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Abstract Disaggregation methods have been extensively used in multiple criteria de-
cision making to infer preferential information from reference examples, using linear
programming techniques. This paper proposes simple extensions of existing formu-
lations, based on the concept of regularization which has been introduced within the
context of the statistical learning theory. The properties of the resulting new formu-
lations are analyzed for both ranking and classification problems and experimental
results are presented demonstrating the improved performance of the proposed for-
mulations over the ones traditionally used in preference disaggregation analysis.

Keywords Multiple criteria decision making · Preference disaggregation ·
Regularization · Linear programming

1 Introduction

The implementation of several multiple criteria decision making (MCDM) methods
requires the decision maker (DM) to explicitly define a considerable amount of spe-
cific preferential information, such as the relative importance of the criteria, prefer-
ence, indifference thresholds, etc. Obtaining such information from the DM is not an
easy task.

Preference disaggregation analysis (PDA) has been extensively used over the past
two decades to resolve this difficulty [6]. Instead of asking the DM to provide details
on his/her preferential system, PDA employs a regression-like process to infer the
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required information through the analysis of the DM’s judgments on some reference
alternatives. The DM provides a global evaluation of these alternatives, usually ex-
pressed either by ranking them from the most preferred to the least preferred ones, or
by assigning them to preference classes. Such a global evaluation is implicitly based
on the preferential system of the DM. Thus, the identification of the criteria aggre-
gation model that best fits the DM’s global judgments on the reference alternatives
should be equivalent to the direct specification of detailed preferential information by
the DM.

This PDA process is formulated as an optimization problem. Given the general
form of a criteria aggregation model f (A) defined by a set of parameters A, the
objective is to identify the optimal values for the parameters in A that minimize the
observed deviations between the model’s outputs and the DM’s global evaluation
of the reference alternatives. For instance, in the case where f is a value function,
the set of parameters A includes the trade-off coefficients for the criteria and the
corresponding marginal value functions [7]. In an outranking relation model, A may
involve the criteria weights, preference, indifference and veto thresholds, etc. [11].

Several methodologies implementing this framework have been proposed for dif-
ferent kinds of problem formulations and MCDM methods. In the case of value func-
tions, the UTA method has been proposed for ranking problems [5], with several
extensions in classification problems [13]. In the case of outranking relations mod-
els such techniques have been proposed in [9, 10] for classification problems. An
extensive review of existing PDA techniques can be found in [6].

However, since the implementation of a PDA framework is based on an optimiza-
tion process, it is important to understand its limitations as far as it concerns the
inferences that can be made on the basis of the resulting criteria aggregation model.
Of course, a model that poorly fits the DM’s global judgment on the reference alter-
natives cannot be accepted as a basis of the decision aiding process. The opposite,
however, is not generally true. The quality of the model can only be ascertained by
validating its performance on new cases, others than the ones in the reference set.
Furthermore, the quality of the model should be assessed in terms of its structural
parameters. This involves an analysis of whether the estimated parameters are in ac-
cordance with the DM’s preferential system. Clearly, the design of PDA procedures
that meet these requirements is of major importance in order to have a solid basis for
implementing the decision aiding process, which follows model development.

The objective of this paper is to introduce regularized estimation techniques into
existing optimization formulations which have been proposed within the context of
PDA. The concept of regularization has been introduced in statistical learning theory
as a methodology to address the trade-off between model complexity and generaliz-
ing performance [4]. The properties of the new formulations developed for ranking
and classification problems are analyzed providing some insight on the relationship
between the data characteristics and the quality of the resulting models. Experimental
results are also given, demonstrating the improved performance of the new formula-
tions over the existing ones. The analysis is given for value function models, but the
results have implications for other MCDM aggregation forms too.

The rest of the paper is organized as follows. Section 2 introduces the main con-
cepts of PDA and the methodologies used for developing additive value models for
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ranking and classification problems. Section 3, presents the modification of the ex-
isting methodologies on the basis of the regularization principle and discusses the
properties of the new formulations. Section 4, presents some computational results
on the performance of the new formulations, and finally Sect. 5 concludes the paper
and discusses some future research directions.

2 Disaggregation methods in MCDM

The most widely used form of criteria aggregation model in MCDM is the additive
value function. Assuming that K criteria x1, x2, . . . , xK are used in a multicriteria
evaluation context, the global value (overall performance) of an alternative xi , is de-
fined as:

V (xi ) =
K∑

k=1

pkvk(xik), (1)

where xik denotes the description of alternative xi on criterion xk , pk ≥ 0 is the
trade-off coefficient for criterion xk (the normalization p1 + p2 + · · · + pK = 1 is
often used) and vk is the corresponding marginal value function. The marginal value
functions define a monotone mapping of each criterion to a value scale (usually in
[0,1]) such that:

vk(xik) > vk(xjk) ⇔ xi �k xj

vk(xik) = vk(xjk) ⇔ xi ∼k xj

vk(x∗k) = 0, vk(x
∗
k ) = 1

⎫
⎬

⎭ , (2)

where �k and ∼k denote the preference and indifference relations for criterion xk ,
and x∗k , x∗

k are the least and most preferred values of criterion xk , respectively.
In such an evaluation context an alternative xi is preferred to an alternative xj if

and only if V (xi ) > V (xj ) and the alternatives are indifferent if and only if V (xi ) =
V (xk).

Setting uk = wkvk , the additive function (1) can be equivalently written in a sim-
pler form as follows:

V (xi ) =
K∑

k=1

uk(xik). (3)

In this additive model the marginal value functions are normalized such that
uk(x∗k) = 0 and uk(x

∗
k ) = pk . Such an additive model can be linear if the marginal

value functions have a linear form, or non-linear if non-linearity is assumed for the
marginal value functions.

The development of the additive model (3) involves the specification of the mar-
ginal value functions. Direct procedures such as the mid-value point technique [7] can
be used for this purpose, but their implementation is often limited due to significant
cognitive effort required by the DM. Alternatively, PDA methodologies are applica-
ble. In this case, it is assumed that the DM provides a global evaluation for a sample
of M reference alternatives. In the case of ranking problems this requires a ranking of
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the reference alternatives from the most to the least preferred ones, whereas in clas-
sification problems an assignment of the alternatives in predefined preference classes
is defined.

In the ranking case, without loss of generality, it can be assumed that the reference
alternatives are ranked from the best x1 to the worst xM , into N indifference classes
I1 � I2 � · · · � IN . The mn alternatives in In are indifferent to each other and they are
preferred over the alternatives in In+1. The model that best fits the DM’s ranking on a
set A of reference alternatives can be constructed from the solution of a mathematical
programming problem of the following general form [5]:

min
M∑

i=1

yi

subject to: V (xi ) − V (xi+1) + yi − yi+1 ≥ δ, if xi � xi+1,

V (xi ) − V (xi+1) + yi − yi+1 = 0, if xi ∼ xi+1,

V (x∗) = 0, V (x∗) = 1,

yi ≥ 0, ∀i = 1,2, . . . ,M.

(4)

The first constraint applies to pairs of reference alternatives (xi ,xi+1) for which
xi � xi+1 (0 < δ � 1 is a constant used to impose the strict inequality V (xi ) >

V (xi+1)). The second constraint applies to pairs of reference alternatives (xi ,xi+1)
for which xi ∼ xi+1. In both cases, the error variables y represent the deviations
between the model’s results and the predefined ranking of the reference alterna-
tives. Normalization constraints are also imposed, as well as constraints to ensure
the monotonicity of the marginal value functions.

In solving this optimization problem the marginal value functions are as-
sumed to be piecewise linear. This involves the definition of bk + 1 subintervals
[βk

0 , βk
1 ], [βk

1 , βk
2 ], . . . , [βk

bk
, βk

bk+1] in the scale of criterion xk (with βk
0 = x∗k and

βk
bk+1 = x∗

k ). The marginal value at a point βk
t of criterion xk is then:

uk(β
k
t ) =

t∑

s=1

[
uk(β

k
s ) − uk(β

k
s−1)

] =
t∑

s=1

dsk (5)

and the marginal value uk(xik) for an alternative xi with xik ∈ [βk
t−1, β

k
t ] is defined

by a linear interpolation between uk(β
k
t−1) and uk(β

k
t ):

uk(xik) = wikdk, (6)

where dk = (d1k, d2k, . . . , dbkk)

 and wik is a row vector whose entry wt

ik (t =
1,2, . . . , bk) is defined as:

wt
ik =

⎧
⎪⎪⎨

⎪⎪⎩

0 if xik < βk
t−1 ,

xik−βk
t−1

βk
t −βk

t−1
if xik ∈ [βk

t−1, β
k
t ] ,

1 if xik > βk
t .

(7)
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Therefore, denoting by wi the row vector [wi1 wi2 . . . wiK ] and by d the column
vector [d1 d2 . . . dK ]
, the global value of alternative xi according to (3) is written
as:

V (xi ) = wid. (8)

With this expression, (4) can now be re-written as the following linear program:

min e

1 y

subject to: (wi − wi+1)d + yi − yi+1 ≥ δ, if xi � xi+1,

(wi − wi+1)d + yi − yi+1 = 0, if xi ∼ xi+1,

e
d = 1,

d,y ≥ 0,

(9)

where e and e1 are column vectors of ones. The first two constraints are equivalent
to the first two constraints of problem (4). The constraint e
d = 1 normalizes the
developed additive model between 0 and 1, whereas the non-negativity constraint
d ≥ 0 ensures the monotonicity of the marginal value functions.

In the case of classification problems, the reference alternatives are classified in
N ordered classes c1 � c2 � · · · � cN . An alternative is classified in class cn if and
only if V (xi ) ∈ (hn,hn−1), where h1 > h2 > · · · > hN > 0 are value thresholds that
distinguish the classes such that hn−1 − hn ≥ s, with s ≥ δ a user-defined positive
constant. Obviously there is no need to define h0 and hN because V (xi ) ∈ [0,1]. In
this case the linear programming problem (9) is transformed as follows [2]:

min e

1 (y+ + y−)

subject to: wid − hn + y+
i ≥ δ, ∀xi ∈ {c1, . . . , cN−1},

wid − hn−1 − y−
i ≤ −δ, ∀xi ∈ {c2, . . . , cN },

hn−1 − hn ≥ s, ∀n = 2, . . . ,N − 1,

e
d = 1,

d,h,y+,y− ≥ 0.

(10)

The first constraint defines the violations of the lower bound of each class (this
applies only to the reference alternatives that belong to the classes c1, . . . , cN−1),
whereas the second constraint defines the violations of the upper bound of each class
(this applies only to the reference alternatives that belong to the classes c2, . . . , cN ).

In both linear programs (9) and (10) post-optimality techniques are used to explore
the existence of multiple optimal or near optimal solutions as described in [2, 5].

3 Regularization for preference disaggregation

3.1 General framework

Regularization is a well-known principle in statistical learning with many applica-
tions mainly in neural networks and support vector machines [8, 12]. Whereas the
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traditional model development approach is based solely on the fit of the model on
some training data, regularization also considers the simplicity of the model. Mod-
els that use too many parameters are highly complex and overfitting is possible. On
the other hand, models that use a small number of parameters exhibit a more smooth
behavior, thus (often) providing better generalizing performance.

On the basis of this framework, in a regularization context, the development of
a model f is based on the minimization of the following general regularized loss
function:

L= J (f ) + λ

M∑

i=1

L
(
f̂ (xi ), f (xi )

)
(11)

where J is a penalty function used to stabilize (smooth/simplify) the model f , L

is a loss function measuring the deviation between the actual and estimated result
for alternative xi (denoted by f (xi ) and f̂ (xi ), respectively) and λ > 0 is a constant
representing the trade-off between model fit and complexity. For instance, for a lin-
ear regression model f (xi ) = xid, the regularized function (11) can be expressed as
follows:

L= ‖d‖2 + λ

M∑

i=1

(
f̂ (xi ) − f (xi )

)2
. (12)

3.2 Ranking

Adopting this approach with the L1 norm | · |, instead of the L2 norm ‖ · ‖, the linear
program (9) in the ordinal regression case is transformed as follows:

min e
d + λe

1 y

subject to: (wi − wi+1)d + yi − yi+1 ≥ δ, if xi � xi+1,

(wi − wi+1)d + yi − yi+1 = 0, if xi ∼ xi+1,

d,y ≥ 0.

(13)

Compared to the linear program (9) in the above formulation the normalization
e
d = 1 is no longer used as a constraint. Instead, the term e
d is introduced in
the objective function which is expressed in a similar form to the regularized loss
function (12).

The removal of the normalization constraint makes the parameter δ a simple scal-
ing constant that does not affect the resulting model. Assuming that (d∗,y∗) is the
optimal solution of (13) for some δ, then for any other value δ′ the optimal solution
is simply scaled by a factor of δ′/δ.

Furthermore, with the removal of the normalization constraint e
d = 1, the op-
timal solution (d∗,y∗) normalizes the resulting model in [0, e
d∗]. However, given
the above remark on the scaling constant δ, it is easy to see that setting δ′ = δ/e
d∗
leads to a model normalized in [0,1]. This shows that the resulting rescaled optimal
solution of (13) is also optimal to (9) when δ′ is used instead of δ.

However, with the removal of the normalization constraint e
d = 1, it is possible
that the trivial solution d = 0 will be optimal for (13). The following theorem charac-
terizes the conditions under which this is possible and provides some guidelines for
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the proper selection of the parameter λ (P is the matrix with the differences wi −wi+1

for pairs of alternatives xi � xi+1, and In is the matrix with the differences wi −wi+1

between the alternatives in the indifference class In).

Theorem 1 The trivial solution d = 0 is optimal to (13) if and only if:

λ

[
P
m +

N−1∑

n=1

I

n

(
m′

n + en

(
n−1∑

t=1

mt

))]
−I


N z ≤ e, (14)

where m = (m1,m1 + m2, . . . ,m1 + · · · + mN−1)

, m′

n = (1,2, . . . ,mn − 1)
 and
z = (z1, z2, . . . , zmN−1)


 with z1 ≥ −λ(M − mN + 1), zmN−1 ≤ λ and zi − zi−1

≥ −λ for all other i.

Proof Without loss of generality, assume that the M−1 constraints in (13) are written
in the same order with the ranking of the alternatives.

At the solution d = 0, yi = 0 for all xi ∈ IN , yi = δ for all xi ∈ IN−1, yi = 2δ for
all xi ∈ IN−2, etc. Therefore, for the solution d = 0 the optimal objective function
value is:

λδ

N∑

n=1

(N − n)mn. (15)

Let a be the dual variables associated to the constraints of (13), and denote by
aP the members of a associated to the primal constraints involving pairs of alterna-
tives xi � xi+1 (i.e., dual variables am1, am1+m2, . . . , aM−mN

). The remaining dual
variables aI are associated to the primal constraints involving pairs of alternatives
xi ∼ xi+1. Denoting by I the matrix of the difference wi − wi+1 for pairs of indiffer-
ent alternatives xi ∼ xi+1, the optimality conditions are then written as follows (with
a0 = aM = 0):

−δe

P aP = λδ

N∑

n=1

(N − n)mn, (16)

−P
aP − I
aI ≤ e, (17)

ai−1 − ai ≤ λ, i = 1, . . . ,M, (18)

aP ≥ 0, aI ∈ R. (19)

At the solution d = 0, yi = δ(N − 1) > 0 for all xi ∈ I1 and from complemen-
tary slackness it follows that ai−1 − ai = λ for all i = 1, . . . ,m1 (with a0 = 0); thus,
am1 = −λm1. Similarly, yi = δ(N − 2) > 0 for all xi ∈ I2. Therefore, from comple-
mentary slackness it follows that ai−1 − ai = λ for all i = m1 + 1, . . . ,m1 +m2, thus
leading to am1+m2 = −λ(m1 + m2).

With these results it is easy to see that ai = −iλ (1 ≤ i ≤ M −mN ) and ai−1 −ai ≤
λ (M −mN < i ≤ M , aM = 0), satisfy (16), (18) and (19). Plugging this solution into
(17) and setting z = (aM−mn+1, . . . , aM−1)


 leads to (14). �
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The above theorem shows that the trivial solution may occur if λ is not set properly
(e.g., too low value) or if the data used to develop the model are inappropriate. In
the absence of ties (indifferent alternatives), condition (14) simplifies to λP
m ≤ e
which will always hold for every λ ≥ 0 if P ≤ 0.

In general, the maximum value of λ that will lead to the trivial solution can be
identified from the solution of the following simple LP:

max θr = λδ

N∑

n=1

(N − n)mn

s.t. λ

[
P
m +

N−1∑

n=1

I

n

(
m′

n + en

(
n−1∑

t=1

mt

))]
−I


Nz ≤ e,

−z1 ≤ λ(M − mN + 1),

zmN−1 ≤ λ,

zi−1 − zi ≤ λ, i = 2, . . . ,mN − 1,

λ ≥ 0, z ∈ R.

(20)

The objective function of this LP problem corresponds to the value of the objective
function of (13) for the trivial solution d = 0, whereas the constraints are the neces-
sary and sufficient conditions imposed by theorem 1 for the existence of the trivial
solution.

It should be noticed that (20) is always feasible because the trivial solution λ = 0
and z = 0 is feasible. However, (20) can be unbounded. In this case irrespectively
of the value used for λ in (13), the trivial solution will always be optimal. The un-
boudedness of (20) is defined solely from the first constraint that determines an upper
bound for λ. Obviously, if

P
m +
N−1∑

n=1

I

n

(
m′

n + en

(
n−1∑

t=1

mt

))
≤ 0 (21)

then λ can be set arbitrarily large without affecting feasibility. In the case of a
complete ranking of the reference alternatives with no indifferences this reduces to
P
m ≤ 0. Furthermore, when mN = 1 then IN = 0 and (20) can be solved explic-
itly with the maximum λ taken as the minimum of all the positive elements of the
left-hand side of (21).

It should also be noticed that the solution of (20) depends solely on the data of the
reference alternatives and the definition of the subintervals for the assessment of the
piecewise marginal value functions. Therefore, θ∗

r can be considered as a measure of
the “quality” of the subintervals that are defined. A high value for θ∗

r indicates that
the specified subintervals provide poor information on the ranking of the reference
alternatives and vice versa. This is further demonstrated from the following lemma.

Lemma 1 Suppose that (d,y = 0) solves (13). Then, the resulting model that per-
fectly fits the ranking of the reference alternatives has e
d ≥ θ∗

r .
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Proof Follows by contradiction. Solving (13) with λ = λ∗, where λ∗ is taken from
the solution of (20), leads to an optimal solution (d = 0,y) with objective function
value equal to θ∗

r . If the solution (d,y = 0) is feasible to (13) for the selected λ, and
e
d < θ∗

r , then (d = 0,y) cannot be optimal, thus leading to a contradiction. �

According to this lemma, the higher the value of θ∗
r the larger the value of e
d

should be to get a model that perfectly fits the data. This would require to use a high
value for λ. In the extreme case where (20) is unbounded (i.e., θ∗

r = ∞), it is not
possible to develop such a model.

3.3 Classification

The analysis of the previous section can also be extended in the context of classifica-
tion problems. Denoting by Wn the matrix that consists of all wi , ∀xi ∈ cn, the linear
programming problem (10) is transformed as follows:

min e
d +
N−1∑

n=1

λne

n y+

n +
N∑

n=2

λne

n y−

n

s.t. Wnd − enhn + y+
n ≥ enδ, ∀n = 1, . . . ,N − 1,

Wnd − enhn−1 − y−
n ≤ −enδ, ∀n = 2, . . . ,N,

hn − hn+1 ≥ s, ∀n = 1, . . . ,N − 2,

d,h,y+,y− ≥ 0.

(22)

The remarks made earlier in the ranking case, on the role of δ as a scaling para-
meter as well as the relationship between problems (10) and (22) also apply in the
classification context.

Denoting by mn the number of reference alternatives in class cn, the following
theorem characterizes the cases under which the trivial solution d = 0 is optimal
for (22).

Theorem 2 Let
∑N−1

n=1 λnmn > λNmN . Then, the trivial solution d = 0 is optimal
to (22) if and only if:

N−1∑

n=1

λnW

n en − λNW


N eN ≤ e. (23)

Proof First note that the condition
∑N−1

n=1 λnmn > λNmN does not lead to any loss of
generality, because of the symmetry in the definition of the classes. That is, reversing
the ordering of the classes and the signs of the criteria does not alter the characteristics
of the problem [1].

Let bn (n = 1, . . . ,N − 1) be the dual variables associated to the first set of con-
straints in (22). Similarly, let an (n = 2, . . . ,N) and zn (n = 1, . . . ,N − 2) denote
the dual variables associated with the second and the third sets of constraints in (22).
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The dual of (22) is then expressed as

max δ

N−1∑

n=1

e

n bn + δ

N∑

n=2

e

n an + se


0 z

s.t.
N−1∑

n=1

W

n bn −

N∑

n=2

W

n an ≤ e,

e

1 b1 − e


2 a2 − z1 ≥ 0,

e

n bn − e


n+1an+1 + zn−1 − zn ≥ 0, ∀n = 2, . . . ,N − 2,

e

N−1bN−1 − e


N aN + zN−2 ≥ 0

bn ≤ λnen, ∀n = 1, . . . ,N − 1,

an ≤ λnen, ∀n = 2, . . . ,N,

b,a, z ≥ 0.

(24)

First note that any feasible solution of (22) satisfies h1 > h2 > · · · > hN−2 >

δ > 0 because hn − hn+1 ≥ s ≥ δ > 0. Therefore, for d = 0 it holds that y+
n =

max{0, en(δ + hn)} = en(δ + hn) > 0 (for all n = 1, . . . ,N − 1). By complementary
slackness, it follows that bn = λnen. Similarly, y−

n = max{0, en(δ − hn−1)} = 0, for
all n = 2, . . . ,N − 1. Thus, −enhn−1 − y−

n < −enδ and by complementary slackness
it follows that an = 0, for all n = 2, . . . ,N − 1. Similarly, since h1, . . . , hN−2 > 0, it
follows that:

e

1 b1 − e


2 a2 − z1 = 0,

e

n bn − e


n+1an+1 + zn−1 − zn = 0, ∀n ∈ [2,N − 2]. (25)

Now suppose that there exists some l ∈ [1,N − 2] for which hl − hl+1 > s. This
would imply that zl = 0, and since an = 0, it leads to e


l ul + zl−1 = 0. However,
bl = elλl > 0 and zl−1 ≥ 0 lead to a contradiction. Thus, hn − hn+1 = s for all n =
1, . . . ,N − 2.

With these results it is easy to show that for d = 0 the optimal value for the objec-
tive function of (22) is:

s

N−1∑

n=1

(N −n− 1)λnmn + (δ +hN−1)

N−1∑

n=1

λnmn +λNmN max{0, δ −hN−1} (26)

From this expression it follows that if
∑N−1

n=1 λnmn > λNmN , then hN−1 = 0 and
the optimal value for the objective function of (22) is:

s

N−1∑

n=1

(N − n − 1)λnmn + δ

N∑

n=1

λnmn. (27)

In this case y−
N = eNδ > 0 and by complementary slackness it follows that

aN = eNλN . Therefore, for the dual solution bn = λnen (n = 1, . . . ,N − 1), an = 0
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(n = 2, . . . ,N − 1), aN = λNeN , zn = ∑n
l=1 λlml (n = 1, . . . ,N − 2) the values for

the objective functions for the primal and dual coincide. Therefore, the trivial solution
d = 0 is optimal if and only if:

N−1∑

n=1

λnW

n en − λNW


N eN ≤ e. (28)
�

Similarly to the ordinal regression case, the result of Theorem 2 can be further
explored to analyze the role of the scaling vector � = (λ1, . . . , λN) in connection to
the data characteristics. However, in the classification case different scaling constants
are used for the error variables of each class, instead of a single constant that applied
to all the errors in the ordinal regression case. Therefore, the existence of a trivial
solution to (22) depends both on the absolute values of the different λ’s used for each
class as well as on the relationship of these scaling constants for different classes. In
order to take into account this issue in the analysis of the role of the scaling vector
� in connection to the data characteristics, we introduce the concept of the trivially
equivalent (TE) model as follows.

Definition 1 A model defined from the solution of (22) for some �, with optimal
objective function value F ∗, is TE if there exists �′ satisfying the conditions of The-
orem 2 leading to a trivial solution with objective function value Ftriv = F ∗.

A TE model does not necessarily lead to the same classification result as the trivial
solution. However, since during model development the model selection criterion is
the objective function of (22), the existence of a trivially equivalent model indicates
that it is possible to select some values for the λ’s that will produce a trivial model
which will perform equally well to the TE model (in terms of the objective function
of (22)).

The existence of a TE model can be identified through the solution of the following
simple linear program:

max θc = s

N−1∑

n=1

(N − n − 1)λnmn + δ

N∑

n=1

λnmn

s.t.
N−1∑

n=1

λnW

n en − λNW


N eN ≤ e,

N−1∑

n=1

λnmn − λNmN ≥ 0,

λn ≥ 0, ∀n = 1, . . . ,N.

(29)

The objective function of this problem is the value of the objective function of (22)
for the trivial solution d = 0, whereas the constraints are the necessary and sufficient
conditions imposed by Theorem 2 for the existence of the trivial solution. Suppose
that (22) is solved using a scaling vector � leading to the development of a model
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with objective function value F ∗ for (22). If F ∗ ≤ θ∗
c , where θ∗

c is the optimal objec-
tive function value of (29), then the model is TE because there exists a scaling vector
�′ that solves (29) with the additional constraint:

s

N−1∑

n=1

(N − n − 1)λnmn + δ

N∑

n=1

λnmn = F ∗. (30)

Note that (29) can be unbounded, in which case, irrespective of the selected scal-
ing vector used in (22), the resulting model will always be TE. The following theorem
characterizes the conditions under which this is possible, in terms of the class aver-
ages W1, . . . ,WN .

Theorem 3 If there does not exist z ≥ 0, such that (Wn −WN)z ≥ s(N −n−1)+2δ,
for all n = 1, . . . ,N − 1, then irrespective of the selected scaling vector used in (22),
the resulting model is always TE.

Proof From the above discussion, it is clear that it suffices to characterize the condi-
tions under which (29) is unbounded. Note that (29) is always feasible because � = 0
satisfies all the constraints.

Denoting by z and α the dual variables for each set of constraints of (29), the
optimality conditions are written as follows:

e
z = s

N−1∑

n=1

(N − n − 1)λnmn + δ

N∑

n=1

λnmn, (31)

e

n Wnz − mnα ≥ s(N − n − 1)mn + δmn, ∀n = 1, . . . ,N − 1, (32)

−e

NWN z + mNα ≥ δmN, (33)

z, α ≥ 0. (34)

The inequalities (32–33) define lower and upper bounds for α:

α ≤ Wnz − s(N − n − 1) − δ, ∀n = 1, . . . ,N − 1, (35)

α ≥ WN z + δ. (36)

Therefore, (29) will be unbounded if and only if there does not exist z ≥ 0 such
that:

(Wn − WN)z ≥ s(N − n − 1) + 2δ, ∀n = 1, . . . ,N − 1. (37)
�

A direct consequence of the above theorem is that if there exists a class cn with
Wn − WN ≤ 0, then any model taken from the solution of (22) will always be TE,
irrespective of the scaling factors �.

The solution of (29) depends solely on the data of the reference alternatives and
the definition of the subintervals for the assessment of the piecewise marginal value
functions. Therefore, similarly to the ordinal regression case, θ∗

c can be considered as
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a measure of the “quality” of the subintervals that are defined. A high value for θ∗
c

indicates that the specified subintervals provide poor discriminating ability and vise
versa. This is further demonstrated from the following lemma.

Lemma 2 Suppose that (d,h,y+ = y− = 0) solves (22). Then, the resulting model
that perfectly fits the classification of the reference alternatives has e
d ≥ θ∗

c .

Proof Follows by contradiction similarly to Lemma 1 for the ranking case. �

Therefore, similarly to the ranking case, the higher the value of θ∗
c the larger the

value of e
d should be to get a model that perfectly fits the data. This would require
to use high values for the scaling factors in �. In the extreme case where (29) is
unbounded (i.e., θ∗

c = ∞), it is not possible to develop such a model.

4 Computational results

4.1 Experimental design

The performance of the new formulations developed for the ranking and classification
cases is assessed through an experimental analysis.

The analysis considers both numerical data as well as qualitative data. The for-
mer are generated from the continuous uniform distribution in [0,1]. The qualitative
data are modelled in a five-point scale (1 to 5) similarly to a Likert scale, which is
widely used in questionnaire design. The generation of qualitative data is based on
the discrete uniform distribution.

In all cases two pools of data (data pools 1 and 2), each consisting of 5,000 alter-
natives in R

K are randomly generated. Data pool 1 is used to construct the reference
set, whereas data pool 2 is used to construct a validation set.

Three scenarios are considered for the number of criteria K , ranging from a small
set of criteria (K = 5) up to a larger set of criteria (K = 15). An intermediate case
(K = 10) is also considered in the analysis.

The alternatives in each data pool are evaluated using an additive value function
of the form (1), where the trade-off constants p1, . . . , pK are taken as uniformly
distributed random variables. Each marginal value function vk(xk) is modelled as:

vk(xk) = 1 − exp(xkγk)

1 − exp(γk)
.

Assuming that the data are normalized in [0,1], this is a general class of concave,
convex or linear functions ranging in [0,1]. The shape parameter γk �= 0 defines the
type of the function. Negative values for γk define a concave marginal value function,
whereas positive values define a convex function. Finally, values of γk close to zero
define an almost linear function. In this analysis the shape parameter γk for the mar-
ginal value function of each criterion xk is taken as a uniformly distributed random
variable in [−8,8].

The additive value function which is randomly constructed with the above process
provides the global values for the alternatives in each data pool. These global values
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are used to rank the alternatives from the best to the worst or to classify them in
predefined classes.

In the classification case, two-class and three-class problems are considered. The
cut-off point in the two-class case is defined as the median of the global values of the
alternatives in data pool 1. In the three-class case the two cut-off points, which are
required to classify the alternatives, are defined from the 25% and the 75% percentiles
of the global values of the alternatives in data pool 1.

The evaluation of the alternatives in the two data pools is subject to inconsistencies
(noise). In the ranking case the inconsistencies are imposed through the introduction
of normally distributed random noise in the actual global values of the alternatives.
This random noise has zero mean and standard deviation of σ/6, σ/3 and σ/2, each
corresponding to increased inconsistencies in the evaluation and ranking of the alter-
natives, where σ denotes the standard deviation of the scores of the alternatives in the
two data pools. In the classification case, the imposed inconsistencies involve ran-
dom perturbations of the classification of the alternatives. Three inconsistency levels
(5%, 15% and 25%) are considered, each corresponding to the number of alternatives
whose classification is perturbed.

Once the alternatives in the two data pools are generated and evaluated (ranked or
classified) with the above procedure, a reference and a validation set are constructed,
each consisting of 1,500 alternatives, randomly selected from the corresponding data
pools. In the classification case, the selection of the reference alternatives is per-
formed such that all classes are of equal size in both the reference and the validation
set. This assumption of balanced class sizes is not unrealistic. Of course, in many
real-world situations, there is a considerable imbalance in the size of the classes.
However, developing a model without considering this imbalance, is likely to lead
to biased results towards the larger class (i.e., excellent performance for the larger
class, but poor performance for the smaller one). Such a model is rather unlikely to
be acceptable. To cope with this difficulty, the reference alternatives in each class are
often weighted to ensure that each class contributes equally to the performance of the
model during its development. Obviously, this weighting process implicitly assumes
equal class sizes.

Overall, the design factors of the experimental analysis for the ordinal regression
case include the number of criteria (5, 10, 15), the type of the criteria (continuous,
discrete), as well as the inconsistency level (low, medium, high). In the classifica-
tion case, the number of classes is also used as an additional design factor. For each
combination of the design factors, 100 runs are performed. Overall, for all the 18
combinations of the three design factors in the ordinal regression case 1,800 refer-
ence sets are constructed, each matched to one validation set. Similarly, for all the
36 combinations of the four design factors in the classification case 3,600 reference
sets are constructed, each matched to one validation set. The experimental analysis is
performed in MATLAB R14, with CPLEX v9.0 as the linear programming solver.

4.2 Results

The results obtained from the application of the new formulations (13) and (22) are
compared to the ones traditionally used in the PDA context by the UTA and the
UTADIS methods (formulations (9) and (10), respectively).
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The methods are applied with different settings regarding the definition of the
subintervals, which are required to perform the piecewise linear modeling of the mar-
ginal value functions. For the number of subintervals three different specifications
are used involving 2, 4 and 8 subintervals. Furthermore, two different approaches are
used to define these subintervals. In the first approach, the size of the subintervals is
defined such that approximately the same number of reference alternatives fall into
each subinterval (henceforth this will be referred as equal volume). In the second ap-
proach, all subintervals are defined to have the same size. Of course, these settings
apply only to the continuous data sets. For all discrete data sets, the number of subin-
tervals is always equal to 4, each of size 1 (because the discrete data are measured in
a 5-point scale).

Table 1 Summary of ordinal regression results

Factors Levels UTA-R UTA p-values

Kendall’s τ Criteria 5 0.7657 0.7391 <0.01

10 0.7652 0.7511 <0.01

15 0.7606 0.7531 <0.01

Data type Continuous 0.7618 0.7410 <0.01

Discrete 0.7701 0.7681 0.527

Inconsistencies Low 0.8725 0.8737 <0.01

Medium 0.7602 0.7445 <0.01

High 0.6588 0.6252 <0.01

Subintervals Equal size 0.7617 0.7405 <0.01

method Equal volume 0.7618 0.7415 <0.01

Number of 2 0.7551 0.7509 0.155

subintervals 4 0.7650 0.7429 <0.01

8 0.7652 0.7291 <0.01

MAE Criteria 5 2.1629 4.5707 <0.01

10 1.2456 1.5987 <0.01

15 0.8818 1.0260 <0.01

Data type Continuous 1.5225 2.6519 <0.01

Discrete 1.1528 1.6383 <0.01

Inconsistencies Low 0.8183 0.8763 <0.01

Medium 1.4431 2.4613 <0.01

High 2.0288 3.8579 <0.01

Subintervals Equal size 1.5202 2.7629 <0.01

method Equal volume 1.5249 2.5410 <0.01

Number of 2 1.7524 1.8609 <0.01

subintervals 4 1.4178 2.2968 <0.01

8 1.3974 3.7980 <0.01



76 M. Doumpos, C. Zopounidis

In the ranking case, the performance of the developed models is assessed using the
Kendall’s τ coefficient to measure the concordance between the ranking of the valida-
tion alternatives that is obtained by the developed models and their actual ranking as
defined by the true additive value function. In the classification case the performance
of the models is assessed with the classification accuracy for the validation alterna-
tives, as well as with the Gini coefficient (for the three-class case the Gini coefficient
is estimated as using the extension proposed in [3]). In both cases, the mean absolute
error between the actual trade-off coefficients of the criteria and the estimated ones
is also considered.

The results of the experimental analysis for the ordinal regression case are sum-
marized in Table 1. The results clearly show that in most cases the new formulation
based on the regularization principle (UTA-R) provides significantly better results
compared to the UTA method (the p-values of a t-test on the differences of the for-
mulations are reported). The improvements of the new formulation are higher for
smaller criteria sets, continuous data, larger number of subintervals as well as when
the inconsistencies increase. In terms of the Kendall’s τ coefficient, the traditional
formulation used in the UTA method outperforms the new one only in the case of
low inconsistencies. In two other cases (discrete data, small number of subintervals)
the differences between the two formulations are not found statistically significant.
As far as the mean absolute error (MAE) in the estimation of the actual criteria trade-
off constants is concerned, the new formulation performs consistently better than the
one of the UTA method in all cases. Similarly to the results for the Kendall’s τ coef-
ficients the improvements of the new formulation are higher for smaller criteria sets,
continuous data, larger number of subintervals, and higher inconsistencies.

Table 2 provides some further results for the ordinal regression case, focusing on
qualitative data. Similarly to the overall results, the new formulation generally pro-
vides higher values for the Kendall’s τ coefficient, but in most cases the differences
are not found significant. However, it is still evident that as the inconsistencies in

Table 2 Ordinal regression results for qualitative data

Factors Levels UTA-R UTA p-values

Kendall’s τ Criteria 5 0.7711 0.7655 0.287

10 0.7711 0.7710 0.971

15 0.7679 0.7679 1.000

Inconsistencies Low 0.8801 0.8831 <0.01

Medium 0.7658 0.7664 0.410

High 0.6643 0.6549 <0.01

MAE Criteria 5 1.7216 2.9965 <0.01

10 0.9981 1.1230 <0.01

15 0.7387 0.7954 0.016

Inconsistencies Low 0.5434 0.6225 0.119

Medium 1.1761 1.5122 <0.01

High 1.7389 2.7803 <0.01
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Table 4 Classification results for discrete data

Factors Levels UTADIS-R UTADIS p-values

Accuracy Criteria 5 0.7922 0.8022 0.068

10 0.8077 0.7951 0.020

15 0.8018 0.7913 0.050

Classes 2 0.8054 0.8003 0.236

3 0.7957 0.7921 0.430

Inconsistencies Low 0.9104 0.9181 <0.01

Medium 0.7944 0.7910 <0.01

High 0.6968 0.6795 <0.01

Gini index Criteria 5 0.6848 0.7114 <0.01

10 0.7158 0.7083 0.424

15 0.7152 0.7065 0.351

Classes 2 0.6676 0.6715 0.646

3 0.7429 0.7459 0.640

Inconsistencies Low 0.8972 0.9034 <0.01

Medium 0.6982 0.7072 <0.01

High 0.5203 0.5156 0.244

MAE Criteria 5 3.6119 3.2058 0.016

10 0.9620 1.5083 <0.01

15 0.6413 0.9737 <0.01

Classes 2 2.3425 2.3523 0.935

3 1.1343 1.4395 <0.01

Inconsistencies Low 1.0023 0.9416 0.434

Medium 1.8395 1.9173 0.506

High 2.3734 2.8289 <0.01

the data increase, the results of the new formulation are improved over the ones of
the UTA method (in the case of high inconsistencies the difference between the two
approaches are significant at the 1% level). Furthermore, despite the minor improve-
ments in the Kendall’s τ coefficient, the new formulation performs (in most cases)
significantly better than the one of the UTA method as far as the estimation of the
actual weights is concerned. Except for the case of low inconsistencies, in all other
cases the average MAE of the new formulation is significantly lower compared to the
one of the UTA method.

The results for the classification case are summarized in Table 3. In terms of the
classification accuracy for the validation set, the new formulation (UTADIS-R) pro-
vides consistently better results compared to the UTADIS method. The differences
between the two approaches are significant at the 1% level, except for the case of
discrete data. The improvements are higher for larger number of subintervals, as well
as in cases where the inconsistencies in the data increase. Similar results are also
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observed for the Gini index, as well as for the MAE in the estimation of the actual
trade-off coefficients of the criteria. Additional results for the classification case are
given in Table 4 for the discrete data. In terms of generalizing ability (as measured
by the classification accuracy and the Gini index), the differences between the new
formulation and the one of the UTADIS method are now reduced. Nevertheless, it is
still evident that its performance relative to the UTADIS method is improved as the
inconsistencies in the data increase. Furthermore, its estimates for the actual trade-
off coefficients are significantly better than the ones of the UTADIS method when the
complexity of the problem increases (large number of criteria, multi-class problem,
high inconsistencies).

5 Conclusions

Disaggregation techniques are often used in MCDM to build decision models and
to extract preferential information from a set of global judgments made by deci-
sion makers. This study explored the introduction of the regularization principle,
which is well known to statistical learning theory, in the disaggregation context of
MCDM. Based on existing methods for ranking and classification problems (UTA
and UTADIS methods), new formulations were proposed and their properties were
analyzed in terms of the data characteristics. Preliminary computational results were
also given demonstrating the increased performance of the new models over the exist-
ing ones. In particular, the new formulations were found more robust to inconsisten-
cies, as well as to misspecification of some technical parameters of the models, such
as the piecewise linear modeling of the marginal value functions. The improvements
involved both the generalizing ability of the models as well as the estimation of the
actual significance of the criteria.

Although the analysis focused on the development of decision models in the form
of additive value functions, it can also be extended to consider other modeling forms,
which are commonly used in MCDM, such as outranking relation models. Further
experimental testing on real-world data would also help in assessing the performance
of the new formulations. Finally, other loss functions can also be considered instead
of the L1 loss which was used in this analysis, in order to investigate the impact
of the optimization criterion used during model development on the form and the
performance of the final models.
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