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Abstract. A new active set based algorithm is proposed that uses the conjugate gradient method to explore
the face of the feasible region defined by the current iterate and the reduced gradient projection with the fixed
steplength to expand the active set. The precision of approximate solutions of the auxiliary unconstrained problems
is controlled by the norm of violation of the Karush-Kuhn-Tucker conditions at active constraints and the scalar
product of the reduced gradient with the reduced gradient projection. The modifications were exploited to find the
rate of convergence in terms of the spectral condition number of the Hessian matrix, to prove its finite termination
property even for problems whose solution does not satisfy the strict complementarity condition, and to avoid
any backtracking at the cost of evaluation of an upper bound for the spectral radius of the Hessian matrix. The
performance of the algorithm is illustrated on solution of the inner obstacle problems. The result is an important
ingredient in development of scalable algorithms for numerical solution of elliptic variational inequalities.
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1. Introduction

We shall be concerned with the problem to find

min
x∈�

f (x) (1.1)

with � = {x : x ≥ �}, f (x) = 1
2 x�Ax − x�b, � and b given column n-vectors, and A

an n × n symmetric positive definite matrix. We shall be interested especially in problems
with n large and A reasonably conditioned or preconditioned [1], so that the application
of the conjugate gradient based methods is suitable. Problems of this type arise e.g. in
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application of the duality based domain decomposition methods to the solution of the
discretized variational inequalities [14, 29, 30] or in the solution of auxiliary problems in
the augmented Lagrangian type algorithms for minimization of convex quadratic functions
subject to more general constraints [12, 13].

A class of efficient algorithms for the solution of (1.1) that is relevant for our research
is based on the active set method [20]. The method dates back at least to Polyak [28] who
proposed to use the conjugate gradient method to minimize the cost function on the face
of the region defined by the current iterate until either the minimum on the current face
was reached or an unfeasible iteration was generated. In the first case the constraints that
violated the Karush-Kuhn-Tucker conditions were released, while in the second case the
conjugate gradient step was shortened to generate a feasible iterate at the boundary of �

which typically resulted in adding one index to the active set. Since the Polyak algorithm
decreases the cost function in each step, the faces with minimizers can never reappear. The
number of all faces being finite, the algorithm necessarily finds the face with the solution
of (1.1) and then the solution itself in a finite number of steps.

The Polyak algorithm suffers from several drawbacks. The first one is related to the trial
conjugate iterates that are not feasible. An unpleasant consequence of the Polyak strategy is
a lower bound on the number of iterations in terms of the difference between the numbers of
the active constraints in the initial approximation and the solution. To relieve the problem,
Dembo and Tulowitzski [6] and Yang and Tolle [33] proposed to use projections with
backtracking.

Another drawback concerns the basic approach combining the conjugate gradient method,
which is now understood as an efficient iterative method for approximate solution of linear
systems [1], and the finite termination strategy based on combinatorial reasoning that gives
extremely poor bound on the number of iterations that are necessary to find the solution of
(1.1). On the basis of results of Calamai and Moré [4], Moré and Toraldo [26] proposed
an algorithm that also exploits the conjugate gradients, but its convergence is driven by the
gradient projections with the steplength satisfying the sufficient decrease condition. The
steplength is found, as in earlier algorithms, by possibly expensive backtracking. In spite
of iterative basis of their algorithm, the authors proved that their algorithm preserved the
finite termination property of the original algorithm provided the solution satisfies the strict
complementarity condition.

The last serious drawback of the Polyak algorithm that is relevant for our work concerns
precision of the solution of the auxiliary minimization problems. The exact minimization
assumed exact arithmetics, so that the original theory did not support standard computer
implementation of the algorithm, and there were doubts about its efficiency, as it has been
observed by O’Leary [27] that the number of iterations may be reduced to about a half with
the algorithm that refined the accuracy of the conjugate gradient minimization during the
course of iterations. The result does not seem surprising as the conjugate gradient iterations
reduce directly only the norm of violation of the Karush-Kuhn-Tucker conditions at free
variables even at the later stage of the minimization when it is relatively small as compared
to that at the active variables. The effective theoretically supported strategies for adaptive
precision control were presented independently by Friedlander and Martı́nez with their col-
laborators and Dostál [3, 8–10, 21–23]. The basic idea was to control the precision of the
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solution of the auxiliary problems by the ratio of norms of violation of the Karush-Kuhn-
Tucker conditions at free and active variables. These results offered exploitation of the
conjugate gradient method as an effective approximate iterative minimizer in faces, relaxed
conditions for implementation of the gradient projections, and gave guidance for devel-
opment of effective algorithms applied to the solution of complex engineering problems
[14, 15, 29, 30]. Moreover, it was shown that the finite termination property of the original
Polyak algorithm may be preserved with inexact solution of the auxiliary problems even
for problems whose solution does not satisfy the strict complementarity condition [9, 10].

The common drawbacks of all the above mentioned strategies were possible backtracking
in search of the gradient projection step and the lack of results on the rate of convergence. A
key to further progress was the result of Schöberl [29, 30] who found the bound on the rate
of convergence of the gradient projection method for (1.1) in terms of the spectral condition
number κ(A) of A. Recently, it has been observed that this nice result may be plugged
into the proportioning algorithm [11] to get a similar result. Moreover, the algorithm did
not require any backtracking and it turned out that it was possible to preserve the finite
termination property for the problems whose solution satisfies the strict complementarity
condition. Let us recall that the linear rate of convergence of the gradient projection method
was proved earlier even for more general problems by Luo and Tseng [25], but they did not
make any attempt to specify the constant.

The main goal of this paper is to give a new simple proof of an improved bound on the
rate of convergence of the gradient projection method and to propose a modification of
the algorithm [11] so that it enjoys the finite termination property even for problems with
the solution that does not satisfy the strict complementarity condition. The new algorithm
differs from that described in [11] in two new ingredients, namely in the adaptive precision
control of the solution of auxiliary linear problems that takes into account also the part of
the gradient that can be used in the gradient projection step, and the gradient projection step
is replaced by the so called expansion step which does not exploit the components of the
gradient that belong to the so called chopped gradient.

We believe that there are at least two reasons why to consider the finite termination results
important. First the algorithm with the finite termination property is less likely to suffer from
oscillations often attributed to the active set based algorithms as it removes the indices from
the active set only when there is some ground to do it. The second reason is that such
algorithm is more likely to generate longer sequences of the conjugate gradient iterations
and finally switches to the conjugate gradient method, so that it can better exploit its nice
self-acceleration property [31]. It seems very difficult to enhance these characteristics of
the algorithm into the rate of convergence.

Our results are useful for solution of a class of problems with uniformly bounded spectral
condition number od the Hessian matrix of the cost functions. In such case, we get the linear
rate of convergence in steps that involve only matrix-vector multiplication, and it is easy to
see that we can find the approximate solution with prescribed relative precision in O(1) steps.
For example, such a class of problems arises from application of the FETI based domain
decomposition methods (e.g. [19]) to numerical solution of elliptic boundary variational
inequalities. If we apply our results to the solution of this class of problems, we obtain
algorithm with linear complexity (e.g. [17, 18, 29, 30]).
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The paper is organized as follows. After the introduction, we give a new simple proof of the
improved bound on the rate of convergence of the gradient projection method and introduce
a modification of the algorithm proposed in [11]. Then we prove the rate of convergence and
the finite termination property. Finally we discuss briefly the implementation and give results
of numerical experiments that illustrate the performance of the new algorithm. Let us recall
that the algorithm works with the fixed steplength of the reduced gradient projection step
so that it does not use any backtracking, but requires an upper bound on the spectral radius
of the Hessian A of the cost function f . The performance of the algorithm is demonstrated
on a numerical example.

2. Notations and preliminaries

It is well known that the solution to the problem (1.1) always exists, and it is necessarily
unique [2]. For arbitrary n-vector x , let us define the gradient g = g(x) of f by

g = g(x) = Ax − b. (2.1)

Then the unique solution x̄ of (1.1) is fully determined by the Karush-Kuhn-Tucker opti-
mality conditions [2] so that for i = 1, . . . , n,

x̄i = �i implies ḡi ≥ 0 and x̄i > �i implies ḡi = 0. (2.2)

Let N denote the set of all indices so that

N = {1, 2, . . . , n}.

The set of all indices for which xi = �i is called an active set of x . We shall denote it by
A(x) so that

A(x) = {i ∈ N : xi = �i }.

Its complement

F(x) = {i ∈ N : xi �= �i }

and subset

B(x) = {i ∈ N : xi = �i and gi > 0}

are called a free set and a binding set, respectively.
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To enable an alternative reference to the Karush-Kuhn-Tucker conditions (2.2), we shall
introduce a notation for the free gradient ϕ and the chopped gradient β that are defined by

ϕi (x) = gi (x) for i ∈ F(x), ϕi (x) = 0 for i ∈ A(x)

βi (x) = 0 for i ∈ F(x), βi (x) = g−
i (x) for i ∈ A(x)

where we have used the notation g−
i = min{gi , 0}. Thus the Karush- Kuhn-Tucker condi-

tions (2.2) are satisfied iff the projected gradient ν(x) = ϕ(x) + β(x) is equal to zero.
The Euclidean norm and the A-energy norm of x will be denoted by ‖x‖ and ‖x‖A,

respectively. Thus ‖x‖2 = x�x and ‖x‖2
A = x�Ax. Analogous notation will be used for the

induced matrix norm, so that the spectral condition number κ(A) of the matrix A is defined
by

κ(A) = ‖A‖‖A−1‖.

The projection P� to � is defined for any n-vector x by

P�(x) = � + (x − �)+

where y+ denote for any n-vector y the vector with entries y+
i = max{yi , 0}.

3. Algorithm with proportioning and gradient projections

The algorithm for the solution of (1.1) that we propose here combines the proportioning
algorithm mentioned above with the gradient projections. It exploits a given constant � > 0,
a test to decide about leaving the face and three types of steps to generate a sequence of
iterates {xk} that approximate the solution of (1.1).

The expansion step is defined by

xk+1 = P�(xk − ᾱϕ(xk)) (3.1)

with the fixed steplength ᾱ ∈ (0, ‖A‖−1]. This step may expand the current active set. To
describe it without P�, let us introduce, for any x ∈ �, the reduced free gradient ϕ̃(x) with
the entries

ϕ̃i = ϕ̃i (x) = min{(xi − �i )/ᾱ, ϕi },

so that

P� (x − ᾱϕ(x)) = x − ᾱϕ̃(x). (3.2)

Using the new notation, we can write also

P� (x − ᾱg(x)) = x − ᾱ (ϕ̃(x) + β(x)) . (3.3)
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If the inequality

‖β(xk)‖2 ≤ �2ϕ̃(xk)�ϕ(xk) (3.4)

holds then we call the iterate xk strictly proportional. The test (3.4) is used to decide which
component of the projected gradient ν(xk) will be reduced in the next step. Notice that the
right-hand side of (3.4) blends the information about the current free gradient and its part
that can be used in the expansion step, while the related relations in [3, 7–9, 21–23] consider
only the norm of the free gradient.

The proportioning step is defined by

xk+1 = xk − αcgβ(xk) (3.5)

with the steplength αcg that minimizes f (xk − αβ(xk)). It is easy to check [1, 24] that αcg

that minimizes f (x − αd) for given d and x may be evaluated by the formula

αcg = αcg(d) = d�g(x)

dT Ad
. (3.6)

The purpose of the proportioning step is to remove indices from the active set. Note that if
xk ∈ �, then xk+1 = xk − αcgβ(xk) ∈ �.

The conjugate gradient step is defined by

xk+1 = xk − αcg pk (3.7)

where pk is the conjugate gradient direction [1, 24] which is constructed recurrently. The
recurrence starts (or restarts) from ps = ϕ(xs) whenever xs is generated by the expansion
step or the proportioning step. If pk is known, then pk+1 is given by the formulae [1, 24]

pk+1 = ϕ(xk) − γ pk, γ = ϕ(xk)� Apk

(pk)� Apk
. (3.8)

The basic property of the conjugate directions ps, . . . , pk that are generated by the re-
currence (3.8) from the restart ps is their mutual A-orthogonality, i.e. (pi )� Ap j = 0 for
i, j ∈ {s, . . . , k}, i �= j . It follows easily [1, 24] that

f (xk+1) = min{ f (xs + y) : y ∈ Span{ps, . . . , pk}} (3.9)

where Span{ps, . . . , pk} denotes the vector space of all linear combinations of the vectors
ps, . . . , pk . The conjugate gradient steps are used to carry out the minimization in the face

WI = {x : xi = �i for i ∈ I } (3.10)

given by I = A(xs) efficiently.
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Let us define the algorithm that we propose in the form that is convenient for analysis.

Algorithm 3.1 (Modified proportioning with reduced gradient projections (MPRGP)). Let
x0 ∈ �, ᾱ ∈ (0, ‖A‖−1], and � > 0 be given. For k ≥ 0 and xk known, choose xk+1 by
the following rules:

(i) If ν(xk) = 0, set xk+1 = xk.
(ii) If xk is strictly proportional and ν(xk) �= 0, try to generate xk+1 by the conjugate

gradient step. If xk+1 ∈ �, then accept it, else generate xk+1 by the expansion step.
(iii) If xk is not strictly proportional, define xk+1 by proportioning.
More details about implementation of the algorithm may be found in Section 7.

4. Estimate for the gradient projection

We shall first present a new simplified proof of the strengthening of the above mentioned
result by Schöberl [29].

Theorem 4.1. Let x̄ denote the unique solution of (1.1), let λ1 denote the smallest eigen-
value of A, ‖A‖ ≤ 1, and x ∈ �. Then

f (P�(x − g(x))) − f (x̄) ≤ (1 − λ1)( f (x) − f (x̄)). (4.1)

Proof: Let x ∈ � be arbitrary but fixed, so that we can define a quadratic function

F(y) = f (y) + 1

2
(y − x)�(I − A)(y − x).

It is defined so that

F(y) ≥ f (y) for any y ∈ R
n, F(x) = f (x), and ∇F(x) = ∇ f (x).

Moreover, the Hessian matrix of F is equal to I , so that

∇F(y) = ∇ f (y) + (I − A)(y − x) = y − x + g(x).

We shall define also the reduced gradient g̃(x) with the entries

g̃i = g̃i (x) = min{xi − �i , gi },

so that

P�(x − g(x)) = x − g̃, 0 ≤ gi (x) − g̃i (x), �i ≤ xi − g̃i (x).
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Since any y ∈ � may be written in the form y = x − g̃(x) + d with di ≥ g̃i (x) − xi + �i ,
we get

F(y) = F(P�(x − g(x)) + d) = F(P�(x − g(x))) + d�∇F(x − g̃(x)) + 1

2
‖d‖2

= F(P�(x − g(x))) + d�(g(x) − g̃(x)) + 1

2
‖d‖2

≥ F(P�(x − g(x))) + (g̃(x) − x + �)�(g(x) − g̃(x)) + 1

2
‖d‖2

= F(P�(x − g(x))) + 1

2
‖d‖2 ≥ F(P�(x − g(x))). (4.2)

Let us now denote by [x̄, x] the convex hull of {x̄, x} and let d = x̄ − x . Using (4.2),
[x̄, x] = {x + td : t ∈ [0, 1]} ⊆ � and λ1‖d‖2 ≤ d� Ad, we get

f (P�(x − g(x))) − f (x̄) ≤ F(P�(x − g(x))) − f (x̄) = min{F(y) − f (x̄) : y ∈ �}
≤ min{F(y) − f (x̄) : y ∈ [x̄, x]}
= min{F(x + td) − f (x + d) : t ∈ [0, 1]}
≤ min

{
td�g(x) + 1

2
t2‖d‖2 − d�g(x)

− 1

2
d� Ad : t ∈ [0, 1]

}

≤ λ1d�g(x) + 1

2
λ2

1‖d‖2 − d�g(x) − 1

2
d� Ad

≤ λ1d�g(x) + 1

2
λ1d� Ad − d�g(x) − 1

2
d� Ad

= (λ1 − 1)

(
d�g(x) + 1

2
d� Ad

)
= (λ1 − 1)( f (x + d)

− f (x))

= (1 − λ1)( f (x) − f (x̄)). (4.3)

Corollary 4.2. Let x̄ denote the unique solution of (1.1), let λ1 denote the smallest eigen-
value of A, ᾱ ∈ (0, ‖A‖−1], and let x ∈ �. Then

f (P�(x − ᾱg(x))) − f (x̄) ≤ ρ( f (x) − f (x̄)) (4.4)

where

ρ = (1 − ᾱλ1) < 1. (4.5)

Proof: Apply Theorem 4.1 to the function ᾱ f (x).
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5. Rate of convergence

Theorem 5.1. Let � > 0 be a given constant, let λ1 denote the smallest eigenvalue of
A, �̂ = max{�, �−1}, let x̄ denote the unique solution of (1.1), and let {xk} denote the
sequence generated by Algorithm 3.1 with ᾱ ∈ (0, ‖A‖−1]. Then

f (xk+1) − f (x̄) ≤ η( f (xk) − f (x̄)) (5.1)

where x̄ denotes the unique solution of (1.1) and

η = 1 − ᾱλ1

2 + 2�̂2
. (5.2)

The error in the A-energy norm is bounded by

‖xk − x̄‖2
A ≤ 2ηk( f (x0) − f (x̄)). (5.3)

Proof: We shall compare separately all three possible steps with the gradient projection
estimate (4.4), using that for any vectors x and d

f (x + d) = f (x) + d�g(x) + 1

2
d� Ad ≥ f (x) + d�g(x). (5.4)

In particular, combining (5.4) with (3.3), we get the estimate

f (P�(xk − ᾱg(xk))) ≥ f (xk) − ᾱ(ϕ̃(xk)�ϕ(xk) + ‖β(xk)‖2). (5.5)

Let us first assume that xk+1 is generated by the expansion step (3.1) and notice that

ᾱ2ϕ̃(xk)� Aϕ̃(xk) ≤ ᾱ2‖A‖‖ϕ̃(xk)‖2 ≤ ᾱ‖ϕ̃(xk)‖2 ≤ ᾱϕ̃(xk)�ϕ(xk).

After using (5.4) and the last inequality, we get

f (xk+1) = f (xk − ᾱϕ̃(xk))) = f (xk) − ᾱϕ̃(xk)�ϕ(xk) + ᾱ2

2
ϕ̃(xk)� Aϕ̃(xk)

≤ f (xk) − ᾱ

2
ϕ̃(xk)�ϕ(xk). (5.6)

If xk+1 is generated by the conjugate gradient step (3.7), then by (3.9) and (3.6)

f (xk+1) ≤ f (xk − αcgϕ(xk)) = f (xk) − 1

2

‖ϕ(xk)‖4

ϕ(xk)� Aϕ(xk)
.
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Taking into account the definition of ᾱ and ϕ̃(xk), we get

f (xk+1) ≤ f (xk) − ᾱ

2
‖ϕ(xk)‖2 ≤ f (xk) − ᾱ

2
ϕ̃(xk)�ϕ(xk). (5.7)

Comparing (5.6) and (5.7), we may observe that we got the same estimates for the
expansion and conjugate gradient steps. These steps are taken only when xk is strictly
proportional, so that

‖β(xk)‖2 ≤ �2ϕ̃(xk)�ϕ(xk). (5.8)

After substituting (5.8) into (5.5), we get

f (P�(xk − ᾱg(xk))) ≥ f (xk) − ᾱ(1 + �2)ϕ̃(xk)�ϕ(xk). (5.9)

Thus for xk+1 generated by the expansion or conjugate gradient steps, we get by elementary
algebra and application of (5.9) that

f (xk+1) ≤ f (xk) − ᾱ

2
ϕ̃(xk)�ϕ(xk)

= 1

2(1 + �2)
( f (xk) − ᾱ(1 + �2)ϕ̃(xk)�ϕ(xk) + (1 + 2�2) f (xk))

≤ 1

2(1 + �2)
( f (P�(xk − ᾱg(xk))) + (1 + 2�2) f (xk)). (5.10)

After substituting (4.4) with x = xk into the last expression, we get

f (xk+1) ≤ ρ + 1 + 2�2

2 + 2�2
f (xk) + 1 − ρ

2 + 2�2
f (x̄). (5.11)

Let us finally assume that xk+1 is generated by the proportioning step (3.5), so that

‖β(xk)‖2 > �2ϕ̃(xk)�ϕ(xk) (5.12)

and

f (xk+1) = f (xk − αcgβ(xk)) = f (xk) − 1

2

‖β(xk)‖4

β(xk)� Aβ(xk)
.

Taking into account the definition of ᾱ, we get

f (xk+1) ≤ f (xk) − ᾱ

2
‖β(xk)‖2, (5.13)
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where the right hand side may be rewritten in the form

f (xk) − ᾱ

2
‖β(xk)‖2 = 1

2(1 + �−2)
( f (xk) − ᾱ(1 + �−2)‖β(xk)‖2

+ (1 + 2�−2) f (xk)). (5.14)

We can also substitute (5.12) into (5.5) to get

f (P�(xk − ᾱg(xk))) > f (xk) − ᾱ(1 + �−2)‖β(xk)‖2. (5.15)

Substituting (5.15) into (5.14) yields

f (xk) − ᾱ

2
‖β(xk)‖2 <

1

2(1 + �−2)
( f (P�(xk − ᾱg(xk)))

+ (1 + 2�−2) f (xk)). (5.16)

After substituting (4.4) with x = xk into the last expression, we get

f (xk+1) ≤ ρ + 1 + 2�−2

2 + 2�−2
f (xk) + 1 − ρ

2 + 2�−2
f (x̄). (5.17)

Comparing the last inequality with (5.11) and taking into account that by definition � ≤ �̂

and �−1 ≤ �̂, we obtain the estimate

f (xk+1) ≤ ρ + 1 + 2�̂2

2 + 2�̂2
f (xk) + 1 − ρ

2 + 2�̂2
f (x̄)

which is valid for all three steps of Algorithm 3.1. The proof of (5.1) may be completed by
direct computation.

To get the error bound (5.3), notice that the Karush-Kuhn-Tucker conditions (2.2) imply
that (xk − x̄)�g(x̄) ≥ 0, so that by (5.4) applied to d = xk − x̄, x = x̄ and by (5.1)

‖xk − x̄‖2
A = 2( f (xk) − f (x̄) − (xk − x̄)�g(x̄)) ≤ 2( f (xk) − f (x̄))

≤ 2ηk( f (x0) − f (x̄)).

Theorem 5.1 indicates that the best rate of convergence may be achieved for � = �̂ = 1
in agreement with heuristics that we should leave the face when the chopped gradient
dominates the violation of the Karush-Kuhn-Tucker conditions. The formula for η than
reads

η = 1 − ᾱλ1

4
.
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6. Finite termination

Lemma 6.1. Let {xk} denote the sequence generated by Algorithm 3.1 with a given � > 0.
Then there is k0 such that for k ≥ k0

F(x̄) ⊆ F(xk), F(x̄) ⊆ F(xk − ᾱϕ̃(xk)) and B(x̄) ⊆ B(xk). (6.1)

Proof: Since (6.1) is trivially satisfied when there is k = k0 such that xk = x̄ , we shall
assume in what follows that xk �= x̄ for any k ≥ 0.

Let us first assume that F(x̄) �= ∅ and B(x̄) �= ∅, so that

ε = min{x̄i − �i : i ∈ F(x̄)} > 0 and δ = min{gi (x̄) : i ∈ B(x̄)} > 0.

Since by Theorem 5.1 {xk} converges to x̄ , there is k0 such that for any k ≥ k0

gi (x
k) ≤ ε

4ᾱ
for i ∈ F(x̄) (6.2)

xk
i ≥ �i + ε

2
for i ∈ F(x̄) (6.3)

xk
i ≤ �i + ᾱδ

4
for i ∈ B(x̄) (6.4)

gi (x
k) ≥ δ

2
for i ∈ B(x̄). (6.5)

In particular, for k ≥ k0, the first inclusion of (6.1) follows from (6.3), while the second
inclusion follows from (6.2) and (6.3) as for i ∈ F(x̄)

xk
i − ᾱϕi (x

k) = xk
i − ᾱgi (x

k) ≥ �i + ε

2
− ε

4
> �i .

Let k ≥ k0 and observe that, by (6.4) and (6.5), for any i ∈ B(x̄)

xk
i − ᾱgi (x

k) ≤ �i + ᾱδ

4
− ᾱδ

2
< �i ,

so that if some xk+1, k ≥ k0 is generated by the expansion step and i ∈ B(x̄), then

xk+1
i = max

{
�i , xk

i − ᾱgi (x
k)

} = �i

and B(xk+1) ⊇ B(x̄). Moreover, using (6.5) and definition of Algorithm 3.1, we can directly
verify that if B(xk) ⊇ B(x̄), then also B(xk+1) ⊇ B(x̄). Thus it remains to prove that there
must be some s ≥ k0 such that xs is generated by the expansion step.
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Let us examine what may happen for k ≥ k0. First observe that if xi > 0 for some i ∈ B(x̄),
then we can never take the full conjugate direction step in the direction pk = ϕ(xk). The
reason is that

αcg(pk) = ϕ(xk)�g(xk)

ϕ(xk)� Aϕ(xk)
= ‖ϕ(xk)‖2

ϕ(xk)� Aϕ(xk)
≥ ‖A‖−1 ≥ ᾱ,

so that for i ∈ F(xk) ∩ B(x̄), by (6.4) and (6.5),

xk
i − αcg pk

i = xk
i − αcggi (x

k) ≤ xk
i − ᾱgi (x

k) ≤ �i + ᾱδ

4
− ᾱδ

2
< �i . (6.6)

It follows by definition of Algorithm 3.1 that if xk, k ≥ k0 is generated by the proportioning
step, then the following trial conjugate gradient step is not feasible and xk+1 is necessarily
generated by the expansion step.

To complete the proof, observe that Algorithm 3.1 can generate only a finite sequence
of consecutive iterates by the conjugate gradient steps. In particular, it follows by the
finite termination property of the conjugate gradient method [1] that if there is neither
proportioning step nor the expansion step for k ≥ k0, then there is l ≤ n such that ϕ(xk0+l) =
0. Thus either xk0+l = x̄ and by the definition of the step (i) of Algorithm 3.1 B(xk) = B(x̄)
for k ≥ k0 + l, or xk0+l is not strictly proportional and the next iterate is generated by
the proportioning step followed by the expansion step. This completes the proof, as the
cases F(x̄) = ∅ and B(x̄) = ∅ may be easily proved by the specialization of the above
arguments.

Corollary 6.2. Let {xk} denote the sequence generated by Algorithm 3.1, and let the
solution x̄ satisfies the condition of strict complementarity, i.e. x̄i = �i implies gi (x̄) �= 0.
Then there is k ≥ 0 such that xk = x̄ .

Proof: If x̄ satisfies the condition of strict complementarity, then A(x̄) = B(x̄), and by
assumptions and Lemma 6.1, there is k0 ≥ 0 such that F(xk) = F(x̄) and B(xk) = B(x̄).
Thus all xk, k ≥ k0 that satisfy x̄ �= xk−1 are generated by the conjugate gradient steps and
by the finite termination property of the conjugate gradient method there is k ≤ k0 +n such
that xk = x̄ .

Our final goal in this section is to obtain the result on finite termination of Algorithm 3.1
for the solution of (1.1) in case that it does not satisfy the condition of strict complementarity.
We shall base our analysis on our earlier result on proportioning.

Theorem 6.3. Let x ∈ � and κ(A)1/2 ≤ �. Denote I = A(x), and suppose that

�‖ϕ(x)‖ < ‖β(x)‖. (6.7)
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Then the vector y = x − ‖A‖−1β(x) satisfies

j(y) < min{ f (z) : z ∈ WI } (6.8)

where WI is defined in (3.10).

Proof: See [10].

Lemma 6.4. Let ᾱ ∈ (0, ‖A‖−1], x ∈ � and y = x − ᾱϕ̃(x). Then

‖ϕ(y)‖2 ≤ 4ϕ̃(x)�ϕ(x) and ‖β(y)‖ ≥ ‖β(x)‖ − 2‖ϕ̃(x)‖. (6.9)

Proof: Let us denote F = F(y) and notice that F(y) ⊆ F(x). Since

g(y) = g(x) − ᾱAϕ̃(x) and ϕ̃F (x) = ϕF (x) = gF (x), (6.10)

we get

‖ϕ(y)‖ = ‖gF (y)‖ = ‖gF (x) − ᾱAF ϕ̃(x)‖ ≤ ‖ϕ̃F (x)‖
+ ᾱ‖AF ϕ̃(x)‖ ≤ 2‖ϕ̃(x)‖. (6.11)

Using (6.11) and the definition of ϕ̃(x), we get

‖ϕ(y)‖2 ≤ 4‖ϕ̃(x)‖2 ≤ 4ϕ̃(x)�ϕ(x). (6.12)

To prove the second inequality of (6.9), denote B = {i ∈ A(x) : gi (x) ≤ 0} and notice
that

A(y) ⊇ A(x) ⊇ B, (6.13)

so that

‖β(y)‖ = ∥∥gA(y)(y)−
∥∥ ≥ ‖gB(y)−‖ = ‖(gB(x) − ᾱAB ϕ̃(x))−‖

= ‖(βB(x) − ᾱAB ϕ̃(x))−‖. (6.14)

Using in sequence ‖βB(x)‖ = ‖β(x)‖, ‖ᾱAB ϕ̃(x)‖ ≤ ‖ϕ̃(x)‖, (6.14), properties of the
norm, β−(x) = β(x), and ‖z − z−‖ ≤ ‖z − t‖ for any t with non-positive entries, we get

‖β(x)‖ − ‖ϕ̃(x)‖ − ‖β(y)‖ ≤ ‖βB(x)‖ − ‖ᾱAB ϕ̃(x)‖ − ‖(βB(x) − ᾱAB ϕ̃(x))−)‖
≤ ‖(βB(x) − ᾱAB ϕ̃(x))‖ − ‖(βB(x) − ᾱAB ϕ̃(x))−‖
≤ ‖(βB(x) − ᾱAB ϕ̃(x)) − (βB(x) − ᾱAB ϕ̃(x))−‖
≤ ‖(βB(x) − ᾱAB ϕ̃(x)) − βB(x)‖ ≤ ‖ϕ̃(x)‖.

This proves the second inequality of (6.9).
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Corollary 6.5. Let � ≥ 2, ᾱ ∈ (0, ‖A‖−1], x ∈ � and

�2ϕ̃(x)�ϕ(x) < ‖β(x)‖2. (6.15)

Then the vector y = x − ᾱϕ̃(x) satisfies

� − 2

2
‖ϕ(y)‖ < ‖β(y)‖. (6.16)

Proof: The inequality (6.16) holds trivially for � = 2. For � > 2, using in sequence
(6.9), ‖ϕ̃(x)‖2 ≤ ϕ̃(x)�ϕ(x), twice (6.15), and (6.9), we get

‖β(y)‖ ≥ |β(x)‖ − 2‖ϕ̃(x)‖ ≥ ‖β(x)‖ − 2
√

ϕ̃�(x)ϕ(x) > (1 − 2�−1)‖β(x)‖
> (� − 2)

√
ϕ̃�(x)ϕ(x) ≥ � − 2

2
‖ϕ(y)‖. (6.17)

Theorem 6.6. Let {xk} denote the sequence generated by Algorithm 3.1. with

� ≥ 2(
√

κ(A) + 1). (6.18)

Then there is k ≥ 0 such that xk = x̄ .

Proof: Let xk be generated by Algorithm 3.1 and let � satisfy (6.18). Let k0 be that of
Lemma 6.1 and let k ≥ k0 be such that xk is not strictly proportional, so that �2ϕ̃(xk)�ϕ(xk)
< ‖β(xk)‖2. Then by Corollary 6.5 the vector y = xk − ᾱϕ̃(xk) satisfies

�1‖ϕ(y)‖ < ‖β(y)‖ (6.19)

with

�1 = � − 2

2
≥

√
κ(A).

Moreover, y ∈ � and by Lemma 6.1 and definition of y

A(x̄) ⊇ A(y) ⊇ A(xk) ⊇ B(xk) ⊇ B(x̄), (6.20)

so that by Theorem 6.3 the vector

z = y − ‖A‖−1β(y)
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satisfies

f (z) < min{ f (x) : x ∈ WI } (6.21)

with I = A(y). Since I satisfies by (6.20) A(x̄) ⊇ I ⊇ B(x̄), we have also

f (x̄) = min{ f (x) : x ∈ �} = min{ f (x) : x ∈ WI }. (6.22)

However, z ∈ �, so that (6.22) contradicts (6.21). Thus all xk are strictly proportional for
k ≥ k0 so that

A(xk0 ) ⊆ A(xk0+1) ⊆ . . . .

Using the finite termination property of the conjugate gradient method, we conclude that
there must be k such that x̄ = xk .

7. Implementation of the algorithm

In this section, we shall describe in more details implementation of Algorithm 3.1 that we
use in our numerical experiments. The implementation differs from Algorithm 3.1 in that
it exploits the current conjugate direction to generate an intermediate iteration xk+ 1

2 before
the expansion step that generates xk from xk+ 1

2 . Such modification does not require any
additional matrix-vector multiplication and the estimate (5.1) remains valid as f (xk+ 1

2 ) −
f (xk) ≤ 0 and

f (xk+1) − f (x̄) ≤ η
(

f
(
xk+ 1

2
) − f (x̄)

)
= η

((
f (xk+ 1

2
) − f (xk)

) + f (xk) − f (x̄)) ≤ η( f (xk) − f (x̄)).

We describe our algorithm in an easily understandable variant of the Matlab-like language.
To preserve readability, we do not distinguish generations of variables by indices unless it
is convenient for further reference.

Algorithm 7.1 (Modified proportioning with reduced gradient projections (MPRGP)).
Given a symmetric positive definite matrix A of the order n, n-vectors b, �, � = {x :
� ≤ x}, x0 ∈ �, � > 0, ᾱ ∈ (0, ‖A‖−1] and ε > 0.
Step 0. {Initialization.}

Set k = 0, r = Ax0 − b, p = ϕ(x0)
while ‖ν(xk)‖ > ε

if ‖β(xk)‖2 ≤ � ϕ̃(xk)�ϕ(xk)
Step 1. {Proportional xk . Trial conjugate gradient step.}

αcg = r� p/p� Ap, y = xk − αcg p
α f = max{α : xk − αp ∈ �}.
if αcg ≤ α f
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Step 2. {Conjugate gradient step.}
xk+1 = y, r = r − αcg Ap,

γ = ϕ(y)� Ap/p� Ap, p = ϕ(y) − γ p
end if
else

Step 3. {Expansion step.}
xk+ 1

2 = xk − α f p; r = r − α f Ap;
xk+1 = P�(xk+ 1

2 − ᾱϕ(xk+ 1
2 )),

r = Axk+1 − b, p = ϕ(xk+1)
end else

end if
else

Step 4. {Proportioning step.}
d = β(xk), αcg = r�d/d� Ad,
xk+1 = xk − αcgd, r = r − αcg Ad, p = ϕ(xk+1)

end else
k = k + 1

end while
Step 5. {Return solution.}

x = xk.

8. Numerical experiments

The key ingredients of the algorithm have already proved to be useful in development of
scalable algorithms for numerical solution variational inequalities [16–18, 29, 30] . In com-
bination with duality based domain decomposition methods and augmented Lagrangians,
the algorithm required as little as 65 conjugate gradient iterations to solve an elliptic varia-
tional inequality discretized by 8454272 nodes with 2049 nodes on the free boundary [17],
much less then one direct solve of related linear problem. Thus we give here only two simple
examples that may be easily reproduced to illustrate the efficiency of the algorithm.

We have implemented our algorithm in Matlab and compared its performance with that of
two other algorithms on 1D and 2D inner obstacle problems. We used the stopping criterion
‖ν(x)‖ ≤ 10−5‖b‖, ᾱ = ‖A‖∞ and � = 1.

The first problem arises from the discretization of the problem to find the minimum of

f (u) = 1

2

∫ 0.5

0
‖u′(x)‖2dx +

∫ 0.5

0
udx

subject to u ∈ K, where

K = {u ∈ H 1[0, 0.5] : l ≤ u on (0, 0.5) and u(0) = u′(0.5) = 0}.

The problem was discretized by linear finite elements on a regular grid with 50 nodal
variables.
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We have used two supports in our tests. The circular support c was defined by the lower
part of the circle of radius R = 2.03 with center S = (.5, 1.943). The line support l was
defined by the horizontal line y = −.04.

To solve the problem, we used the algorithm MPRPG of the previous section and, for
comparison, also the monotonic proportioning MP [9] and the Polyak algorithm Polyak
[28]. Let us recall that the monotonic proportioning uses varying steplength and was com-
pared with some other algorithms in [9]. We started our computations always from x0 = 0.
The parameters of the circular support are such that if we start the solution with x0 = 0,
the first constraints that are activated in the process of solution are later released. We use
the line support to examine the performance of the algorithm on problems with expanding
active set. The performance of the MPRGP algorithm on problems with shrinking active
set is similar to that of any other proportioning algorithm with the same �.

The results of computations are in Table 1. The computational cost is measured by the
number n A of the multiplications by the matrix A.

The second problem is the minimization of

f (u) = 1

2

∫
�

‖∇u(x)‖2d� +
∫

�

ud�

subject to u ∈ K, where � = [0, 0.5] × [0, 0.5] and

K = {u ∈ H 1(�) : l ≤ u on �, u(x, .5) = uy(x, .5)

= u(.5, y) = ux (.5, y) = 0 for (x, y) ∈ �}.

The problem was discretized using the linear finite elements on a regular grid with 50 nodal
variables in each direction, 2500 altogether. The results for the sphere obstacle s defined
by the radius R = 5 and center S = (0, 0, 4.94) and for the plane obstacle p defined by
z = −.05 are in Table 2.

The tables indicate that the performance of the MPRPG algorithm is for the problems
considered slightly better then the monotonic proportioning algorithm. Let us mention that
the solution of the related unconstrained problems in D1 and D2 required 51 and 147
conjugate gradient iterations, respectively.

Table 1. Performance of the algorithm on 1D problems.

Support Algorithm n A Active constraints

l MPRGP 116 23

l MP 112 23

l Polyak 360 23

c MPRGP 153 19

c MP 179 19

c Polyak 537 19
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Table 2. Performance of the algorithm on 2D problems.

Support Algorithm n A Active constraints

p MPRGP 260 283

p MP 283 283

p Polyak 1897 283

s MPRGP 484 245

s MP 491 245

s Polyak 1207 245

9. Comments and conclusions

We presented a new variant of the active set based algorithm for the solution of strictly convex
quadratic programming problems with inexact solution of auxiliary linear problems. The
unique feature of the new algorithm is balanced treatment of the chopped and free gradients
that enables to prove both its rate of convergence in the matrix-vector multiplications and
its finite termination property even for problems whose solution does not satisfy the strict
complementary condition. The algorithm avoids any backtracking at the cost of using the
upper bound on the spectral norm of the Hessian matrix. The experiments show that its
performance is comparable with that of some other efficient methods.

The rate of convergence of the new algorithm seems to be a bit pessimistic as it is even
worse than that of the gradient projection (4.4). The reason is that it is based on analysis of
particular steps and does not take into account better estimates of the rate of convergence
for the conjugate gradient method [1, 24] that yield much more efficient performance of
the algorithm in consecutive conjugate gradient steps. In spite of that our estimate seems to
be a considerable improvement over qualitative convergence results of related algorithms
based on sufficient decrease condition that were discussed in the introduction.

Let us recall that there are algorithms with even superlinear convergence (e.g. Coleman
and Hulbert [5] or variants of the interior point methods [32]), but their typical step requires
solution of an auxiliary linear problem which may be much more expensive than the solu-
tion of the whole problem by the algorithm presented here. This typically happens for large
problems whenever the Hessian of the cost function does not allow fast decomposition,
but is well conditioned. The performance of our algorithm may be further improved by
preconditioning and heuristics as in [9]. We shall give the details elsewhere. The algorithm
presented here is an important ingredient in development of scalable algorithms for numer-
ical solution of elliptic variational inequalities based on the FETI methods [18, 14–16, 29,
30].
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