component functions of f , while the set I is referred to as
the function index set. In the following we will assume that each fi is convex and not
necessarily differentiable.

Suppose a set of points xk , k = 1, . . . , r , is given and that at each point xk just one
of the component functions, say the one indexed by ik ∈ I , is evaluated along with
a corresponding subgradient gik ∈ ∂fik (xk). On the basis of the information provided
by the set of triplets

{(xk, fik (xk), gik ) : k = 1, . . . , r},
the following cutting-plane model of f is generated

f̂r (x) = max
1≤k≤r

{fik (xk) + g�
ik

(x − xk)}, (2)

which is the pointwise maximum of the affine functions fik (xk) + g�
ik

(x − xk), for

k = 1, . . . , r . The model function f̂r (x) is said a partial cutting-plane function since,
unlike the standard cutting-plane function, it is not necessarily obtained via the lin-
earization at each point xk of the maximal component function, but, instead, on the
basis of only one component function, no matter how it is singled out.
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As a consequence of both convexity of the component functions and the definition
of f , the linearization of each fi is still a lower affine approximation of f . This
in turn implies that f̂r (x) is a convex piecewise-affine lower approximation of f ,
the main difference with the standard cutting-plane function being in the fact that
the partial cutting-plane function need not interpolate the original function f at the
points xk , k = 1, . . . , r . The basic idea is then to calculate the next trial point xr+1 as
a minimizer of the partial cutting-plane function.

To make the approach work in practice, we resort to the machinery typical of
bundle methods for minimizing convex functions. In particular, when the set of
triplets {(xk, fik (xk), gik ) : k = 1, . . . , r}, is available, we select from among the
points x1, . . . , xr an estimate y of the minimizer that we refer to as the current stabil-
ity center, namely, the point from which the next displacement is to be calculated.

By letting x = y + d , the function f̂r can be rewritten in the form rooted at y:

f̂r (y + d) = max
1≤k≤r

{g�
ik

d + βk},

where βk is the value at point y of the linearization of fik rooted at xk :

βk
�= fik (xk) + g�

ik
(y − xk), k = 1, . . . , r. (3)

Now, using a notation widely adopted in the nonsmooth optimization literature, we
define the “bundle” Br as the following set of elements:

Br
�= {(xk, fik (xk), gik , βk), ∀k ∈ Ir },

where the index set Ir
�= {1, . . . , r} is the bundle index set. Assuming that the bundle

Br is currently available, a new point xr+1 can be calculated by setting

xr+1 = xr + dr ,

where dr is the (unique) minimizer to the problem

min
d∈Rn

1

2
ρ‖d‖2 + f̂r (y + d), (4)

whose objective function is obtained by adding the proximity term 1
2ρ‖d‖2 to the

partial cutting-plane function f̂r . We remind a well-known fact about bundle meth-
ods, that the introduction of a proximity term into the objective function is aimed
both at stabilizing the cutting plane approach and at getting a well-posed problem,
independently of possible unboundedness of the partial cutting-plane function. In the
following the scalar parameter ρ will be referred to as the proximity parameter.

By introducing the additional (scalar) variable v, problem (4) can be rewritten as
the following convex quadratic program in R

n+1

QP(Br ) minv,d

1

2
ρ‖d‖2 + v,

v ≥ g�
ik

d + βk ∀k ∈ Ir .
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Letting (vr , dr ) be the optimal solution to QP(Br ) we have, of course, that

vr = f̂r (y + dr).

The dual of problem QP(Br ) has the form:

DP(Br ) minλ∈Rr
1

2ρ

∥
∥
∥
∥

∑

k∈Ir

λkgik

∥
∥
∥
∥

2

−
∑

k∈Ir

λkβk,

∑

k∈Ir

λk = 1,

λk ≥ 0 ∀k ∈ Ir .

By letting λ
(r)
k , for every k ∈ Ir , be the optimal solution to DP(Br ), the following

relations, linking primal and dual optimal variables, hold:

dr = − 1

ρ
g(r), (5a)

vr = − 1

ρ
‖g(r)‖2 +

∑

k∈Ir

λ
(r)
k βk, (5b)

where g(r) �= ∑

k∈Ir
λ

(r)
k gik . We remark that some useful information can be obtained

from the solution of DP(Br ). In fact, as proved in [6, Lemma 2.2], the vector g(r) is
an ε-subgradient of f at y, i.e.,

g(r) ∈ ∂εf (y), (6)

where

ε
�= f (y) −

∑

k∈Ir

λ
(r)
k βk ≥ 0.

Such a property allows to establish an approximate optimality condition. In fact
whenever both ‖g(r)‖ and ε are “small,” we accept y as an approximate optimal
solution.

In standard cutting-plane approaches every time a new iterate is generated, the
actual value of the objective function at such a point is not smaller than the predicted
one, i.e., than the cutting-plane function value. This in turn implies that the newly
generated affine piece cuts part of the current cutting-plane function epigraph, and
consequently a tighter model of the objective function is obtained.

This is no longer the case in the algorithmic framework presented in [6], where
any new affine piece is not obtained, in general, by evaluating the actual objective
function value (which would require calculation of the maximal component function),
but by evaluating just one component function, which might not result greater than the
corresponding value of the partial cutting-plane function. In such case no cut would
take place and consequently no useful information would be extracted from the newly
generated point. In this respect the following two properties play a significant role.
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Decrease property (see [6, Lemma 2.3]) Let δ be any positive scalar. If fi(y +dr) ≤
vr + δ for every i ∈ I , then

f (y + dr) − f (y) ≤ − 1

ρ
‖g(r)‖2 + δ.

Cut property (see [6, Lemma 2.4]) Let δ be any positive scalar. If fh(y + dr) >

vr + δ for some index h ∈ I , then (vr , dr) is not feasible for problem QP(Br+1)

obtained by modifying the bundle so that

Br+1 = Br ∪ {(xr+1, fh(xr+1), gh,βr+1)},
where xr+1 = y + dr , gh ∈ ∂fh(xr+1), and βr+1 = fh(xr+1) + g�

h (y − xr+1).

The meaning of the two properties is the following. First notice that whenever a
component i ∈ I is selected so that at dr the inequality

fi(y + dr) > vr + δ

is satisfied, then a significant cut is obtained (i.e., cut property holds). Moreover, if no
such cut is obtained for all the component functions, then a sufficient reduction of the
objective function in passing from y to y + dr is guaranteed (i.e., decrease property
holds), irrespective of whether or not the actual value of f at y is known, provided
that an appropriate choice of some parameters is made (see (7) and Algorithm 2 for
details).

The above observations drive the method described below. In the algorithm the
point y + dr is accepted as a bundle enrichment whenever an index satisfying the
cut property is found, whilst if no such index exists, (i.e., the decrease property is
satisfied), then the point y + dr becomes the new stability center. Observe, of course,
that whenever the latter case occurs an exact calculation of the objective function will
actually take place.

The incremental algorithm is based on repeatedly solving problems of the type
QP(Br ), or equivalently DP(Br ), and on the evaluation of just one component func-
tion at a time.

The initialization of the algorithm requires a starting point x1 ∈ R
n. The initial

stability center y is set equal to x1, since we assume that the first bundle element
always denotes the current stability center. Thus, the initial bundle B1 is made up
of just one element (y, fi1(y), gi1(y),β1), for some i1 ∈ I , where gi1(y) ∈ ∂fi1(y),
with gi1(y) �= 0, and β1 = fi1(y). Of course, if such an index i1 does not exist (i.e.,
gi(y) = 0 ∀i ∈ I ) then the starting point x1 is optimal.

The following global parameters are to be set:

• the optimality tolerance η > 0 and the approximation measure ε > 0;
• the increase parameter σ > 1.

In addition, two positive parameters subject to possible modifications are needed,
the descent parameter δ and the proximity parameter ρ; their initial setting is, respec-
tively, δ := δ̄ > 0 and ρ := ρ̄ > 0. It is also assumed that parameters η, δ̄ and ρ̄ satisfy
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the condition:

η2 > ρ̄δ̄. (7)

The algorithm can be summarized as follows.

Algorithm 1 (Algorithm Outline)

1. Initialize.
2. Execute the “main iteration.”
3. Update the bundle with respect to the new stability center and return to 2.

In the sequel we describe in details the “main iteration,” i.e., the sequence of steps
where the stability center remains unchanged.

Possible exits from the “main iteration” are:

(i) termination of the whole algorithm, resulting from the satisfaction of an approx-
imate optimality condition;

(ii) update of the stability center, resulting from the satisfaction of the decrease prop-
erty.

For sake of notation simplicity the “main iteration” is not indexed (e.g., the bundle
Br and the bundle index set Ir will be indicated by B and I , respectively). Of course
the stability center y is to be intended as the current stability center.

The “main iteration” maintains the (updated) bundle of information from previ-
ous iterations. Updating the bundle is necessary since the βks are dependent on the
stability center.

Algorithm 2 (Main Iteration)

1. Solve QP(B) or, alternatively, DP(B), and obtain both the optimal primal solution
(v̄, d̄) and the optimal dual solution λ̄. Set x̄ = y + d̄ .

If
∥
∥
∥
∥

∑

k∈I
λ̄kgik

∥
∥
∥
∥

> η

then go to Step 3.
2. Calculate f (y). If

f (y) −
∑

k∈I
λ̄kβk ≤ ε

then STOP (approximate optimality achieved).
Else set ρ := σρ, δ := δ/σ , make a bundle reset, i.e. set

B := {(y, f (y), g(y),β1)},
and

I := {1},
where g(y) ∈ ∂f (y) and β1 = f (y), and return to Step 1.
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3. Extract any index i from the function index set I . If

fi(x̄) > v̄ + δ

then (cut property satisfied) set

B := B ∪ {(x̄, fi(x̄), gi, βi}

where gi ∈ ∂fi(x̄) and βi = fi(x̄) − g�
i d̄ . Update appropriately the bundle index

set I , restore the function index set by setting I = {1, . . . ,m} and return to Step 1.
4. Set I = I − {i}. If

I = ∅

then (decrease property satisfied) set y = x̄ and EXIT (update the stability center).
Else return to Step 3.

Some explanations are in order. The aim of Step 2 is to check satisfaction of the
approximate optimality condition derived from (6). If this is the case, then successful
termination of the whole algorithm takes place; indeed, we have ‖∑

k∈I λ̄kgik‖ ≤ η

and f (y) − ∑

k∈I λ̄kβk ≤ ε, which, taking into account (6), imply that the current
stability center y fulfills the following approximate optimality condition:

f (x) ≥ f (y) − η‖x − y‖ − ε ∀x ∈ R
n.

If termination does not occur, a suitable update of the parameters ρ and δ, along
with a reset of the bundle, must be executed before solving again QP(B) or DP(B).
In this respect, we point out that the condition (7), holding for the initial setting of
the parameters η, ρ, and δ, is valid throughout the algorithm, as a consequence of
the simultaneous increase of ρ and reduction of δ which takes place every time the
parameter updates at Step 2 occur.

It is also worth noting that every update of the stability center occurs at Step 4
whenever the decrease property is satisfied, i.e., all the component functions have
been evaluated. This implies that all the stability centers, but possibly the first, are
inserted into the bundle carrying the information related to the actual value of the
objective function f at y. Hence, the explicit evaluation of f (y), requested at Step 2,
is just a safeguard against the possible use of inexact information about y the first
time Step 2 is entered, that is, when the stability center has never been updated.

We refer the interested reader to [6] for a complete discussion on the convergence
properties of the algorithm.



On solving the Lagrangian dual of integer programs 125

3 Incremental min-max and Lagrangian relaxation

Consider the following integer programming problem

IP zIP = max c�x,

Ax ≤ b,

Dx = e,

x ∈ Z
n+,

where A ∈ R
p×n, D ∈ R

m×n, c ∈ R
n, b ∈ R

p , e ∈ R
m, and Z

n+ denotes the set of n-
dimensional vectors of nonnegative integers. We suppose, as usual in the Lagrangian
relaxation approach [4, 7], that a set of complicating constraints can be identified in
IP. In particular, for reasons that will become clear later, we assume that the equality
constraints Dx = e are the complicating ones. Lagrangian relaxation of IP, dependent
on the unconstrained multiplier vector μ ∈ R

m, is then the following problem:

LR(μ) z(μ) = maxx c�x + μ�(e − Dx),

Ax ≤ b,

x ∈ Z
n+.

The optimal values of IP and LR(μ) satisfy the condition z(μ) ≥ zIP, for every
μ ∈ R

m, i.e., the optimal objective function value of the Lagrangian relaxation is an
upper bound on the optimal objective function value of the original problem. The best
(minimal) upper bound can then be calculated by solving the so-called Lagrangian
dual problem:

zLD = min
μ

z(μ).

If we assume that LR(μ) has finitely many feasible solutions, we can in principle
enumerate them as x(1), x(2), . . ., x(s), namely

{x(1), . . . , x(s)} = {x ∈ Z
n+ : Ax ≤ b},

and rewrite its objective function in the following way

z(μ) = max
1≤t≤s

{
t + μ�gt },

where 
t
�= c�x(t) and gt

�= e − Dx(t). Hence, the Lagrangian dual problem can be
stated as

LD zLD = min
μ∈Rm

max
1≤t≤s

{
t + μ�gt },

and actually consists in a finite min-max problem, where the objective function is a
piecewise affine convex function of the max type, defined as the pointwise maximum
of a possibly fairly large set of component functions, each of them being affine.
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We can now recognize that the Lagrangian dual formulation LD looks like a con-
vex finite min-max problem equivalent to problem (1), and therefore it can be tackled,
mutatis mutandis, by means of the incremental approach presented in Sect. 2. We re-
mark that two assumptions introduced earlier play a fundamental role in turning the
Lagrangian dual into an unconstrained convex finite min-max problem. In fact, on one
hand, assuming that equality constraints are the complicating ones, i.e., constraints
to relax, allows to have unconstrained multipliers. On the other hand, assuming that
LR(μ) has finitely many feasible solutions guarantees that the objective function of
LD be a finite max-function.

The latter observation raises the natural question about whether one actually
needs to know every feasible solution of LR(μ). We notice that the affine functions

t +μ�gt , t = 1, . . . , s, play the role of the max-function components, and hence any
feasible solution of the Lagrangian relaxation generates a component function. There-
fore, facing the minimization of z(μ) via a naive application of Algorithm 1 would
imply the need for possibly evaluating all the feasible solutions of LR(μ) for a given
μ, quite an unrealistic assumption for any significant instance of an integer program.
This is the reason why we need to design an appropriate version of the main iteration
(Algorithm 2), which can take into account the different context of application, while
maintaining active the underlying incremental philosophy. In particular, our method
turns out to be particularly suitable for the rather common case when the Lagrangian
relaxation is not easy to solve, but there exist effective heuristic techniques to tackle
it.

Suppose we are given a certain set of points μk ∈ R
m, k = 1, . . . , r , and let us

focus on the particularization of the bundle. Let also y be the current stability cen-
ter, possibly coinciding with one of the μk . Following the definitions of Sect. 2, the
bundle has the form

Br = {(μk, ztk , gtk , βtk ),∀k ∈ Ir},
where the index set Ir

�= {1, . . . , r} is the bundle index set; ztk = 
tk + μ�
k gtk , for

some tk ∈ {1, . . . , s}, identifies the component function actually chosen at point μk

corresponding to some feasible solution x(tk); gtk = e − Dx(tk), and βtk , following
(3), has the form

βtk = 
tk + g�
tk

μk + g�
tk

(y − μk) = 
tk + g�
tk

y.

Assuming that the bundle Br is currently available, we calculate a new point μr+1
by setting

μr+1 = μr + dr ,

where dr is the (unique) minimizer to the quadratic problem of the form QP(Br )

defined in Sect. 2. By letting λ
(r)
k , for every k ∈ Ir , be the optimal solution of the

corresponding dual problem DP(Br ), relations (5) linking primal and dual optimal
variables still hold.

Now we are ready to restate Algorithm 1; more precisely, since the initialization
phase does not change, we will just focus on restating its main iteration. Speaking of
which, we remark that in the remainder of the paper, slightly abusing of our termi-
nology, we will often refer to a given main iteration as an algorithm for solving an
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associated min-max problem (e.g., problem LD), with the obvious meaning that Al-
gorithm 1 actually solves that problem, once the appropriate main iteration has been
embedded into it.

Some preliminary remarks are useful to understand the structure of the main iter-
ation. In Sect. 2, the assumption underlying Algorithm 2 was the availability of all its
component functions; we just aimed at avoiding to evaluate all of them at every point.
In the Lagrangian dual case, we simply do not know every feasible point of the La-
grangian relaxation, hence we cannot evaluate all the component functions at a given
point. What we can do instead is to partially enumerate the feasible solutions, as long
as either the cut property is satisfied, and the bundle is updated, or such an enumer-
ation process cannot carry on, and obviously the Lagrangian relaxation needs to be
solved via an exact approach. As for the enumeration process, several alternatives are
available. On the one hand, assuming that h different heuristic algorithms (h ≥ 1) are
available to find a feasible solution to the Lagrangian relaxation, we could generate
feasible solutions trying each of such heuristics until a cut is generated, eventually
resorting to an exact method when no more heuristics are available. On the other
hand, the sequence of feasible solutions could even be generated directly via an ex-
act method, e.g., a branch-and-bound approach, by simply checking the cut property
every time the best integer solution is updated; in this case the enumeration process,
if no cut is ever generated, would naturally terminate returning the exact solution of
the Lagrangian relaxation. Of course, one can easily understand that any hybrid ap-
proach between the two listed above, would work similarly. Moreover, depending on
the heuristic algorithms available for a given problem, the enumeration process could
even become much more structured than the one just described.

Once recognized that several choices for generating a sequence of feasible solu-
tions for LR(μ) are available, we state the main iteration for problem LD adopting
a heuristic-based enumeration process. Hence, let H = {1, . . . , h} be the heuristics
index set, and assume that an exact algorithm to solve LR(μ) is available. Again for
sake of notation simplicity we do not index the “main iteration.”

Algorithm 3 (Main Iteration)

1. Solve QP(B) or, alternatively, DP(B), and obtain both the optimal primal solution
(v̄, d̄) and the optimal dual solution λ̄. Set μ̄ = y + d̄ .

If
∥
∥
∥
∥

∑

k∈I
λ̄kgtk

∥
∥
∥
∥

> η

then go to Step 3.
2. Calculate z(y) by finding the optimal solution x� to the problem LR(y). If

z(y) −
∑

k∈I
λ̄kβk ≤ ε

then STOP (approximate optimality achieved).
Else set ρ := σρ, δ := δ/σ , make a bundle reset, i.e., set

B := {(y, z(y), g(y),β1)},
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and

I := {1},
where g(y) = e − Dx� and β1 = z(y), and return to Step 1.

3. Find a feasible solution x(t) to the problem LR(μ̄). If

zt (μ̄) > v̄ + δ (8)

then (cut property satisfied) set

B := B ∪ {(μ̄, zt (μ̄), gt , βt },
where gt = e − Dx(t) and βt = c�x(t) + g�

t μ̄ − g�
t d̄ . Update appropriately the

bundle index set I and return to Step 1.
4. Set H = H − {t}. If

H = ∅
(no more heuristics available) then find the exact solution to the problem LR(μ̄)

(decrease property satisfied), set y = μ̄ and EXIT (update of the stability center).
Else return to Step 3.

In Sect. 4 we will give practical details on how to exploit Algorithm 3 for solving
the Lagrangian dual of GAP.

4 An incremental Lagrangian dual approach for GAP

The Generalized Assignment Problem consists in finding the optimal assignment of
a given number of tasks to a set of agents, under the constraints that each task be
assigned to exactly one agent, and the total consumption of a given resource cannot
exceed, for each agent, the available amount. The objective is in general put in the
form of maximization of the assignment value. Suppose, in particular, that a set of
tasks J = {1, . . . , n} is given, together with a set of agents I = {1, . . . ,m}. Let cij

be the value of assigning task j to agent i, aij be the amount of resource consumed
by task j when assigned to agent i, and bi be the resource availability of agent i. We
assume that cij , aij , and bi are all nonnegative scalars. The decision variables of the
problem are the binary variables xij , i ∈ I and j ∈ J , defined as:

xij =
{

1 if task j is assigned to agent i,

0 otherwise.

GAP is then formulated as:

z = max
∑

i∈I

∑

j∈J
cij xij , (9a)

∑

i∈I
xij = 1 ∀j ∈ J , (9b)
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∑

j∈J
aij xij ≤ bi ∀i ∈ I, (9c)

xij ∈ {0,1} ∀i ∈ I,∀j ∈ J , (9d)

where constraint (9b) are called semi-assignment constraints, whereas constraints
(9c) are the capacity (or knapsack) constraints.

The Lagrangian relaxation obtained dualizing the semi-assignment constraints
(9b) by means of unconstrained multipliers μj , j ∈ J , is:

z(μ) = max
∑

i∈I

∑

j∈J
cij xij +

∑

j∈J
μj

(

1 −
∑

i∈I
xij

)

,

∑

j∈J
aij xij ≤ bi ∀i ∈ I,

xij ∈ {0,1} ∀i ∈ I,∀j ∈ J .

It is a decomposable problem which can be written in the form:

z(μ) =
∑

j∈J
μj +

∑

i∈I
Zi(μ),

where

Zi(μ)
�= max

∑

j∈J
(cij − μj )xij ,

∑

j∈J
aij xij ≤ bi,

xij ∈ {0,1} ∀j ∈ J .

It is easy to recognize that calculation of Zi(μ) requires solution of a binary knap-
sack problem (note that at the optimum there holds xij = 0 if cij − μj ≤ 0). As a
consequence, solving the Lagrangian relaxation of GAP, for a given multiplier vector
μ, amounts to solving m binary knapsack problems.

The Lagrangian dual consists in finding the best upper bound to the optimal value
of GAP, i.e., in solving

min
μ∈Rn

z(μ) = min
μ∈Rn

∑

j∈J
μj +

∑

i∈I
Zi(μ).

Observe that such objective function is in the form of sum of a linear term plus the
sum of m functions of the max type, and that the evaluation of each of the latter ones
requires solution to a binary knapsack problem.

The Lagrangian dual can be easily rewritten in a form suitable for application of
the incremental algorithm described in Sect. 3. In fact, since the number of feasible
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solutions of the Lagrangian relaxation is finite, by enumerating them as

x
(1)
ij , x

(2)
ij , . . . , x

(s)
ij ∀i ∈ I,∀j ∈ J ,

we can rewrite the Lagrangian dual in the form:

min
μ

z(μ) = min
μ

max
t∈S

{
∑

i∈I

∑

j∈J
cij x

(t)
ij +

∑

j∈J
μjg

(t)
j

}

, (10)

where S
�= {1, . . . , s}, and

g
(t)
j =

(

1 −
∑

i∈I
x

(t)
ij

)

.

The formulation (10) emphasizes the fact that z(μ) is the pointwise maximum of
s affine functions in the variable μ. Of course the vector g(t) = (g

(t)
1 , g

(t)
2 , . . . , g

(t)
n )�

is the gradient of the t-th affine piece, for any t ∈ S.
The minimization of z(μ) can be tackled by adopting different nonsmooth de-

scent techniques like subgradient type methods or any cutting-plane based approach.
In all such cases indeed it is required the generation of a sequence of points μ(k),
k = 1,2, . . . where the function z(μ(k)) is to be evaluated exactly, together with a
subgradient g(k). Calculation of z(μ(k)) requires exact solution of m knapsack prob-
lems, i.e., implicit enumeration of all feasible solutions x

(t)
ij , t ∈ S, i ∈ I , j ∈ J . On

the other hand, the adoption of the incremental approach, described in Sect. 3, would
require only to pick up one component function, i.e.,

∑

i∈I

∑

j∈J
cij x

(tk)
ij +

∑

j∈J
μ

(k)
j g

(tk)
j ,

with tk ∈ S, which in turn requires only to determine one feasible solution x
(tk)
ij , i ∈ I ,

j ∈ J .
The above observation suggests the opportunity of replacing the optimal solution

of the m knapsack problems by any suboptimal solution provided by appropriate
heuristic algorithms. Of course, we note that, in running Algorithm 3, it might well
happen that, because of possible failure of the cut property, at least one of the m

knapsack problems is to be solved exactly.
Summarizing, if a set of points μ(k) ∈ R

n, k = 1, . . . , r , is given along with the
current stability center y, in the GAP case, we can define the “bundle” Br as the
following set of elements:

Br
�= {(μ(k), ztk , g

(tk), βtk ),∀k ∈ Ir},

where the index set Ir
�= {1, . . . , r} is the bundle index set, g(tk) = (g

(tk)
1 , . . . , g

(tk)
n )�,

ztk =
∑

i∈I

∑

j∈J
cij x

(tk)
ij +

∑

j∈J
μ

(k)
j g

(tk)
j ,
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and

βtk =
∑

i∈I

∑

j∈J
cij x

(tk)
ij +

∑

j∈J
yjg

(tk)
j

with yj denoting the j -th component of vector y. With the above definitions, Al-
gorithm 3 (embedded into Algorithm 1) is an incremental cutting plane method for
solving the Lagrangian dual of GAP. The initialization of the algorithm requires a
starting point μ(1) ∈ R

n that can be obtained by using the initialization phase of the
multiplier adjustment method described in [5]; hence, we set

μ
(1)
j = max

2
{cij : i ∈ I } ∀j ∈ J,

namely, each component μ
(1)
j is the second maximum over all the coefficients cij .

5 Numerical results

We have tested Algorithm 3, appropriately tailored for GAP, on 90 test problems
grouped in the literature in two sets: the first 60 problems, gap1-1 to gap12-
5, are classified as “small-sized,” while the remaining 30 problems are classified as
“large-sized,” and referred to as types A, B, C, D, and E. These test problems are
taken from the OR-Library maintained by J.E. Beasley [1], and available on the web
at http://people.brunel.ac.uk/~mastjjb/jeb/orlib/gapinfo.html.

The algorithm, called IGAP, has been implemented in Fortran 90 on a Pentium
IV −1 GHz personal computer running on a Windows XP system. The following
input parameters have been used: ε = 0.001, η = 0.05, δ̄ = 0.08, ρ̄ = 0.009 and
σ = 10. Some exceptions occur due to failed termination of the quadratic program-
ming solver, i.e., the subroutine DQPROG provided by the IMSL library and based
on M.J.D. Powell’s implementation of the Goldfarb and Idnani [8] dual quadratic
programming algorithm. Thus, problem instances highlighted with ∗ and ∗∗, have
been solved by setting ρ̄ = 0.01 and ρ̄ = 0.03, respectively. IGAP embeds the sub-
routine MT1R as an exact solver for the knapsack problem; MT1R is a branch and
bound algorithm devised and implemented by Martello and Toth, and described in
[11, Sect. 2.5.2]. To emphasize the role played by the incremental philosophy we
compare our method with a fairly similar algorithm which is based on a plain imple-
mentation of the bundle method philosophy [10]. More precisely, our implementation
of the bundle algorithm consists in applying IGAP by enforcing exact evaluation of
the objective function whenever a new multiplier vector is generated. In Tables 1 and
2, for each instance we report the optimal value zIP of GAP, the objective function
value z̄LD of the Lagrangian dual returned by the algorithm upon termination, the
corresponding number Nex of exact objective function evaluations, and the elapsed
CPU times. In addition, for the incremental case we provide the number of times
Nheu a heuristic solution to the Lagrangian relaxation has been calculated. In our im-
plementation, the greedy algorithm described in [11] has been adopted. The greedy
algorithm sorts the items according to decreasing values of the profit per unit weight,

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/gapinfo.html


132 M. Gaudioso et al.

Table 1 IGAP: small-sized instances

Type Characteristics Bundle IGAP

m n zIP Nex z̄LD Time Nex Nheu z̄LD Time

gap1-1∗ 5 15 336 71 337.00 0.59 36 156 337.00 2.06

gap1-2 5 15 327 87 327.00 0.64 43 114 327.00 0.44

gap1-3∗ 5 15 339 90 339.50 0.98 25 115 339.50 0.36

gap1-4 5 15 341 63 341.00 0.17 75 142 341.00 0.08

gap1-5 5 15 326 85 327.25 0.58 71 179 327.25 0.78

gap2-1 5 20 434 127 435.00 2.72 43 153 435.00 2.27

gap2-2 5 20 436 145 436.00 3.53 41 174 436.00 1.22

gap2-3 5 20 420 113 420.80 2.33 63 186 420.75 1.30

gap2-4 5 20 419 133 420.00 2.69 114 247 419.50 3.67

gap2-5 5 20 428 107 428.00 2.55 39 176 428.00 1.00

gap3-1 5 25 580 160 580.00 5.16 72 238 580.00 3.06

gap3-2 5 25 564 162 564.00 4.53 47 206 564.00 2.63

gap3-3 5 25 573 145 573.00 4.42 36 161 573.00 1.28

gap3-4 5 25 570 163 570.00 5.19 31 180 570.00 1.75

gap3-5 5 25 564 193 564.14 6.38 67 230 564.00 3.11

gap4-1 5 30 656 229 656.86 9.36 136 282 656.78 4.11

gap4-2∗ 5 30 644 224 646.45 8.36 67 253 646.45 5.64

gap4-3 5 30 673 287 674.50 13.72 59 252 674.39 5.66

gap4-4 5 30 647 251 647.60 10.48 71 286 647.50 6.83

gap4-5 5 30 664 195 664.00 7.59 37 230 664.00 4.23

gap5-1 8 24 563 183 564.06 5.81 56 225 564.00 4.23

gap5-2 8 24 558 190 558.00 6.97 86 276 558.00 4.69

gap5-3 8 24 564 156 564.00 4.92 33 208 564.00 3.42

gap5-4 8 24 568 162 568.71 4.42 103 293 568.71 6.17

gap5-5 8 24 559 205 560.60 6.92 88 264 560.57 4.61

gap6-1 8 32 761 205 762.10 6.63 74 275 762.10 4.67

gap6-2∗ 8 32 759 210 760.00 8.13 72 322 760.00 9.00

gap6-3 8 32 758 235 758.50 9.94 68 307 758.50 8.84

gap6-4 8 32 752 261 753.00 10.50 81 260 753.00 4.95

gap6-5 8 32 747 314 747.80 13.06 77 319 747.80 6.77

gap7-1 8 40 942 407 943.06 19.58 170 443 943.07 13.38

gap7-2 8 40 949 433 949.46 21.86 69 370 949.43 10.13

gap7-3 8 40 968 346 968.00 15.94 51 443 968.00 14.92

gap7-4 8 40 945 445 945.00 21.58 93 517 945.00 20.05

gap7-5 8 40 951 308 952.00 13.48 103 342 952.00 8.22

gap8-1∗ 8 48 1133 542 1133.97 27.73 215 669 1133.54 24.06

gap8-2 8 48 1134 337 1135.50 14.52 119 471 1135.72 15.55



On solving the Lagrangian dual of integer programs 133

Table 1 (Continued)

Type Characteristics Bundle IGAP

m n zIP Nex z̄LD Time Nex Nheu z̄LD Time

gap8-3 8 48 1141 596 1141.00 30.45 145 452 1141.33 17.50

gap8-4 8 48 1117 635 1118.53 33.11 225 782 1118.50 29.59

gap8-5∗ 8 48 1127 608 1127.15 31.84 243 671 1127.00 26.58

gap9-1 10 30 709 184 710.00 6.48 39 273 710.00 7.03

gap9-2 10 30 717 270 717.33 10.27 105 318 717.00 7.36

gap9-3 10 30 712 177 713.00 5.94 57 227 713.00 4.44

gap9-4 10 30 723 260 724.00 10.36 42 303 724.00 7.50

gap9-5 10 30 706 190 707.50 6.91 97 278 708.00 4.64

gap10-1 10 40 958 392 958.00 18.45 56 489 958.00 16.38

gap10-2 10 40 963 258 964.00 10.73 104 406 964.00 11.30

gap10-3 10 40 960 333 960.23 14.06 98 411 960.15 14.59

gap10-4 10 40 947 325 947.00 13.97 129 511 947.00 17.02

gap10-5 10 40 947 364 948.35 16.80 161 507 948.25 16.70

gap11-1∗ 10 50 1139 613 1139.50 33.92 153 490 1139.42 17.30

gap11-2 10 50 1178 536 1178.33 30.11 212 519 1178.33 18.75

gap11-3∗ 10 50 1195 420 1195.17 20.94 115 570 1195.17 16.00

gap11-4∗∗ 10 50 1171 265 1172.00 12.64 105 400 1172.00 12.41

gap11-5∗ 10 50 1171 561 1172.50 31.75 210 558 1172.39 22.16

gap12-1 10 60 1451 590 1451.00 28.73 99 668 1451.00 24.45

gap12-2∗ 10 60 1449 931 1449.88 54.98 185 630 1449.88 23.31

gap12-3 10 60 1433 583 1433.50 29.34 83 556 1433.50 21.95

gap12-4 10 60 1447 699 1447.71 38.47 91 715 1447.60 26.52

gap12-5∗ 10 60 1446 463 1446.50 21.05 312 818 1446.50 33.42

and then proceeds to insert them into the knapsack, starting from the first element and
until there is no more space available in the sack.

It is worth noting that, unlike the GAP formulation given in Sect. 4, instances A–E
are available as minimization problems and, therefore, the results are presented ac-
cordingly. In particular, this means that for such instances the values z̄LD are lower
bounds for zIP. Tables 1 and 2 show that for 89 instances out of 90 the IGAP al-
gorithm behaves better than the standard bundle in terms of the number of exact
objective function evaluations, which is very often at least halved in the incremen-
tal case. The counterpart is the necessity of calculating a certain number of heuristic
solutions to the Lagrangian relaxation. This has indeed some influence on computa-
tion times, where IGAP outperforms the standard bundle on 58 instances out of 90.
Such a behavior can be easily explained by observing that the computational burden
of solving exactly the knapsack problem need not be much heavier than applying a
heuristic algorithm to obtain a feasible solution. Of course, we expect that using the
incremental approach to solve Lagrangian dual becomes more and more effective for
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Table 2 IGAP: type A–E instances

Type Characteristics Bundle IGAP

m n zIP Nex z̄LD Time Nex Nheu z̄LD Time

A 5 100 1698 99 1697.48 0.03 28 100 1697.55 0.02

A 5 200 3235 125 3233.68 0.05 47 146 3233.93 0.03

A 10 100 1360 110 1357.34 0.05 44 138 1358.52 0.05

A 10 200 2623 157 2622.94 0.06 61 178 2622.40 0.08

A 20 100 1158 142 1157.14 0.06 26 144 1157.17 0.06

A 20 200 2339 191 2236.79 0.08 28 175 2337.21 0.69

B 5 100 1843 229 1831.66 0.05 72 267 1830.64 0.08

B 5 200 3552 344 3545.78 0.05 119 422 3545.39 0.19

B 10 100 1407 174 1404.63 0.09 77 185 1404.38 0.08

B 10 200 2827 362 2822.15 0.14 212 480 2820.89 0.22

B 20 100 1166 220 1165.01 0.06 98 238 1165.14 0.36

B 20 200 2339 269 2337.38 0.20 147 330 2337.20 1.30

C 5 100 1931 162 1917.05 0.08 98 275 1922.59 0.11

C 5 200 3456 325 3448.77 0.08 147 426 3449.13 0.14

C 10 100 1402 202 1392.81 0.13 109 278 1394.44 0.08

C 10 200 2806 314 2799.91 0.06 115 431 2801.41 0.11

C 20 100 1243 260 1239.56 0.05 138 283 1238.79 0.30

C 20 200 2391 429 2388.10 0.19 143 474 2387.78 1.89

D 5 100 6353 365 6347.49 0.06 108 403 6347.45 0.09

D 5 200 12742 433 12738.67 0.23 128 607 12738.96 0.16

D 10 100 6348 395 6339.51 0.09 137 408 6339.44 0.14

D 10 200 12432 572 12311.94 7.63 175 612 12311.52 0.39

D 20 100 6190 464 6174.71 0.34 226 559 6174.82 0.72

D 20 200 12241 707 12141.19 8.20 269 823 12142.07 5.45

E 5 100 12681 551 12657.73 0.09 353 643 12657.87 0.14

E 5 200 24930 808 24896.21 0.08 477 985 24902.04 0.08

E 10 100 11577 633 11533.36 0.13 573 796 11536.96 0.11

E 10 200 23307 1028 23281.01 0.22 916 1334 23286.62 0.19

E 20 100 8436 801 8407.66 0.23 634 824 8405.14 0.33

E 20 200 22379 1600 22349.08 8.84 1424 1758 22350.25 12.78

those problems for which heuristic algorithms are available that have much lower
computational costs than their exact counterpart.

As mentioned in the introduction, very often in implementing enumeration tech-
niques, multiplier adjustment is employed at the nodes of the enumeration tree to
possibly improve the quality of the bound. Extensive use of subgradient techniques is
made in such context, for example by prefixing a typically small number of subgradi-
ent iterations to be performed. To highlight the performance of our approach in view
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Table 3 Err%. Small-sized instances

Type Characteristics Bundle IGAP

m n zIP z̄1 Err% Time z̄1 Nheu Err% Time

gap1-1∗ 5 15 336 366.00 8.93% 0.03 339.16 62 0.94% 0.16

gap1-2 5 15 327 366.00 11.93% 0.02 334.05 33 2.16% 0.08

gap1-3∗ 5 15 339 367.00 8.26% 0.02 343.80 41 1.42% 0.13

gap1-4 5 15 341 368.00 7.92% 0.02 346.16 44 1.51% 0.06

gap1-5 5 15 326 365.00 11.96% 0.02 330.36 46 1.34% 0.03

gap2-1 5 20 434 484.00 11.52% 0.05 439.05 73 1.16% 0.39

gap2-2 5 20 436 485.00 11.24% 0.02 443.73 53 1.77% 0.06

gap2-3 5 20 420 484.00 15.24% 0.02 424.82 71 1.15% 0.34

gap2-4 5 20 419 485.00 15.75% 0.02 426.46 49 1.78% 0.06

gap2-5 5 20 428 482.00 12.62% 0.06 429.40 74 0.33% 0.42

gap3-1 5 25 580 612.00 5.52% 0.03 582.28 100 0.39% 1.25

gap3-2 5 25 564 607.00 7.62% 0.02 568.07 86 0.72% 0.78

gap3-3 5 25 573 607.00 5.93% 0.05 576.13 92 0.55% 1.17

gap3-4 5 25 570 609.00 6.84% 0.02 572.95 103 0.52% 1.39

gap3-5 5 25 564 608.00 7.80% 0.03 567.87 88 0.69% 0.61

gap4-1 5 30 656 724.00 10.37% 0.02 662.31 97 0.96% 1.28

gap4-2∗ 5 30 644 728.00 13.04% 0.02 655.80 82 1.83% 0.61

gap4-3 5 30 673 724.00 7.58% 0.05 679.51 87 0.97% 0.72

gap4-4 5 30 647 723.00 11.75% 0.05 652.20 108 0.80% 1.75

gap4-5 5 30 664 725.00 9.19% 0.03 667.57 97 0.54% 1.11

gap5-1 8 24 563 588.00 4.44% 0.02 567.27 112 0.76% 2.03

gap5-2 8 24 558 588.00 5.38% 0.06 562.63 110 0.83% 1.84

gap5-3 8 24 564 588.00 4.26% 0.02 567.08 112 0.55% 1.89

gap5-4 8 24 568 589.00 3.70% 0.05 573.22 107 0.92% 1.55

gap5-5 8 24 559 587.00 5.01% 0.02 565.52 87 1.17% 0.80

gap6-1 8 32 761 786.00 3.29% 0.02 765.41 130 0.58% 3.44

gap6-2∗ 8 32 759 788.00 3.82% 0.02 762.65 133 0.48% 3.30

gap6-3 8 32 758 784.00 3.43% 0.03 762.65 125 0.61% 2.92

gap6-4 8 32 752 788.00 4.79% 0.02 756.53 121 0.60% 2.59

gap6-5 8 32 747 784.00 4.95% 0.03 751.87 139 0.65% 3.63

gap7-1 8 40 942 980.00 4.03% 0.02 945.66 185 0.39% 7.36

gap7-2 8 40 949 985.00 3.79% 0.03 952.94 183 0.42% 6.14

gap7-3 8 40 968 992.00 2.48% 0.03 971.82 178 0.40% 5.63

gap7-4 8 40 945 989.00 4.66% 0.05 948.55 158 0.38% 4.77

gap7-5 8 40 951 981.00 3.15% 0.02 955.69 154 0.49% 4.58

gap8-1∗ 8 48 1133 1178.00 3.97% 0.05 1137.90 164 0.43% 4.95

gap8-2 8 48 1134 1182.00 4.23% 0.05 1139.18 187 0.46% 6.59
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Table 3 (Continued)

Type Characteristics Bundle IGAP

m n zIP z̄1 Err% Time z̄1 Nheu Err% Time

gap8-3 8 48 1141 1181.00 3.51% 0.02 1144.96 200 0.35% 6.45

gap8-4 8 48 1117 1180.00 5.64% 0.03 1122.94 234 0.53% 8.53

gap8-5∗ 8 48 1127 1174.00 4.17% 0.02 1133.21 142 0.55% 3.88

gap9-1 10 30 709 737.00 3.95% 0.02 713.84 132 0.68% 3.19

gap9-2 10 30 717 739.00 3.07% 0.03 722.76 112 0.80% 2.11

gap9-3 10 30 712 737.00 3.51% 0.02 718.98 93 0.98% 1.89

gap9-4 10 30 723 739.00 2.21% 0.03 726.46 126 0.48% 2.83

gap9-5 10 30 706 735.00 4.11% 0.05 714.46 87 1.20% 1.91

gap10-1 10 40 958 986.00 2.92% 0.02 960.78 216 0.29% 7.48

gap10-2 10 40 963 986.00 2.39% 0.05 967.20 156 0.44% 4.64

gap10-3 10 40 960 986.00 2.71% 0.05 964.09 181 0.43% 5.91

gap10-4 10 40 947 982.00 3.70% 0.03 950.03 248 0.32% 8.98

gap10-5 10 40 947 983.00 3.80% 0.02 953.20 167 0.65% 4.98

gap11-1∗ 10 50 1139 1214.00 6.58% 0.05 1142.97 229 0.35% 9.03

gap11-2 10 50 1178 1219.00 3.48% 0.06 1182.76 190 0.40% 6.86

gap11-3∗ 10 50 1195 1224.00 2.43% 0.03 1196.33 241 0.11% 9.06

gap11-4∗∗ 10 50 1171 1219.00 4.10% 0.02 1176.71 100 0.49% 1.58

gap11-5∗ 10 50 1171 1223.00 4.44% 0.02 1175.34 221 0.37% 8.53

gap12-1 10 60 1451 1479.00 1.93% 0.02 1453.32 295 0.16% 11.55

gap12-2∗ 10 60 1449 1485.00 2.48% 0.02 1452.22 259 0.22% 11.27

gap12-3 10 60 1433 1480.00 3.28% 0.02 1436.87 278 0.27% 10.80

gap12-4 10 60 1447 1481.00 2.35% 0.03 1449.31 423 0.16% 18.16

gap12-5∗ 10 60 1446 1485.00 2.70% 0.03 1449.45 260 0.24% 9.83

of possible use in such context we report in Tables 3 and 4 the results obtained by
both our algorithm and the standard bundle method for a fixed number of exact La-
grangian relaxation solutions. In particular, we report, for each small-sized instance
(see Table 3), the value z̄1 of the bound obtained after one call of a standard bundle
algorithm, along with the percentage error Err% = zIP−z̄1

zIP
, and for each large-sized

instance (see Table 4), the value z̄10 of the bound obtained after 10 calls of a standard
bundle algorithm, along with the percentage error Err% = | zIP−z̄10

zIP
|. For the incre-

mental case z̄1 and z̄10 indicate the value of the bound obtained after exactly solving
the m knapsack problems once and 10 times, respectively, while Nheu is the corre-
sponding number of heuristic calls. The results in Tables 3 and 4 confirm that the use
of an incremental approach can be highly effective when embedded in a branch-and-
bound context. Indeed, the reduction of the error with respect to a standard bundle
algorithm is noticeable, often being one order of magnitude smaller.
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Table 4 Err%. Type A–E instances

Type Characteristics Bundle IGAP

m n zIP z̄1 Err% Time z̄1 Nheu Err% Time

A 5 100 1698 1524.82 10.20% 0.02 1696.08 81 0.11% 0.02

A 5 200 3235 2763.34 14.58% 0.03 3232.97 104 0.06% 0.03

A 10 100 1360 1095.83 19.42% 0.02 1356.23 104 0.28% 0.05

A 10 200 2623 2192.51 16.41% 0.03 2620.11 120 0.11% 0.05

A 20 100 1158 703.04 39.29% 0.03 1156.88 128 0.10% 0.06

A 20 200 2339 1672.29 28.50% 0.06 2335.42 157 0.15% 0.67

B 5 100 1843 1482.46 19.56% 0.02 1808.09 165 1.89% 0.05

B 5 200 3552 3056.30 13.96% 0.02 3469.55 159 2.32% 0.09

B 10 100 1407 1160.40 17.53% 0.06 1398.64 115 0.59% 0.05

B 10 200 2827 2299.08 18.67% 0.03 2794.55 215 1.15% 0.05

B 20 100 1166 948.53 18.65% 0.05 1159.58 145 0.55% 0.16

B 20 200 2339 1794.08 23.30% 0.06 2330.32 183 0.37% 0.88

C 5 100 1931 1596.03 17.35% 0.03 1900.79 146 1.56% 0.08

C 5 200 3456 2948.70 14.68% 0.05 3368.79 147 2.52% 0.05

C 10 100 1402 1168.70 16.64% 0.02 1382.43 175 1.40% 0.05

C 10 200 2806 2445.68 12.84% 0.05 2772.92 227 1.18% 0.06

C 20 100 1243 945.88 23.90% 0.03 1220.71 147 1.79% 0.16

C 20 200 2391 1956.84 18.16% 0.08 2374.63 282 0.68% 1.55

D 5 100 6353 2612.87 58.87% 0.03 5122.56 109 19.37% 0.02

D 5 200 12742 5288.98 58.49% 0.05 5466.10 72 57.10% 0.06

D 10 100 6348 2465.29 61.16% 0.05 6187.88 189 2.52% 0.06

D 10 200 12432 4521.73 63.63% 0.05 11974.72 271 3.68% 0.19

D 20 100 6190 2253.02 63.60% 0.06 5352.97 79 13.52% 0.09

D 20 200 12241 4237.98 65.38% 0.05 10308.13 157 15.79% 0.80

E 5 100 12681 3758.21 70.36% 0.03 8992.45 131 29.09% 0.08

E 5 200 24930 7357.53 70.49% 0.06 18111.32 202 27.35% 0.03

E 10 100 11577 3502.62 69.74% 0.03 5945.94 78 48.64% 0.09

E 10 200 23307 7076.62 69.64% 0.06 17582.21 228 24.56% 0.09

E 20 100 8436 3216.49 61.87% 0.08 6302.06 137 25.30% 0.28

E 20 200 22379 6878.79 69.26% 0.06 11808.51 132 47.23% 0.53
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