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Abstract. In this paper we are concerned with the problem of boundedness and the existence of optimal
solutions to the constrained optimization problem.

We present necessary and sufficient conditions for boundedness of either a faithfully convex or a quasi-
convex polynomial function over the feasible set defined by a system of faithfully convex inequality constraints
and/or quasi-convex polynomial inequalities, where the faithfully convex functions satisfy some mild assump-
tion. The conditions are provided in the form of an algorithm, terminating after a finite number of iterations, the
implementation of which requires the identification of implicit equality constraints in a homogeneous linear
system. We prove that the optimal solution set of the considered problem is nonempty, this way extending the
attainability result well known as the so-called Frank-Wolfe theorem. Finally we show that our extension of
the Frank-Wolfe theorem immediately implies continuity of the solution set defined by the considered system
of (quasi)convex inequalities.
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1. Introduction

We consider the problem

minimize f0(x) (1)

subject to: x ∈ R = {x ∈ R
n | fi (x) ≤ 0, i ∈ J = {1, 2, . . . , m}} (2)

where fi (x), i ∈ J 1 = {1, 2, . . . , m1}, are faithfully convex functions and fi (x), i ∈
J 2 = {m1 + 1, . . . , m}, are quasi-convex polynomials with unbounded level sets, while
the objective function f0 belongs to either of the two classes of functions. As shown
by Rockafellar in [19], every faithfully convex function fi can be represented in the
form fi (x) = Fi (ci + Bi x) + 〈ai , x〉 + di , where Fi are strictly convex functions, and
Bi ∈ R

pi ×n, ci ∈ R
pi , ai ∈ R

n, di ∈ R, i ∈ J 1 ∪ {0}. We assume that in case the
functions fi are faithfully convex they satisfy the following condition:

s ∈ 0+ fi ⇒ Bi s = 0, i ∈ J 1 ∪ {0}, (3)

where 0+ fi denotes the cone of recession of fi. The problem (1) and (2) either has a finite
infimum (although there may be no such point at which f0(x) achieves its minimum),
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or the function is unbounded from below [1, 2, 5, 6, 13, 14]. It is well known [1], that
the minimum of the problem in the case when all fi, i ∈ J ∪ {0} are convex may be not
achieved only if the objective function and the feasible region have a common direction of
recession.

Most of the algorithms for convex constrained optimization problem are based upon
assumption that the set of optimal solutions is nonempty and compact, although there
are many convex programs which do not satisfy the assumptions. In 1956 Frank and
Wolfe proved that when the objective function is quadratic and the feasible region
is linear, the set of optimal solutions is nonempty provided the problem is bounded
below. This result is an extension of a well known fundamental theorem of lin-
ear programming [7, 9]. Many other authors generalized the Frank-Wolfe theorem
to broader classes of functions [11, 18, 21]. In particular Perold in [18] extended
the Frank-Wolfe theorem to a class of non-quadratic objective functions and linear
constraints.

More recently Luo and Zhang [11] extended the Frank-Wolfe theorem to various
classes of general convex/non-convex quadratic constraint systems. In particular, the
attainability of an infimum of the quadratically constrained convex quadratic pro-
grammes, which was shown in [11] to be a consequence of the continuity of the
feasible set, also follows from the result for lp programming established by Terlaky
in [21]. Very recently Belousov and Klatte in [4] generalized the result on attain-
ability to convex polynomial objective function and convex polynomial sets, which
was earlier demonstrated in a 1977 Belousov book. However, we have to remark
that as pointed out by a Referee, the above mentioned attainability results can be
deduced from the attainability theorem given by Bank and Mandel in [3] for the
minimization problem where the objective and constraint functions are quasi-convex
polynomials.

In this paper we present necessary and sufficient conditions for boundedness of
a quasi-convex constrained problem, where the objective and constraint functions are
either faithfully convex functions affine along any direction of recession or quasi-convex
polynomials. The conditions are provided in the form of an algorithm, terminating after
at most min{m − 1, n − 1} iterations, which in each iteration requires the identification
of implicit equality constraints in a homogeneous linear system. We also show that
the optimal solution set of the considered problem is nonempty, this way generalizing
the attainability results proved by Luo and Zhang in [11] for a quasi-convex quadratic
objective function and convex quadratic constraints and by Belousov and Klatte in
[4] for convex polynomial functions. We note that Theorem 4.1 in this paper extends
the result established by Bank and Mandel in [3] for quasi-convex polynomial objective
function and constraints to problems including also faithfully convex functions satisfying
condition (3).

The results in [3, 4, 11] are extensions of the well known Frank-Wolfe theorem for
quadratic objective function and linear constraints.

We also show that our result on attainability of the infimum of the (quasi-)convex
program allows us to extend perturbation results given by Luo and Zhang [11] for
parametric convex quadratic programs and by Belousov and Klatte [4] for paramet-
ric convex polynomials to the broader class of parametric convex and quasi-convex
programs.
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2. Auxiliary results on unboundedness of the (quasi-)convex programmes

Let us represent fi (x) = Fi (ci + Bi x) + 〈ai , x〉 + di , i ∈ J 1 ∪ {0}, where Fi are strictly
convex functions, and Bi are full row rank matrices.

It is well known that if a faithfully convex function is constant along some line
segment, then it is constant along any line parallel to the line segment. The set of vectors
with the latter property forms what is called a constancy space of f (x), which is denoted
by D=

f , [10, 20]. A vector s is called a direction of recession of f (x) if for every x the
function f (x + ts) is a nonincreasing function of t [10, 20]. The set of all vectors of
recession of the function f forms a convex cone, called the cone of recession, denoted
by 0+ f . The constancy space D=

f of f (x) may be defined in terms of the set 0+ f [20],
as

D=
f = {y ∈ R

n|y ∈ 0+ f ∧ −y ∈ 0+ f }.

We define the region

F = {x ∈ R
n | fi (x) ≤ 0, i ∈ J 1}, (4)

where the functions fi (x), i ∈ J 1 = {1, 2, . . . , m1}, are faithfully convex functions
satisfying condition (3).

Lemma 2.1 ([15]). The region F defined in (4), where fi , i ∈ J are faithfully convex
and satisfy condition (3), is unbounded if and only if there exists a vector s 	= 0 satisfying
the following conditions:

Bi s = 0, ∀i ∈ J 1,

〈ai , s〉 ≤ 0, ∀i ∈ J 1.
(5)

Lemma 2.2. If the faithfully convex functions fi (x), i ∈ J 1 ∪ {0} satisfy condition
(3), then the function f0(x) is unbounded from below along a half-line in F if and only
if there exists a vector s 	= 0 satisfying the following conditions:

〈a0, s〉 < 0

Bi s = 0, ∀i ∈ J 1 ∪ {0},
〈ai , s〉 ≤ 0, ∀i ∈ J 1.

Proof: The backward part of the proof follows immediately, since f0(x) is unbounded
below along any half-line with a direction vector s satisfying the above set of conditions.
To prove the forward part, let us assume that f0(x) is unbounded along a half-line
x(t) = x0 + ts, t ≥ 0. Since x(t) ∈ F , then by Lemma 2.1, conditions (5) are satisfied
for i ∈ J 1. Since for some α, x(t) ∈ Lα( f0) = {x ∈ R

n| f0(x) ≤ α}, ∀t ≥ 0, then
s ∈ 0+ f0, which by assumption (3) implies that B0s = 0. Consequently f0(x(t)) =
F0(c0 + B0(x0 + ts)) + 〈a0, x0 + ts〉 + di = f0(x0) + 〈a0, s〉t → −∞, when t → ∞,

which yields the inequality 〈a0, s〉 < 0, completing the proof of the lemma. �
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We remark that convex polynomials of n-variables (see Corollary 4.1) and convex
functions of the form

f (x) = 1

p
(〈x, Ax〉) p

2 + 〈b, x〉 + d,

where p ≥ 1, and A is positive semidefinite belong to the class of faithfully convex
functions satisfying condition (3).

We define a quasi-convex function by using its equivalent characterization given in
[8].

Definition 2.1. Consider a function f (x) on a convex set S ⊂ R
n, and the level sets

Lλ( f ) = {x | x ∈ S, f (x) ≤ λ}. Then f (x) is called quasi-convex on S if Lλ( f ) is
convex for each λ ∈ R.

A polynomial function p : R
n → R with degree µ is called a form of order µ if

p(t x) = tµ p(x), ∀x ∈ R
n, ∀t ∈ R. Each polynomial function p(x) of degree µ ≥ 1

can be represented as a sum of forms q j (x), j = 0, 1, . . . , µ :

p(x) = qµ(x) + · · · + q1(x) + q0,

where degree of q j (x) is j.

Lemma 2.3 ([3]). Let p(x), x ∈ R
n be a quasi-convex polynomial function. Then if

p(x) = qµ(x) + qµ−1(x) +· · ·+ q0, where the functions qi (x), i = 1, . . . , µ, are forms
of the order i, then the form qµ(x) is quasi-convex.

Lemma 2.4. If a quasi-convex polynomial function f0(x) is unbounded below (or
constant) along some half-line, then it is unbounded below (respectively constant)
along any half-line with the same direction vector.

Proof: The proof follows immediately from Lemma 1(ii) in [3], stating that for two
fixed vectors xi , i = 1, 2, and a vector s ∈ R

n, the functions f0(xi + ts) of one variable
t, are quasi-convex polynomials of the same degree with identical coefficients corre-
sponding to the highest degree term, provided that f0(x) is a quasi-convex polynomial
function. As noted in [3], the result is not true for arbitrary quasi-convex functions. �

Similar result has been proved in [16] for arbitrary convex, (not necessarily polyno-
mial) functions.

Lemma 2.5 ([3]). Let qµ(x), x ∈ R
n, be a quasi-convex form of order µ ≥ 1.

Further, let us define

L = {x ∈ R
n | qµ(x) = 0}

and

H = {x ∈ R
n | qµ(x) ≤ 0}.
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Then the following statements hold:
(i) L is a linear subspace of R

n.

(ii) L = H if order µ is an even number.
(iii) If the order µ is an odd number, then L is a hyperplane and H is a half-space, both

in R
n .

Lemma 2.6 ([3]). Let p(x) = qµ(x)+· · ·+q1(x)+q0, x ∈ R
n, be a quasi-convex

polynomial which has the degree deg(p) = µ ≥ 1. Let us define the sets

K (p) = {u ∈ R
n | sup{p(tu) | t ≥ 0} < ∞},

R(p) = {u ∈ R
n | sup{p(tu) | t ∈ R} < ∞},

and an index

i0 =





max{i |∃u ∈ R
n : qµ(u) = qµ−1(u) = · · · = qi+1(u) = 0, qi (u) < 0},

if it exists

1, otherwise.

Then we have
(i) K (p) = {u ∈ R

n| qµ(u) = · · · = qi0+1(u) = 0, qi0 (u) ≤ 0}, R(p) = {u ∈
R

n| qµ(u) = · · · = qi0 (u) = 0}.
(ii) If the polynomial function p(x) is convex, then an index i0 defined above has a value

1.
(iii) K(p) is the recession cone 0+ p of all non-empty level sets Lα(p) = {x ∈ R

n|p(x) ≤
α} of p(x).

We note that it follows immediately from Lemma 2.6 that R(p) is a constancy space
D=

p of p.
We observe that the properties stated in Lemma 2.6 are not true for a general class of

quasi-convex functions, which may have different cones of recession for different level
sets.

Lemma 2.7. Let f0(x) = q0
µ0

(x) + · · · + q0
1 (x) + q0

0 , x ∈ R
n, be a quasi-convex

polynomial function of degree µ0 ≥ 1, and the index i0 be defined as in Lemma 2.6, that
is

i0 =





max{i | ∃u ∈ R
n : q0

µ0
(u) = q0

µ0−1(u) = · · · = q0
i+1(u) = 0, q0

i (u) < 0},
if it exists

1, otherwise.

Then f0(x) is unbounded from below along a half-line in F if and only if there exists a
vector s satisfying the following conditions:

q0
τ (s) = 0, τ = µ0, µ0 − 1, . . . , i0 + 1, q0

i0
(s) < 0, (6)
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Bi s = 0, ∀i ∈ J 1, (7)

〈ai , s〉 ≤ 0, ∀i ∈ J 1. (8)

Proof: To prove the backward part of the lemma let us assume that s satisfies conditions
(6)–(8). We observe that since s satisfies conditions (6), f0(x) is unbounded below on
R

n along the half-line x(t) = ts, t ≥ 0. Let x̄ ∈ F . Then it follows from Lemma 2.4
that f0(x) is unbounded below along the half-line x̄(t) = x̄ + ts, t ≥ 0. Since s satisfies
conditions (7) and (8) it follows that x̄(t) ⊂ F .

To prove the forward part, let us assume that f0(x) is unbounded below along a
feasible half-line x0(t) = x0 + ts, t ≥ 0. Since x0(t) ⊂ F , then by Lemma 2.1,
conditions (7) and (8) are satisfied. Since the function f0(x0(t)), t ≥ 0, is a quasi-
convex polynomial of one variable and f0(x) is unbounded below along the half-line
x0(t), t ≥ 0, then f0(x) is bounded from above along this half-line. Therefore for some
α, x0(t) ∈ Lα( f0) = {x ∈ R

n| f0(x) ≤ α}, ∀t ≥ 0, which by Lemmas 2.4 and 2.6(iii)
implies that s ∈ 0+ f0. Thus it follows from Lemma 2.6(i) that ∃i0, (satisfying conditions
of this lemma), such that equations q0

µ0
(s) = · · · = q0

i0+1(s) = 0, q0
i0

(s) ≤ 0 hold. Let
us suppose that

q0
µ0

(s) = · · · = q0
i0+1(s) = 0 and q0

i0
(s) = 0. (9)

Since f0(x) is unbounded below along the half-line x0(t) then by Lemma 2.4 it is also
unbounded below along the half-line x(t) = ts. But Eqs. (9) imply that s ∈ D=

f0
, that

is that f0(x) is constant along the half-line x(t) = ts, t ≥ 0, and consequently it is is
also constant along the half-line x0(t) = x0 + ts, t ≥ 0. This contradicts an earlier
assumption that f0(x0(t)), t ≥ 0, is unbounded below, which proves that qi0 (s) < 0,

completing the proof of the lemma. �

We need to make the following remarks. We observe that by Lemma 2.5, {s ∈
R

n | q0
µ0

(s) = 0} is a linear subspace of R
n, the set {s ∈ R

n|q0
µ0

(s) = q0
µ0−1(s) = 0} is a

linear subspace of {s ∈ R
n | qµ0 (s) = 0} and so on. It follows from Lemmas 2.5 and 2.6

that the set defined by the system

q0
τ (s) = 0, τ = µ0, µ0 − 1, . . . , i0 + 1; q0

i0
(s) ≤ 0 (10)

is a linear half-space of R
κ , for some κ ≤ n, which implies that it can be replaced by a

system of linear equations and one linear inequality. Therefore the problem to determine
whether there exists s satisfying q0

i0
(s) < 0 and (10), can be replaced with a LP problem

with a homogeneous system of linear equations. More specifically, the latter problem is
equivalent to the LP problem to determine whether or not a linear inequality 〈a0, s〉 ≤ 0,

is an implicit equality in the system

〈a0, s〉 ≤ 0, B0s = 0,

where B0s = 0 is a system of linear equations representing a linear subspace defined
by q0

τ (s) = 0, τ = µ0, . . . , i0 + 1 and the inequality 〈a0, s〉 ≤ 0 represents a half-space
defined by the system (10).
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Each polynomial fi (x), i = m1 + 1, . . . , m, of degree µi ≥ 1, will be represented
as a sum of the forms qi

j (x), j = 0, 1, 2, . . . , µi :

fi (x) = qi
µi

(x) + · · · + qi
1(x) + qi

0,

where qi
j , j = 0, 1, . . . , µi , is a form of degree j satisfying qi

j (t x) = t j qi
j (x), ∀x ∈

R
n, ∀t ∈ R.

Let us now define the convex region

P = {x ∈ R
n | fi (x) ≤ 0, i ∈ J 2},

where the functions fi (x), i ∈ J 2 = {m1 + 1, . . . , m}, are quasi-convex polynomials.
We will prove the following lemma.

Lemma 2.8. The nonempty feasible region P is unbounded if and only if there exists
a vector s, (s 	= 0), satisfying the following conditions:

ql
τ (s) = 0, τ = µl, µl − 1, . . . , il + 1; ql

il
(s) ≤ 0, l = m1 + 1, . . . , m,(11)

where µm1+1, . . . , µm denote the degrees of the polynomials fm1+1(x), . . . , fm(x) re-
spectively and il, l = m1 + 1, . . . , m is defined as

il =
{

max{i |∃u ∈ R
n : ql

µl
(u) = · · · = ql

i+1(u) = 0, ql
i (u) < 0}, if it exists

1, otherwise,

for l = m1 + 1, . . . , m.

Proof: It follows from the Definition 2.1 that the regionP is convex. Thus the regionP
is unbounded iff it contains a half-line. We will show first the backward part of the lemma.
Let x0 ∈ P and s 	= 0 satisfies conditions (11). Then it follows from Lemma 2.6 that
s ∈ ⋂m

i=m1+1 0+ fi . As indicated in [3] all functions fi (x0+ts), t ≥ 0, are nonincreasing
functions of t, that is x0 + ts ∈ P,∀t ≥ 0, which completes the first part of the proof.
To prove the forward part of the proof suppose that the set P contains a half-line, let
say x(t) = x̄ + ts, t ≥ 0. Thus x̄ + ts ∈ ⋂m

i=m1+1 L0( fi ) = {x | fi (x̄ + ts) ≤ 0, i ∈ J 2},
which by Lemma 2.6, yields that s ∈ ⋂m

i=m1+1 0+ fi , and that s satisfies conditions (11).�

Let us define the feasible region P(λ) = {x ∈ R
n| fi (x) ≤ λi , i ∈ J 2}, where

λi ∈ R,∀i. It follows immediately from the Lemma 2.8 that the following corollary
holds.

Corollary 2.1. The nonempty feasible region P is unbounded iff the nonempty region
P(λ) is unbounded, ∀λ ∈ R.

Lemma 2.9. The quasi-convex polynomial function f0(x) is unbounded from below
along a half-line in P if and only if there exists a vector s satisfying the following
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conditions:

q0
τ (s) = 0, τ = µ0, µ0 − 1, . . . , i0 + 1; q0

i0
(s) < 0 (12)

ql
τ (s) = 0, τ = µl , µl − 1, . . . , il + 1; ql

il
(s) ≤ 0, l = m1 + 1, . . . , m, (13)

where µl denote the degree of the quasi-convex polynomials fl(x), l = 0, m1 +1, . . . , m
and il , l = 0, m1 + 1, . . . , m are defined as in the Lemma 2.8.

Proof: To prove the backward part of the lemma we observe that f0(x) is unbounded
below on R

n along the half-line x(t) = ts, t ≥ 0, if s satisfies conditions (12). Since
s also satisfies conditions (13), then s ∈ ⋂m

i=m1+1 0+ fi . Let x̄ ∈ P. It follows that
x̄ + ts ∈ P, ∀t ≥ 0 and the Lemma 2.4 implies that f0(x) is unbounded below on P
along the half-line x̄(t) = x̄ + ts, t ≥ 0.

To prove the forward part, let us assume that f0(x) is unbounded below along a feasible
half-line x0(t) = x0 + ts, t ≥ 0. Since x0(t) ⊂ P, then by Lemma 2.6, conditions (13)
are satisfied. Since for some α, x0(t) ∈ Lα( f0) = {x ∈ R

n| f0(x) ≤ α}, ∀t ≥ 0, then by
Lemma 2.6(iii) it follows that s ∈ 0+ f0, which by part (i) of the same lemma implies
that ∃i0, (where i0 satisfies conditions of the Lemma 2.6), such that equations q0

µ0
(s) =

· · · = q0
i0+1(s) = 0, q0

i0
(s) ≤ 0, hold. Let us suppose that q0

µ0
(s) = · · · = q0

i0+1(s) = 0
and q0

i0
(s) = 0. Then by Lemma 2.6, s ∈ D=

f0
, which contradicts the assumption that

f0(x) is unbounded below along the half-line x0(t), t ≥ 0. This proves that q0
i0

(s) < 0,

i.e. s satisfies conditions (12), which completes the proof of the lemma. �

Clearly, a very similar result to the one stated in the Lemma 2.9 can be obtained for a
faithfully convex objective function satisfying condition (3), defined over the region P.

Using arguments similar to those following Lemma 2.7, we can deduce that the system
(13) can be replaced with the linear system

〈a j , s〉 ≤ 0, j ∈ J 2, (14)

B j s = 0, j ∈ J 2, (15)

where B j s = 0 is a system of linear equations representing a linear subspace defined
by {s | q j

τ (s) = 0, τ = µ j , . . . , i j + 1}, j = 0, m1 + 1, . . . , m, and the inequality
〈a j , s〉 ≤ 0, represents a half-space of {s | q j

τ (s) = 0, τ = µ j , . . . , i j + 1}, defined by
the inequality ql

il
(s) ≤ 0. In particular in Lemma 2.9, the problem to determine whether

or not there exists vector s satisfying the system (12) and (13), can be replaced with a
LP problem to determine whether or not a linear inequality 〈a j , s〉 ≤ 0 is an implicit
equality in the system (14) and (15).

Incorporating this unifying representation and taking into account that R = F ∩ P,

where both F and P are convex regions, allows us to combine results proved in Lemmas
2.2, 2.7 and 2.9 in the following theorem.

Theorem 2.1. Let us assume that the functions fi (x), i ∈ J ∪ {0} are either faithfully
convex satisfying condition (3), or quasi-convex polynomials. Then the function f0(x) is
unbounded from below along a half-line in R defined in (2) if and only if there exists a
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vector s satisfying the following conditions:

〈a0, s〉 < 0

Bi s = 0, ∀i ∈ J ∪ {0},

〈ai , s〉 ≤ 0, ∀i ∈ J.

3. Algorithm to determine boundedness of the (quasi-)convex constrained
programmes

In [6, 12] we have presented an algorithm to determine whether or not a convex quadratic
objective function is bounded from below over the region defined by convex quadratic
constraints. In every iteration, the algorithm requires the identification of implicit equal-
ity constraints in a homogeneous linear system. The algorithm terminates after at most
min{m −1, n −1} iterations, indicating whether or not the objective function is bounded
from below. The proof of the algorithm shows not only that in a case the problem is
bounded below, the objective function attains its minimum over the feasible region, but
also it demonstrates that the algorithm can be used to reduce the number of variables and
constraints in the quadratically constrained quadratic programming problem (QCQP),
that is whenever QCQP is bounded below then its solution can be constructed from
the solution to the reduced problem with a bounded feasible region. In this section we
will show that the approach presented in [6,12] can be extended to certain classes of
convex and quasi-convex functions, which in particular contain all convex polynomial
functions.

We consider the optimization problem

minimize f0(x) (16)

subject to :x ∈ R = {x ∈ R
n| fi (x) ≤ 0, i ∈ J = {1, 2, . . . , m}} (17)

where fi (x), i = 1, . . . , m1, are faithfully convex functions satisfying conditions (3),
and fi (x), i = m1 + 1, . . . , m are quasi-convex polynomial functions with unbounded
level sets. The objective function f0(x) belongs to either of the two classes of functions.
We show that if the objective function is bounded below over the feasible region then the
optimal solution set is nonempty. To this end we will present necessary and sufficient
conditions for boundedness of the objective function over the convex region R, defined
in (17).

We note that in order to be able to use a uniform notation when dealing with two
different types of functions, the system (13) has been replaced with the corresponding
homogeneous linear system (14) and (15). Analogously, as indicated in the remark
following Lemma 2.7, when the objective function f0(x) is a quasi-convex polynomial,
the problem of determining whether there exists a vector s satisfying q0

i0
(s) < 0 and

(10), has been replaced with a problem to determine whether or not a linear inequality
〈a0, s〉 ≤ 0 is an implicit equality in the system 〈a0, s〉 ≤ 0, B0s = 0.

We will prove that the following algorithm can be used to determine whether the
problem (16) and (17) is bounded below.



358 OBUCHOWSKA

Algorithm A

Step 1. Set k = 0, J0 = J ∪ {0}, and go to Step 2.
Step 2. Determine if there exists s ∈ R

n such that 〈a0, s〉 < 0 for s satisfying

〈ai , s〉 ≤ 0, i ∈ Jk, (18)

Bi s = 0, i ∈ Jk, (19)

If such an s exists, then stop with the message that f0(x) is unbounded from below
over R, otherwise go to Step 3.

Step 3. Find the index set Jk+1 ⊆ Jk of all implicit equality constraints in the system
(18) and (19). If Jk+1 = Jk, then stop with the message that f0(x) is bounded below
over R. Otherwise, replace k := k + 1 and go to Step 2.

To show that the algorithm terminates in finitely many steps we will use the following
notation. For each index set Jk we define the region R(Jk) = {x ∈ R

n | fi (x) ≤ 0, i ∈
Jk \ {0}}, and Rγ (Jk) = {x ∈ R(Jk) | f0(x) ≤ γ }, where γ >inf { f0(x) | x ∈ R}.
The matrix whose columns are the vectors ai , i ∈ Jk, and the columns of the matrices
BT

i , i ∈ Jk is denoted by A(Jk). The column space of A(Jk) is denoted by C(A(Jk)),
and the null space of AT (Jk), (which is an orthogonal complement of C(A(Jk)), is
denoted by N (AT (Jk)). Furthermore, for a vector v ∈ Rγ (Jk) we define the linear
manifold

Rγ (Jk, v) = {v + s | s ∈ C(A(Jk))}.

Lemma 3.1. If Algorithm A terminates in Step 3, then Rγ (Jk) ∩Rγ (Jk, v) is bounded
for all v ∈ Rγ (Jk).

Proof: If Rγ (Jk) ∩Rγ (Jk, v) is unbounded then it follows from convexity of Rγ (Jk),
(which for constraints with indices in Jk ∩ J 2 is a consequence of the Definition 2.1)
that there exists s ∈ C(A(Jk)) such that v + ts ∈ Rγ (Jk) ∩ Rγ (Jk, v), ∀t ≥ 0.

Since the set Rγ (Jk) is convex and v + ts ∈ Rγ (Jk), ∀t ≥ 0, then it fol-
lows from Lemma 2.1 that Bi s = 0, 〈ai , s〉 ≤ 0, i ∈ (J 1 ∩ Jk) \ {0}, while
Lemma 2.8 yields that Bi s = 0, 〈ai , s〉 ≤ 0, i ∈ (J 2 ∩ Jk) \ {0}. Furthermore,
since f0(v + ts) ≤ γ, ∀t ≥ 0, then in case f0(x) is quasi-convex polynomial
we have by Lemma 2.6 that s ∈ 0+ f0. Thus for the quasi-convex polynomial ob-
jective function, the vector s satisfies the system (10), which by the remarks at
the end of the previous section, can be replaced by a linear homogeneous system
B0s = 0, 〈a0, s〉 ≤ 0. In case when f0(x) is faithfully convex it follows immediately
from the inequality f0(v + ts) ≤ γ, ∀t ≥ 0, that s ∈ 0+ f0, which by the condition (3)
implies that s satisfies the system B0s = 0, 〈a0, s〉 ≤ 0 as well. But termination in Step 3
implies that s ∈ N (AT (Jk)), which is a contradiction since s 	= 0 and s ∈ C(A(Jk)).
Consequently the set Rγ (Jk) ∩ Rγ (Jk, v) is bounded. �

Lemma 3.2. If Algorithm A terminates in Step 3, then f0(x) is bounded from below
over R(Jk).



GENERALIZATIONS OF THE FRANK-WOLFE THEOREM 359

Proof: Clearly, it follows from Lemma 3.1 that the convex region Rγ (Jk)∩Rγ (Jk, v)
is bounded for all v ∈ Rγ (Jk), and consequently f0(x) is bounded below over this
region for all v ∈ Rγ (Jk). Since min{ f0(x) | x ∈ Rγ (Jk)} = min{ f0(x) | x ∈ R(Jk)},
we need only to show that for v1, v2 ∈ Rγ (Jk), v1 	= v2, it holds that min{ f0(x) | x ∈
Rγ (Jk) ∩ Rγ (Jk, v1)} = min{ f0(x) | x ∈ Rγ (Jk) ∩ Rγ (Jk, v2)}. To this end let Wk

be a matrix whose columns form an orthogonal basis for C(A(Jk)), and let us write
vi = vC

i + vN
i , where vC

i ∈ C(A(Jk)), and vN
i ∈ N (AT (Jk)), i = 1, 2. Thus for

i = 1, 2, any xi ∈ Rγ (Jk, vi ) can be expressed as xi = vN
i + Wkξi , for some vector

ξi . Using the change of variables x = vN
i + Wkξ, where vN

i ∈ N (AT (Jk)), yields
B0v

N
i = 0, 〈a0, v

N
i 〉 = 0, which in case the function f0(x) is a quasi-convex polynomial

yields q0
τ (vN

i ) = 0, τ = µ0, . . . , i0, which on the other hand by Lemma 2.6 implies
that vN

i ∈ D=
f0
, and consequently f0(x) = f0(vN

i + Wkξ ) = f0(Wkξ ) for both types
of the objective function. Similarly it follows from the relation vN

i ∈ N (AT (Jk)) that
vN

i ∈ D=
f j
, j ∈ Jk \ {0}, which leads to the equality

min{ f0(x) | x ∈ Rγ (Jk)∩Rγ (Jk, vi )} = min
{

f0
(
vN

i +Wkξ
)∣
∣ f j

(
vN

i +Wkξ
) ≤ 0,

j ∈ Jk \ {0}} = min{ f0(Wkξ ) | f j (Wkξ ) ≤ 0, j ∈ Jk \ {0}}, i = 1, 2, (20)

which completes the proof of the lemma. �

Lemma 3.3. If f0(x) is bounded from below over R(Jk), then f0(x) is bounded from
below over R(Jk+1).

Proof: It follows from Algorithm A that ∀i ∈ Jk \ Jk+1, the constraint 〈ai , s〉 ≤ 0,

is not an implicit equality in the system (18) and (19), while ∀i ∈ Jk+1 the constraint
〈ai , s〉 ≤ 0 is an implicit equality in (18) and (19). Thus, ∀i ∈ Jk \ Jk+1 there exists
an si satisfying (18) and (19) with 〈ai , si 〉 < 0 and with 〈a j , si 〉 = 0, ∀ j ∈ Jk+1.

Furthermore, since f0(x) is bounded from below over R(Jk) it follows from Theorem
2.1 that 〈a0, si 〉 = 0. Let

ŝ =
∑

i∈Jk\Jk+1

si .

It follows that ŝ satisfies (18) and (19) with 〈ai , ŝ〉 < 0, i ∈ Jk \ Jk+1, and 〈ai , ŝ〉 =
0, i ∈ Jk+1. Since 0 ∈ Jk+1, then B0ŝ = 0, 〈a0, ŝ〉 = 0. Thus in case when f0(x) is quasi-
convex polynomial we have ql

τ (ŝ) = 0, τ = µl , µl−1 . . . , il +1, il , l ∈ (J 2∩ Jk+1)∪{0},
which by Lemma 2.6 gives that ŝ ∈ D=

fi
, i ∈ (J 2 ∩ Jk+1) ∪ {0}. We note that the latter

conclusion follows immediately for faithfully convex objective function and constraints,
that is for constraints with indices i ∈ (J 1 ∩ Jk+1) ∪ {0}.

Let

x∗ = argmin{ f0(x) | x ∈ R(Jk)}.

Then ∀t > 0, we have

f0(x∗ + t ŝ) = f0(x∗),

fi (x
∗ + t ŝ) = fi (x

∗) ≤ bi , i ∈ Jk+1 \ {0}.
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We note that

fi (x
∗ + t ŝ) = Fi (ci + Bi (x

∗ + t ŝ)) + 〈ai , x∗ + t ŝ〉 + di < Fi (ci + Bi x
∗)

+〈ai , x∗〉 + di = fi (x
∗) ≤ 0, i ∈ (Jk \ Jk+1) ∩ J 1.

Furthermore, since the system Bi ŝ = 0, 〈ai , ŝ〉 < 0, i ∈ J 2 ∩ (Jk \ Jk+1), implies that

ql
τ (ŝ) = 0, τ = µl , µl−1 . . . , il + 1, and ql

il
(ŝ) < 0, l ∈ J 2 ∩ (Jk \ Jk+1),

then by Lemma 2.6, ŝ ∈ 0+ fi , i ∈ J 2 ∩ (Jk \ Jk+1). Therefore, fi (x∗ + t ŝ) ≤ fi (x∗) ≤
0, ∀i ∈ J 2 ∩ (Jk \ Jk+1).

Since

f0(x∗ + t ŝ) = min{ f0(x) | x ∈ R(Jk)}, t > 0, (21)

and since the constraints with i ∈ Jk \ Jk+1 are not active at x∗ + t ŝ, it follows that

f0(x∗ + t ŝ) = min{ f0(x) | x ∈ R(Jk+1)}, t ≥ 0, (22)

Therefore f0(x) is bounded from below over R(Jk+1). �

In the next corollary we show that the algorithm can be used to reduce the number of
variables and constraints in the problem (16) and (17).

Corollary 3.1. If Algorithm B terminates in Step 3 with the index set Jk, then

min{ f0(Wkξ ) | fi (Wkξ ) ≤ 0, i ∈ Jk \ {0}} = min{ f0(x) | x ∈ R}, (23)

where |Jk | ≤ m − k and ξ ∈ R
N , with N ≤ n − k. Furthermore, the solution to the

problem (16) and (17) can be constructed from a solution to the reduced problem in
(23).

Proof: From (20) we have that min{ f0(Wkξ ) | fi (Wkξ ) ≤ 0, i ∈ Jk \
{0}} = min{ f0(x) | x ∈ Rγ (Jk)} = min{ f0(x) | x ∈ R(Jk)}. Let ξ̂ =
argmin{ f0(Wkξ ) | fi (Wkξ ) ≤ 0, i ∈ Jk \ {0}} and set x̂k = Wk ξ̂ , so that

x̂k ∈ argmin{ f0(x) | x ∈ R(Jk)}.

It follows from the proof of the Lemma 3.3 and Eqs. (21) and (22) that ∃tk ∈ R, and
ŝk ∈ R

n such that x̂k + tk ŝk ∈ R(Jk−1), and

f0(x̂k + tk ŝk) = min{ f0(x) | x ∈ R(Jk−1)}.

Repeating this step (k − 1)− times we end with x̂ = (x̂1 + t1ŝ1) ∈ R(J0) and

f0(x̂) = min{ f0(x) | x ∈ R(J0)}.
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Since in each nonterminating iteration of Step 3 we have Jk+1 � Jk, then the number
of elements in Jk decreases at least by one, which yields |Jk | ≤ m − k. To show that
N ≤ n − k we observe that ∀ j ∈ Jk \ Jk+1, the vector a j /∈ C(A(Jk+1)) since for some
s, 〈a j , s〉 < 0 and Bi s = 0, 〈ai , s〉 = 0, ∀i ∈ Jk+1. Thus the number of columns of the
matrix Wk decreases at least by one in each iteration of the Algorithm. This completes
the proof of the corollary. �

Using the results stated in the Theorem 2.1 and Lemmas 3.2, 3.3 and Corollary 3.1
we are now able to provide sufficient and necessary conditions for boundedness of the
problem (16) and (17), stated in the following theorem.

Theorem 3.1. Algorithm A terminates in Step 2 iff f0 is unbounded from below over
R, and it terminates in Step 3 iff f0 is bounded from below over R.

Proof: If Algorithm A terminates in Step 2 then by Theorem 2.1 f0(x) is unbounded
below over R(Jk). Now applying the contrapositive of Lemma 3.3 k-times, yields that
f0(x) is unbounded below over R. If Algorithm A terminates in Step 3 then Lemma 3.2
implies that f0(x) is bounded below over R(Jk). Since R ⊂ R(Jk), therefore f0(x) is also
bounded below over R. Furthermore, since by Corollary 3.1 the algorithm terminates
after at most min{m − 1, n − 1} iterations, and it terminates in either Step 2 or Step 3,
the hypotheses of the theorem follows. �

4. Extension of the Frank-Wolfe type theorem to (quasi-)convex objective
function

and constraints

In this section we establish an attainability result for the problem (16) and (17), proved
in Theorem 4.1, as well as we show the continuity of the solution set defined by the
system of inequalities in (17).

Theorem 4.1. Let fi , i ∈ J ∪ {0} be either faithfully convex functions satisfying
condition (3) or quasi-convex polynomial functions. Then if the objective function f0 is
bounded from below on the nonempty feasible set

R = {x ∈ R
n | fi (x) ≤ 0, i ∈ J },

then infimum of the problem (16) and (17) is attained.

Proof: The Theorem 3.1 states that if f0 is bounded below on R then Algorithm A
terminates in Step 3 with the set of indices Jk, such that Jk = Jk+1. By Corollary 3.1
we have

min{ f0(Wkξ ) | fi (Wkξ ) ≤ 0, i ∈ Jk \ {0}} = min{ f0(x) | x ∈ R}.

It follows from the Eq. (20) that

min{ f0(x) | x ∈ Rγ (Jk) ∩Rγ (Jk, v)} = min{ f0(Wkξ ) | f j (Wkξ ) ≤ 0, j ∈ Jk \ {0}},
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∀v ∈ Rγ (Jk). However by Lemma 3.1 the set Rγ (Jk) ∩ Rγ (Jk, v) is bounded, which
means that the minimum of f0(x) overRγ (Jk)∩Rγ (Jk, v) is attained. Furthermore, it has
been demonstrated in the Corollary 3.1, that the solution to the problem (16) and (17) can
be constructed from the solution to the problem min{ f0(Wkξ ) | fi (Wkξ ) ≤ 0, i ∈ Jk \
{0}}, and consequently by the Eq. (20) it can also be constructed from the solution to the
problem

min{ f0(x) | x ∈ Rγ (Jk) ∩ Rγ (Jk, v)}.

This completes the proof of the theorem. �

We will show using Lemma 2.6, that as a special case of Theorem 4.1 we obtain the
following result for convex polynomial functions proved in [4]:

Corollary 4.1. If fi , i ∈ J ∪ {0} are convex polynomials then if f0 is bounded below
on R, then the function f0 attains its infimum over the region R.

We note that Theorem 4.1 generalizes similar result proved by Luo and Zhang in
[11] for quasi-convex quadratic objective function and convex quadratic constraints,
although our proof was entirely different than the approach presented in [11].

Remark 1. The result proved in the Theorem 4.1 can not be generalized to convex
functions not satisfying condition (3). For example the function f0(x, y) = y has an
unattained infimum over R = {(x, y)|e−x − y ≤ 0, x ≥ 1} equal 0, although the sets
R(εk) = {(x, y)|e−x − y ≤ 0, x ≥ 1, y ≤ εk} are nonempty for εk > 0.

We note, thanks to the remark provided by a Referee, that an attainability result similar
to the one stated in Theorem 4.1 for faithfully convex and/or quasi-convex polynomial
objective function and constraints, was established earlier for (solely) quasi-convex
polynomial functions by Bank and Mandel in [3]. However, while our proof is based
upon the algorithm to determine unboundedness of the problem (16) and (17), their
proof is based upon an entirely different idea.

Corollary 4.2. Let fi (x), i ∈ J be either faithfully convex functions satisfying condi-
tions (3) or quasi-convex polynomial functions, and let us define for ε = (ε1, . . . , εm),

R(ε) = {x ∈ R
n | fi (x) ≤ εi , i ∈ J }.

Suppose that the sets R(εk) are nonempty for some sequence {εk} of nonnegative vectors
εk approaching zero. Then the set R is also nonempty.

Proof: Proof is similar to the proof of Corollary 1 in [4] and is based upon the result
stated in Theorem 4.1. �

Corollary 4.3. Let fi (x), i ∈ J ∪ {0} be either faithfully convex functions satisfying
conditions (3) or quasi-convex polynomial functions and let us define for the sequence
{εk }, where εk > 0, and εk → 0, the sets

R0(εk) = {x ∈ R
n | fi (x) ≤ 0, i ∈ J, f0(x) ≤ f ∗ + εk},
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where f ∗ = inf{ f0(x) | x ∈ R} is a finite number. Then if the sets R0(εk) are nonempty
∀k, then the problem (16) and (17) has an optimal solution.

Proof: Proof is similar to the proof of Corollary 2 in [4] and is based upon the result
stated in Corollary 4.2. �

Remark 2. Corollaries 4.2 and 4.3 similarly to the Theorem 4.1 can not be generalized
to faithfully convex functions not satisfying condition (3). For example the set R
defined by convex constraint e−x ≤ εk is feasible for any εk > 0, but is infeasible for
εk = 0. Of course the function f0(x) = e−x has an unattained unconstrained infimum
equal 0.

Corollary 4.4. The image of an affine mapping of a convex set R defined in (17),
where the functions fi , i ∈ J, are either faithfully convex and satisfy conditions (3) or
quasi-convex polynomials is a closed set.

Proof: Proof is similar to the proof of Corollary 1 in [11] and is based upon the result
proved in Theorem 4.1. �

Remark 3. To show that Corollary 4.4 also cannot be extended to arbitrary convex
functions let us consider the set R defined by the constraints: x1 ≥ 0 and e−x1 − x2 ≤ 0,

and the linear mapping T (x1, x2) = x2. The image T (R) of the set R is (0,∞), which
is clearly not a closed set.
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