
Computational Optimization and Applications, 30, 297–318, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Application of Deterministic Low-Discrepancy
Sequences in Global Optimization

SERGEI KUCHERENKO s.kucherenko@imperial.ac.uk
Imperial College London, SW7 2AZ, UK

YURY SYTSKO
Moscow Engineering Physics Institute, 115409 Moscow, Russia

Received August 15, 2003; Revised February 27, 2004; Accepted April 2, 2004

Abstract. It has been recognized through theory and practice that uniformly distributed deterministic sequences
provide more accurate results than purely random sequences. A quasi Monte Carlo (QMC) variant of a multi level
single linkage (MLSL) algorithm for global optimization is compared with an original stochastic MLSL algorithm
for a number of test problems of various complexities. An emphasis is made on high dimensional problems. Two
different low-discrepancy sequences (LDS) are used and their efficiency is analysed. It is shown that application
of LDS can significantly increase the efficiency of MLSL. The dependence of the sample size required for locating
global minima on the number of variables is examined. It is found that higher confidence in the obtained solution
and possibly a reduction in the computational time can be achieved by the increase of the total sample size N .
N should also be increased as the dimensionality of problems grows. For high dimensional problems clustering
methods become inefficient. For such problems a multistart method can be more computationally expedient.
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1. Introduction

The motivation for this paper is to develop further efficient and robust optimization methods.
Let f (x): R

n → R be a continuous real valued objective function. A nonlinear global
optimization problem is defined as follows:

min f (x), x ∈ R
n (1)

subject to

�g(x) = 0, �g(x) = {gi }, i = 1, me, (2)
�h(x) ≥ 0, �h(x) = {hi }, i = me + 1, m, (3)

where x is a vector of bounded continuous variables. No restrictions are imposed on the
functional form of the objective function, f (x) or the constraints �g(x) and �h(x).
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There are two kinds of commonly used techniques for solving (1)–(3): deterministic
and stochastic. Deterministic methods guarantee convergence to a global solution within a
specified tolerance (a tolerance is defined as the maximum difference between the objective
function value of the numerical solution and the true global optimal solution). For most
deterministic methods the complexity of the problem grows exponentially as a function of
the number of variables. For high dimensional problems the computational time is usually
prohibitively large. Although some efficient methods have been designed for various forms
of an objective function and/or the constraints, these methods are tailored to very specific
problem structures and cannot be applied in the general high dimensional case. Good surveys
of advances in global optimization are given in [5, 7, 9].

The present study is confined to stochastic methods and their variants based on deter-
ministic sampling of points. A stochastic approach for global optimization in its simplest
form consists only of a random search and it is called Pure Random Search (PRS). In PRS,
an objective function f (x) is evaluated at N randomly chosen points and the smallest value
of f (x) is taken as an approximation to the global minimum.

For stochastic methods the following result holds: if N points are drawn from a uniform
random distribution over the n-dimensional hypercube H n: H n = {xi | 0 ≤ xi ≤ 1, i =
1, n} and if f (x) is a continuous function defined in the feasible domain B = H n , then
the sample point with lowest function value converges to the global minimum. Stochastic
search methods yield an asymptotic (in a limit N → ∞ ) guarantee of convergence. This
convergence is with probability 1 (or almost surely).

The PRS approach is not very efficient because the expected number of iterations for
reaching a specified tolerance grows exponentially in the dimension n of the problem.
Advanced stochastic techniques use stochastic methods to search for the location of local
minima and then utilize deterministic methods to solve a local minimization problem. Two
phases are considered: global and local. In the global phase, the function is evaluated
in a number of randomly sampled points from a uniform distribution over H n . In the
local phase the sample points are used as starting points for a local minimization search.
Thus the information obtained on the global phase is refined. For continuous differentiable
objective functions classical gradient-based methods are used for local minimization. For
non-differentiable functions or functions whose derivatives are difficult to evaluate the local
search can be obtained through further sampling in a small vicinity around a starting point.
The efficiency of the multistage methods depends both on the performance of the global
stochastic and the local minimization phases.

In the simplest form of the multistage approach a local search is applied to every sample
point. Inevitably, some local minima would be found many times. The local search is the
most computationally intensive stage and ideally it should start just once in every region
of attraction. The region of attraction of a local minimum x∗ is defined as the set of points
starting from which a given local search procedure converges to x∗. This is the motivation
behind various versions of clustering methods. An extensive review on this subject can be
found in [15, 16, 27].

The objective of the global stage is to obtain as much information as possible about the
underlying problem with a minimum number of sampled points. To achieve this objective,
sampled points should satisfy certain criteria. First, they should be distributed as evenly
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as possible. Second, on successive iterations new sampled points should fill the gaps left
previously. If new points are added randomly, they do not necessarily fill the gaps between
the points sampled on previous iterations. As a result, there are always empty areas and
regions where the sampled points are wasted due to clustering. No information can be
obtained on the behavior of the underlying problem in empty areas.

It has been recognized through theory and practice that a variety of uniformly distributed
deterministic sequences provide more accurate results than purely random samples of points.
Low-discrepancy sequences (LDS) are designed specifically to place sample points as
uniformly as possible. Unlike random numbers, successive low discrepancy points “know”
about the position of their predecessors and fill the gaps left previously.

LDS have been used instead of random numbers in evaluating multi-dimensional integrals
and simulation of stochastic processes—in the areas where traditionally Monte Carlo (MC)
methods were used [13, 23]. It has been found that methods based on LDS, known as
quasi Monte Carlo (QMC) methods, always have performance superior to that of MC
methods. Improvement in time-to-accuracy using QMC can be as large as several orders of
magnitude.

LDS are a natural substitute for random numbers in stochastic optimization methods. As
in other areas of applied mathematics, QMC methods provide higher accuracy with fewer
evaluations of the objective function. The improvement in accuracy depends on the number
of dimensions, the discrepancy of the sequence both of which are known, and the variation
of the function, which is generally not known.

Central to the QMC approach is the choice of LDS. Different principles were used for
constructing LDS by Holton, Faure, Sobol’, Niederreiter and others (good surveys of LDS
are given in [3, 12, 13]). Niederreiter’s LDS have the best theoretical asymptotic properties.
However, many practical studies have proven that Sobol’ LDS in many aspects are superior
to other LDS [14, 24]. For this reason they were used in the present study. In a classification
developed by Niederreiter, the Sobol’ LDS are known as (t, s) sequences in base 2 [13, 24].
The Holton LDS [8] were also used for comparison.

There had been a lack of a representative set of test problems for comparing global
optimization methods. To remedy this a classification of essentially unconstrained global
optimization problems into unimodal, easy, moderately difficult and difficult problems was
proposed in [28]. The problem features giving this classification are the chance to miss the
region of attraction of the global minimum, embeddedness of the global minimum, and the
number of minimizers.

The purpose of this paper is the further development of optimization methods with an
emphasis on comprehensive testing and a comparison of various techniques on a set of test
problems of various complexity in accordance with the classification developed in [28]. In
particular: a comparison was made between:

– QMC and stochastic variants of a well known multi level single linkage (MLSL) algorithm
[15, 16];

– different implementations of MLSL;
– two different types of LDS;
– MLSL and a variant of a simple linkage (SL) method developed in [17].
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A number of problems used for testing belong to the category of the difficult multidimen-
sional problems.

The remainder of this paper is organized as follows. A brief analysis of a Quasirandom
Search (QRS) method is given in Section 2. Descriptions of MLSL and SL methods are
presented in Section 3. Results of a comparison between stochastic MLSL, LDS based
MLSL and SL methods are presented in Section 4. Finally, the performance of different
techniques is discussed in Section 5.

2. Analysis of quasirandom search method

A general scheme of a QRS method is similar to that of PRS: an objective function f (x)
is evaluated at N LDS points and then the smallest value of f (x) is taken as the global
minimum. Generally QRS lacks the efficiency of more advanced methods. However, in
some cases QRS has the following advantages over other methods of global optimization:

1. In its most general form it does not use any assumptions about the problem structure.
In particular it can be used for any class of objective function (i.e. non-differentiable
functions).

2. It can explicitly account for inequality constraints. The feasible region can be non-
convex and even disconnected. However, it is not possible to account explicitly for
equality constraints and such an optimization problem should be transformed into an
unconstrained one.

3. It belongs to the so-called nonadaptive algorithms [29], in which the numerical process
depends only on the current state and not on previously calculated states. In contrast,
in adaptive algorithms information is obtained sequentially. Nonadaptive algorithms are
superior to adaptive ones in multi-processor parallel computations.

These advantages become more apparent as the number of variables grows. Analysis
of QRS is important for understanding the advantages that the use of LDS brings to the
multistage approach.

In this section it is assumed for simplicity that the problem is unconstrained and the
feasible region is a closed set K , K ⊂ R

n ,

K = {
xi

∣∣ x L
i ≤ xi ≤ xU

i , i = 1, . . . , n
}
.

By linear transformation of coordinates K can be mapped into the n-dimensional hypercube
H n , so that the problem is formulated as:

min f (x), x ∈ H n. (4)

Let f ∗ be an optimal value. Consider a sequence of points x(N ) = {x j | x j ∈ H n, j =
1, . . . , N } and an approximation f ∗

N to f ∗:

f ∗
N = min

x j ∈x(N )

f (x j ).
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On a class of continuous functions f (x) and dense sequences in H n the following result
holds:

f ∗ = min
N→∞

f ∗
N .

For the purposes of error analysis the function f (x) is assumed to have piecewise continuous
partial derivatives satisfying the conditions:

|∂ f/∂xi | ≤ Ci , i = 1, . . . , n. (5)

From (5) it follows that f (x) satisfies a Lipschitz condition:

| f (x) − f (y)| ≤ Lρ(x, y), (6)

where L is a Lipschitz constant. The dispersion dN (n) of the sequence x(N ) is defined as
[13]:

dN (n) = sup
x∈H n

min
1≤ j≤N

ρ(x, x j ), (7)

where ρ(x, y) is the Euclidian distance (metric) between points x and y. Using (6) and (7)
the approximation error can be written as

f ∗
N − f ∗ ≤ LdN (n). (8)

As can be seen from (8), dN (n) defines the “quality” of the sequence. Sequences with small
dN (n) guarantee a small error in a function approximation. For any sequence the following
error bounds hold:

[1/(Nωn)]1/n ≤ dN (n) ≤ 2
√

n(D(n, N )/N )1/n, (9)

where ωn = πn/2/�(1 + n
2 ) is the volume of the n-dimensional unit ball and D(n, N ) is

the discrepancy of a sequence [13]. Discrepancy is a measure of deviation from uniformity.
Apparently, smaller D(n, N ) would provide smaller upper estimate of the dispersion dN (n).
LDS are characterized by small D(n, N ), therefore every LDS is a low-dispersion sequence
(but not conversely).

The best-constructed LDS have D(n, N ) = O(lnn−1 N ). For such LDS the resulting
rate of convergence of QRS as follows from (9) is O(N−1/n ln(n−1)/n N ). This rate is not
sufficiently high when n is large. However, it is worth noting that an error bound (8) with
dN (n) given by (9) was obtained in the assumption that function f (x) depends equally on
all variables: in other words, the constants Ci , i = 1, . . . , n in (5) were assumed to be of
the same order of magnitude. This was shown to be “the worst-case scenario” [19, 20]. In
practical applications, the function f (x) normally strongly depends on a subset of variables:
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xi1 , xi2 , . . . , xis , 1 ≤ i1 < i2 < · · · < is, s < n and dependence on other variables can be
weak. In this case inequality (6) becomes

| f (x) − f (y)| ≤ Lρ(x′, y′),

where x′, y′ is a projection of the points x, y on the s-dimensional face Hi1,i2,...is of H n . One
very useful property of LDS is that the projection of n-dimensional LDS on s-dimensional
subspace forms s-dimensional LDS. Then (9) becomes

[1/(Nωs)]1/s ≤ dN (s) ≤ 2
√

s(D(s, N )/N )1/s (10)

and for practical applications n should be substituted by “an effective dimension number” s,
which can be much less than n [20]. It can result in a much higher rate of convergence than
that predicted by (9). This correction is very important for understanding the advantages of
using LDS in QRS. For comparison, a cubic grid provides a better discrepancy measure than
(9). At first glance such a grid search may be seen as more efficient than QRS. However, a
projection of an n-dimensional cubic grid LDS on s-dimensional subspace does not form
an s-dimensional cubic grid because of “the shadow effect” (projections of some points on
the coordinate axis would coincide). This means that the correction similar to (10) is not
applicable for the cubic grid and its discrepancy measure does not improve as s gets smaller.

Many well-known LDS were constructed mainly upon asymptotic considerations, as a
result they do not perform well in real practical tests. The Sobol’ LDS were constructed by
following three main requirements [18]:

1. Best uniformity of distribution as N goes to infinity.
2. Good distribution for fairly small initial sets.
3. A very fast computational algorithm.

Points generated by the Sobol’ LDS produce a very uniform filling of the space even for a
rather small number of points N , which is a very important case in practice.

In some cases, it is convenient to employ the dispersion in the maximum (or infinite)
metric ρ ′(x, y) defined by

ρ ′(x, y) = max
1≤i≤n

|xi − yi |,

where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn). The dispersion d ′
N (n) of the sequence

x(N ) in the maximum metric

d ′
N (n) = sup

x∈H n
min

1≤ j≤N
ρ ′(x, x j )

has the following error bounds:

1

2N 1/n
≤ d ′

N (n) ≤ α(n, N )

N 1/n
, (11)
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where the parameter α(n, N ) generally is a weak function of N . For (t, s) sequences this
parameter does not depend on N and an improved error bounds has the form

1

2N 1/n
≤ d ′

N (n) ≤ b(n+t)/n

N 1/n
. (12)

In particular for the Sobol’ LDS (12) becomes

1

2N 1/n
≤ d ′

N (n) ≤ 21+T2(n)/n

N 1/n
, (13)

where T2(n) is a function with an upper bound

T2(n) < n(log2 n + log2 log2 n + 1). (14)

These results were used in the frameworks of quasi random linkage methods presented in
[10, 17].

QRS was applied to solve global optimization problems in [1] and [26] as early as
1970 (see also [21, 22]). However, as it was stated above, with the development of more
advanced multistage methods the application of pure QRS is limited mainly to cases of
non-differentiable objective functions and to problems in which high accuracy in finding a
global solution is not required. In the framework of MLSL, QRS can be seen as a global
phase of MLSL. A description of MLSL is given in the next section.

3. Single linkage and multilevel single linkage methods

In the simplest variant of a multistage methods, a small number of random points are
sampled and then a deterministic local search procedure (LS) is applied to all of these
points. All located stationary points are sorted and the one with the lowest value of the
objective function is taken as a global minimum. The general scheme of a Multistart (MS)
algorithm is as follows:

Step 1. Sample a point from a uniform distribution over H n .
Step 2. Apply LS to the new sample point.
Step 3. If a termination criterion is not met, then return to Step 1.

One problem with the Multistart technique is that the same local minimum may be located
several times. Ideally, LS should be started only once in every region of attraction. A few
algorithms had been developed with such a property. Only those sample points whose
function values are small enough are chosen as starting points. Points are grouped into
clusters, which are initiated by a seed point. The seed point is normally a previously found
local minimum x∗, x∗ ∈ X∗, where X∗ is a set of all local minimum points. All sample
points within a critical distance are assigned to the same cluster.
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Efficiency can be improved by reducing the number of local searches, namely by dis-
carding some of the sampled points. If { fi } is an ordered set: { fi } = { f (xi ) | f (xi ) <

f (xi+1), i = 1, . . . , N } and X is a corresponding ordered set of all sampled points, then
the reduced sample set is taken as:

Xr = {xi ∈ X | i = 1, . . . , Nr , Nr = αN }, (15)

where 0 < α < 1. In this case, some local minima can be discarded without affecting the
global minimum search.

An important question in applying any numerical method is when to stop searching for
the global minimum. Among various proposed termination criteria of the global stage, one
of the most reliable was developed in [2]. It is based on Bayesian estimates for the number
of real minima not yet identified and the probability that the next local search will locate a
new local minimum. An optimal Bayesian stopping rule is defined as follows: if W different
local minima have been found after N local searches started in uniformly distributed points,
then the expectation of the number of local minima is

Wexp = W (N − 1)/(N − W − 2), (16)

provided that N > W + 2. The searching procedure is terminated if

Wexp < W + 0.5. (17)

The MLSL method developed by Rinnooy Kan and Timmer [15, 16] is one of the best
algorithms among various clustering methods. The general scheme of the MLSL algorithm
is outlined below:

Step 1. Set W := 0, k := 0.
Step 2. Set k := k + 1, i := 0.
Step 3. Sample a set X of N points from a uniform distribution over H n .
Step 4. Evaluate an objective function on set X, sort { fi } in order of increasing function

values and select a reduced set Xr according to (15).
Step 5. Set i := i + 1 and take xi ∈ Xr .
Step 6. Assign the sample point xi to some cluster C l if ∃ x j , x j ∈ C l such that ρ(xi , x j ) ≤

rk, f (x j ) ≤ f (xi ), where rk is a critical distance given by (18). If xi is not assigned to
any cluster yet then start a local search at xi to yield a local minimum x∗. If x∗ /∈ X∗,
then add x∗ to X∗, set W := W + 1 and initiate the W -th cluster by x∗. Assign xi to the
cluster that is initiated by x∗.

Step 7. If i := Nr go to Step 8. Else go to Step 5.
Step 8. If k := Itermax, where Itermax is the maximum allowed number of iterations, or the

stopping rule (15), (16) is satisfied, then stop. Else go to Step 2.
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The critical distance rk is found using cluster analysis on a uniformly distributed sample:

rk =
[

m(B)

ωn

σ log(k Nr )

k Nr

]1/n

. (18)

Here m(B) is the Lebesgue measure (if B = H n then m(B) = 1), k is an iteration index,
σ is a known parameter. In our calculations the parameter σ was taken to be 2.0.

Sporadic clustering which is characteristic of relatively small sets of random points would
result in inhibiting many LS because such clustered points could be assigned to the same
clusters initiated by local minima. A comparison between (10) and (18) shows that the
dispersion of LDS and critical distance rk have a similar asymptotic behavior. It suggests
that LDS are better suited for optimization problems than random sets of points. As in other
cases of transition from MC to QMC algorithms, a significant improvement in efficiency
can be achieved simply by substituting random points with LDS.

Schoen argued that the regularity of LDS can be further exploited [17]. He suggested
using instead of (18) a critical distance

rN ,β = βN−1/n, (19)

where β is a known parameter. It was proved that within the framework of a Simple Linkage
(SL) method that if the sampled points are generated according to LDS whose dispersion
is limited by (11) then the total number of LS started even if the algorithm is never stopped
will remain finite, provided that β > α(n, N ). A SL method was developed in Locatelli
and Schoen (1996) in order to circumvent some deficiencies of MLSL. A LDS based SL
method was presented in [17]. The scheme of the SL method adopted for LDS sampling is
the following:

Step 1. Set N := 0; choose ε > 0;
Step 2. Let N := N + 1;
Step 3. Generate a point x from LDS in H n;
Step 4. Apply a local search algorithm from x except if ∃ x j in the sample such that:

ρ ′(x, x j ) ≤ rN ,β and f (x j ) ≤ f (x) + ε;
Step 5. If stopping criteria is satisfied, then stop. If not, add x to the sample and go to Step 2.

It is important to note that the SL method makes use of the maximum (or infinite) metric
ρ ′(x, y) instead of the Euclidean one which is used in MLSL.

In the computational examples in Section 4, the performance of QMC and stochastic
variants of MLSL are compared with the SL algorithms.

4. Computational experiments

As stated in [28] the choice of test problems should be systematic, so that they represent
different types of problems ranging from easy to difficult to solve. Following this strat-
egy, a C++ program called SobolOpt which employs all discussed algorithms, namely
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SL, stochastic MLSL and its QMC variants with Sobol’ and Holton LDS points was ap-
plied to a number of test problems of different complexity. All problems presented be-
low are unconstrained, although the techniques used are readily applicable to constrained
problems.

A local search was performed using standard nonlinear programming routines from the
NAG library [11]. All computational experiments were carried out on an Athlon-800 MHz
PC.

In most cases the objective was to find all the local minima that were potentially global.
Four criteria for comparing the algorithms were used: (i) success in locating a global
minimum; (ii) number of located local minima; (iii) number of calls of a local minimizer;
(iv) average CPU time (in seconds).

The results are displayed in the tables. The following notation is used:

“N”—total number of sampled points in each iteration. For the Sobol’ LDS the equidistri-
bution property and improved discrepancy estimates hold for N equal to a power of 2. In
all experiments N was taken to be equal to 2m , where m is an integer number;

“Nr ”—reduced number of sampled points on each iteration;
“Nmin”—total number of located minima;
“Iter”—total number of iterations on the global stage;
“Itermax”—maximum number of iterations on the global stage;
“LM”—number of calls of the local minimizer;
“GM”—“y” (“n”)—global minimum (GM) was found (not found) in a particular run,

“Y”—global minimum was found in all four runs, “N”—was not found in any of four
runs;

“LDS Sobol”’—the MLSL method based upon Sobol’ LDS sampling;
“LDS Holton”—the MLSL method based upon Holton LDS sampling;
“Random”—the MLSL method based upon random sampling;
“Zakovic”—based upon random sampling implementation of the MLSL algorithm devel-

oped in [30, 31].
“SL Schoen”—Single Linkage Schoen’s algorithm based upon Sobol’ LDS sampling with

Bayesian stopping rule.
“LDS Sobol’ (NS)”, “LDS Holton (NS)”, “Random (NS)”, “SL Schoen (NS)”—versions of

the above mentioned algorithm in which the Bayesian stopping rule is not used, however
the maximum number of iterations is limited above by Itermax.

“ . . . . (NC)”—a version of “ . . . . (NS)” algorithm in which clustering is not used (MS
method).

“SL Schoen (mod)”—modified “SL Schoen (NS)” with a different strategy of sampling
(details are given in Section 4.1).

Four independent runs for each test problem were performed. For the Random MLSL
method all runs were statistically independent. For the LDS Sobol’ (Holton) method for
each run a different part of the Sobol’ (Holton) LDS was used.

SL Schoen’s algorithm and its variants proved to be less efficient than MLSL methods.
The results for this algorithm are presented only for test Problems 1, 2A and 2B.
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4.1. Problem 1: Six-hump camel back function

f (x, y) = 4x2 − 2.1x4 + 1/3x6 + xy − 4y2 + 4y4,

− 3.0 ≤ x ≤ 3.0, −2.0 ≤ y ≤ 2.0.

Global Solution:

f (x, y) = −1.03163,

(x, y) = (0.08984, −0.712266),

(x, y) = (−0.08984, 0.712266).

This is a well known test for global optimization [6]. There are 6 known solutions, two
of which are global. Results for this test are presented in Tables 1.1–1.2. According to
the classification of problems into the degrees of difficulty suggested in [28] this problem
belongs to a class of “easy” (E1) problems.

In all four runs of the LDS Sobol’ and Holton algorithms all six local minima were
located with just six LM. For the Random MLSL method in one of the four runs only four
local minima were found, five—in two runs and six—in one run. For this method, in almost
all runs LM was larger than a number of located minima. To compare our results with those
of other authors we used a program developed by Zakovic [30, 31]. This program was an
implementation of the MLSL algorithm, similar to that of Dixon and Jha [4]. In all four
runs Zakovic’s program located all six minima but at the expense of 21 iterations and 96
calls of the local minimizer. Similar results with LM equal 92 were reported in [4]. It shows
that the above mentioned implementations of the MLSL algorithm by other authors are
not very efficient. The differences were mainly due to the ways in which clustering and
sorting algorithms were implemented. It was not possible to make a straightforward CPU
time comparison as Zakovic’s program is written in Fortran and makes use of a different
local minimizer routine. However, other factors being equal one can expect the CPU time
to be proportional to LM.

Other experiments were performed with smaller samples of points (N/Nr = 64/32,

N/Nr = 128/64). In these not all local minima were located and in some cases only one
global minimum was found. We can conclude that the set of parameters N/Nr = 256/128
were the most efficient settings.

Table 1.1. Comparison of various realizations of MLSL for Problem 1.

Algorithm N/Nr Iter LM Nmin GM CPU

LDS Sobol’ 256/128 1 6 6 Y 0.1

LDS Holton 256/128 1 6 6 Y 0.12

Random 256/128 1 6 5 Y 0.1

Zakovic 256/128 21 96 6 Y not available
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Table 1.2. Comparison of various realizations of SL for Problem 1.

Algorithm N/Nr Iter LM Nmin GM CPU

SL Schoen 1/1 1 1 1 n/n/y/y 8 10−2

SL Schoen (NS) 1/1 60 4 4 y/n/n/y 0.3

SL Schoen (mod) 16/1 30 7 4 Y 0.4

Four independent tests were performed using original and modified SL Schoen algo-
rithms. The results are given in Table 1.2. With the original Schoen implementation only
one minimum was located. Better results were obtained with the SL Schoen (NS) algorithm.
The maximum number of iterations Itermax was set to 200. Four minima were located with
60 iterations on average. Global minima were found in two out of four runs. The modified SL
Schoen algorithm was proved to be the most efficient. The following strategy of sampling
was used: on each iteration 16 points were sampled as in MLSL but only the “best start”
point was used to start a local minimizer. Two points of global minima plus two second
best local minima were located with 30 iterations used on average. The CPU time was in 4
times higher than that of LDS Sobol’ (N/Nr = 256/128).

It can be concluded that (i) LDS Sobol’ and Holton algorithms are more efficient than
other considered methods (ii) our implementation of stochastic MLSL is more efficient than
that used in [4, 30, 31].

4.2. Problems 2A, B: Griewank function

f (x) = 1 +
∑n

i=1
x2

i /d2 −
n∏

i=1

(cos xi/
√

i)

Configurations:

Problem 2A. n = 2, d = 200,

− 100 ≤ xi ≤ 100, i = 1, 2.

Problem 2B. n = 10, d = 4000,

− 600.0 ≤ xi ≤ 600.0, i = 1, . . . , 10.

Global Solution:

f (x) = 0.0,

x = {0.0}.
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Problem 2A. Both problems belong to the class of “moderate” (M2) [28]. The objec-
tive of the test was to evaluate the performance of each method on a problem with a
large number of minima. Apart from the global minimum at the origin, this function has
some 500 local minima corresponding to the points where the i-th coordinate equals a mul-
tiple of π

√
i . Because of the very large number of local minima the region of attraction of

the global minimum is very small, therefore a very large number of points must be sampled
to locate it. In tests with N/Nr = 32768/128 in all four runs all tested algorithms success-
fully located some 20 minima including the global one (Table 2.1A). LM was equal to the
number of located minima. The slightly higher value of the CPU time for LDS Holton is
explained by the slower process of generating Holton points compared with that for Sobol’
or random points.

The performance of MLSL methods largely depends on the sample size. Other tests were
performed with smaller samples, with N ranging from 128 to 16384. None of the methods
were able to locate the global minimum in all four runs. This may explain results of similar
tests reported in [16]: “for the two-dimensional problem the method never really got started.
After the first sample of 100 points, only one minimum was found in all cases, after which
the method terminated. Global minimum was located once, two runs ended with one of the
second best minima while seven runs terminated with a minima with a function value close
to one”. There is a strong dependence of the algorithm efficiency on the size of samples: for
this test problem samples of 100 points were not sufficient to locate the global minimum.

It is known that for problems with a very large number of local minima the Baesian
termination criteria do not produce reliable results [16]. Because of this reason a standard
MS method which does not use clustering and Bayesian stopping techniques was tested.
Table 2.2A presents results of experiments with N/Nr = 128/128.

The solution was limited by a single iteration. Results clearly show the advantages of
using LDS points: in all four runs of LDS Sobol’ (NC) and LDS Holton (NC) algorithms the
global minimum was found in contrast with only one successful run of the Random (NC)

Table 2.1A. Comparison of various realizations of MLSL for Problem 2A.

Algorithm N/Nr Iter LM Nmin GM CPU

LDS Sobol’ 32768/128 2 23 23 Y 5.0

LDS Holton 32768/128 2 23 23 Y 7.0

Random 32768/128 2 22 22 Y 5.0

Table 2.2A. Comparison of various realizations of MS for Problem 2A.

Algorithm N/Nr Iter LM Nmin GM CPU

LDS Sobol’(NC) 128/128 1 128 107 Y 3.0

LDS Holton (NC) 128/128 1 128 106 Y 3.5

Random (NC) 128/128 1 128 107 n/n/n/y 3.0
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Table 2.3A. Comparison of various realizations of SL for Problem 2A.

Algorithm N/Nr Iter LM Nmin GM CPU

SL Schoen 1/1 1 1 1 y/n/n/n 8 10−2

SL Schoen (NS) 1/1 60 25 25 y/n/n/n 0.3

SL Schoen (mod) 1024/1 400 40 22 Y 6.0

algorithm. LM was nearly equal to the number of located minima. It confirms the high
efficiency of the MS approach in test problems with a very large number of local minima.
It is worth noting that the CPU time was nearly half of that for the MLSL method (with
N/Nr = 32768/128, Table 2.1A), while the number of located minima was almost five
times higher. The results for the Random (NC) algorithm agree well with the observations
made for the same algorithms in [16].

Four independent tests were performed using the SL Schoen algorithm and its variants.
The results are given in Table 2.3A. For the original SL Schoen algorithm only one local
minimum was found. The global minimum was located only in one run. For the SL Schoen
(NS) algorithm the maximum number of iterations was limited to 500. The global minimum
was located only once. 60 iterations were needed to locate 25 minima on average. For the
modified SL Schoen algorithm with N/Nr = 1024/1 the global minimum was located in all
four runs. The CPU time for this method was comparable with that for LDS Sobol’ algorithm
and was only two times higher than that of LDS Sobol’ (NC) (with N/Nr = 128/128).
However, the LDS Sobol’ algorithm located four times as many local minima.

It can be concluded that a reliable detection of the global minimum can be achieved with
the MLSL method using large samples or alternatively, with the MS method using small
samples of points. The SL Schoen algorithm and its variants were less efficient on this
problem.

Problem 2B. Problem 2B has an extremely high number of local minima. However, in
comparison with the two-dimensional problem 2A it turned out to be much easier to locate
the global minimum. This is in line with the results of Törn, Ali and Vjitanen [28]. In tests
with the same sample sizes as in various realizations of MLSL for Problem 2A (Table 2.2A)
in all four runs all tested algorithms successfully located some 15 minima including the
global one (Table 2.1B). Average LM and Nmin were similar for all methods. The LDS
Holton algorithm was the slowest one.

Table 2.1B. Comparison of various realizations of MLSL for Problem 2B.

Algorithm N/Nr Iter LM Nmin GM CPU

LDS Sobol’ 32768/128 2 18 14 Y 1.2

LDS Holton 32768/128 2 20 16 Y 5.1

Random 32768/128 2 19 14 Y 1.2
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Table 2.2B. Comparison of various realizations of LDS Sobol’ for Problem 2B.

Algorithm N/Nr Iter LM Nmin GM CPU

LDS Sobol’ 4096/128 18 43 33 Y 3.1

LDS Sobol’ 2048/128 46 79 59 Y 12.3

LDS Sobol’ 1024/128 78 107 81 Y 25.2

LDS Sobol’ 512/128 98 150 102 Y 26.4

Table 2.2B illustrates the dependence of the number of LM from the ratio γ = N/Nr

for the Sobol’ algorithm. Reduction in sample size results in increasing LM and the cor-
responding CPU time. In all four runs the global minimum was found. As sample size
decreases CPU time increases super linearly with the number of LM. It is interesting to note
that although the number of located Nmin increased in comparison to previous tests with
N/Nr = 32768/128, very few second best minima were found. Thus, it can be concluded
that the strategy with large samples is more efficient if the objective is to locate only the
global minimum.

As in the above case of lower dimension (n = 2) the MS method performs much better
in terms of locating high a number of local minima then the MLSL method. The results of
testing with N/Nr = 512/128 are presented in Table 2.3B. Calculations were limited to 10
iterations. In addition to locating the global minimum and a large number of local minima
all second best minima were located as well. A comparison between MLSL LDS Sobol’
N/Nr = 32768/128 (Table 2.1B) and MS LDS Sobol’ methods (Table 2.3B) shows that
the number of located minima increased almost 60 times while the CPU time increased only
30 times. Since in most cases the objective is to locate only the global minimum, in the case
of the MS the sample size and maximum number of iterations Itermax can be reduced even
further. Other tests showed that a reliable detection of the global minimum can be achieved
with N/Nr as small as 32/16 and Itermax = 1. The corresponding CPU time for such a case
can be reduced to 0.4 s.

The SL Schoen algorithm and its variants are proved to be not very efficient for this
problem. Results of testing are given in Table 2.4B. In all cases only one local minimum
was located and in two runs out of four the global minimum was not found. The low
efficiency of the SL Schoen algorithm and its variants for the case of high dimensional
problems is caused by the clustering technique upon which the algorithms are based. The
maximum metric ρ ′(x, y) is limited above by 1 (we recall that the variables to be optimized
are scaled to a unit hypercube). The critical threshold rN ,β given by (19) is always greater
than 1 in the first iteration (β > 1). Thus new points can be assigned to the first cluster found

Table 2.3B. Comparison of various realizations of MS for Problem 2B.

Algorithm N/Nr Itermax LM Nmin GM CPU

LDS Sobol’ (NC) 512/128 10 1280 796 Y 36.0

LDS Holton (NC) 512/128 10 1280 782 Y 61.0

Random (NC) 512/128 10 1280 776 Y 36.0
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Table 2.4B. Comparison of various realizations of SL for Problem 2B.

Algorithm N/Nr Iter LM Nmin GM CPU

SL Schoen 1/1 1 1 1 y/n/n/y 6 10−2

SL Schoen (NS) 1/1 1 1 1 y/n/y/n 6.0

SL Schoen (mod) 32768/1 1 1 1 y/y/n/n 15.0

and further local search procedures can be prohibited. This drawback of the algorithm was
discussed by Shoen [17]. It was recommended to limit rN ,β artificially so that local search
would not be inhibited. However, no practical advice was given with regard to the rN ,β

correction. On each successive iteration the sample size grows and the critical distance rN ,β

decreases. For low dimensional problems, after a few iterations rN ,β becomes less than 1.
In this case the algorithm is capable of distinguishing between different clusters and can
locate more than one minimum. This explains the limited success of the SL Shoen (mod)
algorithms in solving test Problems 1 and 2A.

The MLSL algorithm makes use of the Euclidean metric ρ(x, y), which is limited from
above by

√
n. The critical distance rk given by (18) is likely to be greater than 1 for high

dimensional problems especially on the initial iterations. However, ρ(x, y) can also be
greater than rk in which case a new local search would not be prohibited. It is also important
to note that rk decreases more rapidly with the increase in sample size and/or the number
of iterations than rN ,β . It results in more efficient clustering of the MLSL algorithm in
comparison with that of Shoen.

It can be concluded that the reliable detection of the global minimum can be achieved with
the MLSL method and rather large samples. The value of the γ = N/Nr has a significant
impact on the efficiency of the method: increasing γ can result in a dramatic decrease of
the CPU time (Table 2.2B).

For problems with a high number of local minima the MS method can be a good alternative
to the MLSL method. Even runs with small sample size can produce a large value of Nmin

(Table 2.2A). A quasi Monte Carlo variant of the MS method is much more efficient than
the stochastic one. SL Schoen’s algorithm and its variants proved to be less efficient for
such problems.

4.3. Problems 3A, B: Shubert function

Problem 3A. n = 3

f (x) = (π/n)

{

k1 sin2(πy1) +
n−1∑

i=1

(yi − k2)2[1 + k1 sin2(πyi+1)] + (yn − k2)2

}

+
n∑

i=1

u(xi , 10, 100, 4),

yi = 1 + 0.25(xi + 1), k1 = 10 and k2 = 1,

−10 ≤ xi ≤ 10, i = 1, 2, 3.
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u(xi , a, k, m) is a penalty function defined by

u(xi , a, k, m) =






k(xi − a)m, xi > a,

0, −a ≤ xi ≤ a,

k(−xi − a)m, xi < −a,

Global Solution

f (x) = 0.0,

x = (−1.0, −1.0, −1.0).

Problems 3A and 3B belong to the class of “easy” (E2) problems [28]. Problem 3A has
approximately 53 local minima. The objective of this test was to test the performance of
the LDS Sobol’, LDS Holton and Random methods on problems with a large number of
minima. In tests with N/Nr = 32/16 and Itermax = 10 in all four runs all algorithms
successfully located approximately the same number of local minima including the global
one (Table 3.1A). LDS Sobol’(NS) showed slightly better performance.

Problem 3B. n = 5.

f (x) = k3

{

sin2(πk4x1) +
n−1∑

i=1

(xi − k5)2[1 + k6 sin2(πk4xi+1)]

+ (
xn − k5

)2
[1 + k6 sin2(πk7xn)]

}

+
n∑

i=1

u(xi , 5, 100, 4),

k3 = 0.1, k4 = 3, k5 = 3, k6 = 1, k7 = 2.

−5 ≤ xi ≤ 5, i = 1, . . . , 5.

Global Solution

f (x) = 0.0,

x = (1.0, 1.0, 1.0, 1.0, 1.0).

Table 3.1.A. Comparison of various realizations of MLSL for Problem 3A.

Algorithm N/Nr Itermax LM Nmin GM CPU

LDS Sobol’(NS) 32/16 10 13 12 Y 2.6 10−2

LDS Holton(NS) 32/16 10 13 11 Y 4.6 10−2

Random(NS) 32/16 10 12 10 Y 2.6 10−2
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Table 3.1B. Comparison of various realizations of MLSL for Problem 3B.

Algorithm N /Nr Itermax LM Nmin GM CPU

LDS Sobol’ (NS) 1024/512 3 68 63 Y 2.1

LDS Holton (NS) 1024/512 3 53 51 y/n/y/y 2.4

Random (NS) 1024/512 3 61 58 Y 1.9

This problem has approximately 155 local minima. The objective of this test was to test
the performance of the LDS Sobol’, LDS Holton and Random methods on problems with
a very large number of minima. In tests with N /Nr = 1024/512 and Itermax = 3 in all
four runs LDS Sobol’(NS) and Random(NS) algorithms successfully located some 60 local
minima including the global one (Table 3.1B). There were only three successful runs of
the LDS Holton (NS) algorithm. The number of minima located by the LDS Holton (NS)
algorithm was also lower than that for other algorithms. This can be explained by the inferior
uniformity properties of the Holton LDS even at moderate dimensions.

4.4. Problems 4A, B, C: Schaffler function

f (x) = 1 + 590
n∑

i=2

(xi − xi−1)2 + 6x2
1 − cos(12x1),

−1.05 ≤ xi ≤ 2.95, i = 1, . . . , n.

Configurations:

Problem 4A. n = 30.

Problem 4B. n = 40.

Problem 4C. n = 50.

Global Solution

f (x) = 0.0,

x = {0.0}.

All three problems belong to the class of “moderate” (M2) [28]. The objective of this test
with 5 known solutions was to test the performance of the LDS Sobol’, LDS Holton and
Random methods on high-dimensional problems. LDS have better uniformity properties
than pseudorandom grids. However, this advantage diminishes as the dimensionality n
increases. As explained in Section 2, for high-dimensional problems the usage of LDS still
can be more efficient than pseudorandom sampling if an objective function f (x) strongly
depends only on a subset of variables. For such problems an effective dimension number s
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Table 4.1A. Comparison of various realizations of MLSL for Problem 4A.

Algorithm N /Nr Iter LM Nmin GM CPU (s)

LDS Sobol’ 8192/256 1 220 3 Y 30.5

LDS Holton 8192/256 1 98 2 y/n/y/n 18.5

Random 8192/256 1 228 3 Y 31.2

can be much smaller than n. However, this is not the case for the test Problem 4. Apart from
variable x1, all other variables are equally important. This explains why LDS Sobol’ and
Random methods showed almost the same efficiency (Tables 4.1A, B, and C). Uniformity
properties of Holton LDS rapidly degrade as n grows. Thus for high-dimensional problems
the MLSL method based upon Holton LDS sampling becomes less efficient than a stochastic
variant of MLSL. Values N and Nr given in Tables 4.1A, B, and C are the smallest sample
sizes for which a global minimum was found in all four runs for LDS Sobol’ and Random
methods.

Problem 4A. n = 30
For LDS Holton the global minimum was found in two out of four runs for Problem

4A and Problem 4B, while for Problem 4C this algorithm failed to locate it. A comparison
between Problems 4A and Problem B for LDS Sobol’ and Random shows that for successful
location of the global minimum in all four runs it was necessary to increase N in two times
and Nr —in 16 times. It resulted in a 30 fold increase of the CPU time.

Problem 4B. n = 40
Increasing the dimensionality from n = 40 to n = 50 resulted in N increasing 64 fold.

At the same time Nr increased only 4 fold and the CPU time increased approximately
8 fold.

Problem 4C. n = 50
For Problem 4C Nr was nearly equal to LM. This is because clustering becomes less

efficient as dimensionality grows. Choosing larger σ in (18) may increase the cluster size
and thus decrease LM. However, for consistency with other tests experiments σ was kept
equal to 2.0.

Table 4.1B. Comparison of various realizations of MLSL for Problem 4B.

Algorithm N /Nr Iter LM Nmin GM CPU (s)

LDS Sobol’ 16384/4096 1 4028 4 Y 1.1·103

LDS Holton 16384/4096 1 1142 2 n/n/y/y 348.1

Random 16384/4096 1 4031 3 Y 1.1·103
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Table 4.1C. Comparison of various realizations of MLSL for Problem 4C.

Algorithm N /Nr Iter LM Nmin GM CPU (s)

LDS Sobol’ 1048576/16384 1 16206 3 Y 7.5·103

LDS Holton 1048576/16384 1 5665 2 N 3.3·103

Random 1048576/16384 1 16253 3 Y 7.6·103

5. Conclusion

In this study QMC and stochastic variants of MLSL were compared. The Program SobolOpt
employing the discussed techniques was applied to a number of test problems. When com-
pared with other implementations of MLSL reported in the literature, it showed a superior
performance. It was proved that application of LDS results in a significant reduction in
computational time for low and moderately dimensional problems. Two different LDS
were tested and their efficiency was analyzed. Uniformity properties of Holton LDS de-
grade as dimensionality grows and for high dimensional problems the MLSL method based
on Holton LDS becomes less efficient than the stochastic MLSL method. Sobol’ LDS can
still be superior to pseudorandom sampling especially for problems in which an objective
function strongly depends only on a subset of variables.

To increase the probability of finding the global minimum, the full sample size should
be increased with the increase of the dimensionality of a problem. However, it may not be
very practical if the objective function is difficult to evaluate. The ratio of the full/reduced
sample size γ should be kept high to reduce the computational time. It was shown that the
use of a large total number of sampled points is more efficient than that of a small one if the
objective is to locate only a global minimum as opposed to locate as many local minima as
possible.

The developed technique was generalized to account for mixed continuous and discrete
variables (MINLP). Preliminary tests have shown a good performance of the multistage
methods based on LDS sampling for constrained MINLP problems. Results will be pre-
sented in a future paper.
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