
Computational Optimization and Applications, 35, 375–398, 2006

c© 2006 Springer Science + Business Media, LLC. Manufactured in The Netherlands.

DOI: 10.1007/s10589-006-8720-6

On the Smoothing of the Square-Root Exact
Penalty Function for Inequality Constrained
Optimization

ZHIQING MENG mengzhiqing@zjut.edu.cn

College of Business and Administration, Zhejiang University of Technology, Hangzhou, Zhejiang 310032,
China

CHUANGYIN DANG mecdang@cityu.edu.hk

Department of Manufacturing Engineering & Engineering Management, City University of Hong Kong,
Kowloon, Hong Kong

XIAOQI YANG mayangxq@polyu.edu.hk

Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong

Received June 17, 2004; Revised July 18, 2005

Published online: 7 June 2006

Abstract. In this paper we propose two methods for smoothing a nonsmooth square-root exact penalty

function for inequality constrained optimization. Error estimations are obtained among the optimal objective

function values of the smoothed penalty problem, of the nonsmooth penalty problem and of the original

optimization problem. We develop an algorithm for solving the optimization problem based on the smoothed

penalty function and prove the convergence of the algorithm. The efficiency of the smoothed penalty function

is illustrated with some numerical examples, which show that the algorithm seems efficient.

Keywords: constrained optimization, penalty function, exact penalty function, smoothing method,

ε-feasible solution, optimal solution

1. Introduction

Consider

(P) : min f (x)

s.t. gi (x) ≤ 0, i = 1, 2, . . . , m,

where f, gi : Rn → R, i ∈ I = {1, 2, . . . , m}. Let

X0 = {x ∈ Rn | gi (x) ≤ 0, i = 1, 2, . . . , m}.

376 MENG, DANG AND YANG

To solve (P), the penalty function methods have been proposed in the literature. One of

the popular penalty functions is given by

F2(x, ρ) = f (x) + ρ

m∑
i=1

max{gi (x), 0}2. (1)

Note that (1) is not an exact penalty function. In Zangwill [1], an exact penalty function

was defined as follows:

F1(x, ρ) = f (x) + ρ

m∑
i=1

max{gi (x), 0}. (2)

After Zangwill’s development, extensive research of exact penalty function methods has

been carried out in the literature (e.g, [2–7]). However, (2) is not a smooth function and

causes some numerical instability problems in its implementation when the value of the

penalty parameter ρ becomes larger. In practice, we only need to obtain an approximately

optimal solution to (P). In fact, we can only get an approximate solution because of the

finite precision of a computer. In order to improve the smoothness of an exact penalty

function, Zenios et al. [9] and Pinar and Zenios [10] give a smooth exact penalty function

for convex constrained optimization problems, which can be applied to obtain a good

approximately optimal solution to (P). Chen and Mangasarian [11] obtains by integrating

the sigmoid function 1/(1 + e−αt) a smooth function to approximate max{0, t}. Yang

et al. [12] develop a method for smoothing an exact penalty function.

In this paper, we propose two new methods for smoothing the exact penalty function

of (P) given by

F(x, ρ) = f (x) + ρ

m∑
i=1

√
max{gi (x), 0}. (3)

The corresponding unconstrained optimization problem to (3) is given by

(Pρ) : min F(x, ρ) s.t. x ∈ Rn.

The penalty function F(x, ρ) is exact but not smooth. We smooth the penalty function

(3) so that it can been applied to solve the problem (P) via a gradient-type or Newton-type

method. Numerical results show that the smoothed penalty function is numerically more

efficient and stable than the penalty functions (1) and (2) for computing an approximate

solution to (P).

The rest of this paper is organized as follows. In Section 2, we propose a method for

smoothing the penalty function (3) in terms of first-order differentiability, which yields a

first-order continuously differentiable penalty function. We prove some error estimates

among the optimal objective function values of the smoothed penalty problem, of the

nonsmooth penalty problem and of the original constrained optimization problem. We

present an algorithm to compute an approximate solution to (P) based on the smooth

penalty function and show the convergence of the algorithm. In Section 3, we propose

THE SMOOTHING OF THE SQUARE-ROOT EXACT PENALTY FUNCTION 377

another method for smoothing the penalty function (3) in terms of second-order differ-

entiability, which yields a second-order continuously differentiable penalty function. We

prove some error estimates and give an algorithm to compute an approximate solution

to (P) based on the smooth penalty function. In Section 4, we give numerical results and

conclude the paper with some remarks.

2. A first-order differentiable smoothing method

We define a function pε(t) by

pε(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if t < 0,

1

3ε
t

3
2 if 0 ≤ t < ε,

t
1
2 − 2

3
ε

1
2 if ε ≤ t.

Let p(t) = √
max{t, 0}. Then,

lim
ε→0

pε(t) = p(t).

Assume that f and gi , i ∈ I are first-order continuously differentiable. Let g+
i (x) =

max{0, gi (x)} for any i ∈ I . Consider the penalty function for (P) given by

F(x, ρ, ε) = f (x) + ρ
∑
i∈I

pε(gi (x)), (4)

where ρ > 0. Clearly, F(x, ρ, ε) is first-order continuously differentiable at any x ∈ Rn .

Applying F(x, ρ, ε), we obtain the following penalty problem,

(P Iρ) : min F(x, ρ, ε) s.t. x ∈ Rn.

Since limε→0 F(x, ρ, ε) = F(x, ρ) for any given ρ, we will first study the relation-

ships between (Pρ) and (PIρ).

Lemma 2.1. For any x ∈ Rn and ε > 0,

0 ≤ F(x, ρ) − F(x, ρ, ε) ≤ 2

3
mρε

1
2 . (5)

Proof: From the definition of pε(t), we obtain

0 ≤ p(t) − pε(t) ≤ 2

3
ε

1
2 .

378 MENG, DANG AND YANG

Then, for any x ∈ X ,

0 ≤ p(gi (x)) − pε(gi (x)) ≤ 2

3
ε

1
2 , ∀i ∈ I.

Thus,

0 ≤
∑
i∈I

p(gi (x)) −
∑
i∈I

pε(gi (x)) ≤ 2

3
mε

1
2 .

Therefore,

0 ≤ F(x, ρ) − F(x, ρ, ε) ≤ 2

3
mρε

1
2

since ρ > 0. �

As a direct result of Lemma 2.1, we obtain the following two theorems.

Theorem 2.1. Let {ε j } → 0 be a sequence of positive numbers and assume that x j

is a solution to minx∈Rn F(x, ρ, ε j) for some given ρ > 0 . Let x̄ be an accumulating
point of the sequence {x j }. Then x̄ is an optimal solution to minx∈Rn F(x, ρ).

Theorem 2.2. Let x∗ be an optimal solution of (Pρ) and x̄ ∈ X an optimal solution of
(PIρ). Then,

0 ≤ F(x∗, ρ) − F(x̄, ρ, ε) ≤ 2

3
mρε

1
2 . (6)

Definition 2.1. A point xε ∈ X is an ε-feasible solution or an ε-solution if

gi (xε) ≤ ε, ∀i ∈ I.

Theorem 2.3. Let x∗ be an optimal solution of (Pρ) and x̄ ∈ Rn an optimal solution
of (PIρ). Furthermore, let x∗ be feasible to (P) and x̄ ε-feasible to (P). Then

0 ≤ f (x∗) − f (x̄) ≤ 4

3
mρε

1
2 . (7)

Proof: Since x̄ is ε-feasible to (P), hence,

∑
i∈I

pε(gi (x̄)) ≤ 2

3
mε

1
2 .

THE SMOOTHING OF THE SQUARE-ROOT EXACT PENALTY FUNCTION 379

As x∗ is an optimal solution to (P), we have∑
i∈I

p(gi (x
∗)) = 0.

Then, by Theorem 2.2, we get

0 ≤ (f (x∗) + ρ
∑
i∈I

p(gi (x
∗))) −

(
f (x̄) + ρ

∑
i∈I

pε(gi (x̄))

)
≤ 2

3
mρε

1
2 .

Thus,

ρ
∑
i∈I

pε(gi (x̄)) ≤ f (x∗) − f (x̄) ≤ ρ
∑
i∈I

pε(gi (x̄)) + 2

3
mρε

1
2 .

Therefore, 0 ≤ f (x∗) − f (x̄) ≤ 4
3
mρε

1
2 . �

Definition 2.2. For x∗ ∈ Rn , we call y∗ ∈ Rm a Lagrange multiplier vector corresponding

to x∗ if x∗ and y∗ satisfy

∇ f (x∗) = −
∑
i∈I

y∗
i ∇gi (x

∗), (8)

y∗
i gi (x

∗) = 0, y∗
i ≥ 0, gi (x

∗) ≤ 0, i = 1, 2, . . . , m. (9)

Theorem 2.4. Let f and gi , i = 1, 2, . . . , m, be convex. Let x∗ be an optimal solution
of (P) and y∗ ∈ Rm a Lagrange multiplier vector corresponding to x∗. Then

F(x∗, ρ) − F(x, ρ, ε) ≤ 2

3
mρε

1
2 , ∀x ∈ Rn, (10)

provided that ρ ≥ mλ
√

b(x), where λ = max{y∗
i , i = 1, 2, . . . , m} and b(x) =

max{g+
i (x), i = 1, 2, . . . , m}.

Proof: By the convexity of f and gi , i = 1, 2, . . . , m, we have

f (x) ≥ f (x∗) + ∇ f (x∗)T (x − x∗), ∀x ∈ Rn,

gi (x) ≥ gi (x∗) + ∇gi (x∗)T (x − x∗), ∀x ∈ Rn.

(11)

Since x∗ is an optimal solution of (P) and y∗ a Lagrange multiplier vector corresponding

to x∗, hence, (8) and (9) follows. Applying (8), (9) and (11), we obtain

f (x) ≥ f (x∗) + ∇ f (x∗)T (x − x∗)

= f (x∗) −
∑
i∈I

y∗
i ∇gi (x

∗)T (x − x∗)

380 MENG, DANG AND YANG

≥ f (x∗) −
∑
i∈I

y∗
i (gi (x) − gi (x

∗))

= f (x∗) −
∑
i∈I

y∗
i gi (x).

Let I +(x) = {i ∈ I | gi (x) > 0}. Then,

f (x) ≥ f (x∗) −
∑

i∈I +(x)

y∗
i gi (x). (12)

Let

λ = max{y∗
i , i = 1, 2 . . . , m} and b(x) = max{g+

i (x), i = 1, 2, . . . , m}. (13)

Then, −y∗
i gi (x) ≥ −λb(x) for any i ∈ I +(x). Thus,

f (x) ≥ f (x∗) −
∑

i∈I +(x)

y∗
i gi (x) ≥ f (x∗) − λmb(x). (14)

Therefore,

F(x, ρ) = f (x) +
∑

i∈I +(x)

ρ

√
g+

i (x)

≥ f (x∗) − λmb(x) +
∑

i∈I +(x)

ρ

√
g+

i (x)

≥ f (x∗) − λmb(x) + ρ
√

b(x).

When ρ ≥ λm
√

b(x), we obtain F(x, ρ) ≥ f (x∗). So, when ρ ≥ λm
√

b(x), we always

have f (x∗) − F(x, ρ) ≤ 0. By Lemma 2.1, we obtain (10). �

As a corollary of Theorem 2.4, we have

Corollary 2.1. Let f and gi , i = 1, 2, . . . , m, be convex, x∗ an optimal solution of
(P), and y∗ ∈ Rm a Lagrange multiplier vector corresponding to x∗. If x∗

ρ is an optimal

solution of (Pρ), then f (x∗) = F(x∗
ρ, ρ) when ρ ≥ λm

√
b∗, where λ = max{y∗

i , i =
1, . . . , m}, b∗ = max{g+

i (x∗
ρ), i = 1, 2, . . . , m}.

Theorems 2.1 and 2.2 mean that an approximate solution to (PIρ) is also an approxi-

mate solution to (Pρ) when the error ε is sufficiently small. Furthermore, by Theorem 2.3,

an approximately optimal solution to (PIρ) becomes an approximately optimal solution

to (P) if the solution to (PIρ) is ε−feasible. Especially, by Theorem 2.4, under some con-

ditions, an approximately optimal solution to (PIρ) is an approximately optimal solution

to (P). Therefore, we may obtain an approximately optimal solution to (P) by computing

an approximately optimal solution to (PIρ).

THE SMOOTHING OF THE SQUARE-ROOT EXACT PENALTY FUNCTION 381

As follows, we give a penalty function algorithm for the problem (P). In order to solve

(P), we attempt to solve its smoothed penalty problem given by

min
x∈Rn

F(x, ρ, ε).

For x ∈ Rn , we define

I 0(x) = {i | gi (x) = 0, i ∈ I },
I +
ε (x) = {i | gi (x) ≥ ε, i ∈ I },

I −
ε (x) = {i | gi (x) < ε, i ∈ I }.

We propose the following algorithm to solve (P).

Algorithm I.

Step 1: Given x0, ε > 0, ε0 > 0, ρ0 > 0, 0 < η < 1, and N > 1, let j = 0 and go
to Step 2.

Step 2: Use x j as the starting point to solve minx∈Rn F(x, ρ j , ε j). Let x j+1 be the optimal
solution obtained.

Step 3: If x j+1 is ε-feasible to (P), then stop and we have obtained an approximate
solution x j+1 of (P). Otherwise, let ρ j+1 = Nρ j , ε j+1 = ηε j , and j = j + 1, and
go to Step 2.

Remark. Since 0 < η < 1 and N > 1, hence, as j → +∞, the sequence {ε j } is

decreasing to 0 and the sequence {ρ j } is increasing to +∞.

Theorem 2.5. Assume that lim‖x‖→∞ f (x) = +∞. Let {x j } be the sequence generated
by Algorithm I. Suppose that the sequence {F(x j , ρ j , ε j)} is bounded. Then {x j } is
bounded and any limit point x∗ of {x j } belongs to X0 and satisfies

λ∇ f (x∗) +
∑

i∈I 0(x∗)

μi∇gi (x
∗) = 0, (15)

where λ ≥ 0 and μi ≥ 0, i = 1, 2, . . . , m.

Proof: By the assumptions, there is some number L such that

L > F(x j , ρ j , ε j), j = 0, 1, 2, (16)

Suppose to the contrary that {x j } is unbounded. Assume without loss of generality that

‖x j‖ → ∞ as j → +∞. Then, from (16), we get

L > f (x j), j = 0, 1, 2, . . . ,

which results in a contradiction since lim‖x‖→∞ f (x) = +∞.

382 MENG, DANG AND YANG

We show next that any limit point of {x j } belongs to X0. Without loss of generality,

we assume lim j→∞ x j = x∗. Suppose to the contrary that x∗ �∈ X0. Then there exists

some i such that p(gi (x∗)) > 0. As gi (i ∈ I) are continuous, so are F(x j , ρ j , ε j) (j =
1, 2, . . .). Note that

F(x j , ρ j , ε j) = f (x j) + ρ j

∑
i∈I +

ε j
(x j)

(
g+

i (x j)1/2 − 2

3
ε

1/2

j

)

+ ρ j

∑
i∈I −

ε j
(x j)

1

3
ε−1

j g+
i (x j)3/2. (17)

Then, as j → ∞, F(x j , ρ j , ε j) → ∞, which contradicts the assumption.

Finally, we show that (15) holds. By Step 2, ∇F(x j , ρ j , ε j) = 0, that is

∇ f (x j) + ρ j

∑
i∈I +

ε j
(x j)

1

2
g+

i (x j)−1/2∇gi (x
j)

+ ρ j

∑
i∈I −

ε j
(x j)

1

2
ε−1

j g+
i (x j)1/2∇gi (x

j) = 0. (18)

For j = 1, 2, . . . , let

γ j = 1 +
∑

i∈I +
ε j

(x j)

ρ j
1

2
g+

i (x j)−1/2 +
∑

i∈I −
ε j

(x j)

1

2
ρ jε

−1
j g+

i (x j)1/2.

Then γ j > 0. From (18), we have

1

γ j
∇ f0(x j) +

∑
i∈I +

ε j
(x j)

ρ j
1
2
g+

i (x j)−1/2

γ j
∇gi (x

j)

+
∑

i∈I −
ε j

(x j)

1
2
ρ jε

−1
j g+

i (x j)1/2

γ j
∇gi (x

j) = 0. (19)

Let

λ j = 1

γ j
,

μ
j
i = ρ j

1
2
ε−1

j g+
i (x j)−1/2

γ j
, i ∈ I +

ε j
(x j),

μ
j
i =

1
2
ρ jε

−1
j g+

i (x j)1/2

γ j
, i ∈ I −

ε j
(x j),

μ
j
i = 0, i ∈ I

∖(
I +
ε j

(x j)
⋃

I −
ε j

(x j)

)
.

THE SMOOTHING OF THE SQUARE-ROOT EXACT PENALTY FUNCTION 383

Then,

λ j +
∑
i∈I

μ
j
i = 1, ∀ j, (20)

μ
j
i ≥ 0, i ∈ I, ∀ j.

Clearly, as j → ∞, λ j → λ ≥ 0, μ
j
i → μi ≥ 0, ∀i ∈ I . By (19) and (20), as

j → +∞, we have

λ∇ f0(x∗) +
∑
i∈I

μi∇gi (x
∗) = 0,

λ +
∑
i∈I

μi = 1.

For i ∈ I −(x∗), as j → +∞, we get μ
j
i → 0. Therefore, μi = 0, ∀i ∈ I −(x∗). So,

(15) holds. �

Theorem 2.5 points out that the sequence {x j } generated by Algorithm I may converge

to a K-T point to (P) under some conditions. The speed of convergence of Algorithm I

depends on the speed of convergence of the algorithm employed in Step 2 to solve the

unconstrained optimization problem minx∈Rn F(x, ρ j , ε j). Note that F(x, ρ j , ε j) is only

first-order differentiable. If we want to use a Newton-type method, a smooth penalty

function must be second-order differentiable. In the next section, we present a method for

smoothing the penalty function (3) to obtain a twice continuously differentiable penalty

function.

3. A second-order differentiable smoothing method

In this section, we propose a method for smoothing the penalty function (3) to obtain a

twice continuously differentiable penalty function. We define qε(t) by

qε(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if t ≤ 0,

1

15ε2
t

5
2 if 0 ≤ t < ε,

t
1
2 + 2

3
εt− 1

2 − 8

5
ε

1
2 if ε ≤ t.

It is easy to see that qε(t) is twice continuously differentiable and that limε→0 qε(t) =
p(t).

Assume that f and gi , i ∈ I , are twice continuously differentiable. Consider

G(x, ρ, ε) = f (x) + ρ
∑
i∈I

qε(gi (x)), (21)

384 MENG, DANG AND YANG

where ρ > 0. Clearly, G(x, ρ, ε) is twice continuously differentiable at any x ∈ Rn .

Applying G(x, ρ, ε), we obtain the following penalty problem

(PIIρ) : min G(x, ρ, ε) s.t. x ∈ Rn.

Since limε→0 G(x, ρ, ε) = F(x, ρ), we will first consider the relationships between (Pρ)

and (PIIρ).

Lemma 3.1. For any x ∈ Rn and ε > 0, we have

0 ≤ F(x, ρ) − G(x, ρ, ε) ≤ 8

5
mρε

1
2 . (22)

Proof: From the definition of qε(t), we obtain

0 ≤ p(t) − qε(t) ≤ 8

5
ε

1
2 .

Then,

0 ≤ p(gi (x)) − qε(gi (x)) ≤ 8

5
ε

1
2 , ∀x ∈ Rn, i = 1, 2, . . . , m.

Thus,

0 ≤
∑
i∈I

p(gi (x)) −
∑
i∈I

qε(gi (x)) ≤ 8

5
mε

1
2 .

Therefore,

0 ≤ F(x, ρ) − G(x, ρ, ε) ≤ 8

5
mρε

1
2 .

�

As a direct result of Lemma 3.1, we have the following two theorems.

Theorem 3.1. Let {ε j } → 0 be a sequence of positive numbers and assume that x j is
a solution to minx∈Rn G(x, ρ, ε j) for some ρ > 0 . Let x̄ be an accumulating point of
the sequence {x j }. Then x̄ is an optimal solution to minx∈Rn F(x, ρ).

Theorem 3.2. Let x∗ be an optimal solution of (Pρ) and x̄ ∈ Rn an optimal solution
of (PIIρ). Then,

0 ≤ F(x∗, ρ) − G(x̄, ρ, ε) ≤ 8

5
mρε

1
2 . (23)

Theorem 3.3. Let x∗ be an optimal solution of (Pρ) and x̄ ∈ Rn an optimal solution
of (PIIρ). Furthermore, let x∗ be feasible to (P) and x̄ ε-feasible to (P). Then,

0 ≤ f (x∗) − f (x̄) ≤ 16

5
mρε

1
2 . (24)

THE SMOOTHING OF THE SQUARE-ROOT EXACT PENALTY FUNCTION 385

Proof: Since x̄ is ε-feasible to (P), hence,

∑
i∈I

qε(gi (x̄)) ≤ 8

5
mε

1
2 .

As x∗ is an optimal solution to (P), we have

∑
i∈I

p(gi (x
∗)) = 0.

By Lemma 3.1, we get

0 ≤ f (x∗) + ρ
∑
i∈I

p(gi (x
∗)) −

(
f (x̄) + ρ

∑
i∈I

qε(gi (x̄))

)
≤ 8

5
mρε

1
2 ,

which implies 0 ≤ f (x∗) − f (x̄) ≤ 16
5

mρε
1
2 . �

Theorem 3.4. Let f and gi , i = 1, 2, . . . , m, be convex. Let x∗ be an optimal solution
of (P) and y∗ ∈ Rm a Lagrange multiplier vector corresponding to x∗. Then,

F(x∗, ρ) − G(x, ρ, ε) ≤ 8

5
mρε

1
2 , ∀x ∈ Rn, (25)

provided that ρ ≥ mλ
√

b(x), where λ = max{y∗
i , i = 1, 2, . . . , m} and b(x) =

max{g+
i (x), i = 1, 2, . . . , m}.

Proof: The proof is the same as that of Theorem 2.4. �

Now, we present a penalty function algorithm to solve (P). In order to solve (P), we

attempt to solve its smoothed penalty problem given by minx∈Rn G(x, ρ, ε) with

G(x, ρ, ε) = f (x) + ρ
∑

i∈I −
ε (x)

1

15ε2
gi (x)

5
2

+ρ
∑

i∈I +
ε (x)

(
gi (x)

1
2 + 2

3
εgi (x)−

1
2 − 8

5
ε

1
2

)
. (26)

We propose the following algorithm.

386 MENG, DANG AND YANG

Algorithm II.

Step 1: Given x0, ε > 0, ε0 > 0, ρ0 > 0, 0 < η < 1 and N > 1, let j = 0 and go to
Step 1.

Step 2: Use x j as the starting point to solve minx∈Rn G(x, ρ j , ε j). Let x j+1 be the optimal
solution obtained.

Step 3: If x j+1 is ε-feasible to (P), then stop and the algorithm has generated an
approximate solution x j+1 of (P). Otherwise, let ρ j+1 = Nρ j , ε j+1 = ηε j , and
j = j + 1, and go to Step 2.

Theorem 3.5. Assume that lim‖x‖→∞ f (x) = +∞. Let {x j } be the sequence gen-
erated by Algorithm II. Suppose that the sequence {G(x j , ρ j , ε j)} is bounded and
‖∇G(x j , ρ j , ε j)‖ = 0, j = 1, 2, Then, {x j } is bounded, and any limit point
x∗ of {x j } belongs to X0 and satisfies

λ∇ f (x∗) +
∑

i∈I 0(x∗)

μi∇gi (x
∗) = 0, (27)

where λ ≥ 0 and μi ≥ 0, i = 1, 2, . . . , m.

Proof: The proof is similar to that of Theorem 2.5. �

Theorems 3.2, 3.3 and 3.4 mean that we may get an approximate solution to (P) by

solving (PIIρ). In the next section, we use Algorithms I and II to compute an approximate

solution to (P).

4. Numerical results

In this section, we solve some constrained optimization problems with Algorithms I and

II on Matlab. Numerical results show that Algorithms I and II yield some approximate

solutions that have a better objective function value in comparison with some other

algorithms. For a larger value of the penalty parameter ρ, Algorithms I and II have better

stability and convergence near a solution.

In order to compare the efficiency of Algorithm I and Algorithm II with the algorithms

based on the penalty function (1) and the exact penalty function (2), we use all of them

to solve the same examples.

The algorithms based on the penalty function (1) and the exact penalty function (2)

are described as follows:

Algorithm III (or IV).

Step 1: Given x0, ε > 0, ρ0 > 0, and N > 1, let j = 0 and go to Step 2.
Step 2: Use x j as the starting point to solve

min
x∈Rn

F1(x, ρ j) = f (x) + ρ j

m∑
i=1

max{gi (x), 0}

THE SMOOTHING OF THE SQUARE-ROOT EXACT PENALTY FUNCTION 387

Table 1. Results of Algorithm I, II, III and IV with ρ0 = 1 and N = 2.

Penalty No. Penalty Objective

function iterations parameter ρ j value ε-solution (x1, x2)

Algorithm I 1 1 0.000000 (0.000120, 0.000392)

F(x, ρ, ε) 2 2 0.000000 (0.000000, 0.000000)

Algorithm II 1 1 0.000000 (0.000000, 0.000000)

G(x, ρ, ε) 2 2 0.000000 (0.000000, 0.000000)

Algorithm III 1 1 0.000000 (0.000028, 0.000023)

F1(x, ρ) 2 2 0.000000 (0.000000, 0.000000)

Algorithm IV 1 1 0.000000 (0.000004, 0.000012)

F2(x, ρ) 2 2 0.000000 (0.000004, 0.000004)

3 4 0.000000 (0.000000, 0.000000)

(or minx∈X F2(x, ρ j) = f (x) + ρ j
∑m

i=1 max{gi (x), 0}2). Let x j+1 be the optimal
solution obtained.

Step 3: If x j+1 is ε-feasible to (P), then stop and the algorithm has generated an
approximate solution x j+1 of (P). Otherwise, let ρ j+1 = Nρ j and j = j + 1, and go
to Step 2.

For the j’th iteration of the algorithm, we define a constraint error e j = e(j) by

e(j) =
m∑

i=1

max{g(x j), 0}.

It is clear that x j is ε-feasible to (P) when e(j) < ε.

Example 4.1. Consider

(P4.1) min x2
1 + x2

2

s.t. x2
1 − x2 ≤ 0, −x1 ≤ 0.

The optimal solution to (P4.1) is given by (x1, x2) = (0, 0). Let x0 = (4, 4), ε0 = 1,

ρ0 = 1, N = 2, η = 0.5, ρ j+1 = 2ρ j , and ε j+1 = 0.5ε j . We choose ε = 0.0000001 for

ε-feasibility. Numerical results for (P4.1) are given in Table 1. The results show that the

convergence of four penalty functions is more or less the same and that the convergence

of the penalty function F2(x, ρ) is not good.

Example 4.2. Consider the Rosen-Suzki problem given in [4],

(P4.2) min f (x) = x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5x2 − 21x3 + 7x4

s.t. g1(x) = 2x2
1 + x2

2 + x2
3 + 2x1 + x2 + x4 − 5 ≤ 0,

g2(x) = x2
1 + x2

2 + x2
3 + x2

4 + x1 − x2 + x3 − x4 − 8 ≤ 0,

g3(x) = x2
1 + 2x2

2 + x2
3 + 2x2

4 − x1 − x4 − 10 ≤ 0.

388 MENG, DANG AND YANG

Table 2. Results of Algorithm I.

j ρ j ε j f (x j) (x1, x2, x3, x4) g1(x j) g2(x j) g3(x j)

1 1 1 −77.662039 (1.779734, 1.862917, 28.889815 35.124604 37.988430

4.630400, −2.778546)

2 10 0.5 −44.315201 (0.169629, 0.834436, 0.005678 0.038947 −1.837607

2.012455, −0.971824)

3 100 0.25 −44.234019 (0.168545, 0.836585, 0.000057 0.000074 −1.877881

2.008670, −0.965062)

4 1000 0.125 −44.233582 (0.169234, 0.835656, −0.000341 0.000000 −1.88214

2.008690, −0.964901)

Let x0 = (0, 0, 0, 0), ε = 10−6, ε0 = 1, ρ0 = 1, η = 0.5, and N = 10. We use

Algorithm I to solve (P4.2). Numerical results are given in Table 2.

Therefore, we get an approximate solution

x4 = (0.169234, 0.835656, 2.008690, −0.964901)

at the fourth iteration. One can easily check that x4 is a feasible solution since the

constraints of (P4.2) at x4 are as follows:

g1(x4) = 2 ∗ 0.028640146756 + 0.698320950336 + 4.0348355161

+ + 2 ∗ 0.169234 + 0.835656 − 0.964901 − 5

= 4.790436759948 + 1.174124 − 5.964901 = −0.000340240052,

g2(x4) = 0.028640146756 + 0.698320950336 + 4.0348355161

+ 0.931033939801 + 0.169234 − 0.835656 + 2.008690

+ 0.964901 − 8

= 5.692830552993 + 3.142825 − 8.835656 = −0.000000447007

g3(x4) = 0.028640146756 + 2 ∗ 0.698320950336 + 4.0348355161

+ 2 ∗ 0.931033939801 − 0.169234 + 0.964901 − 10

= 7.32218544313 + 0.964901 − 10.169234 = −1.88214755687.

The objective function value is given by f (x4) = −44.233582 that is better than

the objective function value f (x ′) = −44 at the solution to (P4.2) x ′ = (0, 1, 2, −1)

obtained in [4].

With starting points x0 = (5, 5, 5, 5), x0 = (10, 10, 10, 10) and x0 = (20, 20, 20, 20),

numerical results are given in Table 2(a), Table 2(b) and Table 2(c) respectively. One can

see that the numerical results in Table 2(a) and Table 2(a)–(c) are almost the same. This

means that Algorithm I does not completely depend on how to choose a starting point in

this example. Although we choose a starting point x0 = (0, 0, 0, 0) that is a feasible point,

after the first iteration, the algorithm generates x1 = (1.779734, 1.862917, 4.630400,

−2.778546), which is not feasible. Therefore, one can choose any starting point for

Algorithm I in this example.

THE SMOOTHING OF THE SQUARE-ROOT EXACT PENALTY FUNCTION 389

Table 2a. Results of Algorithm I with a starting point x0 = (5, 5, 5, 5).

j ρ j ε j f (x j) (x1, x2, x3, x4) g1(x j) g2(x j) g3(x j)

1 1 1 −77.662064 (1.779716, 1.862945, 28.889888 35.124655 37.988592

4.630412, −2.778538)

2 10 0.5 −44.315203 (0.169631, 0.834438, 0.005679 0.038948 −1.837597

2.012454, −0.971826)

3 100 0.25 −44.234024 (0.169578, 0.835831, 0.000020 0.000087 −1.881706

2.008481, −0.965091)

4 1000 0.125 −44.233296 (0.169553, 0.835787, −0.000722 =0.000000 −1.881450

2.008382, −0.965252)

Table 2b. Results of Algorithm I with a starting point x0 = (10, 10, 10, 10).

j ρ j ε j f (x j) (x1, x2, x3, x4) g1(x j) g2(x j) g3(x j)

1 1 1 −77.662264 (1.779701, 1.862915, 28.890150 35.125618 37.989756

4.630476, −2.778605)

2 10 0.5 −44.315211 (0.169631, 0.834435, 0.005675 0.038953 −1.837598

2.012454, −0.971827)

3 100 0.25 −44.234027 (0.169278, 0.835588, 0.000014 0.000091 −1.882607

2.008767, −0.964795)

4 1000 0.125 −44.233211 (0.169193, 0.835487, −0.000836 0.000000 =−1.882500

2.008712, −0.964922)

Table 2c. Results of Algorithm I with a starting point x0 = (20, 20, 20, 20).

j ρ j ε j f (x j) (x1, x2, x3, x4) g1(x j) g2(x j) g3(x j)

1 1 1 −77.662043 (1.779713, 1.862946, 28.889751 35.124574 37.988578

4.630400, −2.778545)

2 10 0.5 −44.315201 (0.169629, 0.834437, 0.005678 0.038947 −1.837603

2.012455, −0.971824)

3 100 0.25 −44.234049 (0.169183, 0.835757, 0.000017 0.000101 −1.881802

2.008735, −0.964859)

4 1000 0.125 −44.233836 (0.169244, 0.835900, 0.000000 0.000000 −1.881331

2.008620, −0.964960)

Let x0 = (0, 0, 0, 0), ε = 10−6, ε0 = 1, ρ0 = 1, η = 0.5, and N = 2. We use

Algorithms I, II, III and IV to solve (P4.2). Numerical results are given in Table 3. From

the table, one can see that Algorithm I converges faster than Algorithm II. Algorithm IV

is the slowest one.

When ρ0 and N become ρ0 = 10 and N = 2, numerical results are given in Table 4.

From Table 4, one can see that Algorithms I and II converge faster and have better nu-

merical stability. Especially, the point x12 is also feasible to (P4.2) in Table 4. Numerical

results in Table 4 show that the exact penalty function F1(x, ρ) is not numerically stable

390 MENG, DANG AND YANG

Table 3. Results of Algorithm I, II, III and IV with ρ0 = 1 and N = 2.

Penalty No. Cons. error Objective ε-Solution

function iter. ρk e(k) value (x1, x2, x3, x4)

Algorithm I 1 1 102.002849 −77.662039 (1.779734, 1.862917, 4.630400, −2.778546)

F(x, ρ, ε) 2 2 52.440428 −70.152233 (1.138369, 1.271270, 3.818482, −1.996516)

3 4 0.069425 −44.360100 (0.169559, 0.833940, 2.014588, −0.975638)

4 8 0.004396 −44.241880 (0.169504, 0.835277, 2.009119, −0.965442)

7 64 0.000000 −44.233835 (0.170126, 0.835578, 2.008301, −0.965178)

Algorithm II 1 1 103.026548 −77.748562 (1.793572, 1.874673, 4.643953, −2.791637)

G(x, ρ, ε) 2 2 54.266418 −70.580637 (1.163216, 1.294403, 3.855829, −2.028104)

3 4 2.023972 −47.472827 (0.188840, 0.734762, 2.176659, −1.251934)

4 8 0.123484 −44.425671 (0.172309, 0.837356, 2.018416, −0.974029)

13 4096 0.000000 −44.233837 (0.169401, 0.835571, 2.008701, −0.964825)

Algorithm III 1 1 3.082668 −48.629509 (0.339654, 0.677748, 2.240736, −1.231420)

F1(x, ρ) 2 2 0.000004 −44.233744 (0.171993, 0.831487, 2.009344, −0.963467)

3 4 0.000000 −44.233741 (0.171993, 0.831486, 2.009344, −0.963467)

4 8 0.000000 −44.233741 (0.171993, 0.831486, 2.009344, −0.963467)

Algorithm IV 1 1 1.278325 −46.204979 (0.192648, 0.844548, 2.108774, −1.076979)

F2(x, ρ) 2 2 0.659897 −45.281613 (0.180725, 0.838664, 2.061378, −1.026197)

3 4 0.335606 −44.775924 (0.174983, 0.836616, 2.035780, −0.997182)

4 8 0.169287 −44.509867 (0.172223, 0.835930, 2.022415, −0.981500)

23 4194304 0.000000 −44.233837 (0.169555, 0.835503, 2.008651, −0.964856)

Table 4. Results of Algorithm I, II, III and IV with ρ0 = 10 and N = 2.

Penalty No. Cons. error Objective Solution

function iter. ρk e(k) value (x1, x2, x3, x4)

Algorithm I 1 10 0.174189 −44.547243 (0.169737, 0.831692, 2.023480, −0.991311)

F(x, ρ, ε) 2 20 0.011168 −44.254312 (0.169496, 0.835219, 2.009648, −0.966585)

3 40 0.000704 −44.235125 (0.169408, 0.835431, 2.008820, −0.964860)

4 80 0.000030 −44.233882 (0.169162, 0.835257, 2.008994, −0.964512)

6 320 0.000000 −44.233835 (0.169174, 0.835217, 2.009005, −0.964490)

Algorithm II 1 10 1.624681 −46.624520 (0.207426, 0.861010, 2.133251, −1.075119)

G(x, ρ, ε) 2 20 0.421837 −44.881344 (0.179257, 0.841571, 2.041896, −0.995292)

3 40 0.106477 −44.399382 (0.171953, 0.836970, 2.017124, −0.972714)

4 80 0.026691 −44.275467 (0.170095, 0.835921, 2.010785, −0.966842)

12 20480 0.000000 −44.233834 (0.169568, 0.834758, 2.009021, −0.964387)

Algorithm III 1 10 0.042087 −43.810366 (0.447942, 0.726313, 1.874833, −1.066028)

F1(x, ρ) 2 20 0.003425 −44.061588 (0.338032, 0.787990, 1.926692, −1.026223)

3 40 Inf NaN (Inf, Inf, Inf, Inf)

Algorithm IV 1 10 0.135674 −44.455497 (0.171726, 0.835805, 2.019679, −0.978264)

F2(x, ρ) 2 20 0.068081 −44.345510 (0.170614, 0.835655, 2.014196, −0.971650)

3 40 0.034102 −44.289889 (0.170085, 0.835586, 2.011424, −0.968284)

4 80 0.017067 −44.261918 (0.169821, 0.835560, 2.010031, −0.966587)

19 2621440 0.000000 −44.233837 (0.169537, 0.835486, 2.008670, −0.964836)

THE SMOOTHING OF THE SQUARE-ROOT EXACT PENALTY FUNCTION 391

Table 5. Results of Algorithm I, II, III and IV with ρ0 = 100 and N = 10.

Penalty function No. iter. ρk Cons. error e(k) Objective value Solution (x1, x2, x3, x4)

Algorithm I 1 100 0.002760 944.210629 (2.500212, 4.217963, 0.979881)

F(x, ρ, ε) 4 100000 0.000000 944.215662 (2.500000, 4.220720, 0.967224)

Algorithm II 1 100 0.296528 943.655185 (2.521627, 4.237162, 0.971728)

G(x, ρ, ε) 7 100000000 0.000000 944.215654 (2.500000, 4.221049, 0.965786)

Algorithm III 1 100 0.026443 947.775367 (2.501592, 3.469350, 2.593613)

F1(x, ρ) 5 1000000 0.000000 947.541190 (2.500000, 3.514028, 2.530140)

Algorithm IV 1 100 0.011477 944.197815 (2.501028, 4.206208, 1.031285)

F2(x, ρ) 6 10000000 0.000000 944.215652 (2.500000, 4.221305, 0.964666)

when the penalty parameter ρ becomes larger. Algorithm IV still converges very slow.

Example 4.3. Consider (Example 2 in [4])

(P4.3) min f (x) = 1000 − x2
1 − 2x2

2 − x2
3 − x1x2 − x1x3

s.t. g1(x) = x2
1 + x2

2 + x2
3 − 25 = 0,

g2(x) = (x1 − 5)2 + x2
2 + x2

3 − 25 = 0,

g3(x) = (x1 − 5)2 + (x2 − 5)2 + (x3 − 5)2 − 25 ≤ 0.

Let x0 = (2, 2, 2), ε = 10−6, ε0 = 1, ρ0 = 100, η = 0.5, and N = 10. We use

Algorithms I, II, III and IV to solve (P4.3). Numerical results are given in Table 5. The

fourth ε-solution generated by Algorithm I yields a better objective function value than

that obtained in [4]. In the same number of iterations, the objective function value at

the solution generated by Algorithm III is worse than the objective function value at the

solution generated by Algorithms I and II.

In this example, our algorithm has obtained an ε-feasible point that has a better

objective function value. In many practical applications, an approximate solution is

good enough. An ε-feasible point may be infeasible, however, when ε is sufficiently

small, the point is acceptable in many situations.

Example 4.4. Consider (Example 1 in [10])

(P4.4) min f (x) = 100x1 + 120x2 + 90x3 + 80x4 + 70x5 + 140x6

+ 40x7 + 20x8 + 30x9 + 20x10 + 40x11 + 10x12

s.t. g1(x) = x1 + x2 + x3 − 25 = 0,

g2(x) = x4 + x5 + x6 − 15 = 0,

g3(x) = x1 + x4 − 20 = 0,

g4(x) = x2 + x5 − 10 = 0,

g5(x) = x3 + x6 − 10 = 0,

392 MENG, DANG AND YANG

g6(x) = x7 + x8 + x9 − 50 = 0,

g7(x) = x10 + x11 + x12 − 30 = 0,

g8(x) = x7 + x10 − 20 = 0,

g9(x) = x8 + x11 − 40 = 0,

g10(x) = x9 + x12 − 20 = 0,

g11(x) = x1 + x7 − 30 ≤ 0,

g12(x) = x3 + x9 − 30 ≤ 0,

0 ≤ xi ≤ 75, i = 1, 2, . . . , 12.

Let x0 = (0, 0, . . . , 0), ε = 10−6, ε0 = 0.1, ρ0 = 1000, η = 0.01 and N = 2.

We use Algorithms I–IV to solve (P4.4). Numerical results are given in Table 6. The

solution generated by Algorithm I at the second iteration (the objective function value

f (x∗) = 5100.001160) is much better than that obtained in [10] (the objective function

value f (x∗) = 7100).

Example 4.5. Consider (Example 2 in [10])

(P4.5) min f (x) = 10x2 + 2x3 + x4 + 3x5 + 4x6

s.t. g1(x) = x1 + x2 − 10 = 0,

g2(x) = −x1 + x3 + x4 + x5 = 0,

g3(x) = −x2 − x3 + x5 + x6 = 0,

g4(x) = 10x1 − 2x3 + 3x4 − 2x5 − 16 ≤ 0,

g5(x) = x1 + 4x3 + x5 − 10 ≤ 0,

0 ≤ x1 ≤ 12,

0 ≤ x2 ≤ 18,

0 ≤ x3 ≤ 5,

0 ≤ x4 ≤ 12,

0 ≤ x5 ≤ 1,

0 ≤ x6 ≤ 16.

Let x0 = (0, 0, . . . , 0), ε = 10−6, ε0 = 0.1, ρ0 = 1000, η = 0.01 and N = 2. We

use Algorithm I, II, III and IV to solve (P4.5). Numerical results are given in Table 7. The

solution generated by Algorithm I at the second iteration (the objective function value

f (x∗) = 117.038781) is much better than that obtained in [10] (the objective function

value f (x∗) = 124). From Table 7, one can see that the penalty functions F(x, ρ, ε)

and G(x, ρ, ε) yield a better convergence result than F1(x, ρ) and F2(x, ρ).

THE SMOOTHING OF THE SQUARE-ROOT EXACT PENALTY FUNCTION 393

Table 6. Results of Algorithm I, II, III and IV with ρ0 = 1000 and N = 2.

Penalty funct. No. it. ρk e(k) Obj. value ε-solution (x1, x2, . . . , x12)

Algorithm I 1 1000 0.004428 5099.962388 (14.999825, −0.000359, 9.999590,

4.999557, 10.000391, 0.000321,

4.965522, 39.999817, 5.034382,

15.034300, 0.000753, 14.965827)

F(x, ρ, ε) 2 2000 0.000000 5100.001160 (14.999961, 0.000039, 10.000000,

5.000039, 9.999961, 0.000000,

4.965876, 40.000000, 5.034124,

15.034124, 0.000000, 14.965876)

Algorithm II 1 1000 0.179645 5092.793195 (14.977732, −0.014815, 10.012552,

5.005587, 10.001325, −0.026010,

4.981189, 40.020414, 4.986428,

15.008250, −0.017924, 15.007315)

G(x, ρ, ε) 4 8000 0.000000 5100.000794 (15.000007, 0.000002, 9.999991,

4.999993, 9.999998, 0.000009,

6.621689, 39.999998, 3.378312,

13.378311, 0.000002, 16.621687)

Algorithm III 1 1000 0.000251 5117.691391 (14.415970, 0.583947, 10.000084,

5.584016, 9.415987, 0.000003,

4.936768, 39.995673, 5.067566,

15.063255, 0.004296, 14.932438)

F1(x, ρ) 3 4000 0.000000 5100.000531 (14.999996, 0.000008, 9.999997,

5.000004, 9.999992, 0.000004,

4.951794, 39.999999, 5.048207,

15.048206, 0.000001, 14.951793)

Algorithm IV 1 1000 0.000251 5117.691391 (14.415970, 0.583947, 10.000084,

5.584016, 9.415987, 0.000003,

4.936768, 39.995673, 5.067566,

15.063255, 0.004296, 14.932438)

F2(x, ρ) 3 4000 0.000000 5100.000531 (14.999996, 0.000008, 9.999997,

5.000004, 9.999992, 0.000004,

4.951794, 39.999999, 5.048207,

15.048206, 0.000001, 14.951793)

Example 4.6. Consider (Page 110 in [13])

(P4.6) min f (x) =
n∑

j=1

x j ln x j

s.t.

n∑
j=1

| sin(j t)|x j ≥ nt, ∀t ∈ T = [0, 1],

x j ≥ 0, j = 1, 2, . . . , n.

(P4.6) is an entropy optimization problem with infinitely many linear constraints given

in [13]. We also use the same simple discretization method as that in [13] to solve

394 MENG, DANG AND YANG

Table 7. Results of Algorithm I, II, III and IV with ρ0 = 1000 and N = 2.

Penalty funct. No. it. ρk e(k) Obj. value ε-solution (x1, x2, x3, x4, x5, x6)

Algorithm I 1 1000 7.098851 18.038351 (1.692653, 1.234077, 0.201055,

0.493765, 1.003608, 0.447721)

F(x, ρ, ε) 2 2000 0.000000 117.038781 (1.847052, 8.152948, 0.607878,

0.244707, 0.994467, 7.766359)

Algorithm II 1 1000 0.024180 116.802598 (1.907158, 8.083882, 0.750435,

0.147413, 1.005545, 7.824715)

G(x, ρ, ε) 3 4000 0.000000 117.010399 (1.805996, 8.194004, 0.497669,

0.308327, 1.000000, 7.691673)

Algorithm III 1 1000 6.812417 25.950527 (1.560720, 1.999444, −0.171976,

0.702805, 1.029784, 0.626970)

F1(x, ρ) 3 4000 0.000000 123.918322 (1.608741, 8.391259, 0.971062,

0.626000, 0.011679, 9.350643)

Algorithm IV 1 1000 6.812417 25.950527 (1.560720, 1.999444, −0.171976,

0.702805, 1.029784, 0.626970)

F2(x, ρ) 3 4000 0.000000 123.918322 (1.608741, 8.391259, 0.971062,

0.626000, 0.011679, 9.350643)

(P4.6). For each problem, we discretize T = [0, 1] into m equal parts, and a con-

straint is obtained at t = i/m, i =, 1, 2, . . . , m. We solve the following problem by

Algorithm I.

(P4.6)′ min f (x) =
n∑

j=1

x j ln x j

s.t. gi (x) = (i/m)n −
n∑

j=1

| sin(j i/m)|x j ≤ 0, i = 1, 2, . . . , m,

x j ≥ 0, j = 1, 2, . . . , n.

Let x0 = (2, 2, . . . , 2), ε = 10−6, ρ0 = 10, η = 0.5 and N = 2. For several

different starting values of ε0, numerical results for Algorithm I are given in Table 8

with n = 30 and m = 30. For (P4.6)′, we have found that the convergence of the

objective function value is slower when the initial value of ε0 is too big or too small.

When ε0 ∈ [10, 20], the algorithm converges at a good speed. But the convergence of

the objective function value is not influenced when the value of the penalty parameter

becomes bigger, which is shown in Table 9. Therefore, when a suitable initial value of

ε0 is chosen, the algorithm will converge faster to a better ε−feasible solution.

Let x0 = (2, 2, . . . , 2), ε = 10−6, ρ0 = 2, η = 0.5 and N = 2. For sveral different

initial values of ε0, numerical results of Algorithm I are given in Table 10. The results

obtained by Algorithm I are almost the same as those obtained in [13], but slightly better

than those obtained by Algorithm III.

THE SMOOTHING OF THE SQUARE-ROOT EXACT PENALTY FUNCTION 395

Table 8. Results of Algorithm I when n = 30 and m = 30.

No. iter. ρ j ε0 e j Objective value

9 2560 40.000000 0.156250 15.283552

10 5120 30.000000 0.058594 15.284887

8 1280 20.000000 0.156250 15.284095

9 2560 15.000000 0.058594 15.283094

8 1280 10.000000 0.078125 15.287858

7 640 5.000000 0.078125 15.283920

4 80 1.000000 0.125000 15.416194

5 160 0.500000 0.031250 15.417025

Table 9. Results of Algorithm I when ρ = 10 and ρ0 = 10.

No. iter. ρ j ε0 e j Objective value

8 100000000 40.000000 0.312500 17.205912

8 100000000 30.000000 0.234375 15.381366

8 100000000 20.000000 0.156250 15.297681

8 100000000 15.000000 0.117188 15.335761

8 100000000 10.000000 0.078125 15.422016

8 100000000 1.000000 0.007813 15.413923

Table 10. Results of Algorithm I and III when ρ = 10 and ρ0 = 2.

Objective value Objective value Objective value

n m No. iter. ρk ε0 of Algorithm I of Algorithm III in [13]

10 10 8 1280 5 4.718230 4.721694 4.720

10 30 8 1280 5 4.718230 4.720791 4.721

10 100 8 1280 5 4.719137 4.720168 4.715

10 300 8 1280 5 4.721301 4.721330 4.727

10 1000 8 1280 5 4.721945 4.722012 4.708

30 10 8 1280 15 13.954221 14.104101 13.950

30 30 9 2560 15 15.283094 15.328519 15.280

30 100 9 2560 15 15.389501 15.398350 15.393

30 300 8 1280 15 15.443326 15.451099 15.454

30 1000 8 1280 15 15.474361 15.479682 15.467

100 10 14 81920 40 48.341221 48.865000 48.310

100 30 14 163840 40 53.403638 55.205700 53.352

100 100 14 163840 40 58.633121 61.209947 58.453

100 300 14 163840 40 58.553288 61.175242 58.544

100 1000 14 163840 40 58.698932 61.299541 58.696

396 MENG, DANG AND YANG

Table 11. Results of Algorithm I, II and III when m increases.

Algorithm I Algorithm II Algorithm III

m No. iter. ρk Objective value No. iter. ρk Objective value No. iter. ρk Objective value

1 2 200 5.334687 5 1600 5.334721 2 200 5.334688

10 2 200 5.334765 4 800 5.334720 2 200 5.334690

100 2 200 5.334687 5 1600 5.334714 2 200 5.336118

1000 2 200 5.335877 5 1600 5.334716 4 800 7.900587

2000 1 100 5.336072 5 1600 5.334709 5 1600 7.396654

Example 4.7. Consider (an example in [14])

(P4.7) min f (x) = x2
1 + x2

2 + x2
3

s.t. g(x) = x1 + x2ex3t − 2 sin(4t) ≤ 0, t ∈ [0, 1].

In [14], an approximate solution (−0.2133, −1.3615, 1.8535) is given with the objec-

tive function value 5.3347. We discretize T = [0, 1] into m equal parts and a constraint

is obtained at t = i/m, i =, 1, 2, . . . , m.

(P4.7)′ min f (x) = x2
1 + x2

2 + x2
3

s.t. gi (x) = x1 + x2ex3
i
m − 2 sin

(
4

i

m

)
≤ 0, i = 1, 2, . . . , m.

Let x0 = (1, 1, 1), ε = 10−6, ε0 = 0.1, ρ0 = 100, η = 0.1 and N = 2. We use

Algorithms I, II, and III to solve (P4.7)′. Numerical results are given in Table 11. From

Table 11, one can see that the penalty functions F(x, ρ, ε) and G(x, ρ, ε) yield some

better convergence results than the exact penalty function F1(x, ρ) when m increases.

Example 4.8. Consider (an example in [15])

(P4.8) min f (x) = x2
1 + (x2 − 3)2

s.t. g(x) = x2 − 2 + x1 sin

(
t

x2 − 0.5

)
≤ 0, t ∈ [0, 10].

In [15], an approximate solution (0,2) is obtained with the objective function value

1. We discretize T = [0, 10] into m equal parts and a constraint is obtained at t =
i/m, i =, 1, 2, . . . , m.

(P4.8)′ min f (x) = x2
1 + (x2 − 3)2

s.t. gi (x) = x2 − 2 + x1 sin

(
10i

m(x2 − 0.5)

)
≤ 0, i = 1, 2, . . . , m.

THE SMOOTHING OF THE SQUARE-ROOT EXACT PENALTY FUNCTION 397

Table 12. Results of Algorithm I, II and III when m increases.

Algorithm I Algorithm II Algorithm III

m No. iter. ρk Objective value No. iter. ρk Objective value No. iter. ρk Objective value

1 1 10000 0.954338 4 80000 0.768697 1 10000 0.768697

10 1 10000 1.000024 4 80000 0.995607 1 10000 0.995607

100 1 10000 1.000057 4 80000 0.999956 1 10000 0.999956

1000 1 10000 1.000057 4 80000 1.000001 1 10000 1.000000

2000 1 10000 1.000057 4 80000 1.000000 1 10000 1.000000

Let x0 = (1, 1, 1), ε = 10−6, ε0 = 0.1, ρ0 = 10000, η = 0.1 and N = 2. We use

Algorithms I, II, and III to solve (P4.7)′. Numerical results are given in Table 12. From

Table 12, one can see that the penalty functions F(x, ρ, ε) and G(x, ρ, ε) yield the same

convergence results as the exact penalty function F1(x, ρ) when m increases.

According to the numerical results given above, one may draw the following con-

clusions on Algorithm I and Algorithm II: In general, the smoothing penalty functions

F(x, ρ, ε) and G(x, ρ, ε) yield some better convergence and stability results for com-

puting an approximate solution to (P) than F1(x, ρ) and F2(x, ρ).

Finally, we give some guidances on how to choose parameter in our algorithm. The

important parameters in our algorithm are the penalty parameter ρ and the error ε.

According to our experience, initially ρ0 may be 1, 2, 5,10,100 or 1000, N = 2, 5, 10

or 100, and the iteration formula ρ := Nρ. When we choose a big initial value of the

penalty parameter ρ0, the number of iterations may be fewer. It is satisfactory when the

initial value ρ0 is not taken too big. The initial value of the error ε0 may be 10,1,0.5,0.2

or 0.1, η = 0.5, 0.1, 0.05 or 0.01, and the iteration formula ε := ηε.

Acknowledgments

The authors would like to thank two anonymous referees for their helpful comments

and suggestions. This research was carried out when the first author was visiting City

University of Hong Kong, and partially supported by CERG: CityU 101003 of HKSAR.

References

1. W.I. Zangwill, “Nonlinear programming via penalty function,” Manangement Science, vol. 13, pp. 334–

358, 1967.

2. S.P. Han and O.L. Mangasrian, “Exact penalty function in nonlinear programming,” Mathematical Pro-

gramming, vol. 17, pp. 251–269, 1979.

3. E. Rosenberg, “Globally convergent algorithms for convex programming,” Mathematics of Operational

Rresearch, vol. 6, pp. 437–443, 1981.

4. J.B. Lasserre, “A globally convergent algorithm for exact penalty functions,” European Journal of Opter-

ational Research, vol. 7, pp. 389–395, 1981.

5. F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1982.

6. E. Rosenberg, “Exact penalty functions and stability in locally Lipschitz programming,” Mathematical

Programming, vol. 30, pp. 340–356, 1984.

398 MENG, DANG AND YANG

7. G. Di Pillo and L. Grippo, “An exact penalty function method with global conergence properties for

nonlinear programming problems,” Mathemathical Programming, vol. 36, pp. 1–18, 1986.

8. G. Di Pillo and L. Grippo, “On the exactness of a class of nondifferentiable penalty function,” Journal of

Optimization Theory and Applications, vol. 57, pp. 385–406, 1988.

9. S.A. Zenios, M.C. Pinar, and R.S. Dembo, “A smooth penalty function algorithm for network-structured

problems,” European Journal of Operational Research, vol. 64, pp. 258–277, 1993.

10. M.C. Pinar and S.A. Zenios, “On smoothing exact penalty functions for convex constarained optimiza-

tion,” SIAM Journal on Optimization, vol. 4, pp. 486–511, 1994.

11. C. Chen and O.L. Mangasarian, “Smoothing methods for convex inequalities and linear complementarity

problems,” Mathematical Programming, vol. 71, pp. 51–69, 1995.

12. X.Q. Yang, Z.Q. Meng, X.X. Huang, and G.T.Y. Pong, “Smoothing nonlinear penalty functions for

constrained optimization,” Numerical Functional Analysis and Optimization, vol. 24, pp. 351–364, 2003.

13. S.C. Fang, J.R. Rajasekera, and H.S.J. Tsao, Entropy Optimization and Mathematical Proggramming,

Kluwer, 1997.

14. L. Qi, S.Y. Wu, and G. Zhou, “Semismooth newton methods for solving semi-infinite programming

problems,” Journal of Global Optimization, vol. 27, pp. 215–232, 2003.

15. K.L. Teo, X.Q. Yang, and L.S. Jennings, “Computational discretization algorithms for functional in-

equality constrained optimization,” Annals of Operations Research, vol. 98, pp. 215–234, 2000.

