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Abstract. In this paper we propose a smoothing Newton-type algorithm for the problem of minimizing a

convex quadratic function subject to finitely many convex quadratic inequality constraints. The algorithm is

shown to converge globally and possess stronger local superlinear convergence. Preliminary numerical results

are also reported.
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1. Introduction

The quadratically constrained quadratic programming (QCQP) is the following

min f0(x̂)

s.t. f (x̂) ≤ 0,
(1.1)

where f (x̂) = ( f1(x̂), . . . , fm(x̂))T , f j (x̂) = 1
2
x̂ T P j x̂ + (a j )T x̂ +b j , x̂ ∈ �n, a j ∈ �n ,

P j ∈ �n×n , b j ∈ � for all j ∈ J0 := {0, 1, . . . , m} (we reserve x for later use). In
this paper, we are interested in (1.1) when all f j , j ∈ J0 are convex functions, i.e., all
P j , j ∈ J0 are symmetric positive semidefinite matrices.
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Interior point methods (IPMs) have been successfully applied to solve convex op-
timization problems and monotone complementarity problems [21, 36]. Besides the
polynomial complexity, the superlinear convergence has always been an important topic
in IPMs. Early superlinear convergence analysis of IPMs requires many conditions
[39, 40]. Under the strictly complementary condition, Ye and Anstreicher [38] proved
the quadratic convergence of a predictor-corrector IPM for solving the monotone linear
complementarity problem (LCP). The strictly complementary condition has been suc-
cessfully eliminated in proving the superlinear convergence of some predictor-corrector
IPMs for LCPs [20, 31, 32, 41]. The local superlinear convergence analysis of the existing
IPMs for solving nonlinear optimization problems depends on the strictly complemen-
tary condition [27, 28, 34].

Smoothing Newton-type methods are originally designed for solving nonsmooth equa-
tions arising from the mathematical programming field. So far, a number of globally and
locally superlinearly convergent smoothing Newton-type methods have been proposed.
For a comprehensive treatment on this topic, see [8, Chap. 11]. A key condition for
the superlinear convergence of smoothing Newton-type methods is the nonsingularity
of the generalized Jacobian of the function involved in the nonsmooth equations. For
the P0 function nonlinear complementarity problem (NCP), this condition implies that
the solution set consists of a single element. Several authors have investigated ways to
relax such a relatively restrictive condition in smoothing Newton-type methods for linear
programming [4, 5] and LCPs [14, 35], and in the Levenberg-Marquardt method for the
nonlinear equation [37].

In this paper, we will propose a smoothing Newton-type method for solving the convex
QCQP (1.1). It should be noted that such a QCQP can be cast as a second-order-cone
problem (SOCP) [17, 21]. Since the SOCP can be solved efficiently by using IPMs,
one often reformulates the convex QCQP as the SOCP and then solves the correspond-
ing SOCP. Such an approach may not be practical for those convex QCQPs with a
huge number of constraints. For example, the subproblems of second-order methods for
solving semi-infinite programming are convex QCQPs of a large number of constraints
(see, [22, Chap. 3]). Here, we will reformulate the QCQP as a system of nonsmooth
equations instead of an SOCP. The proposed algorithm is shown to possess the local
convergence features of both smoothing Newton-type methods and interior point meth-
ods. Specifically, the superlinear convergence of the algorithm is obtained under either
the nonsingularity condition or the strictly complementary condition. To some extent,
this paper can be regarded as an extension of [14] for solving the LCP to the convex
QCQP. However, due to the nonlinear structure of the QCQP, substantial differences
exist and new techniques are needed.

The paper is organized as follows. In the next section, (1.1) is reformulated as a system
of parameterized smooth equations. In Section 3, we propose the smoothing Newton-
type algorithm and discuss its global convergence. In Sections 4 and 5, we investigate
the local superlinear convergence of the proposed algorithm under the nonsingularity
and the strictly complementary condition, respectively. Numerical results are reported
in Section 6. Proofs of some technical lemmas are given in Appendix.
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2. Preliminaries

Throughout this paper, we use the following assumption:

Assumption 2.1.

(i) P j are symmetric positive semidefinite matrices for all j ∈ J0.
(ii) (Slater Constraint Qualification) There is a point x0 such that f (x0) < 0.

It is well known that, under Assumption 2.1, solving (1.1) is equivalent to solving the
following system

� f0(x̂) + f ′(x̂)T λ̂ = 0, λ̂ ≥ 0, − f (x̂) ≥ 0, λ̂T f (x̂) = 0, (2.1)

where λ̂ ∈ �m , f ′(x̂) = (� f1(x̂), . . . ,� fm(x̂))T , and � f j (x̂) is the gradient of f j (x̂) at
x̂ ∈ �n , j ∈ J0. Every solution of (2.1) is called a KKT point of problem (1.1). Let

ŵ : =
(

x̂
λ̂

)
, F(ŵ) :=

(� f0(x̂) + f ′(x̂)T λ̂

− f (x̂)

)
,

K := {(x̂, λ̂) ∈ �n+m : x̂ ∈ �n, λ̂ ∈ �m
+}.

Then, solving (2.1) is equivalent to finding a vector ŵ∗ ∈ K such that

(ŵ − ŵ∗)T F(ŵ∗) ≥ 0 for all ŵ ∈ K . (2.2)

Let w denote the vector (xT , λT )T and �K (w) denote the Euclidean projection of w onto
K . It is well known that problem (2.2) is equivalent to the following normal equation

F(�K (w)) + w − �K (w) = 0 (2.3)

in the sense that if w∗ ∈ �n+m is a solution of (2.3), then ŵ∗ := �K (w∗) is a solution of
(2.2), and conversely if ŵ∗ is a solution of (2.2), then w∗ := ŵ∗ − F(ŵ∗) is a solution
of (2.3) [16, 30]. Let H0(x, λ) := F(�K (w)) + w − �K (w). Then (2.3) becomes

H0(x, λ) =
(� f0(x) + f ′(x)T λ+

− f (x) + λ − λ+

)
= 0, (2.4)

where λ+ is a vector whose i-th component is max{0, λi }, i ∈ J .
Since λ+ is not differentiable everywhere, the function H0 is not differentiable. We

now introduce the following smoothing function:

�(μ, λ) := vec{φ(μ, λi ) : i ∈ J }, (2.5)
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where for u ∈ �m , vec{ui : i ∈ J } denotes an m-vector whose i-th component is ui ;
and φ : �2 → � is defined by

φ(a, b) := 1

2
(b +

√
b2 + 4a2), (a, b) ∈ � × �. (2.6)

The function φ is continuously differentiable around any (a, b) ∈ � × � such that
(a, b) 
= 0,

φ′(a, b) =
(

2a√
b2 + 4a2

,
1

2

(
1 + b√

b2 + 4a2

))
. (2.7)

Define H̄ : � × �n × �m → � × �n × �m by

H̄ (μ, x, λ) :=

⎛⎜⎝ μ

� f0(x) + f ′(x)T �(μ, λ)

− f (x) + λ − �(μ, λ)

⎞⎟⎠, (μ, x, λ) ∈ � × �n × �m .

Then, (x∗, λ∗) ∈ �n × �m solves (2.4) if and only if (0, x∗, λ∗) solves H̄ (μ, x, λ) = 0.
Based on the function H̄ (·), we define the following smoothing function:

H (μ, x, λ) :=

⎛⎜⎝ μ

� f0(x) + f ′(x)T �(μ, λ) + g1(μ)x

− f (x) + λ − �(μ, λ) + g2(μ)λ + g3(μ)π (μ, x, λ)

⎞⎟⎠ , (2.8)

where π (μ, x, λ) := vec{πi (μ, x, λ) : i ∈ J } with

πi (μ, x, λ) := φ(μ, λi )φ(μ, − fi (x)), i ∈ J , (2.9)

and for each i ∈ {1, 2, 3}, gi : � → �+ is a twice continuously differentiable function
satisfying

gi (μ) ≥ 0 ∀μ, gi (0) = 0, gi (μ) = O(μ2), and |g′
i (μ)| = O(μ). (2.10)

When μ = 0, πi (μ, x, λ) = πi (0, x, λ) = (λi )+(− fi (x))+, i ∈ J . If g1(μ) = g2(μ) =
g3(μ) = 0, then H (μ, x, λ) = H̄ (μ, x, λ). The terms g1(μ)x and g2(μ)λ represent the
regularized part for H and g3(μ)π (μ, x, λ) the smoothed penalized part. From both
theoretical and practical points of view, we require

gi (μ) > 0, ∀μ 
= 0, i = 1, 2, 3. (2.11)

It is evident that (x∗, λ∗) ∈ �n × �m solves (2.4) if and only if (0, x∗, λ∗) solves
H (μ, x, λ) = 0.

For any positive integer p, E p denotes the p × p identity matrix. For any u ∈ �m , let
diag{ui : i ∈ J } denote an m × m diagonal matrix whose i-th diagonal element is ui .
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Then, for any z = (μ, x, λ) ∈ �1+n+m with μ 
= 0, it follows from (2.8) that

H ′(z) =

⎡⎢⎣ 1 0 0

f ′(x)T (�(y))′μ + g′
1(μ)x M(z) f ′(x)T (�(y))′λ

P(z) R(z)[− f ′(x)] N (z)

⎤⎥⎦, (2.12)

where (�(y))′μ is the partial derivative of �(y) = �(μ, λ) with respect to μ, (�(y))′λ is
the partial derivative of �(y) = �(μ, λ) with respect to λ, and

M(z) := P0 +
∑
i∈J

Pi�i (y) + g1(μ)En, (2.13)

P(z) := −(�(y))′μ + g′
2(μ)λ + g′

3(μ)π (z) + g3(μ)(π (z))′μ, (2.14)

R(z) := Em + Q(z), where Q(z) := diag{qi (z) : i ∈ J } with

qi (z) := 1

2

(
1 − fi (x)√

(− fi (x))2 + 4μ2

)
�i (y)g3(μ), (2.15)

N (z) := (Em − (�(y))′λ) + g2(μ)Em

+ g3(μ)(�(y))′λdiag{φ(μ, − fi (x)) : i ∈ J }. (2.16)

Proposition 2.1. Under Assumption 2.1, for any z = (μ, x, λ) ∈ �1+n+m with μ 
= 0,
the matrix H ′(z) is nonsingular.

Proof. Let dz := (dμ, dx, dλ) ∈ � × �n × �m satisfy H ′(z)dz = 0. Then from (2.12),
it follows that dμ = 0 and

M(z)dx + f ′(x)T (�(y))′λdλ = 0, (2.17)

R(z)[− f ′(x)]dx + N (z)dλ = 0. (2.18)

From (2.15) we know that R(z) is a positive definite diagonal matrix. By multiplying
Eq. (2.17) on the left side by (dx)T , we have

(dx)T M(z)dx + ( f ′(x)dx)T (�(y))′λdλ = 0,

which together with (2.18) implies

(dx)T M(z)dx + (dλ)T N (z)R(z)−1(�(y))′λdλ = 0. (2.19)

From (2.7) we know that (�(y))′λ is a positive definite diagonal matrix. In addition, since
P j are positive semidefinite for all j ∈ J0, �i (y) > 0 for all i ∈ J , and g1(μ) > 0, it
follows that P0 +∑

i∈J Pi�i (y)+g1(μ)En is positive definite. Similarly, we can obtain
that N (z)R(z)−1(�(y))′λ is also positive definite. Thus, (2.19) implies that dx = 0 and
dλ = 0. Therefore, the Jacobian matrix H ′(z) is nonsingular.

The following notation will be used in this paper. For any vectors u, v ∈ �n , we
write (uT , vT )T as (u, v) for simplicity. For any K,L ⊆ {1, . . . , n}, we denote by uK
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the vector obtained after removing from u those ui with i 
∈ K; and for any A ∈ �n×n

we denote by AKL the submatrix of A obtained by removing all rows of A with indices
outside ofK and removing all columns of A with indices outside ofL, and denote by AK·
the submatrix of A obtained by removing all rows of A with indices outside of K. For
any α ∈ �+ and β ∈ �++, we write α = O(β) (respectively, α = o(β)) to mean α/β is
uniformly bounded from above (respectively, tends to zero) as β → 0, write α = O(1)
to mean that there is a constant C > 0 such that α ≤ C. Let k ≥ 0 denote the iteration
index, and write α = 	(β) to mean that there are two constants C2 ≥ C1 > 0 such that
C1β ≤ α ≤ C2β. For any (μ, x, λ), (μk, xk, λk) ∈ �+ × �n × �m , we denote

w := (x, λ), wk := (xk, λk), y := (μ, λ), yk := (μk, λ
k), z := (μ, x, λ),

zk := (μk, xk, λk).

Let p and q be two positive integers. The kernel or null space of a matrix A ∈ �p×q is
KerA := {d ∈ �q : Ad = 0}, while the range space is denoted by RanA := {Ad : d ∈
�q}.

3. Algorithm and its global convergence

Let μ̄, κ ∈ (0, +∞), t1 ∈ (0, 1], and t2, τ, γ ∈ (0, 1). Define θ , ψ , β : �1+n+m → �+
by

θ (z) := ‖H (z)‖, ψ(z) := θ1+t1 (z), and β(z) := γ min{1, ψ(z)}, (3.1)

respectively. For z = (μ, x, λ) ∈ �1+n+m and y = (μ, λ) with μ 
= 0, let

u1(z) := f ′(x)T û1(z) + ũ1(z) and u2(z) := û2(z) + ũ2(z), (3.2)

where

û1(z) : = (�(y))′μμ0β(z) − 1

2
μ(�(y))′μ, (3.3)

û2(z) : = −(�(y))′μμ0β(z) + 1

2
μ(�(y))′μ, (3.4)

ũ1(z) : = g1(μ)x + g′
1(μ)(−μ + μ̄β(z))x, (3.5)

ũ2(z) : = g2(μ)λ + g3(μ)π (z) + [g′
2(μ)λ

+ g′
3(μ)π (z) + g3(μ)(π (z))′μ](−μ + μ̄β(z)). (3.6)

Define u : �1+n+m → �n+m by

u(z) :=

⎧⎪⎨⎪⎩
(

u1(z)
u2(z)

)
if μ 
= 0

0 otherwise

(3.7)
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and v : �1+n+m → �n+m by

v(z) :=
(

v1(z)

v2(z)

)
:=

{
τμe if τμ

√
n + m ≤ ‖u(z)‖

u(z) otherwise,
(3.8)

where e denotes the (n + m)-vector of all ones. Define ξ : �m → �+ by

ξ (λ) := min
i∈I

|λi | (3.9)

and ϒ : �1+n+m → �1+n+m by

ϒ(z) :=

⎛⎜⎝ μ̄β(z)

v1(z)

v2(z)

⎞⎟⎠ if ξ (λ) > κμt2 ; ϒ(z) :=

⎛⎜⎝ μ̄β(z)

0

0

⎞⎟⎠ if ξ (λ) ≤ κμt2 .

(3.10)

Our smoothing Newton-type algorithm is now formally stated as follows.

Algorithm 3.1. (A Smoothing Newton-Type Algorithm)

Step 0. Choose t1 ∈ (0, 1], t2, δ, σ ∈ (0, 1), and κ, μ̄ ∈ (0, ∞). Let (x0, λ0) ∈ �n+m

be an arbitrary vector. Set μ0 := μ̄ and z0 := (μ0, x0, λ0). Choose γ ∈ (0, 1) and
τ ∈ (0, 1) such that γμ0 + τ

√
n + m < 1. Set η := γμ0 + τ

√
n + m and k := 0.

Step 1. If θ (zk) = 0, stop.
Step 2. Compute �zk := (�μk, �xk, �λk) ∈ �1+n+m by

H (zk) + H ′(zk)�zk = ϒ(zk). (3.11)

Step 3. Let χk be the maximum of the values 1, δ, δ2, · · · such that

θ (zk + χk�zk) ≤ [1 − σ (1 − η)χk]θ (zk). (3.12)

Step 4. Set zk+1 := zk + χk�zk and k := k + 1. Go to Step 1.

The above algorithm is based on smoothing Newton methods in [26] for the NCP
and box constrained variational inequality problem and in [14] for the P0 and monotone
LCP. The function ϒ(·) defined by (3.10) is quite different from those used in [14, 26].
This difference is vital in our local convergence analysis, which will be seen later.

Denote � := {z = (μ, x, λ) ∈ � × �n × �m : μ ≥ μ0β(z)}.

Lemma 3.1. Let Assumption 2.1 be satisfied. Then

(i) Algorithm 3.1 is well-defined.
(ii) Algorithm 3.1 generates an infinite sequence {zk} with μk > 0.

(iii) zk ∈ � for all k ≥ 0.
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Proof: For the result (i), we need to show that Eq. (3.11) is solvable and line search
(3.12) terminates finitely. The former holds from Proposition 2.1, and the latter can be
proved similarly as in Lemma 2 of [14]. In addition, parts (ii) and (iii) can be obtained
similarly as in Lemma 5 and Proposition 6 of [26]. We omit the details here.

Lemma 3.2. Let Assumption 2.1 be satisfied. Then Algorithm 3.1 generates an infinite
iteration sequence {zk} with limk→∞ θ (zk) = 0. In particular, any accumulation point
of {zk} is a solution of H (z) = 0.

Proof: By using Lemma 3.1, we can prove this lemma similarly as in Theorem 4.1 of
[33].

Lemma 3.2 shows that if {zk} has an accumulation point z∗, then z∗ is a solution of
H (z) = 0. This does not necessarily mean that there exists an accumulation point. In
order to assure that {zk} has an accumulation point, we need the following sufficient
condition.

Assumption 3.1. The solution set of (2.4) is nonempty and bounded.

Remark 3.1. (i) It should be noted that the Tikhonov-type regularization method for the
monotone variational inequality problem can converge to a solution even if the solution
set of the problem concerned is unbounded [1]. For problem (1.1), if we regularize
objective function f0 itself, we may show the global convergence of some regularization
method without the boundedness of the solution set. In this paper, however, our main
purpose is to improve the local convergence of the smoothing algorithms for the QCQP
by using the norm map. It is difficult for us to unify such a better global convergence to
the improved local convergence. (ii) In fact, Assumption 3.1 has been used extensively in
regularized methods [7, 13, 24, 33]. It is known that Assumption 3.1 is weaker than those
required by most existing smoothing (non-interior continuation) Newton-type methods
[12]. For the monotone NCP, Assumption 3.1 is equivalent to say that the NCP has a
strictly feasible solution [15, 18]. The latter has been used extensively in IPMs for the
LP and the LCP.

Theorem 3.1. Let Assumptions 2.1 and 3.1 be satisfied. Then the infinite sequence {zk}
generated by Algorithm 3.1 is bounded and any accumulation point of {zk} is a solution
of H (z) = 0.

Proof: It is not difficult to show that the functions H0 : �n+m → �n+m and H :
�1+n+m → �1+n+m defined by (2.4) and (2.8), respectively are weakly univalent func-
tions defined in [11]. Since Assumption 3.1 implies that the inverse image H−1

0 (0) is
nonempty and bounded, by using Theorem 2.5 in [29] we obtain that the sequence {zk}
is bounded. Hence, by Lemma 3.2 , any accumulation point of {zk} is a solution of
H (z) = 0.

Let z∗ := (μ∗, x∗, λ∗) ∈ �+ × �n × �m be an accumulation point of the iteration
sequence generated by Algorithm 3.1. Theorem 3.1 implies that μ∗ = 0 and w∗ :=
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(x∗, λ∗) is a solution of (2.4). Next, we consider the local convergence of Algorithm 3.1.
The convergence analysis is divided into two parts and is discussed in the following two
sections.

4. Superlinear convergence under nonsingularity

In this section, we consider the case that w∗ satisfies a nonsingularity condition but may
not satisfy the strictly complementary condition. In order to discuss the local superlinear
convergence of the algorithm, we need the concept of semismoothness, which was
originally introduced by Mifflin [19] for functionals and was extended the definition of
semismoothness to vector valued functions by Qi and Sun [25].

Definition 4.1. A locally Lipschitz function F : �m1 → �m2 , which has the generalized
Jacobian ∂ F(x) in the sense of Clarke [2], is said to be semismooth at x ∈ �m1 , if

lim
V ∈∂ F(x+th′ )

h′→h,t↓0

{V h′}

exists for any h ∈ �m1 . F is said to be strongly semismooth at x if F is semismooth at x
and for any V ∈ ∂ F(x + h), h → 0, it follows that F(x + h) − F(x) − V h = O(‖h‖2).

Remark 4.1. Since φ(·) is strongly semismooth at any (a, b) ∈ �2, from [9] we know
that the function H (·) defined by (2.8) is strongly semismooth everywhere.

The following lemma is key to show the main convergence result in this section.

Lemma 4.1. Let Assumptions 2.1 and 3.1 hold. Let t1 ∈ (0, 1] and t2 ∈ (0, 1) be
given as in Algorithm 3.1, and the infinite sequence {zk} be generated by Algorithm
3.1. Then ‖ϒ(zk)‖ = O(θ ζ (zk)) holds for all zk sufficiently close to z∗, where ζ :=
min{1 + t1, 2 − t2}.

Proof: From Lemma 3.2 we know that limk→∞ θ (zk) = 0. This, together with the
definition of β(zk) (see (3.1)), implies that β(zk) = γψ(zk) holds for all zk sufficiently
close to z∗. For each k, we have either ξ (λk) ≤ κ(μk)t2 or ξ (λk) > κ(μk)t2 , where the
function ξ (·) is defined by (3.9). For the former case, we have that for all zk sufficiently
close to z∗,

‖ϒ(zk)‖ = μ0β(zk) = μ0γψ(zk) = O(θ ζ (zk)).

Hence, we only need to consider the latter case. From the definition of û1(·) (see (3.3))
it follows that for all zk sufficiently close to z∗,

‖û1(zk)‖ ≤ ‖(�(yk))′μ‖μ0β(zk) + 1

2
μk‖(�(yk))′μ‖

=
∥∥∥∥vec

{
2μk

/√(
λk

i

)2 + 4(μk)2 : i ∈ J
}∥∥∥∥(

μ0β(zk) + 1

2
μk

)
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≤
∥∥∥∥vec

{
2μk

/√(
λk

i

)2 + 4(μk)2 : i ∈ J
}∥∥∥∥ ×

(
μk + 1

2
μk

)
≤ 2

√
n(μk)1−t2

/√
κ2 + (μk)2−2t2 × 3μk/2

= O((μk)2−t2 ),

where the first equality is due to (2.7), the second inequality is due to zk ∈ � (by the result
(iii) of Lemma 3.1), and the third inequality is due to the condition ξ (λk) > κ(μk)t2 ; and
from the definition of ũ1(·) (see (3.5)) it follows that for all zk sufficiently close to z∗,

‖ũ1(zk)‖ ≤ g1(μ)‖xk‖ + |g′
1(μk)|(μk + μ̄β(zk))‖xk‖

≤ g1(μ)‖xk‖ + 2μk |g′
1(μk)|‖xk‖

= O((μk)2),

where the second inequality is due to zk ∈ � and the last equality is due to (2.10), (2.11),
and Theorem 3.1. Thus, by (3.2) we obtain that for all zk sufficiently close to z∗,

‖u1(zk)‖ ≤ ‖ f ′(xk)‖‖û1(zk)‖ + ‖ũ1(zk)‖ = O((μk)2−t2 ). (4.1)

Similarly, by (3.2), (3.4), and (3.6) we obtain that for all zk sufficiently close to z∗,

‖u2(zk)‖ ≤ ‖û2(zk)‖ + ‖ũ2(zk)‖ = O((μk)2−t2 ). (4.2)

Furthermore, by combining (3.7) with (4.1) and (4.2), we have that for all zk sufficiently
close to z∗,

‖u(zk)‖ ≤ ‖u1(zk)‖ + ‖u2(zk)‖ = O((μk)2−t2 ). (4.3)

Now, by the definition of the function v(·) (see (3.8)), it is easy to see that (4.3) implies
that v(zk) = u(zk) for all zk sufficiently close to z∗. Hence, for all zk sufficiently close
to z∗,

‖ϒ(zk)‖ =
√

(μ̄β(zk))2 + ‖u(zk)‖2 =
√

[μ̄γψ(zk)]2+[O((μk)2−t2 )]2 = O(θ ζ (zk)).

The proof is completed.

Theorem 4.1. Let Assumptions 2.1 and 3.1 be satisfied. Suppose that z∗ is an accumu-
lation point of the sequence {zk} generated by Algorithm 3.1. Let ζ := min{1+t1, 2−t2}.
If all V ∈ ∂ H (z∗) are nonsingular, then the whole iteration sequence {zk} converges to
z∗,

‖zk+1 − z∗‖ = O(‖zk − z∗‖ζ ), and μk+1 = O((μk)ζ ).
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Proof: By using Lemma 4.1, we can prove this theorem in a similar way as Theorem
8 in [26]. We omit the details here.

In Theorem 4.1, we provide a superlinear convergence result for Algorithm 3.1 under
the nonsingularity of ∂ H (z∗). The latter condition implies that the problem has a unique
solution. In the discussion of next section, we will not assume the nonsingularity of
∂ H (z∗), but will assume a strictly complementary condition instead.

5. Superlinear convergence under strict complementarity

Let S denote the solution set of (2.4), i.e.,

S = {w := (x, λ) ∈ �n+m : H0(w) = 0}.

5.1. Assumptions

Recall that z∗ := (μ∗, x∗, λ∗) ∈ �+ ×�n ×�m is an accumulation point of the iteration
sequence generated by Algorithm 3.1, and μ∗ = 0 and w∗ := (x∗, λ∗) is a solution
of (2.4).

Assumption 5.1. Suppose that λ∗
i 
= 0 holds for all i ∈ J .

It is not difficult to see from (2.2) and (2.4) that ŵ∗ = �K (w∗) is a strictly comple-
mentary solution to (2.2) is equivalent to λ∗

i 
= 0 for all i ∈ J , where w∗ := (x∗, λ∗). In
the sequel, let B := {i ∈ J : λ∗

i > 0}, N := {i ∈ J : λ∗
i < 0}, and f ′

B(x) := ( f ′(x))B·
for all x ∈ �n .

Let S x∗
:= {λ ∈ �m : (x∗, λ) ∈ S}. The two-side projection of a square matrix

Q ∈ �n×n onto the kernel of another matrix Q̄ ∈ �p×n is any matrix of the form
X T Q X , where the column of X form a basis of KerQ̄.

Assumption 5.2. For each λ ∈ S x∗
, the two-side projection of the matrix P0 +∑

i∈B λi Pi onto Ker f ′
B(x∗) is invertible.

Assumption 5.2 is an invertibility condition on the projection of the matrix P0 +∑
i∈B λi Pi onto the kernel of the active constraint Jacobian, which is essentially a

second-order sufficient condition for optimality (see, for examples, [27, 28]).
Let M(·) and R(·) be defined by (2.13) and (2.15), respectively. Denote M0(z) :=

M(z) − g1(μ)En . Let

A(z) :=

⎡⎢⎣ −M(z) − f ′(x)T

R(z)BB f ′
B(x) 0

0 −Em
N ·

⎤⎥⎦, B(z) :=

⎡⎢⎣−M0(z) − f ′(x)T

f ′
B(x) 0

0 −Em
N ·

⎤⎥⎦,

C(z) :=

⎡⎢⎣ M(z)T −R(z) f ′(x)T

f ′
B(x) 0

0 −Em
N ·

⎤⎥⎦.

(5.1)
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For ε > 0, we define

F̆ ε,z∗
:= {z := (μ, x, λ) ∈ �+ × �n × �m : ‖z − z∗‖ ≤ ε}.

Assumption 5.3. There exists a scalar ε > 0 such that for any ŭ, v̆ ∈ F̆ ε,z∗
, it holds that

RanA(ŭ) = RanB(ŭ) = RanC(ŭ) = RanA(v̆) = RanB(v̆) = RanC(v̆).

It is noted that matrices A(z), B(z), and C(z) have quite similar structures. A similar
condition to Assumption 5.3 has been used in [34].

5.2. An error bound result

Lemma 5.1. Suppose that Assumptions 2.1, 5.1, and 5.2 are satisfied. For ε > 0, let

X ε,∗ := {x ∈ �n : (x, λ) ∈ S and ‖(x, λ) − (x∗, λ∗)‖ ≤ ε}.

Then (i) there exists ε0 > 0 such that X ε,∗ = {x∗} holds for all ε ∈ (0, ε0]; and (ii) the
solution set S of (2.4) is convex and compact.

Proof: By using the relations between the solutions of (2.1) and (2.4), we can obtain
the results of this lemma directly from Lemmas 4.1 and 4.2 in [27].

Let the function H0 be defined by (2.4). Denote

S0 := {w = (x, λ) ∈ S : λi > 0 ∀i ∈ B and λi < 0 ∀i ∈ N }.

Lemma 5.2. Suppose that Assumptions 2.1, 5.1, and 5.2 are satisfied. Then there are
a constant C0 > 0 and a sufficiently small constant ε > 0 such that dist(w,S) ≤
C0‖H0(w)‖ holds for all w = (x, λ) ∈ �n+m sufficiently close to w∗ = (x∗, λ∗), where
dist(w,S) is the Euclidean distance of w ∈ �n+m to the set S.

Proof: The proof can be found in Appendix I.

For the KKT system of nonlinear programming, similar error bound results have al-
ready been established in [6, 27] (Some more general error bound results for generalized
equations can be found in [10]). Here, because a normal map is used, a proof is necessary.

Theorem 5.1. Suppose that Assumptions 2.1, 3.1, 5.1, and 5.2 are satisfied. Then there
is a constant C > 0 such that dist(wk,S) ≤ Cθ (zk) holds for all zk sufficiently close to
z∗.
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Proof: Since wk → w∗ as k → ∞, by Lemma 5.2 we have

dist(wk,S) ≤ C0‖H0(wk)‖ (5.2)

for all zk sufficiently close to z∗. Let G : �1+n+m → �n+m be defined by

H (z) :=
(

μ

G(x)

)
, z = (μ, x, λ) ∈ �1+n+m .

Then, from the definitions of H0(·) and G(·), we have

‖H0(wk)‖ ≤ ‖G(zk)‖ + ‖H0(wk) − G(zk)‖

= ‖G(zk)‖ +
∥∥∥∥∥
(

f ′(xk)T (�(yk) − (λk)+) + g1(μk)xk

λk
+ − �(yk) + g2(μk)λk + g3(μk)π (zk)

)∥∥∥∥∥
≤ θ (zk) + ‖ f ′(xk)‖‖�(yk) − (λk)+‖ + g1(μk)‖xk‖

+ ‖(λk)+ − �(yk)‖ + g2(μk)‖λk‖ + g3(μk)‖π (zk)‖, (5.3)

where yk = (μk, λ
k). For any i ∈ B and zk sufficiently close to z∗, we have

|�i (yk) − (
λk

i

)
+| =

∣∣∣∣(λk
i +

√(
λk

i

)2 + 4(μk)2

)/
2 − λk

i

∣∣∣∣
=

∣∣∣∣λk
i −

√(
λk

i

)2 + 4(μk)2

∣∣∣∣/2 (5.4)

= 2(μk)2

/(
λk

i +
√(

λk
i

)2 + 4(μk)2

)
= O((μk)2).

Similarly, for any i ∈ N and zk sufficiently close to z∗, we have∣∣�i (yk)−(
λk

i

)
+
∣∣ = ∣∣φi

(
μk, λ

k
i

)∣∣ = (μk)2

/(√(
λk

i

)2+4(μk)2−λk
i

)
= O((μk)2).

(5.5)

Moreover, by (2.10), (2.11), and Theorem 3.1, we have

g1(μk)‖xk‖ = O((μk)2), g2(μk)‖λk‖ = O((μk)2), and

g3(μk)‖π (zk)‖ = O((μk)2). (5.6)

By using (5.4)–(5.6), we can obtain from (5.3) that for all zk sufficiently close to z∗,

‖H0(wk)‖ = θ (zk) + O
(
μ2

k

)
. (5.7)

Since μk → 0 as k → ∞, we have (μk)2 ≤ μk ≤ θ (zk) for all zk sufficiently close to
z∗. This, together with (5.2) and (5.7), implies that there is a constant C > 0 such that
dist(wk,S) ≤ Cθ (zk) holds for all zk sufficiently close to z∗. This completes the proof.
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5.3. Upper bound of ‖�zk‖

Lemma 5.3. Suppose that Assumptions 2.1, 3.1, 5.1, and 5.2 are satisfied. Then
v(zk) = u(zk) for all zk sufficiently close to z∗, where v(·) and u(·) are defined by
(3.8) and (3.7), respectively.

Proof: The proof can be found in Appendix II.

Suppose that Assumptions 2.1, 3.1, 5.1, and 5.2 are satisfied. Then, from Algorithm
3.1 and Lemma 5.3, we have that for all zk sufficiently close to z∗,

�μk = −μk + μ0β(zk), (5.8)

( f ′(xk)T (�(yk))′μ + g′
1(μk)xk)�μk + M(zk)�xk + f ′(xk)T (�(yk))′λ�λk

= −(� f0(xk) + f (xk)T �(yk) + g1(μk)xk) + u1(zk), (5.9)

P(zk)�μk + R(zk)(− f ′(xk))�xk + N (zk)�λk

= −(− f (xk) + λk − �(yk) + g2(μk)λk + g3(μk)π (zk)) + u2(zk), (5.10)

where yk = (μk, λ
k), matrices M(·), P(·), Q(·), and N (·) are given by (2.13), (2.14),

(2.15), and (2.16), respectively; and vectors u1(·) and u2(·) are defined by (3.2). From
(5.8) we have

|�μk | = O(θ (zk)). (5.11)

Thus, we need only to derive the upper bounds of ‖�xk‖ and ‖�λk‖. Let

t k := �(yk), rk := −(λk − �(yk)), (5.12)

and

�t k := (�(yk))′λ�λk + (�(yk))′μ�μk − û1(zk), (5.13)

�rk := −N (zk)�λk + (�(yk))′μ�μk + û2(zk). (5.14)

Then, by (5.9), (5.10), and (3.2)–(3.6),

M(zk)�xk + f ′(xk)T �t k = −(� f0(xk) + f ′(xk)T tk),
R(zk)(− f ′(xk))�xk − �rk = −(− f (xk) − rk),

and, by (5.13) and (5.14),

N (zk)�t k + (�(yk))′λ�rk

= N (zk)[(�(yk))′μ�μk − û1(zk)] + (�(yk))′λ[(�(yk))′μ�μk + û2(zk)],
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where N (·) is defined by (2.16).
For each k, let wk∗ := (xk∗, λk∗) ∈ S be such that

‖wk − wk∗‖ = dist(wk,S). (5.15)

Denote

yk∗ := (0, λk∗), t k∗ := �(yk∗), and rk∗ := −(λk∗ − �(yk∗)). (5.16)

Let

�x
k

:= xk − xk∗ + �xk, �t
k

:= t k − t k∗ + �t k, and �r
k

:= rk − rk∗ + �rk .

(5.17)

Then we can further obtain

M(zk)�x
k + f ′(xk)T �t

k = h0(zk), R(zk)(− f ′(xk))�x
k − �r

k = h1(xk),

and

N (zk)�t
k + (�(yk))′λ�r

k

= N (zk)(t k − t k∗) + (�(yk))′λ(rk − rk∗)

+N (zk)[(�(yk))′μ�μk − û1(zk)] + (�(yk))′λ[(�(yk))′μ�μk + û2(yk)]

= N (zk)(�(yk) − �(yk∗)) + (�(yk))′λ(λk∗ − �(yk∗) − (λk − �(yk)))

+N (zk)[(�(yk))′μ�μk − û1(zk)] + (�(yk))′λ[(�(yk))′μ�μk + û2(zk)]

= N (zk)h2(zk) + (�(yk))′λh3(zk),

where

h0(zk) = M(zk)(xk − xk∗) + f ′(xk)T (t k − t k∗) − (� f0(xk) + f ′(xk)T tk), (5.18)

h1(yk) = f (xk) − f (xk∗) − R(zk) f ′(xk)(xk − xk∗), (5.19)

h2(yk) = �(yk) − �(yk∗) + (�(yk))′μ�μk − û1(zk), (5.20)

h3(yk) = λk∗ − �(yk∗) − (λk − �(yk)) + (�(yk))′μ�μk + û2(zk). (5.21)

Thus, (5.9) and (5.10) become

⎡⎢⎣ M(zk) f ′(xk)T 0

R(zk)(− f ′(xk)) 0 −Em

0 N (zk) (�(yk))′λ

⎤⎥⎦
⎡⎢⎢⎣

�x
k

�t
k

�r
k

⎤⎥⎥⎦ =

⎡⎢⎣ h0(zk)

h1(xk)

h4(zk)

⎤⎥⎦, (5.22)

where M(·) and N (·) are defined by (2.13) and (2.16), respectively, and h4(·) is defined
by h4(zk) := N (zk)h2(zk) + (�(yk))′λh3(zk). Furthermore, (5.22) can be split into the
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following two systems:

⎡⎢⎣ M(zk) f ′(xk)T 0

R(zk)(− f ′(xk)) 0 −Em

0 N (zk) (�(yk))′λ

⎤⎥⎦
⎡⎢⎢⎣

�̂x
k

�̂t
k

�̂r
k

⎤⎥⎥⎦ =

⎡⎢⎣ 0

0

h4(zk)

⎤⎥⎦ (5.23)

and ⎡⎢⎣ M(zk) f ′(xk)T 0

R(zk)(− f ′(xk)) 0 −Em

0 N (zk) (�(yk))′λ

⎤⎥⎦
⎡⎢⎢⎣

�̃x
k

�̃t
k

�̃r
k

⎤⎥⎥⎦ =

⎡⎢⎣ h0(zk)

h1(xk)

0

⎤⎥⎦, (5.24)

where

�x
k = �̂x

k + �̃x
k
, �t

k = �̂t
k + �̃t

k
, and �r

k = �̂r
k + �̃r

k
. (5.25)

In the subsequent analysis, we first obtain upper bounds of ‖�̂x
k‖, ‖�̂t

k‖, ‖�̂r
k‖

and ‖�̃x
k‖, ‖�̃t

k‖, ‖�̃r
k‖ by using (5.23) and (5.24), respectively. From these bounds

and (5.25) we obtain the upper bounds of ‖�x
k‖, ‖�t

k‖, and ‖�r
k‖, which, together

with (5.17), yield the upper bounds of ‖�xk‖, ‖�t k‖ and ‖�rk‖. Finally, by (5.13) and
(5.14), we derive the upper bound of ‖�λk‖.

The upper bounds of ‖�̂t
k‖, ‖�̂r

k‖ and ‖�̂x
k‖ can be obtained from the following

two lemmas. Their proofs can be found in Appendix III.

Lemma 5.4. Suppose that Assumptions 2.1, 3.1, 5.1, and 5.2 are satisfied. Let �̂x
k
, �̂t

k
,

and �̂r
k

be generated by (5.23). Then max{‖�̂t
k‖, ‖�̂r

k‖} = O(θ (zk)) holds for all zk

sufficiently close to z∗.

Lemma 5.5. Suppose that Assumptions 2.1, 3.1, 5.1, and 5.2 are satisfied. Let �̂x
k
, �̂t

k
,

and �̂r
k

be generated by (5.23). Then ‖�̂x
k‖ = O(θ (zk)) holds for all zk sufficiently

close to z∗.

The proof of the following proposition can be found in Appendix IV.

Proposition 5.1. Suppose that Assumptions 2.1, 3.1, 5.1, and 5.2 are satisfied. Let

�̃x
k
, �̃t

k
, and �̃r

k
be generated by (5.24). Then ‖�̃x

k‖ = O(θ2(zk))+ O(θ (zk))‖�̃t
k
B‖

holds for all zk sufficiently close to z∗.

In the following, let Dk := [(�(yk))′λ]−1/2[N (zk)]1/2. By Proposition 5.1, it is suf-
ficient to estimate the upper bounds of ‖�̃t

k‖ and ‖�̃r
k‖ in order to obtain the upper

bounds of ‖�̃x
k‖, ‖�̃t

k‖, and ‖�̃r
k‖.

The upper bounds of ‖�̃t
k
N ‖ and ‖�̃r

k
B‖ can be obtained from the following lemma

whose proof can be found in Appendix V.
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Lemma 5.6. Suppose that Assumptions 2.1, 3.1, 5.1, and 5.2 are satisfied. Let C(·)
be defined by (5.1), and �̃x

k
, �̃t

k
, and �̃r

k
be generated by (5.24). Then max{‖�̃t

k
N ‖,

‖�̃r
k
B‖} = O(θ (zk)) holds for all zk sufficiently close to z∗.

To obtain the upper bound of ‖�̃t
k
B‖ and ‖�̃r

k
N ‖, we need to establish the following

proposition whose proof can be found in Appendix VI.

Proposition 5.2. Suppose that Assumptions 2.1 and 5.1–5.3 are satisfied. Let C(·) be

defined by (5.1). Then for all zk sufficiently close to z∗, (�̃x
k
, �̃t

k
B, �̃r

k
N ) is the solution

of the following (weighted) least squares problem

min
1

2

∥∥(Dk)BB�̃t
k
B
∥∥2 + 1

2

∥∥(Dk)−1
NN �̃r

k
N

∥∥2

s.t. C(zk)T

⎡⎢⎢⎣
�̃x

k

�̃t
k
B

�̃r
k
N

⎤⎥⎥⎦ =
[

h0(zk) − f ′
N (xk)T �̃t

k
N

h1(xk) + �̃r
k
B

]
.

(5.26)

By using Proposition 5.2, we can obtain the upper bounds of ‖�̃t
k
B‖ and ‖�̃r

k
N ‖ in

the following lemma whose proof can be found in Appendix VII.

Lemma 5.7. Suppose that Assumptions 2.1, 3.1, and 5.1–5.3 are satisfied. Let �̃x
k
, �̃t

k
,

and �̃r
k

be generated by (5.24). Then max{‖�̃t
k
B‖, ‖�̃r

k
N ‖} = O(θ (zk)) holds for all

zk sufficiently close to z∗.

By Proposition 5.1 and Lemma 5.7, we further obtain

Lemma 5.8. Suppose that Assumptions 2.1, 3.1, and 5.1–5.3 are satisfied. Then ‖�̃x
k‖

= O(θ (zk)) holds for all zk sufficiently close to z∗.

The next theorem is about the upper bound of ‖�zk‖.

Theorem 5.2. Suppose that Assumptions 2.1, 3.1, and 5.1–5.3 are satisfied. Let zk

and �zk be generated by Algorithm 3.1. Then there exists a constant C1 > 0 such that
‖�zk‖ ≤ C1θ (zk) holds for all zk sufficiently close to z∗.

Proof: For all zk sufficiently close to z∗, from Lemmas 5.6, 5.7, and 5.8 we obtain

max{‖�̃x
k‖, ‖�̃t

k‖, ‖�̃r
k‖} = O(θ (zk)),

and from Lemmas 5.4 and 5.5 we have

max{‖�̂x
k‖, ‖�̂t

k‖, ‖�̂r
k‖} = O(θ (zk)).
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Thus, by (5.25), we obtain that for all zk sufficiently close to z∗,

‖�x
k‖ ≤ ‖�̂x

k‖ + ‖�̃x
k‖ = O(θ (zk)),

‖�t
k‖ ≤ ‖�̂t

k‖ + ‖�̃t
k‖ = O(θ (zk)),

‖�r
k‖ ≤ ‖�̂r

k‖ + ‖�̃r
k‖ = O(θ (zk)).

Furthermore, by (5.17), we obtain that for all zk sufficiently close to z∗,

‖�xk‖ ≤ ‖�x
k‖ + ‖xk − xk∗‖ = O(θ (zk)),

‖�t k‖ ≤ ‖�t
k‖ + ‖t k − t k∗‖ = O(θ (zk)), (5.27)

‖�rk‖ ≤ ‖�r
k‖ + ‖rk − rk∗‖ = O(θ (zk)).

From (5.13) and (5.14) it follows that

�t k
B = ((�(yk))′λ)BB�λk

B + ((�(yk))′μ)B�μk − (û1(yk))B,

�rk
N = −N (zk)NN�λk

N + ((�(yk))′μ)N�μk + (û2(yk))N .

Thus, for all zk sufficiently close to z∗,∥∥�λk
B
∥∥ ≤ ‖[((�(yk))′λ)BB]−1‖[∥∥�t k

B
∥∥ + ∥∥((�(yk))′μ)B�μk

∥∥ + ∥∥(û1(yk))B
∥∥]

= O(θ (zk)), (5.28)∥∥�λk
N

∥∥ ≤ ‖[N (zk)NN ]−1‖ [∥∥�rk
N

∥∥ + ∥∥((�(yk))′μ)N�μk

∥∥ + ∥∥(û2(yk))N
∥∥]

= O(θ (zk)). (5.29)

By using (5.11), (5.27), (5.28), and (5.29), we obtain that ‖�zk‖ = O(θ (zk)) for all
zk sufficiently close to z∗, which completes the proof.

5.4. Superlinear convergence

In this subsection, we always assume that Assumptions 2.1, 3.1, and 5.1–5.3 are satisfied.

Lemma 5.9. Let zk and �zk be generated by Algorithm 3.1. Then there exists a constant
C2 > 0 such that

zk+1 = zk + �zk and θ (zk+1) ≤ C2θ
1+t1 (zk)

holds for all zk sufficiently close to z∗.

Proof: By using Theorem 5.2, we can prove this lemma in a similar way as Lemma 8
in [14]. We omit the details here.
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By Lemma 5.9, there exists a constant C3 > 0 such that for all zk sufficiently close to
z∗,

θ (zk+1) ≤ (C3θ (zk))1+t1 . (5.30)

For given ε > 0, define N (z∗, ε) := {z ∈ �+ × �n × �m : ‖z − z∗‖ ≤ ε}. Since
H is locally Lipschitz continuous around z∗, there exists a constant L > 0 such that
‖H (z1) − H (z2)‖ ≤ L‖z1 − z2‖ holds for any z1, z2 ∈ N (z∗, ε). Let

ε̄ := min{ε/(2 + 2C1L + 4C1C3L), 1/(2C3L)}, (5.31)

where C1 and C3 are given by Theorem 5.2 and (5.30), respectively. Then the following
lemma can be proved in a similar way as in [14, Lemma 5.5]. We omit the proof here.

Lemma 5.10. Let ε̄ be defined by (5.31). If for some k the iterate zk ∈ N (z∗, ε̄) and ε

is sufficiently small, then zk+q ∈ N (z∗, ε/2) for all q = 0, 1, 2, . . . and {zk+q}∞q=1 is a
convergent sequence.

Theorem 5.3. Let z∗ be an accumulation point of the iteration sequence {zk} generated
by Algorithm 3.1. Suppose that Assumptions 2.1 and 5.1–5.3 are satisfied. Then

(i) the whole sequence {zk} converges to z∗,
(ii) θ (zk+1) = O(θ1+t1 (zk)), μk+1 = O((μk)1+t1 ), and

(iii) dist(wk+1,S) = O((dist(wk,S))1+t1 ).

Proof:
(i) This is obtained by Lemma 5.10.

(ii) By Lemma 5.9, we know that for all zk sufficiently close to z∗, zk+1 = zk +
�zk and θ (zk+1) = O(θ1+t1 (zk)). In addition, since zk+1 = zk + �zk for all zk

sufficiently close to z∗, it follows that μk+1 = μk + �μk = γμ0θ
1+t1 (zk) for

all zk sufficiently close to z∗. This, together with θ (zk+1) = O(θ1+t1 (zk)), implies
that μk+1 = O((μk)1+t1 ) holds for all zk sufficiently close to z∗. Thus, by the
convergence of {zk}, (ii) holds.

(iii) By Theorem 5.1 and (ii), we have

dist(wk+1,S) = O(θ (zk+1)) = O(θ1+t1 (zk)). (5.32)

On the other hand, by the Lipschitz continuity of H and the boundedness of S,

θ1+t1 (zk) = ‖H (zk) − H (z̃)‖1+t1 = O(‖zk − z̃‖1+t1 ), ∀z̃ := (0, w̃) with w̃ ∈ S.

In particular, we take z̃ := zk∗ where wk∗ is the projection of wk onto S, then

θ1+t1 (zk) = O(‖zk − zk∗‖1+t1 ) = O((dist(wk,S))1+t1 ). (5.33)

By combining (5.32) with (5.33), we obtain that (iii) holds. The proof is complete.
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Table 1. The numerical results of Examples 6.1–6.7

Prob IT NF Val

Example 1 5 7 3.39 × 10−9

Example 2 8 12 1.41 × 10−8

Example 3 12 36 7.99 × 10−8

Example 4 10 13 4.82 × 10−9

Example 5 4 6 3.40 × 10−7

Example 6 5 6 1.33 × 10−7

Example 7 5 6 1.78 × 10−7

Table 2. The numerical results of Example 6.8

n m AIT ANF

500 100 6.9 7.9

500 500 10.3 13.8

500 1000 20.7 14.7

6. Numerical results

In this section, we report some numerical experiments for Algorithm 3.1 running in
Matlab. Throughout the computational experiments, we chose starting points as

x0 = (0, . . . , 0)T ∈ �n, λ0 = (0, . . . , 0)T ∈ �m, μ0 = 1.0;

and the parameters used in the algorithm were chosen as

σ = 10−5, δ = 0.5, t1 = 0.2, t2 = 0.5, κ = 0.1, τ = 1/(10
√

n+m), γ = 0.02.

We used ‖H0(wk)‖ ≤ 10−6 as the stopping criterion, where the function H0 is defined by
(2.4). We tested the three groups of problems: Examples 6.1–6.7 (group 1), Example 6.8
(group 2), and Examples 6.9–6.10 (group 3). Numerical results for problems in groups
1 and 3 are reported in Tables 1 and 3, where Prob denotes the problem to be tested; IT
denotes the number of iterations; NF denotes the number of function evaluations for the
function H defined by (2.8); and Val denotes the value of ‖H0(wk)‖ when the algorithm
stops. Numerical results for problems in group 2 are reported in Table 2, where, for
each given pair (n, m), the problem is run ten times, AIT denotes the average number
of iterations among the ten runs; and ANF denotes the average number of function
evaluations for H among the ten runs.

The numerical results in Tables 1–3 show that we only need a small number of
iterations for each example tested.

First, we test the following seven problems with small sizes. The tested results are
listed in Table 1.
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Table 3. The numerical results of Examples 6.9–6.10

Prob m IT NF Val

Example 6.9 1000 17 44 3.68 × 10−8

1500 18 47 1.89 × 10−7

2000 20 52 6.48 × 10−8

Example 6.10 1000 17 46 3.68 × 10−7

1500 19 50 9.42 × 10−8

2000 19 48 1.46 × 10−7

Example 6.1. (Problem 1 in [3])

min 0.5(x1 − 5)2 + 0.5x2
2 s.t.

{
0.5x2

2 + x1 − 4 ≤ 0

0.5x2
1 + x1 − 20 ≤ 0 .

Example 6.2. (Problem 2 in [3])

min 0.5(x1 − 5)2 + 0.5x2
2 s.t.

{
0.5x2

2 + x1 − 4 ≤ 0

0.5x2
1 + x2 − 10 ≤ 0 .

Example 6.3. (Problem 3 in [3])

min 0.5
(
5x2

1 + 14x1x2 + 13x2
2

) − 18x1 − 32x2

s.t.

{
2.5x2

1 − x1x2 + 5x2
2 + 2x1 + 3x2 − 11.5 ≤ 0

2x2
1 − 2x1x2 + 0.5x2

2 − 2x1 + x2 − 1 ≤ 0 .

Example 6.4. (Problem 4 in [3])

min 0.5
(
10x2

1 + 38x1x2 + 41x2
2

) − 47.5x1 − 63x2

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

5x2
1 + x1x2 + 2.5x2

2 + x1 + x2 − 3.125 ≤ 0

2.5x2
1 + 7x1x2 + 6.5x2

2 − x1 + 2x2 − 5 ≤ 0

2.5x2
1 − x1x2 + 5x2

2 + 3x1 + x2 − 3.625 ≤ 0

2x2
1 − 2x1x2 + 0.5x2

2 + 2x1 + 3x2 − 5.5 ≤ 0

4.5x2
1 + 6x1x2 + 2x2

2 − 2x1 + x2 − 2.625 ≤ 0 .

Example 6.5. (Example 1 in [27])

min x1 + x2 s.t. (x1 − 1)2 + (x2 − 1)2 ≤ 2.
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Example 6.6. (Example 2 in [27])

min x1 s.t.

[
(x1 − 2)2 + x2

2

(x1 − 4)2 + x2
2

]
≤

[
4

16

]
.

Example 6.7. (Example 3 in [27])

min x2
1 + x1x2 + 2x2

2 + x1 + x2

s.t.
1

2
(x1 − 2)2 + 1

2
(x2 − 1)2 ≤ 5

2
,

x1 ≥ 0, x2 ≥ 0.

Next, we consider the following min-max problem:

min
x∈�n−1

{
max
i∈J

fi (x)
} + f0(x), (6.1)

where J = {1, 2, . . . , m} and

fi (x) := 1

2
xT (ai (ai )T )x + (bi )T x + ci , ∀i ∈ J ,

f0(x) := 1

2
xT (AAT + En−1)x + (b0)T x,

with x, ai , bi , b0 ∈ �n−1, ci ∈ �, and A ∈ �(n−1)×m .
Problem (6.1) is equivalent to the following QCQP

min t + f0(x)

s.t. fi (x) − t ≤ 0, i ∈ J .
(6.2)

Thus, we can solve problem (6.1) by making use of Algorithm 3.1 to solve (6.2).
For any two positive integers n1, n2, one positive real number r1, and one real number

r2 ∈ [0, 1], we used the following notation: �r1� denotes the maximal integer which is
not large than r1; rand(n1, n2) denotes an n1 × n2 matrix whose entries are randomly
chosen in (0, 1); and sprand(n1, n2, r2) denotes a random, m × n, sparse matrix with
approximately r2 ∗ n1 ∗ n2 uniformly distributed nonzero entries. In our testing, we
consider the following example:

Example 6.8. Consider the problem (6.1) with b0 := sprand(n − 1, 1, 0.1), A :=
rand(n − 1, m), and for each i ∈ J ,

ai :=
∣∣∣∣1 − i

�n/2� + 1

∣∣∣∣sprand(n − 1, 1, 0.1), bi := sprand(n − 1, 1, 0.1), and

ci := rand(1).
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The tested results are listed in Table 2.
Finally, we consider the semi-infinite min-max problem (see [23]):

min
x∈�n

F(ψ(x)), (6.3)

where F : �n1 → � is a smooth function; and ψ : �n → �n1 is a nonsmooth function.
The components of ψ(·) are the form:

ψ j (x) = max
y j ∈Y j

ψ j (x, y j ) with Y j ∈ Rm j and j ∈ {1, 2, . . . , n1}.

To solve (6.3), the following subproblem needs to be solved at each iteration [23]:

min
(p,h)

�F(ψ(x))T p + 1

2
pT�2 F(ψ(x))p

s.t. p j − ψ j (x) − �xψ
j (x, y j )

T h − hT (�2φ j (x, y j )h + ψ j (x)) ≥ 0, (6.4)

j ∈ {1, 2, . . . , n1}, y j ∈ Y j .

In this paper, we tested the following problem:

min
x∈�2

F(ψ1(x), ψ2(x)),

where F : �2 → � and

ψ1(x) = max
t∈Y1

{
t2 − (t x1 + et x2) + (x1 + x2)2 + x2

1 + x2
2 + e(x1+x2)

}
,

ψ2(x) = max
t∈Y2

{− (t − 1)2 + 0.5(x1 + x2)2 − 2t(x1 + x2) + 0.5
[
x2

1 + x2
2

]}
with x ∈ �2, Y1 = [0, 1], and Y2 = [−1, 0]. The function F is chosen as follows.

Example 6.9. F(z) = z1 + z2, z ∈ �2.

Example 6.10. F(z) = 0.5(z1 +
√

z2
1 + 4) + ln(1 + ez2 ) + 0.5(z2

1 + z2
2), z ∈ �2.

In our testing about Examples 6.9 and 6.10, we considered the corresponding sub-
problem 6.4 with discretized Y1 and Y2. For Example 6.9 we take

ti = i − 1

m/2 − 1
∀i ∈ {1, . . . , m/2};

and for Example 6.10 we take

ti = − i − m/2 − 1

m/2 − 1
∀i ∈ {m/2 + 1, . . . , m},

where m is an even number. The test results are listed in Table 3.
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Appendix

Appendix I

Proof of Lemma 5.2: Assume, on the contrary, that the result is not true. Then, by
Lemma 5.1 we may choose a subsequence {wl} := {(xl , λl)} ⊆ �n+m of infinite number
such that for all wl sufficiently close to w∗,

‖wl − wl∗‖ ≥ l‖H0(wl)‖, (7.1)

where wl∗ := (x∗, λl∗) is the projection of wl onto S. Since ‖w∗ − wl∗‖ ≤ ‖w∗ − wl‖,
by taking a subsequence if necessary, we can assume that both {wl} and {wl∗} converge
to w∗ := (x∗, λ∗). Let αl := ‖wl − wl∗‖. Then we can further assume that

(wl − wl∗)/αl → (dx, dλ) as l → ∞. (7.2)

In what follows, we show that (dx, dλ) = 0, which contradicts ‖(dx, dλ)‖ = 1.
First, we show that (dx, dλ) is in the normal cone to S at w∗ = (x∗, λ∗), i.e.,(

dx

dλ

)T (
x∗ − x∗

λ − λ∗

)
≤ 0 ∀ (x∗, λ) ∈ S. (7.3)

Since wl∗ is the projection of wl onto S and S is convex, it follows that(
xl − x∗

λl − λl∗

)T (
x∗ − x∗

λ − λ∗

)
≤ 0 ∀ (x∗, λ) ∈ S. (7.4)

Thus, by (7.4), we have(
(xl − x∗)/αl

(λl − λl∗)/αl

)T (
x∗ − x∗

λ − λ∗

)
≤ 0 ∀ (x∗, λ) ∈ S,

which, together with (7.2), implies (7.3).
Next, we show that (dx, dλ) is in the tangent cone to S at w∗, i.e.,

w∗ + ε0(dx, dλ) ∈ S for all sufficiently small ε0 > 0. (7.5)

Since both {wl} and {wl∗} converge to w∗ ∈ S0, it follows that, for all sufficiently large l,

λl
i > 0, λl∗

i > 0 ∀i ∈ B and λl
i < 0, λl∗

i < 0 ∀i ∈ N . (7.6)

Using the fact that � f0(x∗) + f ′(x∗)T (λl∗)+ = 0 ( wl∗ ∈ S), we have

� f0(xl) + f ′(xl)T (λl)+
αl
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= (� f0(xl) + f ′(xl)T (λl)+) − (� f0(x∗) + f ′(x∗)T (λl∗)+)

αl

= � f0(xl) − � f0(x∗)

αl
+ ( f ′(xl)T − f ′(x∗)T )(λl∗)+

αl
+ f ′(xl)T ((λl)+ − (λl∗)+)

αl

= P0 xl − x∗

αl
+

∑
i∈B

Pi xl − x∗

αl
λl∗

i +
∑
i∈B

f ′
i (xl)

λl
i − λl∗

i

αl

→
(

P0 +
∑
i∈B

λl∗
i Pi

)
dx +

∑
i∈B

f ′
i (x∗)(dλ)i , as l → ∞, (7.7)

where the third equality is due to (7.6), and the last relation is due to (7.2). Using the
fact that − f (x∗) + λl∗ − (λl∗)+ = 0 ((x∗, λl∗) ∈ S), we have

− f (xl) + λl − (λl)+
αl

= (− f (xl) + λl − (λl)+) − (− f (x∗) + λl∗ − (λl∗)+)

αl

= −( f (xl) − f (x∗)) + (λl − (λl)+) − (λl∗−(λl∗)+)

αl
. (7.8)

By (7.6) and (7.2), it follows from (7.8) that for i ∈ B,

[− f (xl) + λl − (λl)+]i

αl
= −( fi (xl) − fi (x∗))

αl
→ − f ′

i (x∗)T dx, (7.9)

and for i ∈ N ,

[− f (xl) + λl−(λl)+]i

αl
= −( fi (xl) − fi (x∗)) + λl

i − λl∗
i

αl
→ − f ′

i (x∗)T dx + (dλ)i .

(7.10)

Since (7.1) implies

lim
l→∞

‖H0(wl)‖
αl

≤ lim
l→∞

1

l
× wl − wl∗

αl
= 0,

by (7.7), (7.9), and (7.10) we have

(
P0 +

∑
i∈B

λl∗
i Pi

)
dx +

∑
i∈B

f ′
i (x∗)(dλ)i = 0 ,

f ′
B(x∗)T dx = 0 ,

− f ′
N (x∗)T dx + (dλ)N = 0 .

(7.11)
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From the first two equations in (7.11) we have

(dx)T

(
P0 +

∑
i∈B

λl∗
i Pi

)
dx = −

∑
i∈B

(dx)T f ′
i (x∗)(dλ)i = 0.

Thus, by Assumption 5.2, we obtain dx = 0. This and the third equation in (7.11) yield
(dλ)N = 0. Thus, for any sufficiently small ε0 > 0, we have (λ∗ + ε0dλ)+ = (λl)+, and
hence

�f0(x∗ + ε0dx) + f ′(x∗ + ε0dx)T (λ∗ + ε0dλ)+ = � f0(x∗) + f ′(x∗)T (λ∗)+ = 0

and

− f (x∗ + ε0dx) + λ∗ + ε0dλ − (λ∗ + ε0dλ)+ = − f (x∗) + λ∗ − (λ∗)+ = 0,

i.e., H0(x∗ + ε0dx, λ∗ + ε0dλ) = 0. This shows that (7.5) holds.
Therefore, we obtain (dx, dλ) = 0. This complemetes the proof.

Appendix II

Proof of Lemma 5.3: Since the strictly complementary condition holds, i.e., |λ∗
i | > 0

for all i ∈ J , it follows that there is a constant ε > 0 such that |λk
i | ≥ ε for all i ∈ J and

all λk sufficiently close to λ∗. Thus, by (2.7) we have that, for all zk sufficiently close
to z∗,

|(�i (yk))′μ| = 2μk/

√(
λk

i

)2 + 4(μk)2 ≤ 2μk/
√

ε2 = O(μk). (7.12)

Furthermore, by combining (2.10), (2.11), (3.2), (3.3), (3.5), (7.12), and the fact that
zk ∈ �, we have for all zk sufficiently close to z∗ that

‖u1(zk)‖ ≤ ‖ f ′(xk)‖‖û1(zk)‖ + ‖ũ1(zk)‖
≤ ‖ f ′(xk)‖

(
‖(�(yk))′μ‖μ0β(zk) + 1

2
μk‖(�(yk))′μ‖

)
+ g1(μk)‖xk‖ + |g′

1(μk)|(μk + μ0β(zk))‖xk‖
≤ ‖ f ′(xk)‖

(
‖(�(yk))′μ‖μk + 1

2
μk‖(�(yk))′μ‖

)
+ (g1(μk) + 2μk |g′

1(μk)|)‖xk‖
= 3

2
μk‖ f ′(xk)‖

∥∥∥vec
{

2μk

/√(
λk

i

)2 + 4(μk)2 : i ∈ J
}∥∥∥ + O((μk)2)

= O((μk)2). (7.13)

In addition, by combining (2.10), (2.11), (3.2), (3.4), and (3.6), we have

‖u2(zk)‖ ≤ ‖û2(zk)‖ + ‖ũ2(zk)‖ = O((μk)2) (7.14)

for all zk sufficiently close to z∗.
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Since μk → 0 as k → ∞, (7.13) and (7.14) imply that ‖u(zk)‖ ≤ τ
√

n + mμk for
all zk sufficiently close to z∗. Therefore, by noting the definition of v(·) (see (3.8)), we
have v(zk) = u(zk) for all zk sufficiently close to z∗. This completes the proof.

Appendix III

Proof of Lemma 5.4: By (2.6), we have �i (yk) > 0 for all i ∈ J , and hence by
(5.12), we have t k

i > 0 for all i ∈ J . This, together with Assumption 2.1, implies that
P0 + ∑

i∈J t k
i Pi is positive semidefinite, and so is M(zk) by (2.13), (2.10), and (2.11).

Thus, from the first two equations of (5.23) it follows that

(R(zk)−1�̂t
k
)T �̂r

k = (�̂t
k
)T R(zk)−1�̂r

k = (�̂t
k
)T (− f ′(xk)�̂x

k
)

= −( f ′(xk)T �̂t
k
)T �̂x

k = (�̂x
k
)T M(zk)T �̂x

k ≥ 0.

From the third equation of (5.23) we have

min
i∈J

[(�(yk))′λN (zk)]i i‖R(zk)−1/2[(�(yk))′λ]−1�̂t
k‖2

≤ [(R(zk)−1�̂t
k
)T [(�(yk))′λ]−1][N (zk)(�(yk))′λ][[(�(yk))′λ]−1�̂t

k
]

= (R(zk)−1�̂t
k
)T [(�(yk))′λ]−1 N (zk)�̂t

k

≤ (R(zk)−1�̂t
k
)T [(�(yk))′λ]−1 N (zk)�̂t

k + (R(zk)−1�̂t
k
)T �̂r

k

= (R(zk)−1�̂t
k
)T [(�(yk))′λ]−1[N (zk)�̂t

k + (�(yk))′λ�̂r
k
]

= (R(zk)−1�̂t
k
)T [(�(yk))′λ]−1[N (zk)h2(zk) + (�(yk))′λh3(zk)]

≤ ‖R(zk)−1/2[(�(yk))′λ]−1�̂t
k‖‖h̆(zk)‖,

where h̆(zk) := R(zk)−1/2[N (zk)h2(zk) + (�(yk))′λh3(zk)]. Since

‖h̆(zk)‖ ≤ ‖[R(zk)−1/2(N (zk)h2(zk) + (�(yk))′λh3(zk))]B‖
+ ‖[R(zk)−1/2(N (zk)h2(zk) + (�(yk))′λh3(zk))]N ‖

≤ ‖R(zk)−1/2‖(‖[N (zk)]BB‖‖[h2(zk)]B‖ + ‖[(�(yk))′λ]BB‖‖[h3(zk)]B‖)

+ ‖R(zk)−1/2‖(‖[N (zk)]NN ‖‖[h2(zk)]N ‖
+ ‖[(�(yk))′λ]NN ‖‖[h3(zk)]N ‖),

we further obtain

‖R(zk)−1/2[(�(yk))′λ]−1�̂t
k‖

≤ ‖R(zk)−1/2‖‖[N (zk)]BB‖‖[h2(zk)]B‖ + ‖[(�(yk))′λ]BB‖‖[h3(zk)]B‖
mini∈J [(�(yk))′λN (zk)]i i

+‖R(zk)−1/2‖‖[N (zk)]NN ‖‖[h2(zk)]N ‖ + ‖[(�(yk))′λ]NN ‖‖[h3(zk)]N ‖
mini∈J [(�(yk))′λN (zk)]i i

.

(7.15)
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Similarly,

‖R(zk)−1/2[N (zk)]−1�̂r
k‖

≤ ‖R(zk)−1/2‖‖[N (zk)]BB‖‖[h2(zk)]B‖ + ‖[(�(yk))′λ]BB‖‖[h3(zk)]B‖
mini∈J [(�(yk))′λN (zk)]i i

+‖R(zk)−1/2‖‖[N (zk)]NN ‖‖[h2(zk)]N ‖ + ‖[(�(yk))′λ]NN ‖‖[h3(zk)]N ‖
mini∈J [(�(yk))′λN (zk)]i i

.

(7.16)

Using (2.7), we have

‖[(�(yk))′λ]BB‖ = O(1), ‖[(�(yk))′λ]NN ‖ = O((μk)2), (7.17)

and

‖[Em − (�(yk))′λ]BB‖ = O((μk)2), ‖[Em − (�(yk))′λ]NN ‖ = O(1).

The latter, together with (2.16), (2.10), and (2.11), implies that

‖[N (zk)]BB‖ = O((μk)2) and ‖[N (zk)]NN ‖ = O(1). (7.18)

In addition, using (2.16), (2.5), (2.6), (2.10), and (2.11), we have

min
i∈J

[(�(yk))′λN (zk)]i i

= min
i∈J

[(�(yk))′λ(Em − (�(yk))′λ + g2(μk)Em + g3(μk)(�(yk))′λ�(μk, − f (xk)))]i i

= min
i∈J

{
(�i (yk))′λ

(
λk

i − �i (yk)
)′
λ
+ (�i (yk))′λg2(μk)

+g3(μk)[(�i (yk))′λ]2�i (μk, − f (xk))
}

≥ min
i∈J

{
(�i (yk))′λ

(
λk

i − �i (yk)
)′
λ

}
= 	((μk)2). (7.19)

Thus, in order to give the upper bounds of the right-hand side of (7.15) and (7.16),
we need to discuss the upper bounds of ‖[h2(zk)]B‖, ‖[h2(zk)]N ‖, ‖[h3(zk)]B‖, and
‖[h3(zk)]N ‖. The discussion can be divided into the following two cases:

Case 1. Consider the upper bounds of ‖[h2(zk)]B‖ and ‖[h2(zk)]N ‖. Notice that

h2(zk) = �(yk) − �(yk∗) + (�(yk))′μ�μk − û1(zk)

= �(yk) − �(yk∗) − (�(yk))′μμk + (�(yk))′μμ0β(zk) − û1(zk)

= �(yk) − �(yk∗) − 1

2
(�(yk))′μμk, (7.20)
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where the first equality follows from (5.20), the second equality from (5.8), and the
last equality from (3.3). Thus, it follows from (7.20) that for any i ∈ B and for all zk

sufficiently close to z∗,

|[h2(zk)]i | ≤ |�i (yk) − �i (yk∗)| +
∣∣∣∣1

2
(�i (yk))′μμk

∣∣∣∣
=

∣∣∣∣∣∣λ
k
i +

√(
λk

i

)2 + 4(μk)2

2
−

λk∗
i +

√(
λk∗

i

)2

2

∣∣∣∣∣∣ + (μk)2√(
λk

i

)2 + 4(μk)2

=
∣∣∣∣∣∣λ

k
i − λk∗

i

2
+

√(
λk

i

)2 + 4(μk)2 −
√(

λk∗
i

)2

2

∣∣∣∣∣∣ + (μk)2√(
λk

i

)2 + 4(μk)2

≤ 1

2

∣∣λk
i − λk∗

i

∣∣+ ∣∣λk
i − λk∗

i

∣∣∣∣λk
i + λk∗

i

∣∣ + 4(μk)2

2

(√(
λk

i

)2+4(μk)2 +
√(

λk∗
i

)2
)+ (μk)2√(

λk
i

)2 + 4(μk)2

= O
(∣∣λk

i − λk∗
i

∣∣) + O((μk)2),

which implies

‖[h2(zk)]B‖ = O(θ (zk)); (7.21)

and for i ∈ N and for all zk sufficiently close to z∗,

[h2(zk)]i = �i (yk) − 1

2
(�i (yk))′μμk =

λk
i +

√(
λk

i

)2 + 4(μk)2

2
− (μk)2√(

λk
i

)2+4(μk)2

= 2(μk)2√(
λk

i

)2 + 4(μk)2 − λk
i

− (μk)2√(
λk

i

)2 + 4(μk)2

=
2

√(
λk

i

)2 + 4(μk)2 + λk
i −

√(
λk

i

)2 + 4(μk)2(√(
λk

i

)2 + 4(μk)2 − λk
i

)√(
λk

i

)2 + 4(μk)2

(μk)2

= 4(μk)2(√(
λk

i

)2 + 4(μk)2 − λk
i

)2
√(

λk
i

)2 + 4(μk)2

(μk)2,

which implies

‖[h2(zk)]N ‖ = O((μk)2θ (zk)). (7.22)
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Case 2. Consider the upper bounds of ‖[h3(zk)]B‖ and ‖[h3(zk)]N ‖. Notice that

h3(zk) = λk∗ − �(yk∗) − (λk − �(yk)) + (�(yk))′μ�μk + û2(zk)

= λk∗−�(yk∗) − (λk − �(yk))−(�(yk))′μμk + (�(yk))′μμ0β(zk) + û2(zk)

= λk∗ − �(yk∗) − (λk − �(yk)) − 1

2
(�(yk))′μμk, (7.23)

where the first equality follows from (5.21), the second equality from (5.8), and the last
equality from (3.4). Thus, it follows from (7.23) that for any i ∈ B,

[h3(zk)]i = −(
λk

i − �i (yk)
) − 1

2
(�i (yk))′μμk

=
−λk

i +
√(

λk
i

)2 + 4(μk)2

2
− (μk)2√(

λk
i

)2 + 4(μk)2

= 2(μk)2

λk
i +

√(
λk

i

)2 − 4(μk)2

− (μk)2√(
λk

i

)2 + 4(μk)2

=
2

√(
λk

i

)2 + 4(μk)2 − λk
i −

√(
λk

i

)2 + 4(μk)2(
λk

i +
√(

λk
i

)2 + 4(μk)2
)√(

λk
i

)2 + 4(μk)2

(μk)2

= (μk)2(
λk

i +
√(

λk
i

)2 + 4(μk)2
)2

√(
λk

i

)2 + 4(μk)2

(μk)2,

which implies

‖[h3(zk)]B‖ = O((μk)2θ (zk)); (7.24)

and for i ∈ N , it follows from (7.23) that

|[h3(zk)]i | ≤ |λk∗ − �(yk∗) − (λk − �(yk))| +
∣∣∣∣1

2
(�i (yk))′μμk

∣∣∣∣
=

∣∣∣∣∣∣λ
k∗
i − λk

i

2
+

√(
λk

i

)2 + 4(μk)2 −
√(

λk∗
i

)2

2

∣∣∣∣∣∣ + (μk)2√(
λk

i

)2 + 4(μk)2

≤ 1

2

∣∣λk∗
i − λk

i

∣∣ +
∣∣λk

i − λk∗
i

∣∣∣∣λk
i + λk∗

i

∣∣ + 4(μk)2

2
(√(

λk
i

)2 + 4(μk)2 +
√(

λk∗
i

)2
) + (μk)2√(

λk
i

)2 + 4(μk)2

= O
(∣∣λk

i − λk∗
i

∣∣) + O((μk)2),
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which implies

‖[h3(zk)]N ‖ = O(θ (zk)). (7.25)

In addition, it is easy to see that, for each i ∈ J and each k ≥ 0, �i (zk)g3(μk) ≥ 0
and �i (zk)g3(μk) is uniformly bounded above for all zk sufficiently close to z∗. Thus,
for each i ∈ J , we can obtain from (2.15) that there exists a scalar ci > 0 such that

ci ≤ [R(zk)−1]i i ≤ 1 (7.26)

for all zk sufficiently close to z∗.
Now, by combining (7.17)–(7.19) with (7.21), (7.24), and (7.26), we have

‖[N (zk)]BB‖‖[h2(zk)]B‖ + ‖[(�(yk))′λ]BB‖‖[h3(zk)]B‖
mini∈J [(�(yk))′λN (zk)]i i

= O(θ (zk)); (7.27)

and by combining (7.17)–(7.19) with (7.22) and (7.25) we have

‖[N (zk)]NN ‖‖[h2(zk)]N ‖ + ‖[(�(yk))′λ]NN ‖‖[h3(zk)]N ‖
mini∈J [(�(yk))′λN (zk)]i i

= O(θ (zk)). (7.28)

On the one hand, (7.15), together with (7.27) and (7.28), implies that

‖R(zk)−1/2[(�(yk))′λ]−1�̂t
k‖ = O(θ (zk)),

which yields,

‖�̂t
k‖ = ‖(�(yk))′λ R(zk)1/2 R(zk)−1/2[(�(yk))′λ]−1�̂t

k‖
≤ ‖(�(yk))′λ‖‖R(zk)1/2‖‖R(zk)−1/2[(�(yk))′λ]−1�̂t

k‖
= O(θ (zk)).

On the other hand, (7.16), together with (7.27) and (7.28), implies that

‖R(zk)−1/2[N (zk)]−1�̂r
k‖ = O(θ (zk)),

and hence,

‖�̂r
k‖ = ‖N (zk)R(zk)1/2 R(zk)−1/2[N (zk)]−1�̂r

k‖
≤ ‖N (zk)‖‖R(zk)1/2‖‖R(zk)−1/2[N (zk)]−1�̂r

k‖
= O(θ (zk)).

The proof is completed.
Proof of Lemma 5.5: By the first two equations of (5.23) we have[

M(zk) f ′
B(xk)T

R(zk)BB(− f ′
B(xk)) 0

] [
�̂x

k

�̂t
k
B

]
=

[
− f ′

N (xk)T �̂t
k
N

�̂r
k
B

]
,
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and hence

[
P0 + ∑

i∈B λk∗
i Pi f ′

B(xk∗)T

− f ′
B(xk∗) 0

] [
�̂x

k

�̂t
k
B

]

=
[

M(zk) f ′
B(xk)T

R(zk)BB(− f ′
B(xk)) 0

] [
�̂x

k

�̂t
k
B

]

+
[

P0 + ∑
i∈B λk∗

i Pi − M(zk) f ′
B(xk∗)T − f ′

B(xk)T

− f ′
B(xk∗) + R(zk)BB f ′

B(xk) 0

] [
�̂x

k

�̂t
k
B

]

=
[

− f ′
N (xk)T �̂t

k
N

�̂r
k
B

]

+
[

P (PB(xk∗ − xk))T

−PB(xk∗ − xk) + QBB(zk)(− f ′
B(xk)) 0

] [
�̂x

k

�̂t
k
B

]
,

(7.29)

where M(·) is defined by (2.13),

P := P0 +
∑
i∈B

λk∗
i Pi − M(zk) =

∑
i∈B

Pi
(
t k
i − t k∗

i

) −
∑
i∈N

Pi tk
i − g1(μk)En,

and PB(xk∗ − xk) denotes the matrix whose i-th row is (Pi (xk∗ − xk))T , i ∈ B. By using
(5.15), (5.16), (5.12), (2.10), and (2.11), for all zk sufficiently close to z∗ we have

∥∥t k∗
B − t k

B
∥∥ = O(θ (zk)),

∥∥t k
N

∥∥ = O(θ (zk)),

‖xk∗ − xk‖ = O(θ (zk)), g2(μk) = O((μk)2) = O(θ (zk)),

‖QBB(zk)(− fB(xk))‖ = O(g3(μk)) = O((μk)2) = O(θ (zk)).

(7.30)

Similar to the proof given in [27, Lemma 5.2], by partitioning �̂x
k

into its components
in Ker f ′

B(x∗) and Ran f ′
B(x∗), it follows from Assumption 5.2, (7.29), (7.30), and Lemma

5.4 that ‖�̂x
k‖ is bounded by the right-hand side of (7.29), i.e.,

‖�̂x
k‖ = O(θ (zk)) + O(θ (zk))‖�̂x

k‖.

Since, by Theorem 3.1, θ (zk) → 0 as k → ∞, it follows from the above equality that

‖�̂x
k‖ = O(θ (zk)) for all zk sufficiently close to z∗. This completes the proof.
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Appendix IV

Proof of Proposition 5.1: Let M(·) and N (·) be defined by (2.13) and (2.16), respectively.

By eliminating �̃r
k

and �̃t
k
N from (5.24), we have

[
M(zk) f ′

B(xk)T

R(zk)BB(− f ′
B(xk)) 0

] [
�̃x

k

�̃t
k
B

]

=
[

h0(zk) − f ′
N (xk)T ((�(yk))′λ[N (zk)]−1 R(zk))NN (R(zk)NN f ′

N (xk)�̃x
k + (h1(xk))N )

(h1(xk))B − ([(�(yk))′λ]−1 N (zk))BB�̃t
k
B

]

=
[

− f ′
N (xk)T ((�(yk))′λ[N (zk)]−1)NN R(zk)NN f ′

N (xk)

−([(�(yk))′λ]−1 N (zk))BB

] [
�̃x

k

�̃t
k
B

]

+
[

h0(zk) − f ′
N (xk)T ((�(yk))′λ[N (zk)]−1)NN (h1(xk))N

(h1(xk))B

]
,

which implies

[
P0 + ∑

i∈B λk∗
i Pi f ′

B(xk∗)T

− f ′
B(xk∗) 0

] [
�̃x

k

�̃t
k
B

]

=
[

M(zk) f ′
B(xk)T

R(zk)BB(− f ′
B(xk)) 0

] [
�̃x

k

�̃t
k
B

]

+
[

P0 + ∑
i∈B λk∗

i Pi − M(zk) f ′
B(xk∗)T − f ′

B(xk)T

− f ′
B(xk∗) + R(zk)BB f ′

B(xk) 0

] [
�̃x

k

�̃t
k
B

]

=
[

− f ′
N (xk)T ((�(yk))′λ[N (zk)]−1)NN R(zk)NN f ′

N (xk)

−([(�(yk))′λ]−1 N (zk))BB

] [
�̃x

k

�̃t
k
B

]

+
[

h0(zk) − f ′
N (xk)T ((�(yk))′λ[N (zk)]−1)NN (h1(xk))N

(h1(xk))B

]

+
[

P0 + ∑
i∈B λk∗

i Pi − M(zk) f ′
B(xk∗)T − f ′

B(xk)T

− f ′
B(xk∗) + f ′

B(xk) + QBB(zk) f ′
B(xk) 0

] [
�̃x

k

�̃t
k
B

]
.

Similar to the proof given in [27, Lemma 5.2], by partitioning �̃x
k

into its components

in Ker f ′
B(x∗) and Ran f ′

B(x∗), it follows from Assumption 5.2 that ‖�̃x
k‖ is bounded by

the right-hand side of the above inequality, i.e.,
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‖�̃x
k‖

≤
∥∥∥∥[− f ′

N (xk)T ((�(yk))′λ[N (zk)]−1)NN R(zk)NN f ′
N (xk)

−([(�(yk))′λ]−1 N (zk))BB

]∥∥∥∥
∥∥∥∥∥
[

�̃x
k

�̃t
k
B

]∥∥∥∥∥
+

∥∥∥∥[
h0(zk) − f ′

N (xk)T
(
(�(yk))′λ[N (zk)]−1

)
NN (h1(xk))N

(h1(xk))B

]∥∥∥∥
+

∥∥∥∥[
P0+ ∑

i∈B λk∗
i Pi−M(zk) f ′

B(xk∗)T − f ′
B(xk)T

− f ′
B(xk∗)+ f ′

B(xk)+QBB(zk) f ′
B(xk) 0

]∥∥∥∥
∥∥∥∥∥
[

�̃x
k

�̃t
k
B

]∥∥∥∥∥ .

Thus, we can further obtain that

‖�̃x
k‖ = O(θ2(zk))

∥∥∥∥∥
[

�̃x
k

�̃t
k
B

]∥∥∥∥∥ + O(θ (zk))

∥∥∥∥∥
[

�̃x
k

�̃t
k
B

]∥∥∥∥∥ + O(θ2(zk))

= O(θ2(zk)) + O(θ (zk))
(‖�̃x

k‖ + ∥∥�̃t
k
B
∥∥)

.

Since θ (zk) → 0 as k → ∞, it follows from the above relation that

‖�̃x
k‖ = O(θ2(zk)) + O(θ (zk))

∥∥�̃t
k
B
∥∥.

The proof is completed.

Appendix V

Proof of Lemma 5.6: Let wk∗ and t k∗ be defined by (5.15) and (5.16), respectively.
From the last equation of (5.24) we have

Dk�̃t
k + (Dk)−1�̃r

k = 0, (7.31)

which, together with the second equation of (5.24), implies

R(zk)−1(Dk)2�̃t
k = −R(zk)−1�̃r

k = R(zk)−1h1(xk) + f ′(xk)�̃x
k
,

and hence,

‖R(zk)−1/2 Dk�̃t
k‖2 = (�̃t

k
)T (R(zk)−1h1(xk) + f ′(xk)�̃x

k
)

= (�̃t
k
)T R(zk)−1h1(xk) + (�̃t

k
)T f ′(xk)�̃x

k

= (�̃t
k
)T R(zk)−1h1(xk) − (�̃x

k
)T M(zk)�̃x

k+(�̃x
k
)T h0(zk)

≤ (�̃t
k
)T R(zk)−1h1(xk) + (�̃x

k
)T h0(zk)

≤ ‖�̃t
k‖‖R(zk)−1‖‖h1(xk)‖ + ‖�̃x

k‖‖h0(zk)‖
≤ O(1)‖�̃t

k‖‖h1(xk)‖ + ‖�̃x
k‖‖h0(zk)‖,
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where the first inequality is due to the positive semidefiniteness of M(zk) and the last
inequality due to (7.26). Since from (5.18) and (5.19) it follows that

‖h0(zk)‖ = ‖(� f0(xk∗) + f ′(xk∗)T tk∗
) − (� f0(xk) + f ′(xk)T tk)

+M(zk)(xk − xk∗) + f ′(xk)T (t k − t k∗)‖

= O

(∥∥∥∥(
xk∗ − xk

tk∗ − t k

)∥∥∥∥2
)

= O(θ2(zk))

and

‖h1(xk)‖ = ‖ f (x∗) − f (x) + f ′(x)(xk − x∗)‖ = O(‖xk − x∗‖2) = O(θ2(zk)),

we can further obtain that

‖R(zk)−1/2 Dk�̃t
k‖2 = O(θ2(zk))‖�̃t

k‖ + O(θ2(zk))‖�̃x
k‖

≤ O(θ2(zk))‖�̃t
k‖ + O(θ2(zk))

[
O(θ2(zk)) + O(θ (zk))

∥∥�̃t
k
B
∥∥]

= O(θ2(zk))‖�̃t
k‖ + O(θ4(zk))

= O(1)‖Dk�̃t
k‖ + O(θ4(zk)),

where the first inequality follows from Proposition 5.1 and the last equality due to
‖(Dk)−1‖ = O(1/μk) = O(1/θ2(zk)). Thus, by (7.26) we have

‖Dk�̃t
k‖2 ≤ ‖R(zk)1/2‖‖R(zk)−1/2 Dk�̃t

k‖2 = O(1)‖‖Dk�̃t
k‖ + O(θ4(zk)).

Furthermore, we obtain from (7.31) that

‖(Dk)−1�̃r
k‖ = ‖Dk�̃t

k‖ = O(1),

which further implies∥∥�̃t
k
N

∥∥ ≤ ‖((Dk)NN )−1‖∥∥(Dk)NN �̃t
k
N

∥∥ ≤ ‖((Dk)NN )−1‖∥∥Dk�̃t
k∥∥

= O(μk)O(1) = O(θ (zk)),

and similarly,∥∥�̃r
k
B
∥∥ ≤ ‖(Dk)BB‖∥∥((Dk)BB)−1�̃r

k
B
∥∥ ≤ ‖(Dk)BB‖‖(Dk)−1�̃r

k‖ = O(θ (zk)).

This completes the proof.

Appendix VI

Proof of Proposition 5.2: From the first two equations of (5.24), it is easy to see that

(�̃x
k
, �̃t

k
B, �̃r

k
N ) is a feasible solution to the problem (5.26). Since this problem is
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a convex problem with linear constraints, (�̃x
k
, �̃t

k
B, �̃r

k
N ) is an optimal solution to

(5.26) if and only if it satisfies the KKT conditions of (5.26), which can be written as⎡⎢⎣ 0

(Dk)2
BB�̃t

k
B

(Dk)−2
NN �̃r

k
N

⎤⎥⎦ ∈ RanC(zk),

where C(·) is defined by (5.1). By (5.24), it follows that

(Dk)−2
NN �̃r

k
N = −�̃t

k
N ,

(Dk)2
BB�̃t

k
B = −�̃r

k
B = R(zk)BB f ′

B(xk)�̃x
k + (h1(xk))B

= R(zk)BB f ′
B(xk)�̃x

k − R(zk)BB f ′
B(xk)(xk − xk∗)

−
∫ 1

0

f ′
B(xk + α(xk∗ − xk))(xk∗ − xk)dα,

and

0 = −[M(zk)�̃x
k + f ′(xk)T �̃t

k
] + h0(zk)

= −[M(zk)�̃x
k + f ′(xk)T �̃t

k
] + M(zk)(xk − xk∗) + f ′(xk)T (t k − t k∗)

+
∫ 1

0

{M0(zk + α(zk∗ − zk))(xk∗ − xk) + f ′(xk + α(xk∗ − xk))(t k∗ − t k)}dα.

Let A(·) and B(·) be defined by (5.1). Then

⎡⎢⎣ 0

(Dk)2
BB�̃t

k
B

(Dk)−2
NN �̃r

k
N

⎤⎥⎦ = A(zk)

[
�̃x

k

�̃t
k
N

]
+ A(zk)

[
xk∗ − xk

tk∗ − t k

]

+
∫ 1

0

B(zk + α(zk∗ − zk))

[
xk − xk∗

t k − t k∗

]
dα.

Thus, by using Assumption 5.3, we have

⎡⎢⎣ 0

(Dk)2
BB�̃t

k
B

(Dk)−2
NN �̃r

k
N

⎤⎥⎦ ∈ RanA(zk) = RanB(zk + α(zk∗ − zk)) = RanC(zk)

for all zk sufficiently close z∗. This completes the proof.
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Appendix VII

Proof of Lemma 5.7: By Lemma 5.6, we have that max{‖�̃t
k
N ‖, ‖�̃r

k
B‖} = O(θ (zk))

holds for all zk sufficiently close to z∗. Since (5.26) is always feasible, there must be a
feasible solution to the problem, ū and v̄, such that for all zk sufficiently close to z∗,

max{‖ū‖, ‖v̄‖} = O(‖h0(zk)‖) + O
(
�̃t

k
N

) + O(‖h1(xk)‖) + O
(
�̃r

k
B
) = O(θ (zk)).

Since for all zk sufficiently close to z∗, C(zk) is invariable, it follows that, for all zk

sufficiently close to z∗, Ker(C(zk)T ) is invariable, which indicates that this matrix has
constant rank for all zk sufficiently close to z∗. Thus, by using Lemma 5.9 in [28] and
Proposition 5.2, we have∥∥(Dk)BB�̃t

k
B
∥∥ + ∥∥(Dk)−1

NN �̃r
k
N

∥∥ ≤ ‖(Dk)BBū‖ + ∥∥(Dk)−1
NN v̄

∥∥
≤ ‖(Dk)BB‖‖ū‖ + ∥∥(Dk)−1

NN
∥∥‖v̄‖

= O(μkθ (zk)),

which further implies that, for all zk sufficiently close to z∗,∥∥�̃t
k
B
∥∥ + ∥∥�̃r

k
N

∥∥ ≤ ∥∥(Dk)−1
BB

∥∥∥∥(Dk)BB�̃t
k
B
∥∥ + ‖(Dk)NN ‖∥∥(Dk)−1

NN �̃r
k
N

∥∥
= O(μk)O(μkθ (zk)) = O(θ (zk)).

This implies that the result of the lemma holds.
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