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Abstract We investigate equations, inequalities and mathematical programs involving ab-
solute values of variables such as the equation Ax + B|x | = b, where A and B are arbitrary
m × n real matrices. We show that this absolute value equation is NP-hard to solve, and that
solving it with B = I solves the general linear complementarity problem. We give sufficient
optimality conditions and duality results for absolute value programs as well as theorems of
the alternative for absolute value inequalities. We also propose concave minimization formu-
lations for absolute value equations that are solved by a finite succession of linear programs.
These algorithms terminate at a local minimum that solves the absolute value equation in
almost all solvable random problems tried.

Keywords Absolute value (AV) equations . AV algorithm . AV theorems of alternative .
AV duality

1 Introduction

We consider problems involving absolute values of variables such as:

Ax + B|x | = b, (1)

where A∈ Rm×n , B ∈ Rm×n and b∈ Rm . As will be shown, the general linear complemen-
tarity problem [2, 3] which subsumes many mathematical programming problems can be
formulated as an absolute value (AV) equation such as (1). Even though these problems
involving absolute values are NP-hard, as will be shown in Section 2, they share some very
interesting properties with those of linear systems. For example, in Section 4 we formulate
optimization problems with AV constraints and give optimality and duality results similar to
those of linear programming, even though the problems are inherently nonconvex.
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Other results that the AV equation (1) shares with linear inequalities are theorems of
the alternative that we give in 5. In Section 3 of the paper we propose a finite successive
linearization algorithm for solving AV equations that terminates at a necessary optimality
condition. This algorithm has solved all solvable random test problems given to it for which
mostly m ≥ 2n or n ≥ 2m, up to size (m, n) of (2000, 100) and (100, 2000). When m = n
and B is invertible, which is the case for the linear complementarity problem formulation, we
give a simpler concave minimization formulation that is also solvable by a finite succession
of linear programs. Problems with m = n and n between 50 and 1000 were solved by this
approach. Section 6 concludes the paper and poses some open questions.

This work is motivated in part by the recent interesting paper of Rohn [12] where a theorem
of the alternative is given for a special case of (1) with square matrices A and B, and a linear
complementarity equivalent to (1) is also given. However, both of these results are somewhat
unusual in that both alternatives are given in the primal space Rn of the variable x instead of
the primal and dual spaces as is usual [5], while the linear complementarity equivalent to (1)
is the following nonstandard complementarity problem:

x+ = (A + B)−1(A − B)(−x)+ + (A + B)−1b. (2)

Here x+ denotes suppression of negative components as defined below. In contrast, our result
in Section 2 gives an explicit AV equation (1) in terms of the classical linear complementarity
problem (3) below, while our theorems of the alternative of Section 5 are in the primal and
dual spaces Rn and Rm .

We now describe our notation. All vectors will be column vectors unless transposed to a
row vector by a prime ′. The scalar (inner) product of two vectors x and y in the n-dimensional
real space Rn is then x ′y and orthogonality x ′y = 0 will be denoted by x ⊥ y. For x ∈ Rn , the
1-norm will be denoted by ‖x‖1 and the 2-norm by ‖x‖, while |x | will denote the vector with
absolute values of each component of x and x+ will denote the vector resulting from setting
all negative components of x to zero. The notation A∈ Rm×n will signify a real m × n matrix,
with i th row Ai and transpose A′. A vector of zeros in a real space of arbitrary dimension
will be denoted by 0, and the vector of ones is e. The notation argminx∈X f (x) denotes the
solution set of minx∈X f (x).

2 Problem sources and hardness

We will first show how to reduce any linear complementarity problem (LCP) to the AV
equation (1):

(LCP) 0 ≤ z ⊥ Mz + q ≥ 0, (3)

where M ∈ Rn×n and q ∈ Rn . Then we show that solving (1) is NP-hard.

Proposition 1 (LCP as an AVE). Given the LCP (3), without loss of generality, rescale M
and q by multiplying by a positive constant if needed, so that no eigenvalue of the rescaled
M is 1 and hence (I − M) is nonsingular. The rescaled LCP can be solved by solving the
following AV equation and computing z as indicated:

(I + M)(I − M)−1x − |x | = −((I + M)(I − M)−1 + I )q,

z = (I − M)−1(x + q). (4)
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Proof: From the simple fact that for any two real numbers a and b:

a + b = |a − b| ⇐⇒ a ≥ 0, b ≥ 0, ab = 0, (5)

it folows that the LCP (3) is equivalent to:

z + Mz + q = |z − Mz − q|. (6)

Defining x from (4) as x = (I − M)z − q , equation (6) becomes:

(I + M) (I − M)−1(x + q) + q = |x |, (7)

which is the AV equation of (4). Hence, solving the AV equation (4) gives us a solution of
the LCP (3) through the definition z of (4). �

Conversely it can also be shown, under the somewhat strong assumption that B is invertible,
and by rescaling so is (I + B−1 A), that the AV equation (1) can be solved by solving an LCP
(3). We will not give details of that reduction here because it is not essential to the present
work but we merely state the LCP to be solved in terms of A, B and b of the AV equation (1):

0 ≤ z ⊥ (I − 2(I + B−1 A)−1)z + (I + B−1 A)−1 B−1b ≥ 0. (8)

A solution x to the AV equation (1) can be computed from a solution z of (8) as follows:

x = (I + B−1 A)−1(−2z + B−1b). (9)

There are other linear complementarity formulations of the AV equation (1) which we shall
not go into here.

We now show that solving the AV equation (1) is NP-hard by reducing the NP-hard
knapsack feasibility problem to an AV equation (1).

Proposition 2. Solving the AV equation (1) is NP-hard.

Proof: The NP-hard knapsack feasibility problem consists of finding an n-dimensional bi-
nary variable z such that a′z = d where a is an n-dimensional integer vector and d is an
integer. It has been shown [1, 6] that this problem is equivalent to the LCP (3) with the
following values of M and q:

M =
⎡⎣−I 0 0

e′ −n 0
−e′ 0 −n

⎤⎦ , q =
⎡⎣ a

−b
b

⎤⎦ . (10)

Since eigenvalues of M are {−n, −n, −1, . . . ,−1}, Proposition 1 applies, without rescaling,
and the NP-hard knapsack problem can be reduced to the AV equation (4) which is a special
case of (1). Hence solving (1) is NP-hard. �

Other sources for AV equations are interval linear equations [11] as well as constraints in
AV programming problems where absolute values appear in the constraints and the objective

Springer



46 O. L. Mangasarian

function which we discuss in Section 4. Note that as a consequence of Proposition 2, AV
programs are NP-hard as well.

We turn now to a method for solving AV equations.

3 Successive linearization algorithm via concave minimization

We propose here a method for solving AV equations based on a minimization of a concave
function on a polyhedral set by solving a finite succession of linear programs. We shall give
two distinct algorithms based on this method, one for m �= n and a simpler one for m = n.
Before stating the concave minimization problem we prove a lemma which does not seem
to have been given before and which extends the linear programming perturbation results of
[8] to nondifferentiable concave perturbations.

Lemma 1. Consider the concave minimization problem:

min
z∈Z

d ′z + ε f (z), Z = {z | H z ≤ h} �= ∅, (11)

where d ∈ R�, f (z) is a concave function on R�, H ∈ Rk×� and h ∈ Rk. Suppose that d ′z +
ε f (z) is bounded below on Z for ε∈ (0, ε̃] for some ε̃ > 0. Suppose also that Z contains no
lines going to infinity in both directions. Then there exists an ε̄ ≤ ε̃ such that for all ε∈ (0, ε̄]
the concave minimization problem (11) is solvable by a vertex solution z̄ that minimizes f (z)
over the nonempty solution set Z̄ of the linear program minz∈Z d ′z.

Proof: By [10, Corollary 32.3.4] the concave minimization problem (11) has a vertex solu-
tion for each ε∈ (0, ε̃]. Since Z has a finite number of vertices, we can construct a decreasing
sequence {εi ↓ 0}i=∞

i=0 such that only the same vertex z̄ of Z will occur as the solution of (11)
for {εi ↓ 0}i=∞

i=0 . Since for i �= j :

d ′ z̄ + εi f (z̄) ≤ d ′z + εi f (z), ∀z ∈ Z ,

d ′ z̄ + ε j f (z̄) ≤ d ′z + ε j f (z), ∀z ∈ Z ,

it follows that for λ∈ [0, 1]:

d ′ z̄ + ((1 − λ)εi + λε j ) f (z̄) ≤ d ′z + ((1 − λ)εi + λε j ) f (z), ∀z ∈ Z .

Hence:

d ′ z̄ + ε f (z̄) ≤ d ′z + ε f (z), ∀z ∈ Z , ∀ε∈ (0, ε̄ = ε0].

Letting ε ↓ 0 gives:

d ′ z̄ ≤ d ′z, ∀z ∈ Z .

Hence the solution set Z̄ of minz∈Z d ′z is nonempty and for ε∈ (0, ε̄ = ε0]:

ε f (z̄) ≤ (d ′z − d ′ z̄) + ε f (z) = ε f (z), ∀z ∈ Z̄ ⊂ Z .

�

We formulate now the concave minimization problem that solves the AV equation (1).
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Proposition 3 (AV equation as concave minimization). Consider the concave minimization
problem:

min
(x,t,s)∈Rn+n+m

ε(−e′|x | + e′t) + e′s

such that − s ≤ Ax + Bt − b ≤ s,
−t ≤ x ≤ t.

(12)

Without loss of generality, the feasible region is assumed not to have straight lines going to
∞ in both directions. For each ε > 0, the concave minimization problem (12) has a vertex
solution. For any ε∈ (0, ε̄] for some ε̄ > 0, any solution (x̄, t̄, s̄) of (12) satisfies:

(x̄, t̄)∈ XT = arg min
(x,t)∈Rn+n

‖Ax + Bt − b‖1,

‖t̄‖1 − ‖x̄‖1 = min
(x,t)∈X T

‖t‖1 − ‖x‖1.
(13)

In particular, if the AV equation (1) is solvable then:

|x̄ | = t̄,
Ax̄ + B|x̄ | = b.

(14)

Proof: Note that the feasible region of (12) is nonempty and its concave objective function
is bounded below by zero, since −e′|x | + e′t ≥ 0 follows from the second constraint |x | ≤ t .
Hence by [10, Corollary 32.3.4] the concave minimization problem (12) has a vertex solution
provided it has no lines going to infinity in both directions. The latter fact can be easily
ensured by making the standard transformation x = x1 − x2, (x1, x2) ≥ 0, since (s, t) ≥ 0
follow from the problem constraints. For simplicity we shall not make this transformation
and assume that (12) has a vertex solution. (That this transformation is not necessary is borne
out by our numerical tests.) The results of (13) follow from Lemma 1, while those of (14)
hold because the minimum in (13) is zero and |x̄ | = t̄ renders the perturbation (−e′|x | + e′t)
in the minimization problem (12) a minimum. �

We state now a successive linearization algorithm for solving (12) that terminates at a point
satisfying a necessary optimality condition. Before doing that we define a supergradient of
the concave function −e′|x | as:

∂(−e′|x |)i = −sign(xi ) =

⎧⎪⎨⎪⎩
1 if xi < 0
0 if xi = 0

−1 if xi > 0

⎫⎪⎬⎪⎭ , i = 1, . . . , n. (15)

Algorithm 1 (Successive linearization algorithm (SLA1) for (1)). Let z = [x t s]′. Denote
the feasible region of (12) by Z and its objective function by f (z). Start with a random
z0 ∈ Rn+n+m. From zi determine zi+1 as follows:

zi+1 ∈ arg vertex min
z∈Z

∂ f (zi )′(z − zi ). (16)

Stop if zi ∈ Z and ∂ f (zi )′(zi+1 − zi ) = 0.
We now state a finite termination result for the SLA1 algorithm.
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Proposition 4 (SLA1 finite termination). The SLA1 Algorithm 1 generates a finite sequence
of feasible iterates {z1, z2, . . . , zī } of strictly decreasing objective function values: f (z1) >

f (z2) > · · · > f (zī ), such that zī satisfies the minimum principle necessary optimality con-
dition:

∂ f (zī )′(z − zī ) ≥ 0, ∀z ∈ Z . (17)

Proof: See [7, Theorem 3]. �

Preliminary numerical tests on randomly generated solvable AV equations were encouraging
and are depicted in Table 1 for 100 runs of Algorithm 1 for cases with m �= n. All runs were
carried out on a Pentium 4 3 Ghz machine with 1 GB RAM. The CPLEX linear programming
package [4] was used within a MATLAB [9] code.

Since Algorithm 1 could not effectively solve the case m = n, we developed a simplified
concave minimization algorithm for that case when B is invertible. This case is still NP-
hard and covers the linear complementarity problem as shown in Proposition 1. The AV
equation (1) degenerates to the following when m = n and B−1 exists:

|x | = Gx + g, (18)

where G = −B−1 A and g = B−1b. We note that since:

|x | ≤ Gx + g ⇐⇒ −Gx − g ≤ x ≤ Gx + g, (19)

we immediately have that the following concave minimization problem will solve (18) if it
has a solution:

min
x∈Rn

e′Gx − e′|x |
such that (−I − G)x ≤ g,

(I − G)x ≤ g.

(20)

Table 1 Results of 100 runs of
Algorithm 1 for the AV
equation (1). Each case is the
average of ten random runs for
that case. The error is
‖Ax + B|x | − b‖ and ‖t − |x |‖
refers to problem (12)

m n No. Iter. ī Time sec. Error ‖t − |x |‖

50 100 2.40 0.58 0 0
100 50 1.0 0.18 0 0
150 250 3.5 13.47 0 0
250 150 1.0 3.33 0 0
100 1500 1.7 99.82 0 0

1500 100 1.0 106.35 0 0
100 2000 1.5 233.82 0 0

2000 100 1.0 236.44 0 0
300 500 3.3 109.60 0 0
500 300 1.0 26.78 0 0
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Table 2 Results of 100 runs of
Algorithm 2 for the AV
equation (18). Each case is the
average of ten random runs for
that case. The error is
‖Gx − |x | + g‖. NNZ(Error) is
the average number of nonzero
‖Gx − |x | + g‖ over ten runs

n No. Iter. ī Time sec. Error N N Z (Error )

50 1.1 0.018 0 0
50 2.7 0.037 0.0861 0.1

100 2.1 0.14 0 0
100 2.8 0.19 0.0696 0.1
200 1.2 0.58 0 0
200 2.3 1.10 0.280 0.1
500 1.9 11.84 0 0
500 2.5 15.89 0.00711 0.1

1000 1.7 75.94 0 0
1000 2.0 89.92 0.00487 0.1

The successive linearization Algorithm 1 and its finite termination is applicable to (20) and
leads to the following simple linear program at iteration i :

min
x∈Rn

(e′G − sign(xi )′) (x − xi )
such that (−I − G)x ≤ g,

(I − G)x ≤ g.

(21)

We shall assume that {x | Gx + g ≥ 0} �= ∅, which is the case if (18) is solvable. We
also note that the concave objective function of (20) is bounded below on the feasible
region of (20) by −e′g on account of (19). Hence the supporting plane of that function
at xi : e′Gxi − e′|xi | + (e′G − sign(xi )′)(x − xi ) is also bounded below by −e′g on the
feasible region of (21). Consequently, the objective function of (21) is bounded below by
−e′g − e′Gxi + e′|xi | on its feasible region and thus (21) is solvable. We state now the
algorithm for solving (18).

Algorithm 2 (Successive linearization algorithm (SLA2) for (18)). Let {x | Gx +
g ≥ 0} ≥ ∅. Start with a random x0 ∈ Rn. From xi determine xi+1 by the solvable linear
program (21). Stop if xi is feasible and and (e′G − sign(xi )′)(xi+1 − xi ) = 0.

Table 2 gives results for Algorithm 2 for a hundred randomly generated solvable problems
(18) with n between 50 and 1000. Of these 100 problems only 5 were not solved by this
algorithm.

We turn now to duality and optimality results for AV optimization.

4 Duality and optimality for absolute value programs

We derive in this section a weak duality theorem and sufficient optimality conditions for
AV programs. These results are somewhat curious in the sense that they hold for nonconvex
problems. However, we note that we are missing strong duality and necessary optimality
conditions for these AV programs. We begin by defining our primal and dual AV programs
as follows.

Primal AVP
min
x∈X

c′x + d ′|x |, X = {x ∈ Rn
∣∣ Ax + B|x | = b, H x + K |x | ≥ p}. (22)
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Dual AVP
max

(u,v)∈U
b′u + p′v, U = {(u, v)∈ Rm+k

∣∣ |A′u + H ′v − c| + B ′u + K ′v ≤ d, v ≥ 0}.

(23)

Proposition 5 (Weak duality theorem).

x ∈ X, (u, v)∈U =⇒ c′x + d ′|x | ≥ b′u + p′v (24)

Proof:

d ′|x | ≥ |x ′| · |A′u + H ′v − c| + |x ′|(B ′u + K ′v)
≥ u′ Ax + v′ H x − c′x + u′ B|x | + v′K |x |
≥ b′u + p′v − c′x .

�

Our next result gives sufficient conditions for primal and dual optimality.

Proposition 6 (Sufficient optimality conditions). Let x̄ be feasible for the primal AVP (22)
and (ū, v̄) be feasible for the dual AVP (23) with equal primal and dual objective functions,
that is:

c′ x̄ + d ′|x̄ | = b′ū + p′v̄. (25)

Then x̄ is primal optimal and (ū, v̄) is dual optimal.

Proof: Let x ∈ X . Then:

c′x + d ′|x | − c′ x̄ − d ′|x̄ |
≥ c′x + |x ′| · |A′ū + H ′v̄ − c| + |x ′|(B ′ū + K ′v̄) − c′ x̄ − d ′|x̄ |
≥ c′x + ū′ Ax + v̄′ H x − c′x + ū′ B|x | + v̄′K |x | − c′ x̄ − d ′|x̄ |
≥ b′ū + p′v̄ − c′ x̄ − d ′|x̄ | = 0

Hence x̄ is primal optimal.
Now let (u, v)∈U . Then:

b′ū + p′v̄ − b′u − p′v
≥ c′ x̄ + d ′|x̄ | − u′ Ax̄ − u′ B|x̄ | − v′ H x̄ − v′K |x̄ |
≥ c′ x̄ + |x̄ ′| · |A′u + H ′v − c| + |x̄ ′|(B ′u + K ′v) − u′ Ax̄ − u′ B|x̄ | − v′ H x̄ − v′K |x̄ |
≥ c′ x̄+u′ Ax̄+v′ H x̄ − c′ x̄+u′ B|x̄+v′K |x̄ | − u′ Ax̄ − u′ B|x̄ | − v′ H x̄ − v′K |x̄ | = 0.

Hence (ū, v̄) is dual optimal. �

We turn now to our final results of theorems of the alternative.
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5 Theorems of the alternative for absolute value equations and inequalities

We shall give two propositions of the alternative here. The first one applies under no assump-
tions and the second one under one assumption.

Proposition 7 (First AV theorem of the alternative). Exactly one of the two following alter-
natives must hold:

I. Ax + Bt = b, H x + K t ≥ p, t ≥ |x | has solution (x, t)∈ Rn+n.

II. |A′u + H ′v| + B ′u + K ′v ≤ 0, b′u + p′v > 0v ≥ 0 has solution (u, v)∈ Rm+k .

Proof: Let Ī and II denote negations of I and II respectively.
(I =⇒ II) If both I and II hold then we have the contradiction:

0 ≥ t ′|A′u + H ′v| + t ′ B ′u + t ′K ′v
≥ |x ′| · |A′u + H ′v| + t ′ B ′u + t ′K ′v
≥ u′ Ax + v′ H x + u′ Bt + v′K t ≥ b′u + v′ p > 0.

(I ⇐= II) If II does not hold then:

0 = max
u,v

{b′u + p′v | |A′u + H ′v| + B ′u + K ′v ≤ 0, v ≥ 0}.

This implies that:

0 = max
u,v,s

{b′u + p′v|s + B ′u + K ′v ≤ 0, |A′u + H ′v| ≤ s, v ≥ 0}.

This implication is true because when (u, v, s) is feasible for the last problem then (u, v)
is feasible for the previous problem. By linear programming duality after replacing |A′u +
H ′v| ≤ s by the equivalent constraint −s ≤ A′u + H ′v ≤ s, we have that:

0 = min
t,y,z

{0 | t − y − z = 0, Bt + A(y − z) = b, K t + H (y − z) ≥ p, (t, y, z) ≥ 0}.

Setting x = y − z and noting that t = y + z ≥ ±(y − z) = ±x we have that feasibility of
the last problem implies that the following system has a solution:

Ax + Bt = b, H x + K t ≥ p, t ≥ |x |,

which is exactly I . �

We state and prove now our last proposition.

Proposition 8 (Second AV theorem of the alternative). Exactly one of the two following al-
ternatives must hold:

I. Ax + B|x | = b, H x + K |x | ≥ p has solution x ∈ Rn,
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II. |A′u + H ′v| + B ′u + K ′v ≤ 0, b′u + p′v > 0, v ≥ 0 has solution (u, v)∈ Rm+k , under
the assumption that:

0 = max
x,t

{e′|x | − e′t |Ax + Bt = b, H x + K t ≥ p, t ≥ |x |}. (26)

Note: The assumption (26) is needed only in establishing that I ⇐= II.

Proof:

(I =⇒ II) If both I and II hold then we have the contradiction:

0 < b′u + p′v ≤ u′ Ax + u′ B|x | + v′ H x + v′K |x |
≤ |x ′|(|A′u + H ′v| + B ′u + K ′v)
≤ 0.

(I ⇐= II) By Proposition 7 above we have that II implies I of Proposition 7, which in
turn implies I of this proposition under the assumption (26). �

We conclude with some remarks and some possible future extensions.

6 Conclusion and outlook

We have investigated equations, inequalities and mathematical programs involving abso-
lute values of variables. It is very interesting that these inherently nonconvex and difficult
problems are amenable to duality results and theorems of the alternative that are typically
associated with linear programs and linear inequalities. Furthermore, successive linearization
algorithms appear to be effective in solving absolute value equations for which m and n are
substantially different or when m = n. Even though we give sufficient optimality conditions
for our nonconvex absolute value programs, we are missing necessary optimality conditions.
This is somewhat in the spirit of the sufficient saddlepoint optimality condition of mathemati-
cal programming [5, Theorem 5.3.1] which holds without any convexity. However, necessity
of a saddlepoint condition requires convexity as well as a constraint qualification [5, Theorem
5.4.7], neither of which we have here.

An interesting topic of future research might be one that deals with absolute value programs
for which necessary optimality conditions can be obtained as well as strong duality results
and globally convergent algorithms. Also interesting would be further classes of problems
that can be cast as absolute value equations, inequalities or optimization problems that can
be solved by the proposed algorithms here or their variants.

Acknowledgments The research described in this Data Mining Institute Report 05-04, September 2005, was
supported by National Science Foundation Grants CCR-0138308 and IIS-0511905, the Microsoft Corporation
and ExxonMobil.

References

1. S.-J. Chung and K.G. Murty, “Polynomially bounded ellipsoid algorithms for convex quadratic program-
ming,” In Nonlinear Programming O.L. Mangasarian, R.R. Meyer, and S.M. Robinson (Eds.), Academic
Press, New York, 1981, vol. 4, pp. 439–485.

Springer



Absolute value programming 53

2. R.W. Cottle and G. Dantzig, “Complementary pivot theory of mathematical programming,” Linear
Algebra and its Applications, vol. 1, pp. 103–125, 1968.

3. R.W. Cottle, J.-S. Pang, and R.E. Stone, The Linear Complementarity Problem, Academic Press, New
York, 1992.

4. CPLEX Optimization Inc., Incline Village, Nevada. Using the CPLEX(TM) Linear Optimizer and
CPLEX(TM) Mixed Integer Optimizer (Version 2.0), 1992.

5. O.L. Mangasarian, Nonlinear Programming, Reprint: SIAM Classic in Applied Mathematics 10, 1994,
Philadelphia, McGraw–Hill, New York, 1969.

6. O.L. Mangasarian, “The linear complementarity problem as a separable bilinear program,” J. Global
Optim., vol. 6, pp. 153–161, 1995.

7. O.L. Mangasarian, “Solution of general linear complementarity problems via nondifferentiable
concave minimization,” Acta Mathematica Vietnamica, vol. 22, no. 1, pp. 199–205, 1997,
ftp://ftp.cs.wisc.edu/math-prog/tech-reports/96-10.ps.

8. O.L. Mangasarian and R.R. Meyer, “Nonlinear perturbation of linear programs,” SIAM Journal on Control
and Optimization, vol. 17, no. 6, pp. 745–752, 1979.

9. MATLAB. User’s Guide. The MathWorks, Inc., Natick, MA 01760, 1994–2001.
http://www.mathworks.com.

10. R.T. Rockafellar, Convex Analysis. Princeton University Press, Princeton, New Jersey, 1970.
11. J. Rohn, “Systems of linear interval equations,” Linear Algebra and Its Applications, vol. 126, pp. 39–78,

1989. http://www.cs.cas.cz/ rohn/publist/47.doc.
12. J. Rohn, “A theorem of the alternatives for the equation Ax + B|x | = b,” Linear and Multilinear Algebra,

vol. 52, no. 6, pp. 421–426, 2004. http://www.cs.cas.cz/ rohn/publist/alternatives.pdf.

Springer


