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Abstract. This paper gives a new definition of a filled function, which eliminates certain drawbacks of
the traditional definitions. Moreover, this paper proposes a quasi-filled function to improve the efficiency
of numerical computation and overcomes some drawbacks of filled functions. Then, a new filled function
method and a quasi-filled function method are presented for solving a class of global optimization problems.
The global optimization approaches proposed in this paper will find a global minimum of original problem
by implementing a local search scheme to the proposed filled function or quasi-filled function. Illustrative
examples are provided to demonstrate the efficiency and reliability of the proposed scheme.
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1. Introduction

Consider the following unconstrained programming problem:

min f (x)

s.t. x ∈ Rn.
(1.1)

Many results devoted to global optimization are available in the literature. See, for
example, [3–10] and [13]. In order to ensure the ability to escape from local minimum,
many global optimization algorithms would include in their consideration a subproblem
of transcending local optimality, namely: given a local minimizer x∗, find a better
feasible solution, or showing that x∗ is a global minimizer upon termination. Among
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all the different types of global optimization algorithms available in the literature,
one popular approach is called the modified function approach. In this approach, the
resolution to the subproblem under concerned is to replace the original cost function
with a modified function. This replacement procedure, in principle, should ensure any
local search applied to the modified function starting from x∗, would lead to a lower
minimum of the original cost function, if there exists one. Thus, global minimizer can
be obtained just by implementing local search methods to the modified function and the
original function. However, it is rather difficult to construct such a modified function.

Filled function method is a typical modified function method. The concept of filled
function was firstly introduced in [3]. The filled function proposed in [3] is as the
following:

px,x∗,r,ρ = 1

r + f (x)
exp

(
− ‖x − x∗‖

ρ2

)
, (1.2)

where x∗ is the current local minimizer of original problem. This filled function has
some drawbacks, then [4–8], [10] and [13] proposed some other filled functions, which
improved the filled function (1.2). And then [14] revised the concept of filled function
as follows.

A function p(x, x∗) is said to be a filled function of f (x) at the local minimizer x∗ if
it satisfies the following:

(P1): x∗ is a maximizer of p(x, x∗) and the whole basin B∗ of f (x) at x∗ becomes a part
of a hill of p(x, x∗);

(P2): p(x, x∗) has no minimizer or saddle point in any basin of f (x) higher that B∗;
(P3): if f (x) has a basin B∗

2 at x∗
2 that is lower than B∗, then there is a point x ′ that

minimize p(x, x∗) on the line through x∗ and x ′′, for any x ′′ in some neighborhoods
of x∗

2 .

The Property (P3) revised the Property (3) in [3]. It was much stronger since a
minimizer was required for lines connecting the current minimizer with every point in
some neighborhoods of a next better minimizer, not just for one such point as required
in Property (3) in [3]. But the Property (P3) is still not very satisfying, since a minimizer
was still required for lines and the filled function proposed in [14] is not differentiable.

Then, [9] proposed another continuously differentiable filled function, which assured
the existence of a local minimizer in a lower basin but not just on lines. But the filled
function presented in [9] maybe obtain its local minimizer on the boundary of �, where
� was decided in [9]. The points on the boundary of � are not a better point, i.e., its
value is larger than f (x∗).

Wu et al. [12] gave a new modified function method to obtain a better local minimizer
by implementing local search methods to a one- constrained subproblem constructed
by a modified function, which overcome the drawback in [9] in some degree, but the
drawback of the method in [12] is that the subproblem for finding the better point than
x∗ is a constrained problem.

In order to overcome the above drawbacks. In this paper, we will propose two new
kinds of modified functions: a new filled function which is different from those in the
above literature, and a quasi-filled function, which is different from the filled functions
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and is an improvement of the filled function. Two global optimization algorithms
constructed upon the proposed filled function and quasi-filled function are presented.
Finally, numerical examples are given to demonstrate the efficiency and effectiveness
of the proposed techniques.

2. A novel definition about the filled function

We assume that the following conditions are satisfied.

Assumption 1. f (x) is continuously differentiable on Rn.

Assumption 2. Let Y be the set of all local minimizers of problem (2.1). The set F
defined by

F = { f (x) | x ∈ Y } (2.1)

is a finite set.
Note that Assumption 2 only requires that the number of local minimal values of

problem (1.1) is finite. The number of local minima may be infinite.

Assumption 3. f (x) satisfies that f (x) → +∞ as ‖x‖ → +∞.
By Assumption 3, there exist a box set �, a point x0

1 ∈ Rn and a constant f0 > 1 such
that f (x) ≥ f (x0

1 ) + f0 for any x ∈ Rn \ int�, where int� denotes the interior of �.
For convenience, let � be defined by

� = {x = (x1, . . . , xn) | ci ≤ xi ≤ di , i = 1, . . . , n}, (2.2)

where ci , di , i = 1, . . . , n, are constants.
Then, the original problem (1.1) is equivalent to the following problem:

min f (x)

s.t. x ∈ �.
(2.3)

i.e., x̄∗ is a global minimizer of problem (1.1) if and only if x̄∗ is a global minimizer of
problem (2.3).

To proceed further, we need the following definitions.

Definition 2.1. B∗ ⊂ X is said to be a G-basin of problem (1.1) corresponding to a
local minimizer x∗ if it is a connected domain with the following properties:

(i) f (x) ≥ f (x∗) for any x ∈ B∗;
(ii) x̄ ∈ B∗ is a local minimizer of problem (1.1) if and only if f (x̄) = f (x∗).

Note that the concept of the G-basin in this paper is not the same as the definition of
basin defined by traditional ways.
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Definition 2.2. Let x1 and x2 be two local minimizers. If f (x2) > f (x1), then the local
minimizer x2 is said to be higher than the local minimizer x1 and the local minimizer x1

is said to be lower than the local minimizer x2. If the local minimizers x1 and x2 are such
that f (x1) = f (x2), then the local minimizers x1 and x2 are said to be with the same
height.

Throughout the rest of the paper, let x∗ be a local minimizer of problem (1.1), B∗

be the G-basin of x∗, and let L be the set which consists of all the local minimizers of
problem (1.1) lower than x∗.

Definition 2.3. A differentiable function p(x) is a filled function of problem (1.1)
corresponding to a local minimizer x∗ if it satisfies the following properties:

(i) x∗ is a strictly local maximizer of p(x);
(ii) For any x �= x∗ satisfying f (x) ≥ f (x∗), x is not a stationary point of p(x), i.e.,

∇ p(x) �= 0;
(iii) if x∗ is not a global minimizer of problem (1.1), i.e., L �= ∅, then for any x̄ ∈ L , x̄

is a local minimizer of p(x) and furthermore satisfies

p(x̄) < p(x∗)

p(x̄) < p(x), for any x ∈ ∂�,

where ∂� denotes the boundary of �.
(iv) For any x1, x2 ∈ � satisfying f (x1) ≥ f (x∗) and f (x2) ≥ f (x∗), ‖x2 − x∗‖ > (≥)

‖x1 − x∗‖ if and only if p(x2) < (≤)p(x1).

By Definition 2.3, we know that if p(x) is a filled function satisfying Definition 2.3,
then we have the following results:

1. x∗ is a global minimizer of problem (1.1) if and only if x∗ is the only stationary point
of p(x) and x∗ is a strictly local maximizer of p(x).

2. x∗ is not a global minimizer of problem (1.1) if and only if there exists at least a point
x̄ ∈ int� such that x̄ is a local minimizer of p(x) and satisfies f (x̄) < f (x∗), p(x̄) <

p(x∗) and p(x̄) < p(x) for any x ∈ ∂�, where int� denotes the interior of �.

Remark 2.1. Note that Definition 2.3 about the filled function is different from those
definitions mentioned in [3–10, 13] and [14]. This novel definition is stronger than those
mentioned in the above literature.

3. A novel filled function and its properties

In this section, we will introduce a filled function which satisfies the conditions of
Definition 2.3.
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Figure 1 The behavior of gr (t) with r = 0.5, 0.4 and 0.3, respectively.

For any r > 0, let

gr (t) =




1, > 0

− 2

r3
t3 − 3

r2
t2 + 1, −r < t ≤ 0

0, t ≤ −r

(3.4)

and

fr (t) =




t + r t ≤ −r
r − 2

r3
t3 + r − 3

r2
t2 + 1, −r < t ≤ 0

1 t > 0

. (3.5)

The figure 1 and figure 2 are the behaviors of gr (t) and fr (t) with r = 0.5,∼ 0.4 and
0.3, respectively. We can easily verify that gr (t) and fr (t) are continuously differentiable
on R. And

g′
r (t) =




0, t > 0

− 6

r3
t2 − 6

r2
t, −r < t ≤ 0

0, t ≤ −r

(3.6)

and

f ′
r (t) =




1 t ≤ −r
3r − 6

r3
t2 + 2r − 6

r2
t, −r < t ≤ 0

0 t > 0

. (3.7)
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Figure 2 The behavior of fr (t) with r = 0.5, 0.4 and 0.3, respectively.

Let

Hq,r,x∗ (x) = q

(
exp

(
− ‖x − x∗‖2

q

)
gr ( f (x) − f (x∗)) + fr ( f (x) − f (x∗))

)
, (3.8)

where r > 0, q > 0 are parameters, x∗ is the current local minimum.

Remark 3.1. Even though the function Hq,r,x∗ (x) includes an exponential term

exp(−‖x−x∗‖2

q ), but when q is very large, ‖x−x∗‖2

q is very small, thus the exponential
term exp(−‖x−x∗‖2

q ) will not result any computational problem.

Theorem 3.1. Suppose x∗ is a local minimizer of f (x), then x∗ is a strictly local
maximizer of Hq,r,x∗ (x) for any r > 0, q > 0.

Proof: Let B∗ be a G-basin of f (x) at minimizer x∗, that is, for any x ∈ B∗, we
have f (x) ≥ f (x∗). Therefore, gr ( f (x) − f (x∗)) = gr ( f (x∗) − f (x∗)) = 1 and
fr ( f (x) − f (x∗)) = fr ( f (x∗) − f (x∗)) = 1 for any r > 0. And for any x �= x∗, q > 0,
exp(−‖x−x∗‖2

q ) < exp(−‖x∗−x∗‖2

q ). Thus,

Hq,r,x∗ (x) < Hq,r,x∗ (x∗)

for any x ∈ B∗ and x �= x∗. Hence, x∗ is a strictly local maximizer of Hq,r,x∗ (x) for any
r > 0, q > 0. �
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For any x ∈ �, define

d(x) = x − x∗. (3.9)

Theorem 3.2. Suppose Assumption 1 is satisfied. If x ∈ � is such that f (x) ≥ f (x∗)
and x �= x∗, then x is not a stationary point of Hq,r,x∗ (x); and

∇T Hq,r,x∗ (x)d(x) < 0

for any r > 0, q > 0.

Proof: By (3.8), we have

∇Hq,r,x∗ (x) = exp

(
− ‖x − x∗‖2

q

)
[−2(x − x∗)gr ( f (x) − f (x∗))

+ qg′
r ( f (x) − f (x∗))∇ f (x)] + q f ′

r ( f (x) − f (x∗))∇ f (x). (3.10)

For any x satisfying f (x) ≥ f (x∗), for any r > 0, q > 0, we have

∇Hq,r,x∗ (x) = −2 exp

(
− ‖x − x∗‖2

q

)
(x − x∗).

Thus, for any x ∈ � satisfying f (x) ≥ f (x∗) and x �= x∗, we have ∇Hq,r,x∗ (x) �= 0 for
any r > 0, q > 0, i.e., x is not a stationary point of Hq,r,x∗ (x). By (3.9), we have

∇T Hq,r,x∗ (x)d(x) = −2 exp

(
− ‖x − x∗‖2

q

)
‖x − x∗‖2 < 0.

�

Let

β0 = min
y1,y2∈F,y1 �=y2

|y1 − y2|, (3.11)

where F is decided by (2.1). By Assumption 2, we have that β0 > 0.

Theorem 3.3. Suppose Assumption 1−3 are satisfied. If x∗ is not a global minimizer
of problem (1.1) (L �= ∅), then for any x̄ ∈ L, for any q > 0, x̄ is a local minimizer of
Hq,r,x∗ (x) and satisfies

Hq,r,x∗ (x̄) < Hq,r,x∗ (x∗)

Hq,r,x∗ (x̄) < Hq,r,x∗ (x) for any x ∈ ∂�

when the parameter r is chosen such that

r ≤ β0

2
. (3.12)

Obviously, x̄ is a stationary point of Hq,r,x∗ (x).
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Furthermore, for any x satisfying f (x) < f (x∗) − 2r , x is a local minimizer of
Hq,r,x∗ (x) and satisfies

Hq,r,x∗ (x) < Hq,r,x∗ (x∗)

Hq,r,x∗ (x) < Hq,r,x∗ (y) for any y ∈ ∂�,

which must be a stationary point of Hq,r,x∗ (x).

Proof: Since β0 = miny1,y2∈F,y1 �=y2 |y1 − y2| and since L �= ∅, then for any x̄ ∈ L , we
have that β0 ≤ f (x∗) − f (x̄). Thus, we have f (x̄) − f (x∗) ≤ −β0 ≤ −2r < −r when
r ≤ β0

2 . By the continuity of f (x), there exists a neighborhood N (x̄, δ0) of x̄ , such that
f (x) − f (x∗) < −r for any x ∈ N (x̄, δ0), where N (x̄, δ0) = {x ∈ Rn | ‖x − x̄‖ < δ0}.
Thus, we have that gr ( f (x) − f (x∗)) = 0 for any x ∈ N (x̄, δ0). Since x̄ is a local
minimizer of f (x), then there exists a positive number δ1 > 0, such that f (x̄) ≤ f (x)
for any x ∈ N (x̄, δ1). Let δ = min{δ0, δ1}. For any x ∈ N (x̄, δ), we have that

Hq,r,x∗ (x) = q(0 + f (x) − f (x∗) + r ) ≥ q( f (x̄) − f (x∗) + r ) = Hq,r,x∗ (x̄).

Thus, x̄ is a local minimizer of Hq,r,x∗ (x) and satisfies

Hq,r,x∗ (x̄) = q( f (x̄) − f (x∗) + r ) < 0 < Hq,r,x∗ (x∗) = q(1 + 1) = 2q

Hq,r,x∗ (x̄) = q( f (x̄) − f (x∗) + r ) < 0 < q < q

(
exp

(
−‖x − x∗‖2

q

)
+ 1

)

= Hq,r,x∗ (x) for any x ∈ ∂�.

Similarly, we can prove that for any point x satisfying f (x) ≤ f (x∗) − 2r , x is a local
minimizer of Hq,r,x∗ (x) and satisfies

Hq,r,x∗ (x) < Hq,r,x∗ (x∗)

Hq,r,x∗ (x) < Hq,r,x∗ (y) for any y ∈ ∂�,

which must be a stationary point of Hq,r,x∗ (x). �

Theorem 3.4. For any x1, x2 ∈ � satisfying f (x1) ≥ f (x∗), f (x2) ≥ f (x∗), ‖x2 −
x∗‖ > (≥)‖x1 − x∗‖ if and only if Hq,r,x∗ (x2) < (≤)Hq,r,x∗ (x1) for any r > 0, q > 0.

Proof: For any x1, x2 ∈ � satisfying f (x1) ≥ f (x∗), f (x2) ≥ f (x∗), we have that

Hq,r,x∗ (x2) = q

(
exp

(
−‖x2 − x∗‖2

q

)
+ 1

)
,

Hq,r,x∗ (x1) = q

(
exp

(
−‖x1 − x∗‖2

q

)
+ 1

)
.

Thus, for any r > 0, q > 0, ‖x2 − x∗‖ > (≥)‖x1 − x∗‖ if and only if Hq,r,x∗ (x2) < (≤)
Hq,r,x∗ (x1). �

Remark 3.2. By Theorem 3.1–3.4, we know that Hq,r,x∗ (x) is a filled function according
to our novel Definition 2.3 when r satisfies condition (3.12). Note that even if the
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function Hq,r,x∗ (x) includes an exponential term exp(−‖x−x∗‖2

q ), but exp(−‖x−x∗‖2

q ) will
not bring any computational problem. In fact, since the parameter q does not need to
satisfy any condition, thus we can take q is very large. The very large q is just used
to make exp(−‖x−x∗‖2

q ) contribute a little to the function Hq,r,x∗ (x) and improve the
decreasing rapidity of Hq,r,x∗ (x) at x when x satisfies f (x) ≥ f (x∗). Thus we can take

q is very large, then exp(−‖x−x∗‖2

q ) will not bring any computational problem. The term
fr ( f (x)− f (x∗)) takes advantage of the superiority of those points which values are less
than f (x∗) since the less of f (x) is, the less of fr ( f (x) − f (x∗)) is when f (x) < f (x∗).

Moreover, we can verify that g(x) = exp(−‖x − x∗‖2)gr ( f (x) − f (x∗)) and h(x) =
q exp(−‖x−x∗‖2

q )gr ( f (x) − f (x∗)) are also filled functions satisfying Definition 2.3. But
from the above discussions, we can easily know that the computational efficiency of
function Hq,r,x∗ (x) is better than those of functions g(x) and h(x). Thus, using the filled
function Hq,r,x∗ (x), we can obtain a filled function method, referred to as Algorithm
FFM.

Algorithm FFM:
Step 0. Choose sufficiently small positive numbers µ > 0 and ε > 0(ε < µ) as the

tolerance parameters for terminating the minimization process of problem (1.1). Choose
a sufficiently large number M > 0 as the tolerance number q, an integer k0 ≥ 2n, where
n is the number of variables, a set of unit directions ei , i = 1, . . . , k0 such that ei , i =
1, . . . , k0 almost uniformly distribute over the unit sphere B = {x ∈ Rn | ‖x‖ = 1}, an
initial point x0

1 ∈ �, and initial values q0 ≥ 1 and r0 ≤ 1 for the parameters q and r,
respectively. Set k := 1.

Step 1. Let x∗
k be the local minimizer of problem (1.1) starting from the initial point

x0
k . Take a positive number δ0 > 0, let δ = δ0, i = 1.

Step 2. Let x̄∗
k = x∗

k + δei . If f (x̄∗
k ) < f (x∗

k ), then set x0
k+1 := x̄∗

k , k := k + 1 and go
to Step 1; otherwise, go to Step 3.

Step 3. Let

Hq,r,x∗
k
(x) = q

(
exp

(
− ‖x − x∗

k ‖2

q

)
gr ( f (x) − f (x∗

k )) + fr ( f (x) − f (x∗
k ))

)
,

where gr (t) and fr (t) are decided by (3.4) and (3.5), respectively. Solve the problem:

min Hq,r,x∗
k
(x)

x ∈ �
(3.13)

by a local search method starting from the initial point x̄∗
k .

If the minimizer of problem (3.13) attained at the boundary of �, go to Step 4, else if
one of the following conditions holds at some point y∗

k ∈ �:

(1) (y∗
k − x∗

k )T ∇Hq,r,x∗
k
(y∗

k ) ≥ 0;

(2) f (y∗
k ) < f (x∗

k );

(3) ‖∇Hq,r,x∗
k
(y∗

k )‖ ≤ ε;
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then, set x0
k+1 := y∗

k , k := k + 1 and go to Step 1; otherwise, continue the minimization
of Hq,r,x∗ (x) on �.

Step 4. If q < M , then increase q(such as, let q := 10q), go to Step 2; otherwise, let
q := q0, go to Step 5.

Step 5. If δ > µ, then decrease δ(such as, let δ := δ
2 ) and let q = q0, go to Step 2;

otherwise, let q := q0, δ := δ0, go to Step 6.
Step 6. If i < k0, then let i := i + 1, go to Step 2; otherwise, go to Step 7.
Step 7. If r > µ, then decrease r(such as, let r := r

10 ), and set i := 1, q := q0, δ := δ0,
then go to Step 2; otherwise, stop and x∗

k is a global minimizer of problem (1.1).
In this section, we have given a new definition of a filled function and a new filled

function satisfying the given definition and a new filled function method, referred to as
Algorithm FFM. By the given Algorithm FFM, we can obtain a global minimizer or an
approximate global minimizer of original problem. But the local minimizer of problem
(3.13) obtained in Step 3 is very easily on the boundary of �, in which case, we have
to change the parameters q, r or change the starting point x̄∗

k . Thus, the k0 maybe have
to be chosen very large. In order to improve numerical computational efficiency, in the
next section, we will introduce another modified function, which possesses almost all
properties set in Definition 2.3 on one hand, and demonstrate computational superiority
on the other, which local minimizer on � must be in the interior of �. This function is
referred to as the quasi-filled function.

4. Quasi-filled function and its properties

By Assumption 3, we know that there exist a point x0
1 and a positive number f0 > 1,

such that f (x) ≥ f (x0
1 ) + f0 for any x ∈ ∂�. If x∗ is a local minimizer of f (x) on �

starting from x0
1 , then f (x∗) ≤ f (x0

1 ). Thus, f (x) ≥ f (x∗) + f0 for any x ∈ ∂�.
For any r > 0 and given c > 0, let

gr,c(t) =




c, t ≥ 0

−2c

r3
t3 − 3c

r2
t2 + c, −r < t ≤ 0

0, t ≤ −r

(4.14)

hr,c(t) =




t + r t ≤ −r

r − 2

r3
t3 + r − 3

r2
t2 + 1, −r < t ≤ 0

1 0 < t ≤ 1

−4c − 2

r3
t3 + (6c − 3)(r + 2)

r3
t2 1 ≤ t ≤ 1 + r

− (6c − 3)(2 + 2r )

r3
t + 4c − 2 + (6c − 3)r

r3
+ 1

2c t > 1 + r

(4.15)

The figure 1 is the behavior of gr,c(t) with c = 1 and r = 0.5, 0.4, 0.3, respectively.
The figure 3 is the behavior of hr,c(t) with c = 1 and r = 0.5, 0.4, 0.3, respectively.
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Obviously, gr,c(t) and hr,c(t) are continuously differentiable on R. And

g′
r,c(t) =




0, t ≥ 0

−6c

r3
t2 − 6c

r2
t, −r < t ≤ 0

0, t ≤ −r

h′
r,c(t) =




1 t ≤ −r

3r − 6

r3
t2 + 2r − 6

r2
t, −r < t ≤ 0

0 0 < t ≤ 1

−12c − 6

r3
t2 + (12c − 6)(r + 2)

r3
t 1 ≤ t ≤ 1 + r

− (6c − 3)(2 + 2r )

r3

0 t > 1 + r

.

Let

Fq,r,c,x∗ (x) = q

(
exp

(
− ‖x − x∗‖2

q

)
gr,c( f (x) − f (x∗)) + hr,c( f (x) − f (x∗))

)
.

(4.16)

Consider the following programming problem:

min Fq,r,c,x∗ (x)

x ∈ �.
(4.17)

Then, we have the following results:
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–0.5

0

0.5

1

1.5

2

r=0.5
r=0.4
r=0.3

Figure 3 The behavior of hr,c(t) with with c = 1 and r = 0.5, 0.4, 0.3, respectively.
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Theorem 4.1. If x∗ is a local minimizer of original problem (1.1), then for any r >

0, q > 0, c > 0, x∗ is a strictly local maximizer of function Fq,r,c,x∗ (x) on �.

Proof: Since x∗ is a local minimizer of continuous function f (x), then there exists a
δ > 0, such that 0 ≤ f (x) − f (x∗) ≤ 1 for any x ∈ N (x∗, δ). Therefore, by (4.16),
we have exp(−‖x−x∗‖2

q )gr,c( f (x) − f (x∗)) < exp(−‖x∗−x∗‖2

q )gr,c( f (x∗) − f (x∗)) and
hr,c( f (x) − f (x∗)) = hr,c( f (x∗) − f (x∗)) for any x ∈ N (x∗, δ) \ {x∗}. Thus,
Fq,r,c,x∗ (x) < Fq,r,c,x∗ (x∗) for any x ∈ N (x∗, δ) \ {x∗}. Thus x∗ is a strictly local
maximizer of function Fq,r,c,x∗ (x). �

Theorem 4.2. Suppose Assumption 1 is satisfied. For any r > 0, if x ∈ � and x �= x∗

satisfies 0 ≤ f (x) − f (x∗) ≤ 1 or f (x) − f (x∗) ≥ 1 + r , then x is not a stationary
point of Fq,r,c,x∗ (x). Otherwise, if x is a stationary point of f (x), then x is not a stationary
point of Fq,r,c,x∗ (x). And �T F(q, r, c, x∗)(x)d(x) < 0 for any x satisfying the above
conditions.

Proof: By (4.16), we have

∇Fq,r,c,x∗ (x) = exp

(
− ‖x − x∗‖2

q

)
[−2(x − x∗)gr,c( f (x) − f (x∗))

+ qg′
r,c( f (x) − f (x∗))∇ f (x)] + qh′

r,c( f (x) − f (x∗))∇ f (x).

Thus for any x satisfying f (x) ≥ f (x∗), we can rewrite the above to get

∇Fq,r,c,x∗ (x) = −2c exp

(
− ‖x − x∗‖2

q

)
(x − x∗) + qh′

r,c( f (x) − f (x∗))∇ f (x).

(4.18)

By (4.18), if x �= x∗ satisfies 0 ≤ f (x) − f (x∗) ≤ 1 or f (x) − f (x∗) ≥ 1 + r , we
can conclude

∇Fq,r,c,x∗ (x) = −2c exp

(
− ‖x − x∗‖2

q

)
(x − x∗) �= 0.

Otherwise, if x satisfies 1 < f (x) − f (x∗) < 1 + r and ∇ f (x) = 0, we also conclude

∇Fq,r,c,x∗ (x) = −2c exp

(
− ‖x − x∗‖2

q

)
(x − x∗) �= 0.

Hence, x is not a stationary point of function Fq,r,c,x∗ (x). And we have that
∇T Fq,r,c,x∗ (x)d(x) < 0 for any x satisfies the above conditions. �

Theorem 4.3 Suppose Assumption 1−3 are satisfied. If x∗ is not a global minimizer
of problem (1.1), i.e., L �= ∅, then for any x̄ ∈ L, when r ≤ β0

2 , x̄ is a local minimizer
of Fq,r,c,x∗ (x) and satisfies

Fq,r,c,x∗ (x̄) < Fq,r,c,x∗ (x∗), Fq,r,c,x∗ (x̄) < Fq,r,c,x∗ (x) for any x ∈ ∂�,

where β0 is decided by (3.11). Obviously, x̄ is a stationary point of Fq,r,c,x∗ (x).
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Furthermore, for any x satisfying f (x) < f (x∗) − 2r , x is a local minimizer of
Fq,r,c,x∗ (x) and satisfies

Fq,r,c,x∗ (x) < Fq,r,c,x∗ (x∗)

Fq,r,c,x∗ (x) < Fq,r,c,x∗ (y) for any y ∈ ∂�,

which must be a stationary point of Fq,r,c,x∗ (x).

Proof: Since β0 = miny1,y2∈F,y1 �=y2 |y1 − y2| and since L �= ∅, then for any x̄ ∈ L ,
we have that f (x̄) − f (x∗) ≤ −β0 ≤ −2r < −r when r ≤ β0

2 . By the continuity
of f (x), there exists a neighborhood N (x̄, δ0) of x̄ , such that f (x) − f (x∗) < −r for
any x ∈ N (x̄, δ0), where N (x̄, δ0) = {x ∈ Rn | ‖x − x̄‖ < δ0}. Thus, we have that
gr,c( f (x) − f (x∗)) = 0 for any x ∈ N (x̄, δ0). Since x̄ is a local minimizer of f (x),
there exists a positive number δ1 > 0, such that f (x̄) ≤ f (x) for any x ∈ N (x̄, δ1). Let
δ = min{δ0, δ1}, then we have that

Fq,r,c,x∗ (x) = q(0 + f (x) − f (x∗) + r ) ≥ q( f (x̄) − f (x∗) + r ) = Fq,r,c,x∗ (x̄)

for any x ∈ N (x̄, δ). Thus, x̄ is a local minimizer of Fq,r,c,x∗ (x) and satisfies

Fq,r,c,x∗ (x̄) = q( f (x̄) − f (x∗) + r ) < 0 < Fq,r,c,x∗ (x∗) = q(c + 1)

Fq,r,c,x∗ (x̄) = q( f (x̄) − f (x∗) + r ) < 0 < q < q

(
c exp

(
− ‖x − x∗‖2

q

)
+ 1

)

< Fq,r,c,x∗ (x) for any x ∈ ∂�,

since f (x) − f (x∗) > 1 for any x ∈ ∂� by Assumption 3.

Similarly, we can prove that for any r > 0, for any point x satisfying f (x) ≤
f (x∗) − 2r , x is a local minimizer of Fq,r,c,x∗ (x) and satisfies

Fq,r,c,x∗ (x) < Fq,r,c,x∗ (x∗)

Fq,r,c,x∗ (x) < Fq,r,c,x∗ (y) for any y ∈ ∂�,

which must be a stationary point of Fq,r,c,x∗ (x). �

Note that the second part of Theorem 4.3 illustrates that function Fq,r,c,x∗ (x) has many
local minimizers if x∗ is not a global minimizer of problem (1.1).

Theorem 4.4. For any x0 satisfying f (x0) − f (x∗) ≤ 1, the local minimizer x̄ of
problem (4.17) starting from x0 is in the interior of � when r and c satisfy the following
conditions, respectively.

r ≤ f0 − 1 and c ≥ 1, (4.19)

where f0 > 1 is decided by Assumption 3.
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Proof: For any x ∈ ∂�, since f (x) ≥ f (x∗) + f0 ≥ f (x∗) + 1 + r when r ≤ f0 − 1,
then we have

Fq,r,c,x∗ (x) = q

(
exp

(
− ‖x − x∗‖2

q

)
gr,c( f (x) − f (x∗)) + hr,c( f (x) − f (x∗))

)

> qhr,c(1 + r )

= 2qc.

For any x0 satisfying f (x0) ≤ f (x∗) + 1,

Fq,r,c,x∗ (x0) = q

(
exp

(
− ‖x0 − x∗‖2

q

)
gr,c( f (x0) − f (x∗)) + hr,c( f (x0) − f (x∗))

)

≤ q(c + hr,c(1))

≤ q(c + 1).

Thus when c ≥ 1, we have q(c + 1) ≤ 2qc. Therefore, any local minimizer of
problem (4.17) starting from x0 satisfying f (x0) ≤ f (x∗) + 1 can not be obtained on
the boundary of � when r and c satisfy r ≤ f0 − 1 and c ≥ 1, respectively. �

By the given quasi-filled function Fq,r,c,x∗ (x), we can propose a method to obtain a
global minimizer of original problem (1.1) via implementing local search schemes. This
method is referred to as Algorithm QFFM.

Algorithm QFFM:
Step 0. Choose a sufficiently small positive number µ > 0 as the tolerance parameter

for terminating the minimization process of problem (1.1). Choose a sufficiently large
positive number M > 0 as the tolerance numbers q and c (in the following examples,
we take µ = 10−10 and M = 1010). Choose an integer k0 ≥ 2n and unit directions
ei , i = 1, . . . , k0, where n is the number of variables (in the following examples, we
take k0 = 2n and ei as the positive and negative coordinate directions). Pick an initial
point x0

1 ∈ � and initial parameters: r0 > 0, c0 > 0, q0 > 0 (in the following examples,
we take r0 = 1, c0 = 1 and q0 = 105). Take a positive number δ0 > 0 (in the following
examples, we take δ0 = 1

2 ). Let k := 1.
Step 1. Let x∗

k be the local minimizer of problem (1.1) starting from the initial
point x0

k . If f (x∗
k ) ≥ f (x∗

k−1)(where x∗
0 = x0

1 ), then go to Step 4; otherwise, Let
q := q0, c := c0, r := r0, δ := δ0 and i := 1, go to Step 2;

Step 2. Let x̄∗
k = x∗

k + δei . If f (x̄∗
k ) < f (x∗

k ), then set x0
k+1 := x̄∗

k , k := k + 1 and go
to Step 1; if f (x∗

k ) ≤ f (x̄∗
k ) ≤ f (x∗

k ) + 1, then go to Step 3; otherwise, let δ := δ
2 , go to

Step 2.
Step 3. Let

Fq,r,c,x∗
k
(x) = q

[
exp

(
− ‖x − x∗

k ‖2

q

)
gr,c( f (x) − f (x∗

k )) + hr,c( f (x) − f (x∗
k ))

]
,
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where gr,c(t) and hr,c(t) are decided by (4.14) and (4.15), respectively. Solve the problem:

min Fq,r,c,x∗
k
(x)

x ∈ �
(4.20)

by a local search method starting from the initial point x̄∗
k . Let x̄q,r,c,x∗

k
be the local

minimizer obtained. Then, set x0
k+1 := x̄q,r,c,x∗

k
, k := k + 1 and go to Step 1.

Step 4. If q < M , then increase q (in the following examples, we let q := 10q ), then
goto Step 3; otherwise, go to Step 5.

Step 5. If c < M , then increase c (in the following examples, we let c := 10c ), and
let q = q0, go to Step 3; otherwise, go to Step 6.

Step 6. If i < k0, then let i := i +1, q := q0, c := c0, δ := δ0, go to Step 2; otherwise,
go to Step 7.

Step 7. If r > µ, then decrease r (in the following examples, we let r := r
10 , let

i := 1, q := q0, c := c0, δ := δ0 go to Step 2; otherwise, stop and x∗
k is a global

minimizer of problem (1.1).

5. Numerical results

In this section, we will use the Algorithm QFFM to solve a set of well-recognized test
functions, where the optimization subroutine within the optimization Toolbox in Matlab
6.1 is used as the local search scheme to obtain local minimizers of problem (1.1) and
problem (4.20).

In the following examples, we take M = 1010, µ = 10−10, k0 = 2n and the direction
ei , i = 1, . . . , k0 are the positive and negative coordinate directions in Step 0, and take
the initial q, c, r, δ as q0 = 105, c0 = 1, δ0 = 1

2 and r0 = 1 in Step 1, respectively
and take q := 10q, c := 10c, r := r/10 in Step 4, Step 5 and Step 7, respectively. The
numerical results of each example obtained are presented in the respective tables, where
the following notations are adopted.

k—the number of local minima obtained by Algorithm QFFM that satisfy f (x∗
k ) <

f (x∗
k−1).

x0
k —the initial point for the kth local minimization process of problem (1.1), x0

k+1 :=
x̄q,r,c,x∗

k
.

x∗
k —the local minimizer of f (x) starting from x0

k .
ei , i = 1, . . . , n—ei ∈ Rn and the ith element is 1, the others are 0.
ei , i = n + 1, . . . , 2n—ei ∈ Rn and the (i−n)th element is −1, the others is 0.
x̄q,r,c,x∗

k
—The local minimizer of problem (4.20) obtained by the optimization subrou-

tine within the optimization Toolbox in Matlab 6.1 starting from x̄∗
k (all the x̄q,r,c,x∗

k

given in these tables satisfy f (x∗
k+1) < f (x∗

k ), where x∗
k+1 is a local minimizer of

function f (x) starting from x̄q,r,c,x∗
k
).

Example 5.1 (Goldstein-Price (G-P) (n = 2) [2])

min
x,y

fG(x, y) = [1 + (x + y + 1)2(19 − 14x + 3x2 − 14y + 6xy + 3y2)]

× [30 + (2x − 3y)2(18 − 32x + 12x2 + 48y − 36xy + 27y2)] (5.1)
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Figure 4 The behavior of Goldstein-Price.

s.t. − 3 ≤ x ≤ 3,−3 ≤ y ≤ 3.

From figure 4, we see that there are many local minima of this problem G-P. We
take the initial point x0

1 = (1, 1). The first local minimizer of problem (5.1) obtained
by the optimization subroutine within the optimization Toolbox in Matlab 6.1 starting
from x0

1 = (1, 1) is x∗
1 = (1.8000, 0.2000) with the local minimal value of f (x∗

1 ) =
84.0000.

Table 1 gives the numerical results obtained by Algorithm QFFM for problem
G-P.

From Table 1, we see that a global minimizer of problem (5.1) obtained by Algorithm
QFFM is:

x∗ = (−0.0000 − 1.0000)

Table 1. Results for G-P by QFFM.

k x0
k x∗

k f (x∗
k ) δ, ei , q, c, r x̄q,r,c,x∗

k

1 (1,1) (1.8000, 0.2000) 84.0000

1/27, e1, 105, 1, 1 (1.8155, 0.2004)

2 (1.8155, 0.2004) (−0.0000
−1.0000)

3.0000

for any c ≤ 1010

ei , i = 1, . . . , 2n
q ≤ 1010

and r ≥ 10−10

x̄q,r,c,x∗
k

x̄q,r,c,x∗
k

x∗
k+1 f (x∗

k+1) ≥ 3.0000
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Figure 5 The behavior of Six-Hump Camel-back.

with global optimal value f (x∗) = 3.0000.

Example 5.2 (Six-Hump Camel-back (n = 2) [1])

min fS(x) = 4x2
1 − 2.1x4

1 + x6
1/3 − x1x2 − 4x2

2 + 4x4
2 (5.2)

−3 ≤ xi ≤ 3, i = 1, 2.

From figure 5, we see that there are many local minima of this problem. We take
the initial point x0

1 = (0, 0). The first local minimizer of problem (5.2) obtained by the
optimization subroutine within the optimization Toolbox in Matlab 6.1 starting from
x0

1 = (0, 0) is x∗
1 = (0, 0) with the local minimal value f (x∗

1 ) = 0.
Table 2 gives the numerical results obtained by Algorithm QFFM for Six-Hump

Camel-back.

Table 2. Results for Six-Hump Camel-back by QFFM.

k x0
k x∗

k f (x∗
k ) δ, ei , q, c, r x̄q,r,c,x∗

k

1 (0 0) (0 0) 0

1/2, e1, 105, 1, 1 (0.5412, −0.0000)

2 (0.0313, 0) (0.0898, 0.7127) −1.0316

for any c ≤ 1010

ei , i = 1, . . . , 2n
q ≤ 1010

and r ≥ 10−10

x̄q,r,c,x∗
k

x̄q,r,c,x∗
k

x∗
k+1 f (x∗

k+1) ≥ −1.0316
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Figure 6 The behavior of Rastrigin.

From Table 2, we see that a global minimizer of problem (5.2) obtained by Algorithm
QFFM is:

x∗ = (0.0898, 0.7127)

with global optimal value f (x∗) = −1.0316.

Example 5.3 Rastrigin (n = 2) [11]

min fR(x) = x2
1 + x2

2 − cos(18x1) − cos(18x2) (5.3)

s.t. − 2 ≤ xi ≤ 2, i = 1, 2.

From figure 6, we see that there are many local minima of this problem. We take
the initial point x0

1 = (1, 1). The first local minimizr of problem (5.3) obtained by the
optimization subroutine within the optimization Toolbox in Matlab 6.1 starting from
x0

1 = (1, 1) is x∗
1 = (1.0408, 1.0408) with the local minimal value f (x∗

1 ) = 0.1798.
Table 3 gives the numerical results obtained by Algorithm QFFM for problem (5.3).

From Table 3, we see that a global minimizer of problem (5.3) obtained by Algorithm
QFFM is:

x∗ = 1.0 × 10−6(0.1434,−0.3560)

with the global minimal value f (x∗) = −2.0000.
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Table 3. Results for Rastrigin by QFFM.

k x0
k x∗

k f (x∗
k ) δ, ei , q, c, r x̄q,r,c,x∗

k

1 (1 1) (1.0408, 1.0408) 0.1798

1/24, e1, 105, 1, 1 (1.1241, 1.0408)

2 (1.1241, 1.0408) (0.3469, 1.0408) −0.7890

1/24, e1, 105, 1, 1 (0.7132, 1.0407)

3 (0.7132, 1.0407) (−0.0000, 1.0408) −0.9101

1/24, e1, 105, 104, 1 (0.7515 , 1.0405)

4 (0.7515, 1.0405) (0.0000, 0.6938) −1.5156

1/24, e1, 105, 104, 1 (0.7512, 0.6936)

5 (0.7512, 0.6936) 1.0 ×
10−6(0.1434,−0.3560)

−2.0000

for any c ≤ 1010

ei , i = 1, . . . , 2n
q ≤ 1010

and r ≥ 10−10

x̄q,r,c,x∗
k

x̄q,r,c,x∗
k

x∗
k+1 f (x∗

k+1) ≥
−2.0000

Example 5.4 (two-dimensions Shubert III function (n = 2) (Shubert, 1972) [3])

min fS(x) =
(

5∑
i=1

i cos[(i + 1)x1 + i]

)(
5∑

i=1

i cos[(i + 1)x2 + i]

)

+ [(x1 + 1.42513)2 + (x2 + 0.80032)2] (5.4)

s.t. − 10 ≤ xi ≤ 10, i = 1, 2.

From figure 7, we see that there are many local minima of this problem (there are
about 760 minimums). We take the initial point x0

1 = (1, 1). The first local minimizer of
problem (5.4) obtained by the optimization subroutine within the optimization Toolbox
in Matlab 6.1 starting from x0

1 = (1, 1) is x∗
1 = (−0.8017, 2.7818) with the local

minimal value f (x∗
1 ) = −25.0600.

Table 4 gives the numerical results obtained by Algorithm QFFM for the two-
dimensions Shubert III function. From Table 4, we see that a global minimizer of
problem (5.4) obtained by Algorithm QFFM is:

x∗ = (−1.4251,−0.8003)

with the global minimal value f (x∗) = −186.7309.

Example 5.5 (n-dimensions Sine-square II function (Levy and Montalvo, 1985) [4])

min fL (x) = π

n
{10sin2(πy1) + (yn − 1)2

+
n−1∑
i=1

[(yi − 1)2(1 + 10sin2(πyi+1)]}, (5.5)
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Figure 7 The behavior of two-dimension Shubert III function.

s.t. yi = 1 + (xi − 1)/4

− 10 ≤ xi ≤ 10, i = 1, 2, . . . , n.

From figure 8, we see that there are many local minima of this problem (n = 2).
When n = 2, we take the initial point x0

1 = (0, 0), the first local minimizer of
problem (5.5) obtained by the optimization subroutine within the optimization Toolbox
in Matlab 6.1 starting from x0

1 is x∗
1 = (4.9599, 1.0000) with the local minimal value

f (x∗
1 ) = 1.5550. Table 5 gives the numerical results obtained by Algorithm QFFM for

two-dimensions Sine-square II function. From Table 5, we see that a global minimizer

Table 4. Results for Shubert III function by QFFM.

k x0
k x∗

k f (x∗
k ) δ, ei , , q, c, r x̄q,r,c,x∗

k

1 (1, 1) (−0.8017, 2.7818) −25.0600

1/24, e1, 105, 10, 1 (−1.4136, 2.2210)

2 (−1.4136, 2.2210) (−1.4251, 2.2950) −28.0619

1/24, e1, 105, 10, 1(−1.4251, −0.8003)

2 (−1.4251, −0.8003) (−1.4251, −0.8003) −186.7309

for any c ≤ 1010

ei , i = 1, . . . , 2n
q ≤ 1010

and r ≥ 10−10

x̄q,r,c,x∗
k

x̄q,r,c,x∗
k

x∗
k+1 f (x∗

k+1) ≥
−186.7309
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Figure 8 The behavior of two-dimensions Sine-square II function.

Table 5. Results for two-dimensions Sine-square II function by QFFM.

k x0
k x∗

k f (x∗
k ) δ, ei , q, c, r x̄q,r,c,x∗

k

1 (0 0) (4.9599, 1.0000) 1.5550

1/4, e1, 106, 1, 1 (1.0000, 1.0000)

2 (1.0000, 1.0000) (1.0000, 1.0000) 1.6003 × 10−13

for any c ≤ 1010

ei , i = 1, . . . , 2n
q ≤ 1010

and r ≥ 10−10

x̄q,r,c,x∗
k

x̄q,r,c,x∗
k

x∗
k+1 f (x∗

k+1) ≥ 1.6003 × 10−13

of the two-dimensions Sine-square II function obtained by Algorithm QFFM is:

x∗ = (1.0000, 1.0000)

with the global minimal value f (x∗) = 1.6003 × 10−13 ≈ 0.
When n = 6, we take initial point x0

1 = (2, . . . , 2)(in fact, we can take any point
as the initial point). The first local minimal value of problem (5.5) obtained by the
optimization subroutine within the optimization Toolbox in Matlab 6.1 starting from x0

1
is f (x∗

1 ) = 0.5183. Table 6 gives the numerical results obtained by Algorithm QFFM for
the 6-dimensions Sine-square II function. From Table 6, we see that a global minimizer
obtained by Algorithm QFFM of the 6-dimensions Sine-square II function is:

x∗ = (1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000),

with global minimal value f (x∗) = 1.6066 × 10−11 ≈ 0.
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Table 6. Results for 6-dimensions Sine-square II function by QFFM.

k x0
k x∗

k f (x∗
k ) δ, ei , q, c, r x̄q,r,c,x∗

k

1
(2, 2, 2,

2, 2, 2)

(−2.9598, 1.0000,

1.0004, 1.0002,

0.9999, 0.9997)
0.5183

1/22, e1, 105, 10, 1
1.0000, 1.0000,

1.0000, 1.0000,

1.0000, 1.0000
2

2
(1.0000, 1.0000,

1.0000, 1.0000,

1.0000, 1.0000)

(1.0000, 1.0000,

1.0000, 1.0000,

1.0000, 1.0000)
1.6066 × 10−11

for any c ≤ 1010

ei , i = 1, . . . , 2n
q ≤ 1010

and r ≥ 10−10

x̄q,r,c,x∗
k

x̄q,r,c,x∗
k

x∗
k+1 f (x∗

k+1) ≥
1.6066 × 10−11

When n = 20, we take initial point x0
1 = zeros(20, 1)(in fact, we can take any point

as the initial point). The first local minimal value of problem (5.5) obtained by the
optimization subroutine within the optimization Toolbox in Matlab 6.1 starting from x0

1
is f (x∗

1 ) = 1.8265 × 10−5. Table 7 gives the numerical results obtained by Algorithm
QFFM for the 20-dimensions Sine-square II function. From Table 7, we see that a global
minimizer of the 20-dimensions Sine-square II function obtained by Algorithm QFFM
is:

x∗ = ones(20, 1),

with global minimal value f (x∗) = 2.4946 × 10−12 ≈ 0.
When n = 50, we take initial point x0

1 = zeros(50, 1) (in fact, we can take any point
as the initial point). The first local minimal value of problem (5.5) obtained by the
optimization subroutine within the optimization Toolbox in Matlab 6.1 starting from x0

1
is f (x∗

1 ) = 1.6227 × 10−5. Table 8 gives the numerical results obtained by Algorithm
QFFM for the 50-dimensions Sine-square II function.

From Table 8, we see that a global minimizer of the 50-dimensions Sine-square II
function obtained by Algorithm QFFM is:

x∗ = ones(50, 1),

with global minimal value f (x∗) = 2.3380 × 10−12 ≈ 0.

6. Conclusions

In this paper, we have defined a new filled function and a quasi-filled function and then
developed two associated global optimization methods. Using the two proposed global
optimization methods, we can obtain the required global minimizer in finite steps under
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Table 7. Results for 20-dimensions Sine-square II function by QFFM.

k x0
k x∗

k f (x∗
k ) δ, ei , q, r, c x̄q,r,c,x∗

k

1 zeros(20,1) 1.8265 × 10−5

1/232, e49, 105, 10−10, 1 ones(20,1)

2 ones(20,1) ones(20,1) 2.4946 × 10−12

for any c ≤ 1010

ei , i = 1, . . . , 2n
q ≤ 1010

and r ≥ 10−10

x̄q,r,c,x∗
k

x̄q,r,c,x∗
k

x∗
k+1 f (x∗

k+1) ≥ 2.4946 × 10−12

Table 8. Results for 50-dimensions Sine-square II function by QFFM.

k x0
k x∗

k f (x∗
k ) δ, ei , q, r, c x̄q,r,c,x∗

k

1 zeros(50,1) 1.6227 × 10−5

1/232, e49, 105, 10−10, 1 ones(50,1)

2 ones(50,1) ones(50,1) 2.3380 × 10−12

for any c ≤ 1010

ei , i = 1, . . . , 2n
q ≤ 1010

and r ≥ 10−10

x̄q,r,c,x∗
k

x̄q,r,c,x∗
k

x∗
k+1 f (x∗

k+1) ≥ 2.3380 × 10−12

the assumption that the set of local minimal objective function values is finite. From the
numerical results, we see that the proposed techniques(here just the quasi-filled function
method is used) are very reliable and efficient.
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