
Computational Optimization and Applications, 33, 287–301, 2006
c© 2006 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

DOI: 10.1007/s10589-005-3067-y

Dynamic Programming Algorithms for Generating
Optimal Strip Layouts
YAODONG CUI∗ ydcui@263.net

LING HUANG
Computer Science Department, Guangxi Normal University, Guilin, Guangxi, 541004, China

Received December 1, 2003; Revised March 17, 2005; Accepted April 7, 2005

Published online: 18 October 2005

Abstract. This paper presents dynamic programming algorithms for generating optimal strip layouts of
equal blanks processed by shearing and punching. The shearing and punching process includes two stages.
The sheet is cut into strips using orthogonal guillotine cuts at the first stage. The blanks are punched from the
strips at the second stage. The algorithms are applicable in solving the unconstrained problem where the blank
demand is unconstrained, the constrained problem where the demand is exact, the unconstrained problem
with blade length constraint, and the constrained problem with blade length constraint. When the sheet length
is longer than the blade length of the guillotine shear used, the dynamic programming algorithm is applied to
generate optimal layouts on segments of lengths not longer than the blade length, and the knapsack algorithm
is employed to find the optimal layout of the segments on the sheet. Experimental computations show that the
algorithms are efficient.

Keywords: two-dimensional cutting, strip layout, guillotine cuts, CAD

1. Introduction

In the manufacturing industry, the shearing and punching process is often applied to the
processing of parts made of metal sheet. First the sheet is cut into strips by a guillotine
shear. Then the parts or blanks demanded are cut from the strips by a stamping press.
Typically, a strip is fed into a stamping press that cuts a blank from the strip with
each stroke, moves the strip forward, and cuts the next blank. Usually the blanks are
of irregular type, and only identical blanks can appear in a strip. Where the strip area
must be less than or equal to the sheet area, some trim loss is expected. Some customers
may need blanks of different size. Those involved in mass production may want a large
number of blanks of the same size. The strips of the same blank size are called identical
strips. We refer to the two-dimensional guillotine-cutting problem of identical strips as
the GCPIS.

As shown in figure 1, there are two types of layouts for irregular blanks processed
by shearing and punching, namely the blank layout and the strip layout. A strip layout
consists of one or more sections, with the strips in each section being of the same
length and direction. The blank layout is determined at the tooling design stage. To
improve raw material utilization, the orientation of the blank to be cut from the strip

∗Author to whom correspondence should be addressed.

288 CUI AND HUANG

Figure 1. Blank layout and strip layout. (a) A blank layout, (b) A strip layout of 1-section, (c) A strip layout
of 2-section.

and the strip width must be considered carefully at this stage. Although a large number
of techniques are available for generating good blank layout [1–5], it is meaningful
to develop algorithms for the GCPIS because of the two reasons below, which were
originally describe in [7].

The first reason is that applying optimal strip layout may improve material usage at
the tooling design stage. The object of the blank layout operation is to determine the
blank orientation and strip width that maximizes the utilization of the raw material. As
a blank is rotated on the strip, both the pitch between blanks changes, and the width
of the strip necessarily changes. Knowing the pitch and the strip width, the number of
blanks yielded by a sheet may be determined from the strip layout. The techniques for
determining blank layout often assume that the strips are of the same direction and length
(figure 1b). It is obvious that applying the layout with more sections and optimizing the
strip layout may improve material usage.

The second reason is that applying optimal strip layout may improve material usage
at the cutting stage. The sheet size is given when generating optimal blank layout at the
tooling design stage. In practice, the sheet size used for real cutting may differ from that
adopted at the tooling design stage. A partial sheet generated during previous cutting
processes may also be used. Because of the investment required to build the tooling,
and the great difficulty in changing blank orientation once the tooling is built, it is
not practical to change the blank layout when the sheet size changes. In this case it is
important to generate optimal strip layout to improve material usage.

A large number of techniques are available to minimize trim loss in cutting rectangular
blanks [5]. There are also a lot of papers published on generating better layouts for the
flame or laser cutting of irregular blanks [2, 6, 9, 13]. Several papers presented algorithms
to generate optimal layouts for rectangular blanks of a single size [4, 8, 10, 14]. To our
knowledge, research focused on generating optimal strip layout for the GCPIS has not
been reported.

One of the authors has presented algorithms for generating optimal strip layouts
[7, 15], where strips of different blank types are allowed to appear in a cutting pattern.
The algorithm uses dynamic programming techniques to generate optimal T-shape
patterns. A T-shape pattern includes two sections, which may be seen as the special
case of the multi-section patterns applied in this paper. T-shape patterns are appropriate
for the case where strips of different widths are demanded, for that the sheet may be
occupied more fully through nesting of strips of various widths. For the GCPIS, only
strips of the same blank type are concerned. All strips have the same width. If the
number of sections is not allowed to exceed two, the material usage will be relatively
low. This conclusion is confirmed by the example presented later.

DYNAMIC PROGRAMMING ALGORITHMS 289

The GCPIS discussed in this paper includes four types of problems: the unconstrained
problem where the blank demand is unconstrained, the constrained problem where
the blank demand must be met exactly, the unconstrained problem with blade length
constraint, and the constrained problem with blade length constraint.

This paper presents dynamic programming algorithms to solve the four types of prob-
lems mentioned above. First the dynamic programming algorithm for the unconstrained
problem is constructed. Then the algorithm is extended to solve the constrained problem.
Another two algorithms are introduced to deal with the blade length constraint, one for
the unconstrained problem, and the other for the constrained problem. Computations
were performed to test the time efficiencies of the algorithms. The results indicate that
the algorithms are very efficient.

It should be noted that this paper doesn’t deal with irregular blanks and the problem
can be transformed into a rectangular placement problem where, in each strip, one
rectangle is different.

2. Normal multi-section patterns

2.1. Notation and functions

Some notation and functions to be used are listed in Table 1. Most of them will be
re-introduced where they are used for the first time. The reader may find it is more
convenient to look for the notation definitions in the table than in the text.

2.2. Some definitions

Definition 1. Initial step and succeeding step: As shown in figure 2, the feeding distance
of the strip between two adjacent punch strokes is called a step. There may be one or
more blanks in a step. A step is either an initial step or a succeeding step. The initial
step is larger than or equal to the succeeding step. The strip length direction is the same
as the strip feeding direction. In generating strip layouts, the steps and the strip width
determined by the blank layout are given and the strip length is variable. Without loss of
generality we assume one blank per step. The algorithms obtained under this assumption
are applicable when there are more than one blank in a step.

Definition 2. Strips and sections: A strip includes one or more blanks. Figure 3(a) shows
a strip in Y-direction. The strip direction is in the strip length direction. A section consists
of one or several strips of the same length. Figure 3(b) shows a section in X-direction.

Figure 2. Initial step, succeeding step and strip width.

290 CUI AND HUANG

Table 1. Notation and functions.

l0, l1, w Initial step, succeeding step, and strip width. l0 ≥ l1

d The blank demand

L, W, Lg Sheet length, sheet width, and the maximum blade length. W ≤ L, W ≤ Lg

M Number of normal lengths between 0 and L

A The vector of normal lengths. A = {a1, . . . , aM}, where a1 = 0 and ai+1 > ai for 1 ≤
i < M

p(x) Return the maximum normal length not larger than x

L0, W0 Normalized sheet length and width, L0 = p(L), W0 = p(W)

sn The number of full sheets used to meet the blank demand (not including the partial
sheet)

dp The number of blanks to be cut from the partial sheet

N Number of the segment lengths to be considered

F(x, y) The maximum number of blanks yielded by rectangle x × y

H = {h1, h2, . . . ,
hN}

The set of segment lengths between 0 and Lg . Its elements are arranged in ascending
order. In a division scheme the length of any segment must be an element of H

V = {v1, v2, . . . , vN} vi is the maximum number of blanks in rectangle hi × W, vi = F(hi, W), i= 1,2, . . ., N

int(x) Return the maximum integer not larger than x

max(x, y) Return the larger one in x and y

BinStrip(x) Return the maximum number of blanks included in a strip of length x. BinStrip(x) =
0, if x < l0; Otherwise, BinStrip (x) = 1 + int

(
(x − l0)

/
l1

)

SecLen(n) Return the minimum length occupied by n blanks SecLen(n) = 0, if n = 0
SecLen (n) = l0 + (n − 1) l1, if n > 0

Figure 3. A strip in Y-direction and a section in X-direction. (a) A strip in Y-direction, (b) A section in
X-direction.

The section length is the same as the strip length. The section width is the product of the
number of strips and the strip width. The section direction is the same as that of the strip
width. In the cutting process it is assumed that the sheet must be divided into sections
before the cutting of any section to produce strips. Figure 4 shows a strip in X-direction
and a section in Y-direction.

Definition 3. Full sheet, partial sheet, and segment: Figure 5(a) shows a full sheet,
which is an original stock sheet. As shown in figure 5(b), if a full sheet is divided into

DYNAMIC PROGRAMMING ALGORITHMS 291

Figure 4. A strip in X-direction and a section in Y-direction. (a) A strip in X-direction, (b) A section in
Y-direction.

Figure 5. Full sheet, partial sheet, and segment. (a) A full sheet, (b) A partial sheet, (c) Three segments.

two rectangles by a cut line in Y-direction, the left one is called a partial sheet. When
the length of a full sheet is longer than the blade length, the sheet must be divided
into several segments, with the length of each segment being not longer than the blade
length. The sheet in figure 5(c) is divided into three segments.

Definition 4. Unconstrained and constrained problems: A GCPIS is either unconstrained
or constrained. The former has no constraint on the blank demand, the objective being
to include as many blanks as possible in a layout. The latter has the constraint that the
blank demand must be exact. Generally some blanks must be arranged in a partial sheet.
Assume that L is the sheet length, W is the sheet width, d is the blank demand, n∗ is the
maximum number of blanks yielded by a full sheet, sn is the number of full sheets used
to meet the blank demand (not including the partial sheet). The number of blanks to be
cut from the partial sheet is dp, which may be determined as follows:

n∗ = F(L , W), sn = int(d/n∗), dp = d − n∗sn (1)

Here function F(x, y) returns the maximum number of blanks included in rectangle x ×
y.

We give the definition of the normal lengths below, which will be used to develop the
algorithms.

Definition 5. Assume that l0, l1, and w are the initial step, succeeding step, and the width
of the strip. x is a normal length, if

x = iw + SecLen(j), i, j non-negative integers, 0 ≤ x ≤ L

292 CUI AND HUANG

Figure 6. Normal multi-section patterns. (a) Section 1 is an X-section, (b) Section 1 is a Y-section.

SecLen(j) is the minimum length occupied by j blanks:

SecLen(j) = 0, if j = 0; SecLen(j) = l0 + (j − 1)l1, if j > 0

Namely, normal lengths are the combinations of strip width and the length occupied by
integral steps. Below we denote the vector of normal lengths as A = {a1, . . . , aM},
where

a1 = 0, ai+1 > ai for 1 ≤ i < M.

2.3. Normal multi-section patterns

To standardize cutting patterns and develop algorithms, we introduce some definitions
and theorems below.

Definition 6. Normal multi-section patterns: Figure 6 shows two normal multi-section
layouts. Number the sections according to their cutting order. Thus all odd sections are
in the same direction. All even sections also have a common direction perpendicular to
that of the odd sections. Section 1 may be an X-section (in X direction, as shown in
figure 6(a)) or a Y-section (figure 6(b)). A normal multi-section pattern is defined as a
pattern with all X-sections being bottom-left justified and all Y-sections being top-right
justified. A normal multi-section layout can be completely determined, if all section
widths are known. As shown in figure 6(a), the length of the first section is equal to
the sheet width. The length of the second section is equal to the difference between the
sheet length and the width of the first section.

The following theorems hold for multi-section patterns:

Theorem 1. Any multi-section layout can be transformed to a normal multi-section
layout, without decreasing the number of blanks or increasing the number of sections
in the layout.

The proof is similar to that given in [8]. From this theorem, the optimal pattern for
the GCPIS can be found by searching among normal multi-section patterns. From here
on, only normal multi-section patterns will be discussed.

DYNAMIC PROGRAMMING ALGORITHMS 293

Theorem 2. Let x0 be the maximum normal length not larger than x and y0 be the
maximum normal length not larger than y. Then F(x0, y0) = F(x, y).

Proof: Suppose that the layout in rectangle x × y is optimal (figure 6). Push the right
side of the rectangle and all Y-sections towards the left until any of the following events
occurs. (1) At least one Y-section touches the left side of the rectangle. This is possible
when the first section is a Y-section figure 6(b). (2) Y-sections get in touch with X-
sections and no sections overlap. (3) The right side touches with an X-section. The
blank number in the layout does not decrease and the length of the rectangle may be
shortened to x1 through the above pushing action. If any of the three events occurs, x1

is a normal length from Definition 5. x1 ≤ x0 ≤ x holds because that x0 is the maximum
normal length not larger than x. Since F(x1, y) = F(x, y) and x1 ≤ x0 ≤ x, F(x0, y) = F(x,
y). This conclusion also holds for the rectangle width, so F(x0, y0) = F(x, y).

From Theorem 2, segment x × W may be trimmed to segment x0 × W, without
decreasing the number of blanks in it.

Definition 7. Optimal patterns and the simplest optimal pattern: An optimal pattern
yields the maximum number of blanks among all patterns. If an optimal pattern is of the
minimum number of sections among all optimal patterns, it is referred to as the simplest
optimal pattern.

3. The algorithm for the unconstrained problem

3.1. The scheme of the algorithm

The normal multi-section layout may be constructed by building strips in X or Y-
direction. It gives the recursion of dynamic programming:

F(x, y) = max{F(x, y − w) + BinStrip(x), F(x − w, y) + BinStrip(y)} (2)

Formula (2) means that two paths may lead to the pattern on rectangle x × y:

1. As shown in figure 7(a), lay an X-direction strip along the upper side of rectangle
x × (y − w). The strip is of length x and includes BinStrip (x) blanks. The new
rectangle x × y contains F(x, y − w) + BinStrip (x) blanks.

2. As shown in figure 7(b), lay a Y-direction strip along the right side of rectangle (x −
w) × y. The strip is of length y and includes BinStrip (y) blanks. The new rectangle
x × y contains F(x − w, y) + BinStrip (y) blanks.

Although applying formula (2) directly can find the optimal pattern, it may not be the
simplest optimal pattern. The following procedure may be applied to obtain the simplest
optimal pattern. Let

nx = F(x, y − w) + BinStrip (x), ny = F(x − w, y) + BinStrip(y),

and G(x, y) be the number of sections of the optimal pattern in rectangle x × y. Use Q(x,
y) to record the path leads to F(x, y). Let F(x, y) = max(nx, ny). Determine Q(x, y) and
G(x, y) as follows:

294 CUI AND HUANG

Figure 7. Two paths lead to rectangle x × y. (a) From x × (y − w), (b) From (x − w) × y..

(1) When nx > ny, the current strip is in X-direction, let Q(x, y) = 1. If Q(x, y − w) =
2, the last strip in rectangle x × (y − w) is in Y-direction, let G(x, y) = G(x, y − w)
+ 1; otherwise, let G(x, y) = G(x, y − w).

(2) When nx < ny, the current strip is in Y-direction, let Q(x, y) = 2. If Q(x − w, y) =
1, the last strip in rectangle (x − w) × y is in X-direction, let G(x, y) = G(x − w, y)
+ 1; otherwise, let G(x, y) = G(x − w, y).

(3) When nx = ny, the direction of the current strip does not affect the number of blanks
in rectangle x × y. If the current strip is in X-direction, determine gx, the number
of sections in rectangle x × y as follows:

gx = G(x, y − w) + 1, if Q(x, y − w) = 2; otherwise gx = G(x, y − w)

If the current strip is in Y-direction, determine gy, the number of sections in rectangle
x × y as follows:

gy = G(x − w, y) + 1, if Q(x − w, y) = 1; otherwise gy = G(x − w, y)

Let G(x, y) = min(gx, gy). If gx < gy, the current strip should be in X-direction, let
Q(x, y) = 1. If gx > gy, the current strip should be in Y-direction, let Q(x, y) = 2. If
gx = gy, the number of sections in rectangle x × y does not depend on the direction
of the current strip, let Q(x, y) = 3.

3.2. The algorithm for the unconstrained problem

Assume that p(x) is the maximum normal length not larger than x. L0 is the normalized
sheet length, L0 = p(L) = aM . W0 is the normalized sheet width, W0 = p(W) = aK . The
set of normal lengths A = {a1, . . . , aM} has been obtained from Definition 5. According
to Theorem 2 and the scheme described above, the algorithm is as follows (Algorithm
A):

Step 1. Let F(x, y) = G(x, y) = Q(x, y) = 0 for x = a1, . . . , aM , y = a1, . . . , aK . Let i =
0.

Step 2. Let i = i + 1. Go to Step 9 if i > M. Let x = ai and x0 = p[max(0, x − w)].
Let j = 0.

Step 3. Let j = j + 1. Go to Step 2 if j > K. Let y = aj and y0 = p[max(0, y − w)].

DYNAMIC PROGRAMMING ALGORITHMS 295

Step 4. Let nx = ny = 0. If y ≥ w, let nx = F (x, y0) + BinStrip (x). If x ≥ w, let
ny = F (x0, y) + BinStrip (y). Let F(x, y) = max(nx, ny). Go to Step 3 if F(x, y) = 0.
Go to Step 5 if nx > ny. Go to Step 6 if nx < ny. Go to Step 7 if nx = ny.

Step 5. nx > ny. Let Q(x, y) = 1. Let G(x, y) = max[G(x, y0), 1]. Let G(x, y) = G(x, y)
+ 1 if Q(x, y0) = 2. Go to Step 3.

Step 6. nx < ny. Let Q(x, y) = 2. Let G(x, y) = max[G(x0, y), 1]. Let G(x, y) = G(x, y)
+ 1 if Q(x0, y) = 1. Go to Step 3.

Step 7. nx = ny. Let gx = G(x, y0) and gy = G(x0, y). Let gx = gx + 1 if Q(x, y0) = 2.
Let gy = gy + 1 if Q(x0, y) = 1. Let gx = max(gx, 1) and gy = max(gy, 1).

Step 8. Let G(x, y) = min(gx, gy). Let Q(x, y) = 1 if gx < gy, let Q(x, y) = 2 if gx > gy,
otherwise let Q(x, y) = 3. Go to Step 3.

Step 9. The maximum number of blanks is F(L0, W0). Perform section-back-tracking to
obtain the section layout of the optimal pattern.

The function of the section-back-tracking is to return the direction and number of
strips of each section. The steps of the section-back-tracking are as follows:

Step 1. Let x = L0 and y = W0. Let mi be the number of strips and qi be the direction of
the i-th section. Let i = 1 and m1 = 0. Let q1 = 2 if Q(x, y) = 2, other wise let q1 = 1.

Step 2. Let mi = mi + 1 if Q(x, y) = qi or Q(x, y) = 3. Otherwise let i = i+1, mi = 1,
and qi = Q(x, y).

Step 3. Let y = p(y − w) if qi = 1, otherwise let x = p(x − w).
Step 4. Go to Step 5 If F(x, y) = 0. Otherwise go to Step 2.
Step 5. The number of strips and the direction of each section have been found. Output

the optimal pattern.

4. The other algorithms

4.1. The algorithm for the constrained problem

The blank demand must be met exactly for the constrained problem. The algorithm is
as follows (Algorithm B):

Step 1. Determine F(L0, W0) by Algorithm A.
Step 2. Let n∗ = F(L0, W0) in Eq. (1) and determine dp, the number of blanks to be cut

from the partial sheet. Go to Step 4 if dp = 0.
Step 3. Find n, 2 ≤ n ≤ M, so that F(an−1,W0) < dp and F(an, W0) ≥ dp. The length of

the partial sheet is an.
Step 4. Obtain the optimal pattern through section-back-tracking.

Usually two runs of the section-back-tracking are needed. The first finds the section
layout on the full sheet, and the second returns the section layout on the partial sheet.

4.2. The algorithm for the unconstrained problem with blade length constraint

In practice the length of the sheet in stock may be longer than the blade length of the
guillotine shear used. In a factory that produces airplanes, the length of the aluminum

296 CUI AND HUANG

alloy sheets may be between 5–7 m and the blade length is within 2 m. In the cutting
process the sheet must be divided into several segments before any strip is cut. All
segment lengths must be shorter than or equal to the blade length. This problem is
referred to as the blade length problem.

Assume that Lg is the blade length, Lg < L and Lg ≥ W. Let H = {h1, h2, . . . , hN} be
the set of segment lengths considered, 0 ≤ hi ≤ Lg, i = 1, 2, . . . , N. From Theorem 2 we
know that a segment length can be trimmed to the maximum normal length not larger
than itself, without decreasing the number of blanks in the segment. Therefore, any
element of H may be set to one of the normal lengths between 0 and Lg. The following
model should be solved to find yi (i = 1, 2, . . . , N), the number of segments of length
hi in the optimal pattern:

Max z =
N∑

i=1

vi yi

s.t.
N∑

i=1

hi yi ≤ L , yi is a nonnegative integer, i = 1, 2, . . . , N (3)

Where vi is the maximum number of blanks yielded by segment hi × W. Model (3) is a
knapsack problem, the related knapsack functions are:

f (x) = max

{
N∑

i=1

vi yi ; yi nonnegative integers, and
N∑

i=1

hi yi ≤ x

}

(4)

For any given x, q(x) is to be used to determine how f (x) is achieved. The partition
of x achieving f (x) is given by x1, x2, . . . , xr = x, with xj−1 = xj − hk and k = q(xj)
for j ≥ 2. So we can obtain the segment lengths in the optimal scheme by back tracking
in q(x). Furthermore, the number of blanks yielded by the optimal pattern is n∗ = f(L).
The reader may refer to reference [3, 11] to find the method to solve model (4).

The algorithm for the optimal division of the long sheet may be simply described as
follows (Algorithm C):

Step 1. Find N so that aN = p(Lg). Let hi = ai for 1 ≤ i ≤ N.
Step 2. Perform algorithm A only once to find vi = F(hi, W0), i = 1, . . . , N.
Step 3. Solve model (4) to obtain f(x) and q(x), x = a1, . . . , aM .
Step 4. Find the segment layout of the sheet by segment-back-tracking. Find the section

layout of each segment appearing in the sheet by section-back-tracking. Output the
optimal pattern.

The process of section-back-tracking is the same as that of algorithm A. To find the
segment layout on a sheet of length Ls, the steps are as follows:

Step 1. Let x = p(Ls). Let yi = 0, i = 1, 2, . . . , N.
Step 2. Go to Step 4 if f(x) = 0.
Step 4. Let i = q(x), yi = yi + 1, and x = p(x − hi). Go to Step 2.
Step 5. The number of each segment length has been found. Output the segment layout.

DYNAMIC PROGRAMMING ALGORITHMS 297

4.3. The algorithm for the constrained problem with blade length constraint

The algorithm is as follows (Algorithm D):

Step 1. Perform Algorithm C to solve the unconstrained problem with blade length
constraint.

Step 2. From Eq. (1), let n∗ = f(p(L)) = f(aM), sn = int(d/n∗), and dp = d − n∗sn. Go to
Step 4 if dp = 0.

Step 3. Find n, 1 < n ≤ M, so that f(an−1) < dp and f(an) ≥ dp. The length of the partial
sheet is an.

Step 4. Find the segment layouts of the full sheet and the partial sheet through segment-
back-tracking. Find the section layout of each segment appearing in the optimal
pattern by section-back-tracking. Output the optimal pattern.

5. The experimental results

5.1. Test of the algorithms

The computations were performed on a computer with clock rate 1.9 GHz and inner
memory 256 MB. 300 test problems were generated randomly according to the variable
ranges below:

Item Initial step and strip width Sheet length Sheet width Blank demand

Range 100–300 3000–5000 1000–1500 1000–20000

The step and width of the strip, and the length and width of the sheet are all restricted to
integers. In all problems generated, the succeeding step was determined as l1 = int(cl0),
where c is a random value between 0.6 and 1.0. The blank demands were only used for
the constrained problems. They are not necessary for the unconstrained problems. The
tests below are all on the above 300 test problems.

We use material usage to measure the quality of a pattern, which is determined by the
following equation for the unconstrained problem:

u = [nl1w/(L × W)] × 100(%)

Here u is the material usage, and n is the number of blanks in the pattern. For the
constrained problem the material usage u is determined as follows:

u = {dl1w/[(sn L + L f) × W]} × 100(%)

Here Lf is the partial sheet length.
(1) The unconstrained and constrained problems without blade length constraint
Algorithms A and B were used to solve the unconstrained and constrained problems

respectively. For the unconstrained problems, the average computation time of one
problem is 0.012 seconds, and the average material usage is 93.59%. The average

298 CUI AND HUANG

computation time is also 0.012 seconds, and the material usage is 93.57% for the
constrained problems.

20 test problems and the solutions given by algorithm A are listed in Table 2, where
nb is the number of blanks in the optimal pattern, ns is the number of sections. These
problems may be useful for other practitioners to compare against the approach of this
paper.

(2) The unconstrained and constrained problems with blade length constraint
The blade length was set to 2000 for all problems. Algorithms C and D were

applied to solve the unconstrained and constrained problems respectively. The average
computation time of one problem is the same for the two algorithms, which is
0.007 seconds. The average material usage is 92.88% for the unconstrained problems,
and 92.86% for the constrained problems.

5.2. Effect of the blade length on material usage

To analyze the effect of the blade length on material usage, Algorithm C and D were
applied to the test problems. All problems were solved for each blade length. The
computational results are as follows:
Here uC is the average material usage for Algorithm C, and uD is that for Algorithm
D. The two algorithms have the same average computation time (when rounded off to
3 decimal places), which is denoted as t. The material usage increases with the blade
length.

Lg 1500 2000 2500 3000 3500 4000 4500 ≥5000

uC (%) 92.49 92.88 93.12 93.24 93.36 93.46 93.56 93.59

uD (%) 92.48 92.86 93.11 93.22 93.34 93.44 93.54 93.57

t 0.007 0.007 0.009 0.010 0.011 0.012 0.012 0.012

5.3. Potential of the multi-section patterns in saving material

1-section patterns are often used in industry. If only 1-section patterns are allowed. The
average material usage is 91.15% for the unconstrained problems without blade length
constraint. From Section 5.1 we know that the average material usage is 93.59% for
multi-section patterns, which is 2.44% above that of the 1-section patterns.

Applying multi-section patterns can improve material usage. The improvement is
stronger for smaller sheet sizes. For the strip data of the 300 test problems, the com-
putation results of algorithm A for different sheet sizes are listed below, where u1 is
the average material usage of the 1-section patterns, and um is that of the multi-section
patterns.

Sheet size 1500 × 750 2000 × 1000 2500 × 1250 3000 × 1500 4000 × 2000

u1 (%) 83.19 87.35 89.99 91.92 93.49

um (%) 86.78 90.49 92.72 94.31 95.80

(um−u1) (%) 3.59 3.14 2.73 2.39 2.31

DYNAMIC PROGRAMMING ALGORITHMS 299

Table 2. Some test problems and their solutions.

No w l0 l1 L W nb ns

1 100 114 72 3019 1009 410 1

2 268 115 72 3201 1139 177 4

3 229 225 159 4246 1389 156 1

4 130 114 81 4395 1129 447 4

5 246 218 178 4941 1464 160 1

6 235 204 194 4810 1465 149 3

7 160 209 195 4227 1176 154 4

8 100 250 199 3247 1452 224 1

9 272 223 145 4323 1009 93 2

10 274 106 84 3846 1080 174 2

11 125 286 277 4562 1183 150 3

12 274 264 246 4951 1049 74 2

13 193 261 244 3979 1323 104 2

14 212 114 95 3889 1450 272 3

15 115 214 180 3449 1265 206 3

16 161 284 228 3096 1363 108 2

17 155 243 163 3587 1294 168 1

18 297 118 108 3567 1007 108 1

19 241 152 117 3015 1073 100 1

20 169 225 206 4249 1336 156 3

5.4. Solution to an example

For the strip shown in figure 1(a), l0 = 160, l1 = 132 and w = 183 respectively. Assume
that the sheet size is 2500 × 1250. Figure 8(a) shows the optimal 1-section pattern that
contains 117 blanks. Figure 8(b) shows the optimal multi-section pattern generated by
algorithm A, which contains 121 blanks in four sections. The algorithm of this paper
guarantees that the optimal pattern is the simplest one. If the maximum number of
sections is not allowed to exceed two or three, the number of blanks in the pattern must

Figure 8. Cutting patterns of the example. (a) The 1-section pattern (117 blanks), (b) The multi-section
pattern (121 blanks).

300 CUI AND HUANG

be less than 121. That is to say, the material usage may be relatively low if there exists
constraint on the number of sections.

6. Conclusions

The algorithms for generating optimal cutting patterns of identical strips may be applied
both at the tooling design stage, and at the cutting stock stage, to improve material usage.

Four algorithms based on dynamic programming are presented, which are cable of
dealing with four types of problems often encountered in practice: the unconstrained
problem, the constrained problem, the unconstrained problem with blade length con-
straint, the constrained problem with blade length constraint. A dynamic programming
based algorithm was used to obtain the simplest optimal patterns. These patterns simplify
the cutting process, which is an important consideration in industry.

Another advantage of dynamic programming algorithms is the easiness to design and
understand, which is welcomed by practitioners.

Practical computational complexity of the dynamic programming algorithms is ac-
ceptable, however from the point of view of the theory of computational complexity,
these algorithms have non-polynomial character. A linear algorithm exists for equal
rectangular blanks [4]. Does it exist for identical strips? The existence of a polynomial
algorithm for identical strips is a topic left for future research.

Acknowledgments

This paper is part of the project supported by Guangxi Science Foundation (Grant
0236017). The authors wish to express their appreciation to the supporter. The authors
are also grateful to the anonymous referees for their helpful comments, which improved
an early version of this paper.

References

1. P.K. Agrawal, “Minimizing trim loss in cutting rectangular blanks of a single size form a rectangular
sheet using orthogonal guillotine cuts,” European Journal of Operational Research, vol. 64, no. 3, pp.
410–422, 1993.

2. S. Anand, C. Mccord, and R. Sharma et al., “An integrated machine vision based system for solving the
nonconvex cutting stock problem using genetic algorithms,” Journal of Manufacturing Systems, vol. 18,
no. 6, pp. 396–415, 1999.

3. R. Andonov, V. Poirrez, and S. Rajopadhye, “Unbounded knapsack problem: Dynamic programming
revisited,” European Journal of Operational Research, vol. 123, pp. 394–407, 2000.

4. M.Z. Arslanov, “Continued fractions in optimal cutting of a rectangular sheet into equal small rectangles,”
European Journal of Operational Research, vol. 125, pp. 239–248, 2000.

5. C.H. Cheng, B.R. Feiring, and T.C.E. Cheng, “Cutting stock problem—a survey,” International Journal
of Production Economics, vol. 36, no. 3, pp. 291–305, 1994.

6. S.K. Cheng and K.P. Rao, “Large-scale nesting of irregular patterns using compact neighborhood
algorithm,” Journal of Materials Processing Technology, vol. 103, pp. 135–140, 2000.

7. Y. Cui, “A cutting stock problem and its solution in the manufacturing industry of large electric
generators,” Computers & Operations Research, vol. 32, no. 7, pp. 1709–1721, 2005.

8. Y. Cui and R. Zhou, “Generating optimal cutting patterns for rectangular blanks of a single size,” Journal
of the Operational Research Society, vol. 53, pp. 1338–1346, 2002.

DYNAMIC PROGRAMMING ALGORITHMS 301

9. A.M. Gomes and J.F. Oliveira, “A 2-exchange heuristic for nesting problems,” European Journal of
Operational Research, vol. 141, pp. 359–370, 2002.

10. N. Lindecrantz, “Method for optimum cutting of rectangular sheets,” Nordisk Tidskr. Informationsbe-
handling vol. I, pp. 30–35, 1964.

11. S. Martello and P. Toth, Knapsack problems: Algorithms and Computer Implementations. Wiley: New
York, 1990.

12. T.J. Nye, “Optimal nesting of irregular convex blanks in strips via an exact algorithm,” International
Journal of Machine Tools & Manufacture, vol. 41, pp. 991–1002, 2001.

13. A. Ramesh and N. Ramesh, “A generic approach for nesting of 2-D parts in 2-D sheets using genetic and
heuristic,” Computer-Aided Design, vol. 33, pp. 879–891, 2001.

14. A.G. Tarnowski, J. Terno, and G. Scheithauer, “A polynomial time algorithm for the guillotine
pallet-loading problem,” INFOR, vol. 32, pp. 275–287, 1994.

15. Y. Cui, “Generating optimal T-shape cutting patterns for circular blanks,” Computers & Operations
Research, vol. 32, no. 1, pp. 143–152, 2005.

