
Computational Optimization and Applications, 30, 147–160, 2005
2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Efficient Algorithms for the Smallest Enclosing
Ball Problem

GUANGLU ZHOU∗ zhouguan@maths.curtin.edu.au
Department of Mathematics and Statistics, Curtin University of Technology, Bentley, WA 6102, Australia

KIM-CHUAN TOH† mattohkc@nus.edu.sg
Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543

JIE SUN jsun@nus.edu.sg
Department of Decision Sciences, National University of Singapore, Singapore

Received December 9, 2002; Revised February 26, 2004; Accepted March 10, 2004

Abstract. Consider the problem of computing the smallest enclosing ball of a set of m balls in �n . Existing
algorithms are known to be inefficient when n > 30. In this paper we develop two algorithms that are particularly
suitable for problems where n is large. The first algorithm is based on log-exponential aggregation of the maximum
function and reduces the problem into an unconstrained convex program. The second algorithm is based on a
second-order cone programming formulation, with special structures taken into consideration. Our computational
experiments show that both methods are efficient for large problems, with the product mn on the order of 107.
Using the first algorithm, we are able to solve problems with n = 100 and m = 512, 000 in about 1 hour.

Keywords: computational geometry, smoothing approximation, second order cone programming

AMS Subject Classification: 90C30.

1. Introduction

A ball Bi in �n with center ci and radius ri ≥ 0 is the closed set Bi = {x ∈ �n : ‖x−ci‖ ≤ ri }.
Given a set of balls B= {B1, B2, . . . , Bm} in �n , the smallest enclosing ball mb(B) of the
set B is the ball with the smallest radius that encloses all the balls in B. Given a set of points
P = {p1, p2, . . . , pm} in �n , the smallest enclosing ball mp(P) of the points is the ball
with the smallest radius that encloses all the points in P . Clearly, the problem of smallest
enclosing ball of points is a special case of the problem of smallest enclosing ball of balls. In
what follows, unless otherwise stated, we will term the problem of smallest enclosing ball
of balls to be the smallest enclosing ball problem. This problem can be easily formulated
as the following convex optimization problem:

min
x∈�n

max
1≤i≤m

{‖x − ci‖ + ri }. (1)

∗His work was supported by Australian Research Council.
†Research supported in part by the Singapore-MIT Alliance.

148 ZHOU, TOH AND SUN

Let

fi (x) = ‖x − ci‖ + ri , i = 1, 2, . . . , m, (2)

and

f (x) = max
1≤i≤m

{ fi (x)}. (3)

Then problem (1) can be rewritten as

min
x∈�n

f (x). (4)

It is readily seen that the solution to (1) exists since f (x) is coercive. Moreover, the solution
is unique, for otherwise there would exist two different balls, C1 and C2, of the same radius,
with

⋃m
j=1 B j ⊂ Ci , i = 1, 2. Then one can construct a smaller ball containing C1 ∩ C2 and

thus B as well.
Problem (1) arises in applications such as location analysis and military operations and it

is itself of interest as a problem in computational geometry; see [2, 3, 6, 9, 12, 13, 18, 20] for
details. Many algorithms have been developed for (1). In particular, for the problem of the
smallest enclosing ball of points, Megiddo [9] presented a deterministic O(m) algorithm for
the case where n ≤ 3. Welzl [18] developed a simple randomized algorithm with expected
linear time in m for the case where n is small, and Gärtner described a C++ implementation
thereof in [4]. For the problem of the smallest enclosing ball of balls, we are aware of only
a C++ program developed by David White in [19], which is based on Welzl’s algorithm
[18] and Gärtner’s implementation [4]. The existing software packages [4, 19], however, are
not efficient for solving problems with n > 30. The goal of this paper is to present efficient
algorithms that can be used to solve problems where n and m are large (say, on the order of
thousands).

Problem (1) is a non-differentiable (nonsmooth) convex optimization problem. Due to
the non-differentiability of the objective function, gradient-based algorithms cannot be
used to solve this problem. To overcome this difficulty, in Section 2 we give a smooth
approximation for the maximum function f . This approximation is based on the so-called
log-exponential aggregation function studied, for instance, in [8]. Based on this smooth
approximate function, in Section 3 we propose a limited-memory BFGS algorithm for
solving the problem. In Section 4, we reformulate (1) as a second order cone programming
(SOCP) problem. Thus, we can also apply interior-point methods to solve (1). In Section
5, we report some numerical results, which show the algorithms proposed here are able to
solve large problems.

In this paper, unless otherwise stated, all vectors are column vectors. We let Id denote
the d × d identity matrix. To represent a large matrix with several small matrices, we use
semicolons “;” for column concatenation and commas “,” for row concatenation. These
notations also apply to vectors. We denote the convex hull of a set S ⊆ �n by co(S). For a
convex function f : �n → �, we let ∂ f (x) denote the subdifferential of f at x . Note that

EFFICIENT ALGORITHMS FOR THE SMALLEST ENCLOSING BALL PROBLEM 149

f is minimized at x over �n if and only if 0 ∈ ∂ f (x). For calculus rules on subdifferentials
of convex functions, please refer to Chapter VI in [7].

2. Smooth approximation

For any p > 0, define the smoothing log-exponential aggregation function of f in (3) as

f (x ; p) = p ln

(
m∑

i=1

exp(gi (x ; p)/p)

)

where gi (x ; p) = ri +
√

‖x − ci‖2 + p2.

(5)

Lemma 1. The function f (x ; p) has the following properties:

(i) For any x ∈ �n, and p1, p2 satisfying 0 < p1 < p2, we have

f (x ; p1) < f (x ; p2);

(ii) For any x ∈ �n and p > 0, f (x) ≤ f (x ; p) ≤ f (x) + p(1 + ln m);
(iii) For any p > 0, f (x ; p) is continuously differentiable and strictly convex.

Proof: (i) For any x ∈ �n and p1, p2 satisfying 0 < p1 < p2, by Jensen’s inequality [5],

[
m∑

i=1

(exp(gi (x ; p2)))1/p2

]p2

>

[
m∑

i=1

(exp(gi (x ; p2)))1/p1

]p1

>

[
m∑

i=1

(exp(gi (x ; p1)))1/p1

]p1

.

Hence, f (x ; p1) < f (x ; p2).
(ii) Fix p = p2 and let p1 → 0 in (i), we have f (x) < f (x ; p). Let

g∞(x ; p) = max
1≤i≤m

{gi (x ; p)}. (6)

It is readily proven that f (x) ≤ g∞(x ; p) ≤ f (x) + p. Thus, from (5), we have

f (x ; p) = g∞(x ; p) + p ln
m∑

i=1

exp [(gi (x ; p) − g∞(x ; p)) /p] ≤ g∞(x ; p) + p ln m.

Hence

f (x) ≤ f (x ; p) ≤ f (x) + p(1 + ln m).

150 ZHOU, TOH AND SUN

(iii) For any p > 0, clearly, f (x ; p) is continuously differentiable. Now we prove that
f (x ; p) is strictly convex. From (5),

∇ f (x ; p) =
m∑

i=1

λi (x ; p)

hi (x ; p)
(x − ci), (7)

where

hi (x ; p) =
√

‖x − ci‖2 + p2, τ (x ; p) =
m∑

i=1

exp(gi (x ; p)/p), (8)

λi (x ; p) = exp(gi (x ; p)/p)

τ (x ; p)
. (9)

Let

Qi j = (x − ci)(x − c j)T

hi (x ; p)h j (x ; p)
, i, j = 1, 2, . . . , m.

From (7), we get

∇2 f (x ; p) =
m∑

i=1

[
λi (x ; p)

hi (x ; p)
(In − Qii) + λi (x ; p)

p
Qii −

m∑

j=1

λi (x ; p)λ j (x ; p)

p
Qi j

]

.

For any z ∈ �n with z = 0, by the Cauchy-Schwartz inequality,

‖z‖2 − zT Qii z ≥ ‖z‖2 − ‖z‖2‖(x − ci)/hi (x ; p)‖2 > 0, ∀ i = 1, . . . , m.

Thus,

zT ∇2 f (x ; p)z =
m∑

i=1

λi (x ; p)

hi (x ; p)
(‖z‖2 − zT Qii z)

+
m∑

i=1

[
λi (x ; p)

p
zT Qii z −

m∑

j=1

λi (x ; p)λ j (x ; p)

p
zT Qi j z

]

>

m∑

i=1

[
λi (x ; p)

p
zT Qii z −

m∑

j=1

λi (x ; p)λ j (x ; p)

p
zT Qi j z

]

= 1

p

m∑

i=1

λi (x ; p)a2
i − 1

p

(
m∑

i=1

λi (x ; p)ai

)2

≥ 0, (10)

EFFICIENT ALGORITHMS FOR THE SMALLEST ENCLOSING BALL PROBLEM 151

where ai = zT (x − ci)/hi (x ; p). This shows that ∇2 f (x ; p) is positive definite. Therefore,
f (x ; p) is strictly convex. Note that the inequality (10) follows from the fact that

∣
∣
∣
∣
∣

m∑

i=1

λi (x ; p)ai

∣
∣
∣
∣
∣

≤
√
√
√
√

m∑

i=1

λi (x ; p)

√
√
√
√

m∑

i=1

λi (x ; p)a2
i ,

and
∑m

i=1 λi (x ; p) = 1, λi (x ; p) ≥ 0 for i = 1, . . . , m.

3. Log-exponential aggregation algorithm

We now give an algorithm for problem (1) based on Lemma 1, followed by a global con-
vergence result.

Algorithm 1.

Let σ ∈ (0, 1), x0 ∈ �n and p0 > 0 be given, and set k := 0.
For k = 0, 1, 2, . . . , do

1. Use an unconstrained minimization method to solve

min
x∈�n

f (x ; pk). (11)

Let the minimizer be xk .
2. Set pk+1 = σ pk , increment k by 1, and return to Step 1.

End

Lemma 2. Let {xk}k≥1 be the sequence of points produced by Algorithm 1. Then any limit
point of {xk}k≥1 is an optimal solution of (1).

Proof: Let x∗ be a limit point of {xk}k≥1. Without loss of generality, we suppose that
xk → x∗ as k tends to +∞. From the fact that xk is a solution of (11), we have

∇ f (xk ; pk) =
m∑

i=1

λk
i

hi (xk ; pk)
(xk − ci) = 0,

where λk
i = λi (xk ; pk), and hi (x ; pk) is defined as in (8). Let

I (x∗) = {i : fi (x
∗) = f (x∗), i = 1, 2, . . . , m}.

By noting that

λk
i = exp[(gi (xk ; pk) − g∞(xk ; pk))/pk]

∑m
i=1 exp[(gi (xk ; pk) − g∞(xk ; pk))/pk]

,

152 ZHOU, TOH AND SUN

we have

lim
k→+∞

λk
i = 0, i ∈ I (x∗). (12)

By (12) and the fact that
∑m

i = 1 λk
i = 1 and λk

i > 0, i = 1, 2, . . . , m, the sequence {λk
i , i =

1, 2, . . . , m}k≥1 has a convergent subsequence. Without loss of generality, we suppose
that

lim
k→+∞

λk
i = λ∗

i , i ∈ I (x∗).

Then
∑

i∈I (x∗) λ
∗
i = 1 and λ∗

i ≥ 0, i ∈ I (x∗). For i ∈ I (x∗),

t∗
i = lim

k→+∞
xk − ci

hi (xk ; pk)
∈ ∂ fi (x

∗).

Thus

lim
k→+∞

∇ f (xk ; pk) =
∑

i∈I (x∗)

λ∗
i t∗

i = 0.

This shows that 0 ∈ co(∂ fi (x∗), i ∈ I (x∗)) = ∂ f (x∗). Therefore, x∗ is an optimal solution
of (1).

Theorem 3. Let {xk}k≥1 be the sequence of points produced by Algorithm 1 and x∗ be the
unique optimal solution of (1). Then

lim
k→+∞

xk = x∗.

Proof: For any k ≥ 1, by Lemma 1,

f (x1; p1) > f (x1; pk) ≥ f (xk ; pk) ≥ f (xk). (13)

Since f (x) is coercive, the level set

L = {x ∈ �n : f (x) ≤ f (x1; p1)}

is bounded. From (13), we have {xk}k≥1 ⊆ L . Hence {xk}k≥1 is bounded. As x∗ is the unique
solution of (1), it follows from Lemma 2 that

lim
k→+∞

xk = x∗.

In practice, we would stop Algorithm 1 once some stopping criteria are met. Moreover, we
will use a first-order, or gradient based, unconstrained minimization algorithm for solving

EFFICIENT ALGORITHMS FOR THE SMALLEST ENCLOSING BALL PROBLEM 153

(11) in Step 1. In the following algorithm, we will choose a limited-memory BFGS algorithm
[1] to solve (11) as this algorithm can solve very large unconstrained optimization problems
efficiently. The following is a more practical version of Algorithm 1.

Algorithm 2.

Let σ ∈ (0, 1), ε1, ε2 > 0, x0 ∈ �n and p0 > 0 be given, and set k := 0.
For k = 0, 1, 2, . . . , until pk ≤ ε1, do

1. Use a version of the limited-memory BFGS algorithm to solve (11) approximately,
and obtain an xk such that ‖∇ f (xk ; pk)‖ ≤ ε2.

2. Set pk+1 = σ pk , increment k by 1, and return to Step 1.

End
The actual parameter values used for p0, σ, ε1, ε2 are given in Section 5.

4. SOCP reformulation

Problem (1) is equivalent to the following problem.

min r

s.t. ‖y − ci‖ + ri ≤ r, i = 1, . . . , m,

y ∈ �n.

(14)

It turns out that this can be reformulated as follows:

max −r
s.t. −ti + r = ri ,−si + y = ci ,

ti ≥ ‖si‖, i = 1, . . . , m.

(15)

Let

N = m(n + 1), K := {(t ; s) ∈ Rn+1 : t ≥ ‖s‖}, y = (r ; y) ∈ Rn+1,

c = −(r1; c1; r2; c2; . . . ; rm ; cm) ∈ RN , A= − (In+1, . . . , In+1) ∈ R(n+1)×N ,

b = −(1; 0; . . . ; 0) ∈ Rn+1, s = (t1; s1; t2; s2; . . . ; tm ; sm) ∈ RN ,

where In+1 is an identity matrix. For later purpose, we use the notation γ (α; β) =√
α2 − ‖β‖2 for (α; β) ∈ K . The problem (15) can be written as a standard dual second

order cone program as follows:

(D) max bT y,

s.t. s = c − AT y,

s ∈K,

154 ZHOU, TOH AND SUN

where K= K × K × · · · × K = K m . Let

x = (τ1; x1; τ2; x2; . . . ; τm ; xm) ∈ RN .

The corresponding primal problem is

(P) min cT x
s.t. Ax = b,

x ∈ K.

This pair of problems (P) and (D) are studied in Nesterov and Nemirovskii [10], Nesterov
and Todd [11], and Xue and Ye [21]. We can solve these problems by using a primal-dual
interior-point method (IPM).

There are IPM based general purpose softwares for solving SOCPs, examples are SeDuMi
[14], SDPT3 [16], and LOQO [17]. But the problems (P) and (D) have a very special
constraint matrix A, and it is beneficial to analyze how such a structure can be exploited
when computing the search direction in each IPM iteration. Suppose that at a particular
IPM iteration, the current iterate is (x, y, s) and the target barrier parameter is µ. To obtain
the next iterate, the most expensive computation lies in assembling and solving a linear
system of n + 1 equations for the search direction 	y. By adapting the results from Section
2.3 of [16] for the so-called Nesterov-Todd search direction, such a linear system takes the
following form for our present SOCPs:

(
1

σ 2
J +

m∑

i=1

1

w2
i

gi g
T
i

)

︸ ︷︷ ︸
M

	y = h, (16)

where

J =
[

−1

In

]

, w2
i = γ (ti ; si)

γ (τi ; xi)
,

1

σ 2
=

m∑

i=1

1

w2
i

,

gi =
√

2

γ (ρi ; ξi)
(−ρi ; ξi), (ρi ; ξi) = 1

wi
(ti ; si) − wi (−τi ; xi),

and

h = b +
m∑

i=1

1

w2
i

(
J + gi g

T
i

)
((ri ; ci) + (ti ; si) − y) −

m∑

i=1

µ

γ (ti ; si)2
(−ti ; si).

Note that the matrix M is symmetric positive definite. In the above, we give a full description
of the linear system (16) for the sake of completeness. But our main aim is to study the

EFFICIENT ALGORITHMS FOR THE SMALLEST ENCLOSING BALL PROBLEM 155

matrix M , and explore the possibility of solving (16) via a Krylov subspace method such
as the preconditioned conjugate gradient (PCG) method when n is large.

Let

I =
{

i ∈ {1, . . . , m} :
σ‖gi‖

wi
> 1

}

, J = {1, . . . , m} \ I.

We can write the matrix M in (16) as follows:

M = 1

σ 2

(

I +
∑

i∈I

σ 2

w2
i

gi g
T
i

)

︸ ︷︷ ︸
M0

+ 1

σ 2

∑

j∈J

σ 2

w2
j

g j g
T
j

︸ ︷︷ ︸
M1

− 2

σ 2
e1eT

1 ,

where M0 is positive definite, M1 is positive semidefinite, and e1 = (1; 0; . . . ; 0) ∈ �n+1.
Numerical experiments have shown that the cardinality of I is usually much smaller
than n when the barrier parameter µ is small. Thus M0 is a diagonal matrix plus a low-
rank matrix, and its inverse can be found readily via the Sherman-Morrison-Woodbury
formula:

M−1
0 = σ 2 [I − G(I + GT G)−1GT]

︸ ︷︷ ︸
B

, G =
(

σ

wi
gi

∣
∣
∣
∣ i ∈ I

)

.

Suppose M0 is used as a preconditioner in (16), then the preconditioned matrix M−1
0 M

has the form:

M−1
0 M = I + 1

σ 2
M−1

0 M1 − 2

σ 2
M−1

0 e1eT
1 = I + B M1 − 2Be1eT

1 . (17)

To analyze the spectrum of M−1
0 M1, we make use of the following lemma.

Lemma 4. Let p = |I|. If p < n + 1, then the matrix B is positive semidefinite and

‖B‖ ≤ 1

Proof: Let the singular value decomposition of G ∈ �(n+1)×p be

G = U�V T ,

where U ∈ �(n+1)×p has orthonormal columns, � ∈ R p×p is diagonal, and V ∈ �p×p is
orthogonal. It is easily shown that

G(I + GT G)GT = U�(I + �2)−1�U T .

156 ZHOU, TOH AND SUN

Thus

B = I − U�(I + �2)−1�U T

= (I − UU T) + U (I + �2)−1U T , (18)

which is the sum of two positive semidefinite matrices, and hence B is also positive semidef-
inite. From (18), it is clear that xT Bx ≤ xT x for any x ∈ �n+1. Hence, ‖B‖ ≤ 1.

Notice that BM1 is similar to a positive semidefinite matrix and thus all its eigenvalues lie
in the interval [0, ‖B M1‖] ⊂ [0, ‖M1‖]. For j ∈ J , σ‖g j‖/w j ≤ 1, thus ‖M1‖ ≤ |J |, and
we would expect ‖M1‖ to be a moderate number. Hence, we can expect the preconditioned
matrix M−1

0 M to have a favorable spectral distribution (with all its eigenvalues clustered
around 1 except possibly for an outlier due to the presence of a rank-1 perturbation in (17))
for the PCG to attain fast convergence.

So far, we have discussed the preconditioning strategy to solve (16) when the barrier
parameter µ is small. When µ is not small, the cardinality of I may be comparable to n,
and it would be computationally expensive to use M0 as a preconditioner. Fortunately when
µ is not small, the matrix M itself is quite well-conditioned and preconditioning by the
diagonal of M would be good enough for PCG to obtain fast convergence. In practice, we
switch from the diagonal preconditioner to M0 when

max(‖gi‖/wi)

min(‖gi‖/wi)
≥ 5 × 102. (19)

5. Computational results

We implemented Algorithm 2 described in Section 3 and the numerical experiments were
done by using a Pentium IV 2.2 GHz personal computer with 4 GB of memory. To solve (11),
we choose a limited-memory BFGS algorithm with strong Wolfe-Powell line-search and 7
limited-memory vector updates [1]. We implemented our code in Fortran 77 and compared it
with SeDuMi (version 1.05) [14] and SDPT3 (version 3.02) [16] (two high quality software
packages with MATLAB interface for solving semidefinite-quadratic-linear programs). We
also implemented an adaptation of SDPT3 to exploit the special structure present in our
SOCPs in (P) and (D). The main change lies in replacing the direct solution method in
computing the direction 	y in SDPT3 by the PCG iterative solution method discussed in
the last section. For convenience, we will call the modified algorithm SDPT3-PCG.

Throughout the computational experiments, we use the following parameters in
Algorithm 2:

p0 = 0.01, σ = 0.1, ε1 = 10−6, and ε2 = 10−5.

The starting point is x0 = 0. For SDPT3, we stop the interior-point algorithm when φ is
smaller than 10−6. Here

φ = max

(‖b − Ax‖
1 + ‖b‖ ,

‖c − s − AT y‖
1 + ‖c‖ ,

xT s

1 + 0.5(|bT y| + |cT x|)
)

.

EFFICIENT ALGORITHMS FOR THE SMALLEST ENCLOSING BALL PROBLEM 157

We use the same stopping criterion for SDPT3-PCG. When solving the system (16), we
stop the PCG iteration when the relative residual norm, ‖h − M	y‖‖h‖, is less than 10−8.
For SeDuMi, we use all the default values except that the parameter eps is set to be 10−6.

The test problems are generated randomly. We use the following pseudo-random se-
quence:

ψ0 = 7, ψi+1 = (445ψi + 1) mod 4096, i = 1, 2, . . . ,

ψ̄i = ψi

40.96
, i = 1, 2, (20)

The elements of ci , i = 1, 2, . . . , m, are successively set to ψ̄1, ψ̄2, . . ., in the order:

r1, c1(1), c1(2), . . . , c1(n), r2, c2(1), . . . , c2(n), . . . , rm, cm(1), . . . , cm(n).

The numerical results we obtained are summarized in Tables 1–4. In these tables, n and
m denote the dimension of the Euclidean space and the number of balls, respectively, Obj
Value denotes the value of the objective function at the final iteration, Iter denotes the
number of iterations, Time denotes the CPU time in second for solving each problem, and
RAM denotes the random access memory usage in MB.

Table 1. Objective function value at the final iteration.

Problem Obj value

n m SeDuMi SDPT3 Algorithm 2 SDPT3-PCG

400 1000 6.79603198e2 6.79603173e2 6.79603176e2 6.79603173e2

800 1000 9.16972254e2 9.16972204e2 9.16972207e2 9.16972204e2

1200 1000 1.10067761e3 1.10067759e3 1.10067760e3 1.10067759e3

1600 1000 1.25331993e3 1.25331987e3 1.25331987e3 1.25331987e3

2000 1000 1.39062921e3 1.39062927e3 1.39062919e3 1.39062927e3

Table 2. Performance comparison of SeDuMi, SDPT3, Algorithm 2 and SDPT3-PCG. The numbers in the last
two columns correspond to average value of |I| and the average number of PCG iterations in each interior-point
iteration, respectively.

Problem SeDuMi SDPT3 Algorithm 2 SDPT3-PCG

n m Time Iter Time Iter Time Iter Time Iter

400 1000 83.2 15 69.7 17 33.3 795 12.1 17 78 12

800 1000 256.0 15 194.8 16 69.6 848 22.1 16 91 16

1200 1000 499.4 15 274.6 15 77.9 572 30.8 15 94 17

1600 1000 1420.2 15 374.7 15 118.7 716 41.4 15 110 15

2000 1000 1433.0 15 417.7 13 144.9 638 45.2 13 120 17

158 ZHOU, TOH AND SUN

Table 3. Performance of Algorithm 2 and SDPT3-PCG on problems with large n.

Problem Algorithm 2 SDPT3-PCG

n m Time Iter RAM Time Iter RAM

1000 3000 246.7 842 23 84.3 16 403

2000 3000 514.5 883 46 170.3 15 863

4000 3000 1012.3 849 92 400.4 15 1680

8000 3000 2127.7 889 185 Out of memory

16000 3000 4168.8 841 369 Out of memory

Table 4. Performance of Algorithm 2 and SDPT3-PCG on problems with large m.

Problem Algorithm 2 SDPT3-PCG

n m Time Iter RAM Time Iter RAM

100 8000 60.9 748 7 25.2 18 123

100 16000 116.0 716 13 56.2 21 253

100 32000 233.8 713 26 115.9 21 478

100 64000 490.8 753 51 260.5 22 942

100 128000 965.5 732 100 592.7 23 1726

100 256000 1968.2 742 199 Out of memory

100 512000 3765.7 715 398 Out of memory

The results reported in Tables 1 and 2 show that algorithms presented in this paper
perform very well. We can see from Table 1 that all algorithms are able to obtain good
accuracy for moderately large problems. Moreover, it appears from Table 2 that Algorithm
2 consistently takes more iterations than the SOCP algorithm and that for all tested problems,
Algorithm 2 and SDPT3-PCG consistently use less CPU time than SeDuMi and SDPT3.
It is interesting to note that for the last 2 problems, SeDuMi, SDPT3, and Algorithm 2 are
about 30, 8.5, and 2.8 times more expensive (in CPU time) than SDPT3-PCG, respectively.
From the performance data in Table 2, it is clear that for the smallest enclosing ball problem,
Algorithm 2 and SDPT3-PCG are much more efficient than the general purpose algorithms
in SeDuMi or SDPT3. Thus we shall concentrate only on Algorithm 2 and SDPT3-PCG
for the rest of this section.

Next, we look at the performance of Algorithm 2 and SDPT3-PCG for problems with
large n but m is moderate. For each pair of (n, m), we run the algorithms on 5 random
problems generated from (20) with the integer 445 replaced by 437, 441, 445, 449, and 453.
The results (each number is the average over 5 problems) reported in Table 3 show that
Algorithm 2 can solve problems with very large n in a reasonable amount of CPU time that
grows linearly with n. Its memory demand is just slightly more than the amount required
to store the data points {ci ∈ �n : i = 1, . . . , m}. However, SDPT3-PCG fails for the last

EFFICIENT ALGORITHMS FOR THE SMALLEST ENCLOSING BALL PROBLEM 159

2 larger problems in Table 3 due to excessive memory requirement. In fact, SDPT3-PCG
requires about 18 times more memory space than Algorithm 2. It is interesting to note
however, that when there is enough computer memory, SDPT3-PCG appears to be more
efficient (in terms of CPU time) than Algorithm 2.

In Table 4, we compare the the performance of Algorithm 2 and SDPT3-PCG for problems
with large m but n is moderate. Again, we test the algorithms on 5 randomly generated
problems for each pair of (n, m). Both Algorithm 2 and SDPT3-PCG can solve these
problems very efficiently. The required CPU time and memory for Algorithm 2 grow almost
linearly with m. For SDPT3-PCG, the required CPU time grows like m1.13 with m. Again,
its memory demand is about 18 times more than that required by Algorithm 2.

From the results in Tables 2 to 4, we conclude that Algorithm 2 is better than SeDuMi,
SDPT3 and SDPT3-PCG for very large problems, since it consumes less memory. For
moderately large problems, SDPT3-PCG is more efficient (in CPU time) than Algorithm 2.

References

1. R.H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited memory algorithm for bound constrained optimization,”
SIAM J. Sci. Comput., vol. 16, pp. 1190–1208, 1995.

2. J. Elzinga and D. Hearn, “The minimum covering sphere problem,” Management Sci., vol. 19, pp. 96–104,
1972.

3. B. Gärter, “Fast and robust smallest enclosing balls,” in Algorithms-ESA’99: 7th Annual European Symposium
Proceedings, J. Nestril (Ed.), Lecture Notes in Computer Science 1643, Springer-Verlag, pp. 325–338.

4. B. Gärter, Smallest enclosing ball—Fast and robust in C++, http://www.inf.ethz.ch/personal/gaertner/
miniball.html.

5. G.H. Hardy, J.E. Littlewood, and G. Polya, Inequalities. Cambridge University Press, 1952.
6. D.W. Hearn and J. Vijan, “Efficient algorithms for the minimum circle problem,” Oper. Res., vol. 30, pp.

777–795, 1982.
7. J.B. Hiriart-Urruty and C. Lemarechal, Convex Analysis and Minimization Algorithm. Springer-Verlag:

Berlin, Heidelberg, 1993.
8. X.S. Li, “An aggregate function method for nonlinear programming,” Sci. China Ser. A, vol. 34, pp. 1467–

1473, 1991.
9. N. Megiddo, “Linear-time algorithms for linear programming in �3 and related problems,” SIAM J. Comput.,

vol. 12, pp. 759–776, 1983.
10. Yu. E. Nesterov and A. Nemirovskii, Interior Polynomial Algorithms in Convex Programming. SIAM:

Philadelphia, 1994.
11. Yu. E. Nesterov and M.J. Todd, “Self-scaled barriers and interior-point methods for convex programming,”

Math. Oper. Res., vol. 22, pp. 1–42, 1997.
12. F.P. Preparata and M.I. Shamos, Computational Geometry: An Introduction, Texts and Monographs in Com-

puter Science, Springer-Verlag: New York, 1985.
13. M.I. Shamos and D. Hoey, “Closest-point problems,” in 16th Annual Symposium on Foundations of Computer

Science (Berkeley, CA, 1975), IEEE Computer Society, Long Beach, CA, 1975, pp. 151–162.
14. J.F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones,” Optim.

Methods Softw., vol. 11 & 12, pp. 625–653, 1999.
15. P. Sun and R.M. Freund, “Computation of minimum volume covering ellipsoids,” MIT Operations Research

Center Working Paper OR 064-02, July, 2002.
16. R.H Tütüncü, K.C. Toh, and M.J. Todd, “Solving semidefinite-quadratic-linear programs using SDPT3,”

Math. Programming, vol. 95, pp. 189–217, 2003.
17. R.J. Vanderbei, “LOQO user’s manual—version 3.10,” Optim. Methods Softw., vol. 11 & 12, pp. 485–514,

1999.

160 ZHOU, TOH AND SUN

18. E. Welzl, “Smallest enclosing disks (balls and ellipsoids),” in New Results and New Trends in Computer
Science, H. Maurer (Ed.) Springer-Verlag, 1991, pp. 359–370.

19. D. White, Enclosing ball software, http://vision.ucsd.edu/˜dwhite/ball.html.
20. S. Xu, R. Freund, and J. Sun, “Solution methodologies for the smallest enclosing circle problem, “Comput.

Optim. Appl.,” vol. 25, pp. 283–292, 2003.
21. G.L. Xue and Y.Y. Ye, “An efficient algorithm for minimizing a sum of Euclidean norms with applications,”

SIAM J. Optim., vol. 7, pp. 1017–1036, 1997.

