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Abstract This paper presents a smoothing projected Newton-type method for solv-
ing the semi-infinite programming (SIP) problem. We first reformulate the KKT sys-
tem of the SIP problem into a system of constrained nonsmooth equations. Then we
solve this system by a smoothing projected Newton-type algorithm. At each iteration
only a system of linear equations needs to be solved. The feasibility is ensured via
the aggregated constraint under some conditions. Global and local superlinear con-
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vergence of this method is established under some standard assumptions. Preliminary
numerical results are reported.

Keywords Semi-infinite programming · KKT system · Constrained equations ·
Smoothing method · Convergence

1 Introduction

We consider the following semi-infinite programming (SIP) problem:

min{f (x) : x ∈ X}, (1.1)

where X = {x ∈ Rn : g(x, v) ≤ 0, ∀v ∈ V }, f : Rn → R and g : Rn × Rm → R

are twice continuously differentiable functions. In this paper, we assume that V is a
nonempty compact box with

V = {v ∈ Rm : a ≤ v ≤ b},
where a ∈ Rm, b ∈ Rm, and a < b. Here the inequality a < b means that ai < bi for
all i = 1,2, . . . ,m.

The SIP problem arises from various applications such as approximation theory,
optimal control, eigenvalue computation, mechanical stress of materials, and statis-
tical design. The main difficulty for solving the SIP problem is that it has infinite
constraints. Many methods have been proposed for the SIP problem. We refer read-
ers to [8, 9, 15, 16, 23] for details.

Let

V (x) = {v ∈ V : g(x, v) = 0}.
It is well-known [22] that if x is a local minimizer of the SIP problem (1.1), and if

the extended Mangasarian-Fromovitz constraint qualification (EMFCQ) holds at x,
i.e., there exists a vector d ∈ Rn such that

∇xg(x, v)T d < 0

for all v ∈ V (x), then there are p positive numbers ui such that

∇f (x) +
p∑

i=1

ui∇xg(x, vi) = 0,

where vi ∈ V (x) for i = 1, . . . , p and p ≤ n. Hence, the KKT system of the SIP
problem (1.1) is as follows:

∇f (x) +
p∑

i=1

ui∇xg(x, vi) = 0,

g(x, v) ≤ 0, ∀v ∈ V,

ui > 0, g(x, vi) = 0, i = 1, . . . , p.

(1.2)
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In the KKT system (1.2), x is called a stationary point of the SIP problem, and
u ≡ (u1, . . . , up) ∈ Rp and vi for i = 1, . . . , p are called its Lagrange multiplier
and attainers, respectively.

The KKT system (1.2) can be analyzed further. By the definition of V (x) and the
second constrained condition of (1.2), vi ∈ V (x) (i = 1, . . . , p) imply that vi (i =
1, . . . , p) are global minimizers of the following minimization problem:

min −g(x, v)

s.t. v ∈ V.
(1.3)

The KKT system of (1.3) can be written as

(v′ − v)T (−∇vg(x, v)) ≥ 0, ∀v′ ∈ V,

and it can be reformulated as a system of nonsmooth equations as follows (see [2, 5]
for details):

φ(x, v) = 0. (1.4)

Here, φ(x, v) is defined as

φ(x, v) := v − P(a, b, v + ∇vg(x, v)), (1.5)

where the function P is the mid-function defined for all j = 1, . . . ,m, as

(P (a, b,w))j =

⎧
⎪⎨

⎪⎩

aj , if wj < aj ,

wj , if aj ≤ wj ≤ bj ,

bj , if bj < wj .

Thus, if a constraint qualification for (1.3) holds, then the KKT system of the SIP
problem (1.1) can be reformulated as follows:

∇f (x) +
p∑

i=1

ui∇xg(x, vi) = 0,

g(x, v) ≤ 0, ∀v ∈ V,

ui > 0, g(x, vi) = 0 (i = 1, . . . , p)

φ(x, vi) = 0 (i = 1, . . . , p),

(1.6)

because the system (1.4) is a first order necessary condition for vi , i = 1,2, . . . , p to
be local solutions of (1.3).

Based on (1.6), a semismooth Newton method and a smoothing Newton method
were presented in [21] and [10] respectively. The advantage of these two methods
proposed in [10, 21] is that in every iteration only a system of linear equations needs
to be solved. Moreover, these methods enjoy global and locally superlinear conver-
gence. However, these two methods cannot ensure the feasibility of (1.1), because
some previous information was replaced by (1.4), and the second constrained con-
dition in (1.6) was removed. Quite recently, another iterative method for solving the
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KKT system of (1.1) was proposed in [28], in which the feasibility issue was con-
sidered. However, the method in [28] does not have locally superlinear convergence
property.

Let

G(x) =
∫

V

[g(x, v)]+dv, (1.7)

where [x]+ = max{0, x}. The function G(x) was proposed in [25]. Then (1.6) is
equivalent to

∇f (x) +
p∑

i=1

ui∇xg(x, vi) = 0,

G(x) ≤ 0,

ui > 0, g(x, vi) = 0 (i = 1, . . . , p)

φ(x, vi) = 0 (i = 1, . . . , p).

(1.8)

It is not difficult to show that G(x) is nonsmooth but semismooth [18].
In this paper, we present a new method for solving the SIP problem by using a

smoothing projected Newton-type algorithm. At each iteration only a system of linear
equations needs to be solved. The feasibility is ensured via the aggregated constraint
G(x) ≤ 0. Global and local superlinear convergence of this method is established un-
der some standard assumptions. Some drawbacks of existing methods are overcome.

The rest of this paper is organized as follows. In Sect. 2, we study the properties
of the smoothings of the functions G(x) and φ(x, v) in (1.8). In Sect. 3, a smoothing
projected Newton-type algorithm is presented to solve (1.8). This smoothing algo-
rithm is an extension of the method for solving unconstrained nonsmooth equations
presented in [19]. It can also be viewed as a smoothing version of the method pro-
posed in [24]. In Sect. 4 we establish the global and local superlinear convergence of
the new method. In Sect. 5, we give our numerical results, which show that our new
method performs well. Some comments are made in the last section.

Some words about the notation. For a smooth (continuously differentiable) func-
tion Φ : Rn → Rm, we denote the Jacobian of Φ at x ∈ Rn by Φ ′(x), which is
an m × n matrix. We denote the transposed Jacobian as ∇Φ(x). For a function
f : Rn × Rm → R we denote ∇xf (x, y) the gradient of f at (x, y) with respect to x

and ∇2
xxf (x, y), ∇2

xyf (x, y) and ∇2
yyf (x, y) denote, respectively, the n × n, n × m

and m × m Hessian matrices of f at (x, y). For a nonsmooth function G(x), ∂G(x)

means the generalized Jacobian in the sense of Clarke [3]. If M ∈ Rs×t , M = (mij ),
is any given matrix, I ⊆ {1,2, . . . , s} and J ⊆ {1,2, . . . , t} are two subsets, then MIJ

stands for the |I |× |J | submatrix with elements mij , i ∈ I , j ∈ J . If I = {1,2, . . . , s}
or J = {1,2, . . . , t}, then MIJ is simplified as M·J or MI ·, respectively. ‖ · ‖ denotes
the Euclidean norm. If δ is a small quantity, O(δ) and o(δ) mean the same order and
higher order small quantity respectively. ΠW(·) represents the orthogonal projection
on a set W .



A smoothing projected Newton-type algorithm 5

2 Some preliminaries

In this section, we review some results on semismoothness and give some properties
on smoothing approximation functions of the integral function G(x) defined in (1.7)
and φ(x, v) defined in (1.5). These results and properties will be used later.

Semismoothness was originally introduced by Mifflin [13] for functionals. In [20],
Qi and Sun extended the definition of semismooth functions to H : Rn → Rn. H is
said to be semismooth at x ∈ Rn, if

lim
Q∈∂H(x+th′)

h′→h,t↓0

{Qh′}

exists for any h ∈ Rn. Semismoothness can also be defined equivalently as fol-
lows [12]:

Definition 2.1 Let H : Rn → Rn be a locally Lipschitz function. We say that H is
semismooth at x if

(i) H is directionally differentiable at x; and
(ii) for any h → 0 and Q ∈ ∂H(x + h),

H(x + h) − H(x) − Qh = o(||h||).
H is said to be strongly semismooth at x if H is semismooth at x and for any

Q ∈ ∂H(x + h) and h → 0,

H(x + h) − H(x) − Qh = O(||h||2).
Here, o(‖h‖) stands for a vector function of h, satisfying

lim
h→0

o(‖h‖)
‖h‖ = 0,

while O(‖h‖2) stands for a vector function of h, satisfying

‖O(‖h‖2)‖ ≤ M‖h‖2

for all h satisfying ‖h‖ ≤ δ, and some M > 0 and δ > 0. A function H is said to be a
(strongly) semismooth function if it is (strongly) semismooth everywhere on Rn.

In [17], Qi defined the B-subdifferential of a locally Lipschitz function
H : Rn → Rn at a point x ∈ Rn:

∂BH(x) =
{
Q ∈ Rn×n

∣∣∣Q = lim
xk→x

H ′(xk), H is differentiable at xk for all k
}
.

It is seen that

∂H(x) = conv∂BH(x).

The concept of the B-subdifferential will be used in the design of our algorithm.
A locally Lipschitz function H is said to be BD-regular at x ∈ Rn if all Q ∈ ∂BH(x)

are nonsingular [17].
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Lemma 2.1 [17] Suppose that H : Rn → Rn is locally Lipschitz continuous and H

is BD-regular at x ∈ Rn. Then there exist a neighborhood N(x) of x and a constant
C such that for any y ∈ N(x) and Q ∈ ∂BH(y), Q is nonsingular and ‖Q−1‖ ≤ C.

Lemma 2.2 [14] Suppose that H : Rn → Rn is locally Lipschitz continuous and H

is BD-regular at a solution x∗ of H(x) = 0. If H is semismooth at x∗, then there exist
a neighborhood N(x∗) of x∗ and a constant C such that for any x ∈ N(x∗),

‖H(x)‖ ≥ C‖x − x∗‖.

Define Ḡ : R × Rn → R by

Ḡ(t, x) =
∫

V

ḡ(t, x, v)dv,

where ḡ : R × Rn × Rm → R is defined by

ḡ(t, x, v) =
√

(g(x, v))2 + 4t2 + g(x, v)

2
. (2.1)

The function ḡ is the Chen-Harker-Kanzow-Smale smoothing function of [g(x, v)]+.
Other smoothing functions of [g(x, v)]+ can be found in [19]. It is obvious that for
any t �= 0, Ḡ(t, x) is smooth with respect to variable x and

∇xḠ(t, x) =
∫

V

∇xḡ(t, x, v)dv. (2.2)

We now study the semismoothness of Ḡ(t, x). To this end, We first consider a
general case. Let f (x, v) : Rn × V → R be continuous with respect to v ∈ V for
each fixed x ∈ Rn, and be locally Lipschitz with respect to x uniformly in v ∈ V , i.e.,
there exist a neighborhood N of 0 and a positive constant C such that

‖f (x + h,v) − f (x, v)‖ ≤ C‖h‖, ∀h ∈ N, v ∈ V.

Let

Γ (x) =
∫

V

f (x, v)dv.

Obviously, Γ : Rn → R is locally Lipschitz continuous.

Proposition 2.1 Suppose that ∂xf (x, v), viewed as a joint mapping of x and v, is
upper semicontinuous, i.e., for every neighborhood N of ∂xf (x, v), there exists δ > 0
such that

∂xf (x′, v′) ⊂ N, for all x′ ∈ N1(x, δ), v′ ∈ N2(v, δ),

where

N1(x, δ) = {x′ : ‖x′ − x‖ ≤ δ}
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and

N2(v, δ) = {v′ : ‖v′ − v‖ ≤ δ} ∩ V.

Then Γ is semismooth at x̄ if f (·, v) is semismooth at x̄ for every v ∈ V .

Proof It follows from Proposition 1 in [18] that Γ is directionally differentiable at x̄.
On the other hand, by Theorem 2.7.2 in [3], we obtain

∂Γ (x) ⊂
∫

V

∂xf (x, v)dv. (2.3)

This means that for any Q ∈ ∂Γ (x), there exists a measurable mapping v → Qv from
V to Rn with Qv ∈ ∂xf (x, v) a.e. such that for every h ∈ Rn,

Qh =
∫

V

Qvhdv.

Take any h ∈ Rn and Q ∈ ∂Γ (x̄ + h). We have

Γ (x̄ + h) − Γ (x̄) − Q h =
∫

V

(f (x̄ + h,v) − f (x̄, v) − Qvh)dv,

where Qv ∈ ∂xf (x̄ + h,v), which implies

|Γ (x̄ + h) − Γ (x̄) − Qh| ≤
∫

V

|f (x̄ + h,v) − f (x̄, v) − Qvh|dv. (2.4)

To prove Γ is semismooth, it suffices to show that

lim
h→0

|Γ (x̄ + h) − Γ (x̄) − Q h|
‖h‖ = 0. (2.5)

Since f (·, v) is semismooth at x̄ for every fixed v ∈ V , we have

lim
h→0

|f (x̄ + h,v) − f (x̄, v) − Qvh|
‖h‖ = 0, for all Qv ∈ ∂xf (x̄ + h,v). (2.6)

If there exist a neighborhood N of 0 and C > 0 such that

|f (x̄ + h,v) − f (x̄, v) − Qvh|
‖h‖ ≤ C, (2.7)

for all h ∈ N , Qv ∈ ∂xf (x̄ + h,v) and v ∈ V , then by the dominated convergence
theorem, (2.5) follows from (2.6).

Now we prove (2.7). Since f is locally Lipschitz continuous at x̄ uniformly in
v ∈ V , there exist a neighborhood N of 0 and C(x̄) > 0 such that

|f (x̄ + h,v) − f (x̄, v)|
‖h‖ ≤ C(x̄), ∀h ∈ N, v ∈ V. (2.8)
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On the other hand, the upper semicontinuity ∂xf (x, v) implies that for any v ∈ V and
neighborhood N(v) of ∂xf (x̄, v), there exist δv > 0 such that

∂xf (x̄ + h,v′) ⊂ N(v), for all h ∈ N1(0, δv), v
′ ∈ N2(v, δv).

Obviously,

V ⊂
⋃

v∈V

N2(v, δv).

By the compactness of V , there exist a finite number of neighborhoods, say
N2(vj , δvj

), j = 1,2, . . . ,m such that

V ⊂
m⋃

j=1

N2(vj , δvj
).

Let δ̄ = min{δv1, . . . , δvm}. Then we have

⋃

v′∈V

∂xf (x̄ + h,v′) ⊂
m⋃

j=1

N(vj ), for all h ∈ N1(0, δ̄).

It is well known that every ∂xf (x̄, vj ) is compact, j = 1,2, . . . ,m. Consequently,⋃m
j=1 ∂xf (x̄, vj ) is compact and

⋃m
j=1 N(vj ) can be taken a bounded set. Hence,

∪v′∈V ∂xf (x̄ + h,v′) is bounded, which together with (2.8) implies (2.7) holds. We
obtain the desired result and complete the proof of the theorem. �

Now we give some properties of the function Ḡ.

Proposition 2.2 The function Ḡ has the following properties:

(i) It is twice continuously differentiable for any t �= 0.
(ii) There exists a constant C > 0 such that for any x ∈ Rn

|Ḡ(t, x) − G(x)| ≤ C|t |.

(iii) The function Ḡ is semismooth.

Proof It is obvious that (i) holds. The proof of (ii) is similar to that of Theo-
rem 2.1 [11], so we omit it. Now we prove that (iii) holds.

By (i), we only need to show that (iii) holds on z̄ = (0, x̄). Since the composi-
tion of semismooth functions is a semismooth function [6], ḡ(t, x, v) is semismooth
with respect to (t, x) for any fixed v ∈ V . To prove the semismoothness of Ḡ(t, x),
by Proposition 2.1, we only need to show that ∂(t,x)ḡ(t, x, v) is upper semicontinu-
ous with respect to (t, x, v) and ḡ(t, x, v) is locally Lipschitz with respect to (t, x)
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uniformly in v ∈ V . By direct computation, we have

∂(t,x)ḡ(t, x, v) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{ 1
2

( 4t√
g2+4t2

,
(
1 + g√

g2+4t2

)
(∇xg)T

)}
, if t �= 0,

{(0, (∇xg)T )}, if t = 0, g(x, v) > 0,

{(0,0)}, if t = 0, g(x, v) < 0,

{(λ,μ(∇xg)T )|λ2 + (2μ − 1)2 ≤ 1}, if t = 0, g(x, v) = 0,

(2.9)
where g and ∇xg express the corresponding values of functions at point (x, v).
From (2.9), it is easy to verify ∂(t,x)ḡ(t, x, v) is upper semicontinuous with respect to
(t, x, v) on R × Rn × V .

Now we verify that ḡ(t, x, v) is locally Lipschitz with respect to (t, x) uniformly
in v ∈ V . Let z = (t, x). For z close to z̄. There are two cases: (a) t �= 0 and (b) t = 0.

Case (a). By the Mean-Value theorem, there exists a point z̃ in the open segment
connecting z and z̄ such that

ḡ(z, v) − ḡ(z̄, v) = ∇zḡ(z̃, v)T (z − z̄).

By (2.9), it is easy to know that there exists C > 0 such that

|ḡ(z, v) − ḡ(z̄, v)| ≤ C‖z − z̄‖, ∀v ∈ V, (2.10)

since g is continuously differentiable and V is compact.
Case (b). We have

|ḡ(z, v) − ḡ(z̄, v)| = |[g(x, v)]+ − [g(x̄, v)]+|
≤ 2|g(x, v) − g(x̄, v)|
≤ ‖∇xḡ(x̃, v)‖‖x − x̄‖
= ‖∇xḡ(x̃, v)‖‖z − z̄‖,

where x̃ is in the open segment connecting x and x̄, the first inequality comes from
the fact that |[a]+ − [b]+| ≤ 2|a −b|. By this and the condition that g is continuously
differentiable and V is compact, there exists C > 0 such that (2.10) holds. The proof
is complete. �

Define ϕ : R4 → R by

ϕ(t, c, d,w) = c +√(c − w)2 + 4t2

2
+ d −√(d − w)2 + 4t2

2
,

which is the Chen-Harker-Kanzow-Smale smoothing function for mid(c, d,w). For
a, b, v ∈ Rm, we define φ̄ : R × Rm × Rn → Rm by

(φ̄(t, x, v))i = vi − ϕ(t, ai, bi, vi + (∇vg(x, v))i), (2.11)

where i = 1, . . . ,m. It is clear that φ̄ is smooth for t �= 0.
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From Theorem 3 in [19], Lemma 2.3 and Theorem 3.3 in [7], it is easy to prove
the following results for φ̄.

Proposition 2.3 The function φ̄ defined in (2.11) has the following properties:

(i) It is twice continuously differentiable for t �= 0.
(ii) It is semismooth. Furthermore, if g is twice Lipschitz continuously differentiable,

it is strongly semismooth.
(iii) There exists a constant C > 0 such that for any (x, v) ∈ Rn+m and t ∈ R,

‖φ̄(t, x, v) − φ(x, v)‖ ≤ C|t |.

3 A smoothing projected Newton-type algorithm

Let

v = (v1;v2; · · · ;vp).

Define

F(x,u,v) = ∇f (x) +
p∑

i=1

ui∇xg(x, vi), (3.1)

g(x,v) =
⎛

⎜⎝
g(x, v1)

...

g(x, vp)

⎞

⎟⎠ , φ̂(x,v) =
⎛

⎜⎝
φ(x, v1)

...

φ(x, vp)

⎞

⎟⎠ ,

φ̃(t, x,v) =
⎛

⎜⎝
φ̄(t, x, v1)

...

φ̄(t, x, vp)

⎞

⎟⎠ .

By introducing a slack variable y ∈ R and relaxing ui > 0 as ui ≥ 0, (1.8) can be
written as the following system of nonsmooth equations with bounded constraints:

H(z) = 0,

u ≥ 0, y ≥ 0,
(3.2)

where z = (x,u,v, y) ∈ Rn × Rp × Rmp × R, and

H(z) =

⎛

⎜⎜⎝

F(x,u,v)

g(x,v)

G(x) + y

φ̂(x,v)

⎞

⎟⎟⎠ .

Clearly, if z = (x,u,v, y) ∈ Rn × Rp × Rmp × R is a solution of (3.2), then we may
get a solution of (1.8) by dropping those vi in v satisfying ui = 0.
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Denote w = (t, z) = (t, x,u,v, y) ∈ R × Rn × Rp × Rmp × R. Motivated by the
smoothing method in [19] for a system of unconstrained nonsmooth equations and
the method in [24] for a system of constrained nonsmooth equations, in this section
we present a smoothing projected Newton-type method for solving (3.2). We define
the following system of constrained equations:

Φ(t, z) = 0

u ≥ 0, y ≥ 0,
(3.3)

where

Φ(t, z) =
(

t

H̄ (t, z)

)
, H̄ (t, z) =

⎛

⎜⎜⎝

F(x,u,v)

g(x,v)

Ḡ(t, x) + y

φ̃(t, x,v)

⎞

⎟⎟⎠ .

It is obvious that if (t, z) is a solution of (3.3) then z is a solution to (3.2). By Propo-
sitions 2.2 and 2.3, we have the following proposition.

Proposition 3.1 Φ is smooth at (t, z) with t �= 0 and semismooth at (0, z).

Let

W = {w = (t, x,u,v, y) : u ≥ 0, y ≥ 0},
and

Z = {(x,u,v, y) ∈ Rn × Rp × Rmp × R : u ≥ 0, y ≥ 0}.
Define a merit function of (3.3) by

Ψ (w) = 1

2
‖Φ(w)‖2.

Then solving (3.3) is equivalent to finding a global solution of the following mini-
mization problem:

min Ψ (w)

s.t. u ≥ 0, y ≥ 0.
(3.4)

And w is a stationary point of (3.4) if it satisfies

‖d̄G(1)‖ = 0. (3.5)

Here,

d̄G(1) = ΠW(w − γ∇Ψ (w)) − w =
( −γ∇tΨ (w)

ΠZ(z − γ∇zΨ (w)) − z

)
, (3.6)

where γ > 0 is a constant, ΠW(·) is an orthogonal projection operator onto W .
Let α ∈ (0,1) be a constant. For a sequence {wk}∞k=0, we define

β0 = β(w0) = α min{1,‖d̄0
G(1)‖2},
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and

βk = β(wk) :=
{

βk−1, if α min{1,‖d̄k
G(1)‖2} > βk−1,

α min{1,‖d̄k
G(1)‖2}, otherwise.

(3.7)

Now we state our smoothing projected Newton-type algorithm for solving (3.4).

Algorithm 3.1

Step 0. (Initialization)
Choose constants η,ρ,σ ∈ (0,1), p1 > 0, p2 > 2 and α > 0, t̄ > 0 with
αt̄ < 1. Let w̄ = (t̄ ,0,0,0,0), t0 = t̄ and w0 = (t0, x

0, u0,v0, y0) with u0
i ≥

0 (i = 1, . . . , p); y0 ≥ 0. Set k := 0.
Step 1. (Stopping Test)

Let

γk = min

{
1,

tk

|tk + ∇t H̄ (wk) H̄ (wk)| ,
η‖Φ(wk)‖
‖∇Ψ (wk)‖ ,

ηΨ (wk)

‖∇Ψ (wk)‖2

}
, (3.8)

where ∇t H̄ (wk) is the first row of ∇H̄ (wk). Compute d̄k
G(1) by (3.6). If

‖d̄k
G(1)‖ = 0, stop. Otherwise, compute βk by (3.7).

Step 2. (Compute Search Direction)
Compute dk

G by

dk
G = −γk∇Ψ (wk) + βkw̄. (3.9)

Compute dk
N by solving the following linear system:

Φ(wk) + Φ ′(wk)dk
N = βkw̄. (3.10)

If (3.10) has no solution or

−∇Ψ (wk)T dk
N < p1‖dk

N‖p2,

then let dk
N := dk

G.
Step 3. (Line Search)

Let mk be the smallest nonnegative integer m satisfying

Ψ (wk + d̄k((ρ)m)) ≤ Ψ (wk) + σ∇Ψ (wk)T d̃k
G((ρ)m), (3.11)

where for any λ ∈ [0,1],
d̄k(λ) = τ ∗(λ)d̃k

G(λ) + (1 − τ ∗(λ))d̃k
N (λ). (3.12)

Here

d̃k
G(λ) := ΠW(wk + λdk

G) − wk,

(3.13)
d̃k
N (λ) := ΠW(wk + λdk

N) − wk,
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τ ∗(λ) is a solution of the following minimization problem:

min
τ∈[0,1]

1

2
‖Φ(wk) + Φ ′(wk)[τ d̃k

G(λ) + (1 − τ)d̃k
N (λ)]‖2.

Let λk = (ρ)mk and wk+1 = wk + d̄k(λk).
Step 4. Set k := k + 1 and go to Step 1.

Remark 1

(a) Algorithm 3.1 is a smoothing version of the algorithm proposed in [24]. In [24],
it is required that the merit function Ψ must be smooth. In this paper, we do not
need this requirement.

(b) Similar to Lemma 3.1 [24], we have the following result about τ ∗(λ).

τ ∗(λ) = max{0,min{1, τ (λ)}}, (3.14)

where τ(λ) is defined as

τ(λ) =

⎧
⎪⎨

⎪⎩

0, if Φ ′(wk)[d̃k
G(λ) − d̃k

N (λ)] = 0,

−[Φ(wk)+Φ ′(wk)d̃k
N (λ)]T Φ ′(wk)[d̃k

G(λ)−d̃k
N (λ)]

‖Φ ′(wk)[d̃k
G(λ)−d̃k

N (λ)]‖2 , otherwise.

The following projection properties are used in our analysis (see [1]).

Lemma 3.1 The projection operator ΠW(·) with any convex set W ⊂ Rn satisfies

(i) for any w ∈ W ,

[ΠW(w′) − w′]T [ΠW(w′) − w] ≤ 0 for all w′ ∈ Rn;
(ii)

‖ΠW(w′) − ΠW(w′′)‖ ≤ ‖w′ − w′′‖ for all w′,w′′ ∈ Rn;
(iii) Given w,d ∈ Rn, the function ζ defined by

ζ(λ) = ‖ΠW(w + λd) − w‖/λ, λ > 0

is non-increasing.

From the definition of βk , the following proposition is obvious.

Proposition 3.2 {βk} defined in (3.7) has the following properties:

(i) {βk} is non-increasing sequence;
(ii) For all k, βk satisfies

βk ≤ α min{1,‖d̄k
G(1)‖2}.
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Proposition 3.3 Suppose that wk = (tk, zk) ∈ W with tk > 0 is not a stationary point
of (3.4). Then for any λ ∈ (0,1], it holds that

∇Ψ (wk)T d̃k
G(λ) ≤ − λ

γk

(1 − αt̄ )‖d̄k
G(1)‖2 < 0. (3.15)

Proof In this proof, for simplicity, we drop the superscript k. For any w = (t, z) ∈ W

with t > 0, suppose that w is not a stationary point of (3.4). Then

∇Ψ (w) = ∇Φ(w)Φ(w) =
(

t + ∇t H̄ (w) H̄ (w)

∇zH̄ (w) H̄ (w)

)
≡
(∇tΨ (w)

∇zΨ (w)

)
,

where ∇t H̄ (w) is the first row of ∇H̄ (w) and ∇zH̄ (w) is the submatrix of ∇H̄ (w)

obtained by just removing the first row of ∇H̄ (w). Obviously, d̃G(λ) can be written
as

d̃G(λ) ≡
(

(d̃G(λ))t

(d̃G(λ))z

)
=
(−λγ (t + ∇t H̄ (w)H̄ (w)) + λβ(w)t̄

ΠZ(z − λγ∇zΨ (w)) − z

)
.

Then we have

(t + ∇t H̄ (w)H̄ (w))T [−λγ (t + ∇t H̄ (w)H̄ (w)) + λβ(w)t̄ ]
= −λγ

∥∥t + ∇t H̄ (w)H̄ (w)
∥∥2 + λ(t + ∇t H̄ (w)H̄ (w))T β(w)t̄

≤ − λ

γ
‖ − γ∇tΨ (w)‖2 + λ

γ
‖ − γ∇tΨ (w)‖β(w)t̄

≤ − λ

γ
‖ − γ∇tΨ (w)‖2 + λ

γ
‖ − γ∇tΨ (w)‖(αt̄ )‖d̄G(1)‖

≤ − λ

γ
‖ − γ∇tΨ (w)‖2 + αt̄

λ

γ
‖d̄G(1)‖2, (3.16)

where the second inequality comes from Proposition (3.2) (ii) and the fact that
β(w) ≤ α‖d̄G(1)‖, the last inequality is due to ‖−γ∇tΨ (w)‖ ≤ ‖d̄G(1)‖ (see (3.6)).
Thus,

∇zΨ (w)T [ΠZ(z − λγ∇zΨ (w)) − z]

= − 1

λγ
[z − λγ∇zΨ (w) − z]T [ΠZ(z − λγ∇zΨ (w)) − z]

= 1

λγ
[ΠZ(z − λγ∇zΨ (w)) − (z − λγ∇zΨ (w))]T [ΠZ(z − λγ∇zΨ (w)) − z]

− 1

λγ
‖ΠZ(z − λγ∇zΨ (w)) − z‖2

≤ − 1

λγ
‖ΠZ(z − λγ∇zΨ (w)) − z‖2

≤ − λ

γ
‖ΠZ(z − γ∇zΨ (w)) − z‖2, (3.17)
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where the first and second inequalities come from Lemma 3.1 (i) and (iii), respec-
tively. It follows from (3.16) and (3.17) that

∇Ψ (w)T d̃G(λ)

= (t + ∇t H̄ (w)H̄ (w))T [−λγ (t + ∇t H̄ (w)H̄ (w))

+ λβ(w)t̄] + ∇zΨ (w)T [ΠZ(z − λγ∇zΨ (w)) − z]
≤ − λ

γ
[‖ − γ∇tΨ (w)‖2 + ‖Πz(z − γ∇zΨ (w)) − z‖2] + αt̄

λ

γ
‖d̄G(1)‖2

= − λ

γ
(1 − αt̄)‖d̄G(1)‖2 < 0. (3.18)

The proof is complete. �

Now we have the following conclusion which shows that Algorithm 3.1 is well-
defined.

Theorem 3.1 Suppose that wk = (tk, zk) ∈ W with tk > 0 is not a stationary point
of (3.4). Then there exists a constant λ′ ∈ (0,1] such that for any λ ∈ (0, λ′], d̄k(λ) is
a descent direction of Ψ (wk) at wk and

Ψ (wk + d̄k(λ)) ≤ Ψ (wk) + σ∇Ψ (wk)T d̃k
G(λ). (3.19)

Proof By using Proposition 3.3, the conclusion can be proved in a similar way to the
proof of Theorem 3.1 in [24] so we omit it. �

4 Convergence analysis

In this section we analyze the global and local convergence of Algorithm 3.1 in the
previous section. The following proposition is a key result which shows that Algo-
rithm 3.1 can keep tk > 0 at each iteration.

Proposition 4.1 For each k, k = 0,1, . . . , wk = (tk, zk) satisfies

tk ≥ βkt̄ . (4.1)

Furthermore, if wk is not a stationary point of (3.4), then

tk > 0. (4.2)

Proof We prove this proposition by induction. From the choices of t0 and β0 in Al-
gorithm 3.1, it is obvious that (4.1) holds. Suppose that for any integer l, wl = (t l, zl)

satisfies (4.1). Now we prove that wl+1 = (t l+1, zl+1) satisfies (4.1) as well. We de-
note

d̄ l(λl) = τ ∗(λl)d̃
l
G(λl) + (1 − τ ∗(λl))d̃

l
N (λl) =

(
(d̄l(λl))t

(d̄ l(λl))z

)
,
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where λl is the accepted step-length at l-th iteration. It follows from Algorithm 3.1
that

(d̄l(λl))t = τ ∗(λl)λl[−γl(t
l + ∇t H̄ (w)H̄ (w)) + β(wl)t̄ ]

+ (1 − τ ∗(λl))λl[−t l + β(wl)t̄ ]
= −λlγlτ

∗(λl)(t
l + ∇t H̄ (w)H̄ (w)) − (1 − τ ∗(λl))λlt

l + λlβ(wl)t̄

≥ −λlτ
∗(λl)t

l − (1 − τ ∗(λl))λlt
l + λlβ(wl)t̄

= −λlt
l + λlβ(wl)t̄ ,

where the inequality comes from the definition of γl (see (3.8)). Then we have

t l+1 − β(wl+1)t̄ = t l + (d̄l(λl))t − β(wl+1)t̄

≥ (1 − λl)t
l + λlβ(wl)t̄ − β(wl+1)t̄

≥ (1 − λl)t
l + λlβ(wl)t̄ − β(wl)t̄

= (1 − λl)t
l − (1 − λl)β(wl)t̄ ≥ 0, (4.3)

where the second inequality is due to the monotonicity property of β(wl) in Propo-
sition 3.2, and the last inequality comes from that t l ≥ β(wl)t̄ . Therefore, (4.1) holds
for any nonnegative integer k. Furthermore, from (4.1) and that wk is not a stationary
point of (3.4), (4.2) holds. We complete the proof. �

Theorem 4.1 Let {wk} ⊂ W be a sequence generated by Algorithm 3.1. Then any
accumulation point of {wk} is a stationary point of (3.4).

Proof Proposition 4.1 shows that if our algorithm does not stop at a stationary point
of (3.4), then tk > 0 for any k. This means that Φ and Ψ are continuously differen-
tiable at wk . Hence, by using a similar way to the proof of Theorem 4.1 [24], we can
prove the theorem holds. Here we omit the detailed proof. �

In the following propositions we give some conditions under which the stationary
point of (3.4) is a feasible point of the original SIP problem. Let

J1(x, v) = {i : vi + (∇vg(x, v))i < ai},
J2(x, v) = {i : ai < vi + (∇vg(x, v))i < bi},
J3(x, v) = {i : bi < vi + (∇vg(x, v))i},
J4(x, v) = {i : vi + (∇vg(x, v))i = ai or vi + (∇vg(x, v))i = bi}.

Proposition 4.2 Let {wk} be a sequence generated by Algorithm 3.1 and w∗ =
limk∈K {wk} with t∗ = 0 be a stationary point of (3.4), where K ⊂ {1,2, . . .}. Sup-
pose that there exists a sub-vector vj0∗ of v∗ such that w∗ satisfies the following
conditions:

(i) g(x∗, vj0∗) = 0;
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(ii) ∇2
xvg(x∗, vj0∗) = 0;

(iii) The function g(x∗, ·) is concave at vj0∗;
(iv) The set J4(x

∗, vj0∗) is empty and (∇2
vj0

g(x∗, vj0∗))
J

j0∗
2 J

j0∗
2

is nonsingular, where

J
j0∗
2 = J2(x

∗, vj0∗).
Then x∗ is a feasible point of the original SIP problem (1.1).

Proof Since w∗ is a stationary point of (3.4), we have

lim
k∈K

∇(t,x,v)Ψ (wk) = 0. (4.4)

For any wk with tk > 0,

∇Ψ (wk) = ∇Φ(wk)Φ(wk), (4.5)

where

∇Φ(wk) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 01×n 0 · · · 0 ∇t Ḡ
k ∇t φ̄

k
1 · · · ∇t φ̄

k
p

0n×1 ∇xF k ∇xgk
1 · · · ∇xgk

p ∇xḠk ∇x φ̄k
1 · · · ∇x φ̄k

p

0 (∇xgk
1)T 0 · · · 0 0 01×m · · · 01×m

0 (∇xgk
2)T 0 · · · 0 0 01×m · · · 01×m

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 (∇xgk
p)T 0 · · · 0 0 01×m · · · 01×m

0m×1 uk
1∇v1 (∇xgk

1) ∇v1 gk
1 · · · 0 0p×1 ∇v1 φ̄k

1 · · · 0m×m

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0m×1 uk
p∇vp (∇xgk

p) 0 · · · ∇vp gk
p 0p×1 0m×m · · · ∇vp φ̄k

p

0 01×n 0 · · · 0 1 01×m · · · 01×m

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

F k = F(xk,uk,vk), Ḡk = Ḡ(tk, xk), φ̄k
j = φ̄(tk, xk, vjk) and gk

j = g(xk, vjk) for
any j = 1,2, . . . , p. From (4.4) and (4.5), we have

lim
k∈K

∇vj0 Ψ (wk) = lim
k∈K

(uk
j0

∇vj0 (∇xg
k
j0

),∇vj0 g
k
j0

,∇vj0 φ̄
k
j0

)

⎛

⎜⎝
Fk

gk
j0

φ̄k
j0

⎞

⎟⎠

= (u∗
j0

∇vj0 (∇xg
∗
j0

),∇vj0 g
∗
j0

,Q∗
j0

)

⎛

⎜⎝
F ∗
g∗

j0

φ̄∗
j0

⎞

⎟⎠

= Q∗
j0

φ̄∗
j0

= 0, (4.6)

where the third equality comes from the assumed conditions (i) and (ii). Here F ∗ =
F(x∗, u∗,v∗), g∗

j0
= g(x∗, vj0∗), φ̄∗

j0
= φ̄(t∗, x∗, vj0∗) and Q∗T

j0
∈ ∂vj0 φ̄

∗
j0

. On the
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other hand, it is easy to know that

Q∗T
j0

=
⎛

⎝
I1 0 0

−U∗
21 −U∗

22 −U∗
23

0 0 I3

⎞

⎠ ,

where U∗
2j , j = 1, . . . ,3, are the sub-matrices of the ∇2

vg(x∗, vj0∗), which are deter-

mined by the rows with the index k ∈ J2(x
∗, vj0∗) and the columns with the index

l ∈ Jj (x
∗, vj0∗). By the condition (iv), it is obvious that Q∗

j0
is nonsingular. Hence,

φ̄∗
j0

= 0, that is

φ̄(0, x∗, vj0∗) = 0. (4.7)

This implies

(v − vj0∗)T (−∇vg(x∗, vj0∗)) ≥ 0, ∀v ∈ V,

which shows that vj0∗ is a KKT point of the minimization problem (1.3) with x = x∗.
Therefore, by the condition (iii), we have that for any v ∈ V ,

g(x∗, v) ≤ g(x∗, vj0∗) = 0.

This shows that x∗ is a feasible point of (1.1). The proof is completed. �

For the case that g(x, ·) is not concave, we have the following result.

Proposition 4.3 Let {wk} be a sequence generated by Algorithm 3.1 and w∗ =
limk∈K {wk} with t∗ = 0 be a stationary point of (3.4), where K ⊂ {1,2, . . .}. Sup-
pose that w∗ satisfies the following conditions:

(i) 0 <
∫
V

1
|g(x∗,v)|dv < ∞;

(ii) limk∈K
tk

tk+∇t H̄ (wk)H̄ (wk)
≥ 1;

(iii) For j = 1,2, . . . , p, the set J4(x
∗, vj∗) is empty;

(iv) For j = 1,2, . . . , p, φ̄(0, x∗, vj∗) = 0.

Then x∗ is a feasible point of the original SIP problem (1.1).

Proof It is obvious that G(x∗) ≥ 0. Now we prove that G(x∗) = 0. By the definition
of the stationary point, we have

⎧
⎪⎪⎨

⎪⎪⎩

y∗ > 0 ⇒ ∂

∂y
Ψ (w∗) = 0,

y∗ = 0 ⇒ ∂

∂y
Ψ (w∗) ≥ 0.

(4.8)

This implies

y∗ = 0, (4.9)
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because

∂Ψ (w∗)
∂y

= Ḡ(t∗, x∗) + y∗ > 0,

whenever y∗ > 0, which contradicts to (4.8). Moreover, for any wk with tk > 0,

∇t φ̄(tk, xk, vjk)

= 2tk
(

1√
(b1 − v

jk

1 − (∇vg
j
k )1)2 + 4(tk)2

− 1√
(a1 − v

jk

1 − (∇vg
j
k )1)2 + 4(tk)2

,

· · · ,
1√

(bm − v
jk
m − (∇vg

j
k )m)2 + 4(tk)2

− 1√
(am − v

jk
m − (∇vg

j
k )m)2 + 4(tk)2

)
(4.10)

and

∇t Ḡ(tk, xk) = 2tk
∫

V

1√
(g(xk, v))2 + 4(tk)2

dv, (4.11)

where g
j
k = g(xk, vjk) for any j = 1,2, . . . , p. Consequently, we obtain

lim
k∈K

tk

tk + ∇t H̄ (wk)H̄ (wk)
= tk

tk +∑p

j=1(∇t φ̄
k
j )φ̄k

j + ∇t Ḡk(Ḡk + yk)

= 1

1 + 2G(x∗)
∫
V

1
|g(x∗,v)|dv

,

where φ̄k
j = φ̄(tk, xk, vjk), Ḡk = Ḡ(tk, xk), and the last equality comes from (4.9),

(4.10), (4.11) and the assumed conditions (iii) and (iv). Therefore, by the assumed
conditions (i) and (ii), we have

G(x∗) = 0,

which shows that x∗ is a feasible point of (1.1). We complete the proof. �

In the rest of this section, we analyze the local convergence of Algorithm 3.1. We
make the following standard assumption:

(A1) Let w∗ = (t∗, z∗) = (0, z∗) be an accumulation point of the sequence
{wk} generated by Algorithm 3.1. Suppose limk∈K wk = w∗ for some subset K ⊂
{1,2, . . .}, w∗ is a solution of the system of equations (3.3) and Φ is BD-regular
at w∗.

From the BD-regularity condition and semismoothness of function Φ , we have the
following lemma by using Lemmas 2.1 and 2.2.
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Lemma 4.1 There exist positive constants κ and ε such that for every wk satisfying
‖wk − w∗‖ ≤ ε,

(i) Φ ′(wk) is nonsingular and satisfies

‖Φ ′(wk)‖ ≤ κ.

(ii)

‖Φ(wk)‖ = √
2Ψ (wk)

1
2 = O(‖wk − w∗‖).

Lemma 4.2 For all k ∈ K sufficiently large,

(i)

β(wk) = O(Ψ (wk)) = O(‖wk − w∗‖2);
(ii) and for any λ ∈ (0,1]

wk + λdk
N = (1 − λ)wk + λw∗ + λo(Ψ (wk)

1
2 ). (4.12)

Proof From the definition of β(wk), the choice of γk , the projection property and
Lemma 4.1, for wk sufficiently close to w∗,

β(wk) ≤ α‖d̄k
G(1)‖2 ≤ αγ 2

k ‖∇Ψ (wk)‖2 ≤ αηΨ (wk) = αη

2
‖Φ(wk)‖2

= O(‖wk − w∗‖2).

This shows (i) holds. It follows from (i) and Lemma 4.1 that

wk + λdk
N = wk + λΦ ′(wk)−1[−Φ(wk) + β(wk)w̄]

= wk − λΦ ′(wk)−1[Φ(wk) − Φ(w∗) − Φ ′(wk)(wk − w∗)]
− λ(wk − w∗) + λΦ ′(wk)−1β(wk)w̄

= (1 − λ)wk + λw∗ + λo(‖wk − w∗‖) + λO(Ψ (wk))

= (1 − λ)wk + λw∗ + λo(Ψ (wk)
1
2 ),

where the third equality is due to the semismoothness of Φ and (i). (ii) is proved. The
proof is complete �

Lemma 4.3 For k ∈ K large enough,

d̃k
N (λ) = −λ(wk − w∗) + λo(Ψ (wk)

1
2 ) (4.13)

and

∇Ψ (wk)T d̃k
N (λ) ≤ −μλΨ (wk), (4.14)

where μ is any constant in (0,2).
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Proof From Lemma 4.2 and the property of a projector, we obtain that

d̃k
N (λ) = ΠW(wk + λdk

N) − wk

= ΠW [(1 − λ)wk + λw∗ + λo(Ψ (wk)
1
2 )] − wk

= ΠW [(1 − λ)wk + λw∗] − wk

+ {ΠW [(1 − λ)wk + λw∗ + λo(Ψ (wk)
1
2 )] − ΠW [(1 − λ)wk + λw∗]}

= −λ(wk − w∗) + λo(Ψ (wk)
1
2 ),

where the last equality comes from (1−λ)wk +λw∗ ∈ W and the projection property
(see Lemma 3.1(ii)). It follows from (4.13) that

∇Ψ (wk)T d̃k
N (λ) = −λΦ(wk)T Φ ′(wk)(wk − w∗) + λo(Ψ (wk))

= −2λΨ (wk) + λΦ(wk)T [Φ(wk) − Φ(w∗) − Φ ′(wk)(wk − w∗)]
+ λo(Ψ (wk))

≤ −μλΨ (wk),

where the last inequality comes from the semismoothness of Φ and Lemma 4.1. We
complete the proof. �

Lemma 4.4 We have that for k ∈ K large enough,

(i)

τ ∗(λ)k ≤ o(1), (4.15)

where τ ∗(λ)k is defined as in (3.14).

(ii)

d̄k(λ) = −λ(wk − w∗) + λo(Ψ (wk)
1
2 ). (4.16)

(iii)

∇Ψ (wk)T d̄k(λ) = −2λΨ (wk) + λo(Ψ (wk)). (4.17)

Proof By using Lemma 4.3, this lemma can be proved in a similar way to the proof
of Theorem 3.2 [24]. We omit the detailed proof. �

Now we prove that the convergence rate of Algorithm 3.1 is locally superlinear
under the BD-regularity condition.

Theorem 4.2 Suppose that {wk} is a sequence generalized by Algorithm 3.1 and w∗
is a point satisfying (A1). Then the whole sequence {wk} converges to w∗ superlin-
early.
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Proof From Lemma 4.4 we have that for sufficiently large k ∈ K ,

‖wk + d̄k(1) − w∗‖ = o(Ψ (wk)
1
2 ) = o(‖Φ(wk)‖) = o(‖wk − w∗‖), (4.18)

and

Ψ (wk + d̄k(1)) = 1

2
‖Φ(wk + d̄k(1))‖2

= 1

2
‖Φ(wk + d̄k(1)) − Φ(w∗)‖2

= O(‖wk + d̄k(1) − w∗‖2)

= o(Ψ (wk)), (4.19)

where the last equality is due to (4.18). Thus,

−∇Ψ (wk)T d̃k
G(1) ≤ ‖∇Ψ (wk)‖‖d̃k

G(1)‖
= ‖∇Ψ (wk)‖‖ΠW(wk − γk∇Ψ (wk) + β(wk)w̄) − wk‖

≤ ‖∇Ψ (wk)‖[‖γk∇Ψ (wk)‖ + O(Ψ (wk))]
≤ ηΨ (wk) + o(Ψ (wk)), (4.20)

where the second inequality is due to the property of β(wk) and the projection prop-
erty, and the last inequality comes from the choice of γk . It follows (4.19) and (4.20)
that

Ψ (wk) + σ∇Ψ (wk)T d̃k
G(1) ≥ (1 − ση)Ψ (wk) + o(Ψ (wk)) ≥ o(Ψ (wk))

= Ψ (wk + d̄k(1)), (4.21)

which implies

wk+1 = wk + d̄k(1),

for k sufficiently large. Moreover, from (4.18) we conclude that wk converges to w∗
superlinearly. We complete the proof. �

For the SIP problem considered in this paper, the BD-regularity can be satisfied
under some standard assumptions. Let G(x,v) be the set of (d, ξ1, ζ1, . . . , ξp, ζp) ∈
Rn × R(|J 1

2 |+|J 1
4 |) × · · · × R(|Jp

2 |+|Jp
4 |) satisfying that for any j = 1, . . . , p,

dT ∇xg(x, vj ) = 0

and

(∇v(∇xg(x, vj )))
J

j
2 ·d + (∇2

vvg(x, vj ))
J

j
2 J

j
2
ξj + (∇2

vvg(x, vj ))
J

j
2 J

j
4
ζj = 0,

where J
j

2 = J2(x, vj ) and J
j

4 = J4(x, vj ). We make the following assumptions.
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(A2) For all j = 1, . . . , p, uj > 0.
(A3) The vectors {∇xg(x, vj ), j = 1, . . . , p} are linearly independent.
(A4) For all (d, ξ1, ζ1, . . . , ξp, ζp) ∈ G(x,v)\{0},

dT (∇xF (x,u,v))T d −
p∑

j=1

uj ξT
j (∇2

vvg(x, vj ))
J

j
2 J

j
2
ξj

−
p∑

j=1

uj ζ T
j (∇2

vvg(x, vj ))
J

j
4 J

j
4
ζj − 2

p∑

j=1

uj ξT
j (∇2

vvg(x, vj ))T
J

j
4 J

j
2

ζj > 0.

Remark 2 Suppose that (i) the matrix ∇xF (x,u,v) is positive definite; (ii) for every
j = 1,2, . . . , p, the set J

j

4 is empty; and (iii) the matrix (∇2
vvg(x, vj ))

J
j
2 J

j
2

is negative

definite whenever J
j

2 �= ∅. Then the assumption (A4) holds.

Theorem 4.3 Suppose that w∗ = (t∗, z∗) = (t∗, x∗, u∗,v∗, y∗) is a solution of (3.3)
and satisfies (A2)–(A4). Then Φ is BD-regular at w∗.

Proof For simplicity, we only prove the case that p = 1. The proof for the case with
p > 1 is similar. Without loss of generality, we assume

J ∗
1 := J1(x

∗, v∗) = {1,2, . . . , k1}, J ∗
2 := J2(x

∗, v∗) = {k1 + 1, . . . , k2},
J ∗

3 := J3(x
∗, v∗) = {k2 + 1, . . . , k3}, J ∗

4 := J4(x
∗, v∗) = {k3 + 1, . . . ,m},

where 1 ≤ k1 ≤ k2 ≤ k3 ≤ m. It is obvious that if w∗ = (t∗, z∗) is a solution of (3.3)
then t∗ = 0. It is followed from that φ̄(0, x∗, v∗) = 0 that we have

v∗ − mid(a, b, v∗ + ∇vg(x∗, v∗)) = 0. (4.22)

By the definition of the mid function, we obtain

(∇vg(x∗, v∗))i = 0 (4.23)

for i ∈ J ∗
2 ∪ J ∗

4 . Consequently, by direct computation, we get that for any Q ∈
∂BΦ(w∗),

Q =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 01×n 0 01×m1 01×m2 01×m3 01×m4 0

0n×1 A B u∗C1 u∗C2 u∗C3 u∗C4 0n×1

0 BT 0 D1 01×m2 D3 01×m4 0

F1 F2 0 01×m1 01×m2 01×m3 01×m4 1

H1 0m1×n 0m1×1 Im1×m1 0m1×m2 0m1×m3 0m1×m4 0m1×1

H2 −CT
2 0m2×1 −U21 −U22 −U23 −U24 0m2×1

H3 0m3×n 0m3×1 0m3×m1 0m3×m2 Im3×m3 0m3×m4 0m3×1

H4 −V CT
4 0m4×1 −V U41 −V U42 −V U43 Λ − V U44 0m4×1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(4.24)
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where m1 = k1, m2 = k2 − k1, m3 = k3 − k2, m4 = m − k3 and

A = (∇xF (x∗, u∗, v∗))T , B = ∇xg(x∗, v∗),

Cj = (∇v(∇xg(x∗, v∗)))T·J ∗
j

for any j = 1, . . . ,4,

Dj = (∇vg(x, v∗))T·J ∗
j
, j = 1,3,

Uij = (∇2
vvg(x∗, v∗))J ∗

i J ∗
j

for any i = 2,4; j = 1, . . . ,4,

F1 ∈ ∂tG(0, x∗), F2 ∈ ∂xG(0, x∗); Hj , j = 1, . . . ,4, are the sub-vectors of H ∈
∂t φ̄(0, x∗, v∗) with the index k ∈ J ∗

j , respectively; V = (Im4×m4 − Λ) and Λ =
diag(λ1, . . . , λm4) with λi ∈ [0,1] for i = 1, . . . ,m4.

From the structure of Q, we assume that, without loss of generality, λi ∈ (0,1) for
i = 1, . . . ,m4. It is easy to see that proving Q is nonsingular is equivalent to proving
the matrix

Q̃ =

⎡

⎢⎢⎢⎢⎣

A B u∗C2 u∗C4

BT 0 01×m2 01×m4

CT
2 0m2×1 U22 U24

V CT
4 0m4×1 V U42 −Λ + V U44

⎤

⎥⎥⎥⎥⎦

is nonsingular. Suppose that

Q̃

⎛

⎜⎜⎝

d1
d2
ξ

ζ

⎞

⎟⎟⎠= 0, (4.25)

where d1 ∈ Rn, d2 ∈ R, ξ ∈ Rm2 and ζ ∈ Rm4 . Then (4.25) implies

Ad1 + Bd2 + u∗C2ξ + u∗C4ζ = 0, (4.26)

BT d1 = 0, (4.27)

CT
2 d1 + U22ξ + U24ζ = 0 (4.28)

and

V CT
4 d1 + V U42ξ − (Λ − V U44)ζ = 0. (4.29)

Multiplication (4.26) with dT
1 yields

dT
1 Ad1 + dT

1 Bd2 + u∗dT
1 C2ξ + u∗dT

1 C4ζ = 0,

which, together with (4.27), (4.28) and (4.29), shows

dT
1 Ad1 − u∗ξT U22ξ − u∗ζ T UT

24ξ − u∗ζ T U44ζ + u∗ζ T (ΛV −1)ζ − u∗ξT UT
42ζ = 0.
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It is obvious that UT
24 = U42. Hence, from u∗ > 0 and the fact that the matrix ΛV −1 =

diag(λ1/(1 − λ1), . . . , λm4/(1 − λm4)) is positive definite, we have

dT
1 (∇xF (x∗, u∗, v∗))T d1 − u∗ξT (∇2

vvg(x∗, v∗))J ∗
2 J ∗

2
ξ

− u∗ζ T (∇2
vvg(x∗, v∗))J ∗

4 J ∗
4
ζ − 2u∗ξT (∇2

vvg(x∗, v∗))TJ ∗
4 J ∗

2
ζ ≤ 0. (4.30)

On the other hand, by (4.27) and (4.28), it follows that (d1, ξ, ζ ) ∈ G(x∗, v∗). Thus,
by (4.30) and the assumption (A4), we have that (d1, ξ, ζ ) = 0. Consequently, from
(4.26) and (A2), we obtain that d2 = 0. Hence (d1, d2, ξ, ζ ) = 0, which shows that Q

is nonsingular. Therefore, Φ is BD-regular at w∗. This completes the proof. �

5 Preliminary numerical results

In this section, we report our preliminary numerical test results. We implemented
Algorithm 3.1 in MATLAB and the numerical experiments were done by using a Pen-
tium III 733 MHz computer with 256 MB of RAM. We compared Algorithm 3.1
with fseminf that is a solver for SIP based on an implementation of the discretiza-
tion SQP method in MATLAB toolbox. We tested 12 problems which we call prob-
lems 1–12. Problems 1–3 and 7 are from [27]. Problem 4 comes from [26] with a re-
vised region. Problem 5 is a problem modified from [28], and Problem 6 is from [4].
Problems 8–12 are some problems in which the dimension of the parameter v is 2.

Throughout the computational experiments, we use ‖d̄k
G(1)‖ ≤ 10−6 as the stop-

ping criterion for Algorithm 3.1. The values of Ḡ(t, x) and ∇Ḡ(t, x) were computed
by using the function quad in MATLAB when V is an interval in R and the func-
tion dblquad when V is a box set in R2. The parameters used in the algorithm are
specified as follows:

η = 0.9, ρ = 0.5, σ = 0.001, α = 0.5,

t̄ = 0.9, p1 = 1.0e − 10, p2 = 2.1.

The starting point u0 and y0 for all problems are set t0 = t̄ , u0 = 0.05e, y0 = 0.5,
where e is the vector of ones. For the solver fseminf, we use all the default values.

Problem 1.

f (x) = 1.21exp(x1) + exp(x2), g(x, v) = v − exp(x1 + x2),

V = [−10,1], p = 1, (x0, v0) = (1,1,1).

Problem 2.

f (x) = x2
1 + x2

2 + x2
3 , g(x, v) = x1 + x2exp(x3v) + exp(2v) − 2sin(4v),

V = [0,1], p = 1, (x0, v0) = (1,1,1,1).
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Problem 3.

f (x) = 1

3
x2

1 + 1

2
x1 + x2

2 , g(x, v) = (1 − x2
1v2)2 − x1v

2 − x2
2 + x2,

V = [−1,1], p = 1, (x0, v0) = (−1,−1,1).

Problem 4.

f (x) = x2
1 + (x2 − 3)2, g(x, v) = x2 − 2 + x1sin(v/x2 − 0.5),

V = [0,10], p = 1, (x0, v0) = (1,−1,1).

Problem 5.

f (x) = 1

2
xT x, g(x, v) = 3 + 4.5sin(4.7π(v − 1.23)/8) −

n∑

i=1

xiv
i−1,

V = [0,1], n = 10, p = 1, (x0, v0) = (0,0, . . . ,0,1).

Problem 6.

f (x) = (x1 − 2x2 + 5x2
2 − x3

2 − 13)2 + (x1 − 14x2 + x2
2 + x3

2 − 29)2,

g(x, v) = x2
1 + 2x2v

2 + exp(x1 + x2) − exp(v),

V = [0,1], p = 1, (x0, v0) = (1,−1,1).

Problem 7.

f (x) = x2
1 + x2

2 + x3
3 ,

g(x, v) = x1(v1 + v2
2 + 1) + x2(v1v2 − v2

2) + x3(v1v2 + v2
2 + v2) + 1,

V = [0,1] × [0,1], p = 1, (x0, v0) = (1,1,1,1,0).

Problem 8.

f (x) = x2
1 + x2

2 + x2
3 , g(x, v) = x1 + x2exp(x3v1) + exp(2v2) − 2sin(4v1),

V = [0,1] × [0,1], p = 2, (x0, v0) = (−1,−1,−1,0,1,1,0).

Problem 9.

f (x) = x2
1 + x2

2 + x2
3 , g(x, v) = x1 + x2 exp(x3v1) − exp(2x1v2) + sin(4v1),

V = [0,1] × [0,1], p = 2, (x0, v0) = (−0.2,−0.2,−0.2,0,1,1,0).
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Problem 10.

f (x) = x2
1/3 + x1/2 + x2

2 , g(x, v) = (1 − x2
1v2

1)2 − x1v
2
2 − x2

2 + x2.

V = [0,2] × [0,2], p = 2, (x0, v0) = (−0.2,−0.2,1,0,0,1).

Problem 11.

f (x) = 0.5(x2
1 + x2

2 + x2
3 + x2

4),

g(x, v) = sin(v1v2) − x1 − x2v1 − x3v2 − x4v1v2,

V = [0,1] × [0,1], p = 1, (x0, v0) = (−0.5,−0.5,−0.5,−0.5,0,1).

Problem 12.

f (x) = 0.5(x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6),

g(x, v) = exp(v2
1 + v2

2) − (x1 + x2v1 + x3v2 + x4v
2
1 + x5v1v2 + x6v

2
2),

V = [0,1] × [0,1], p = 1, (x0, v0) = (−2,−2 − 2,−2,−2,−2,1,1).

In all above test problems, the values of p are estimated by using the following
adaptive strategy. First, we let p = 1 and use Algorithm 3.1 to solve a test problem. If
this test problem can be solved within 30 iterations, then we let p = 1 be the number
of attainers at the solution. Otherwise, we let p = 2 and use Algorithm 3.1 to solve
this test problem again. If this test problem can be solved within 30 iterations, then
we let p = 2 be the number of attainers. If this fails again, then we let p = 3 and
then do the above procedure until we find a number p (p ≤ n) which is the estimated
number of attainers. It is interesting that we get p = 1 for 9 of 12 test problems and
p = 2 for other three test problems by the above method.

The test results are summarized in Tables 1 and 2. In Table 1, d̄k
G(1) is the value

of the function d̄G(1) defined in (3.6) at the kth iteration. In Table 2, n.it represents
the number of the total iterations; cpu is the total cost time in seconds for solving the
SIP problem; Ψ (wk) denote the value of the merit function Ψ (w) of (3.3) at the final
iteration; f (xk) is the value of the objective function in the SIP problem at the final
iteration; and G(xk) is the value of the function G(x) of (1.7) at the final iteration.

The results reported in Tables 1 and 2 show that Algorithm 3.1 performs well
for these test problems. From Table 1, we can see that the value of d̄k

G(1) drops
to zero very fast in the last few iterations. This means that Algorithm 3.1 indeed has
superlinear convergence property. From the two columns signed by G(xk) of Table 2,
we can see that Algorithm 3.1 can ensure the feasibility for these test problems. Also,
Algorithm 3.1 uses less CPU time than fseminf for 9 test problems and fseminf
uses less CPU time than Algorithm 3.1 for other 3 test problems. This means that
Algorithm 3.1 is comparable with fseminf for these test problems.

The numerical tests reported in the paper are very preliminary. Further experience
with testing and with actual applications will be necessary and we leave it as our
future research topic. In addition, we notice that for problems 1–7, 11 and 12, when
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Table 1 The last three iterates generated by Algorithm 3.1 for Problems 1–12

Problem k d̄k
G

(1) Problem k d̄k
G

(1)

1 4 0.0053 2 7 0.0141

5 2.5166e-5 8 4.9812e-4

6 3.6233e-10 9 4.5572e-7

3 5 0.0036 4 7 2.0688e-6

6 9.671e-5 8 1.2389e-6

7 3.8475e-9 9 4.2285e-7

5 2 0.0027 6 3 6.3414e-4

3 3.5370e-5 4 3.2046e-5

4 1.3002e-10 5 1.2032e-8

7 5 0.0228 8 5 3.7704e-5

6 7.3722e-4 6 1.0023e-6

7 4.1271e-7 7 2.7485e-10

9 8 0.0075 10 7 9.0029e-4

9 4.0859e-5 8 2.2744e-6

10 7.8563e-8 9 1.6448e-9

11 6 0.0086 12 3 9.5606e-4

7 0.0016 4 1.3685e-7

8 7.8146e-7 5 2.4486e-15

p ≥ 2, these test problems cannot be solved by Algorithm 3.1 within 30 iterations.
For problems 8–10, when p = 1, these three test problems cannot be solved by Al-
gorithm 3.1 within 30 iterations. This means that it is important to choose a suitable
number p when we use Algorithm 3.1 to solve the SIP problem. When the size of the
SIP problem and the number p are large, the above method to determine the number
p may be expensive in computation. As future work, we will work on how to find a
good way to determine a suitable number p in the KKT system of the SIP problem.

6 Final remarks

In this paper we have presented a smoothing projected Newton-type algorithm for
solving the KKT system of the SIP problem. First, we reformulate the infinite con-
straints of the SIP problem to a constraint by using an integral function. Then, the
KKT system of the SIP problem is written as a system of constrained nonsmooth
equations, and solved by a smoothing projected Newton-type method. Under some
standard assumptions, we prove the global and local superlinear convergence prop-
erties of this method. Compared with the existing methods such as discretization
methods, exchange methods and local reduction methods, our method only needs to
solve a system of linear equations at each iteration. Compared with the methods pro-
posed in [10, 21], our method can ensure the feasibility of (1.1). As future work, one
problem is to find a good way to determine a suitable number p in the KKT system
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Table 2 Test results for Algorithm 3.1 and fseminf

Problem Algorithm 3.1 fseminf

n.it cpu Ψ (wk) f (xk) G(xk) n.it cpu f (xk) G(xk)

1 6 0.09 9.1606e-19 2.2 0 16 0.53 2.1989 4.2815e-7

2 9 0.17 7.4361e-11 5.3347 0 23 0.42 5.3307 1.1142e-5

3 7 0.13 2.3462e-14 0.1945 0 4 0.12 0.1945 3.6407e-12

4 9 0.31 7.1952e-9 1 4.7985e-6 10 0.66 1 9.0699e-9

5 4 0.30 4.0342e-19 0.0657 0 2 0.42 0.0656 1.7460e-7

6 5 0.11 2.0507e-11 97.1589 1.3039e-9 8 0.17 97.1589 7.4551e-14

7 7 4.81 1.0514e-13 1 0 7 4.91 1 0

8 7 14.22 1.2988e-16 27.4166 0 6 5.33 27.3065 6.1921e-8

9 10 2.72 1.3677e-13 0 0 3 2.98 3.1516e-5 0

10 9 1.48 2.6635e-13 0.382 5.8388e-7 15 2.66 0.382 0

11 8 2.28 1.3049e-11 0.0885 0 1 2.00 0.0885 1.8080e-21

12 5 0.73 3.7729e-29 4.5498 0 1 3.38 4.5498 0

of the SIP problem. Another problem is to find conditions of quadratic convergence
of our method.
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