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Abstract. In this paper we formulate a model for foreign exchange exposure management and (international)
cash management taking into consideration random fluctuations of exchange rates. A vector error correction
model (VECM) is used to predict the random behaviour of the forward as well as spot rates connecting dollar
and sterling. A two-stage stochastic programming (TWOSP) decision model is formulated using these random
parameter values. This model computes currency hedging strategies, which provide rolling decisions of how much
forward contracts should be bought and how much should be liquidated. The model decisions are investigated
through ex post simulation and backtesting in which value at risk (VaR) for alternative decisions are computed.
The investigation (a) shows that there is a considerable improvement to “spot only” strategy, (b) provides insight
into how these decisions are made and (c) also validates the performance of this model.
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1. Introduction and background

Foreign Exchange (FX) markets have gone through a turbulent period since 1973 (after the
collapse of Bretton Woods). More recently since 1999 with the emergence of the euro as
well as increased globalisation of trade a spectacular amount of currency movement has
been recorded. In her recent book Taylor [34] reports that more than 1.2 trillion USD change
hands daily on the foreign exchanges. It is therefore only natural that FX management has
become an important topic especially so over the last decade.

The FX participants can be grouped into four categories. (i) The first participants are
domestic and international banks, which act on their own behalf and for their customers.
(ii) The second group comprise the Central banks, which may intervene in the market in
order to support or suppress the value of the domestic currency for reserve management
purposes. (iii) The third group is made up of multinational firms (MNFs) who are the
customers of banks and buy physical currency in the spot or forward FX market for the
purposes of facilitating trade. These MNFs buy and sell foreign currency. (iv) The fourth
group includes the individual or corporate speculators or traders. In general FX decisions
can be seen from two perspectives, such as: (a) hedgers and (b) speculators or traders. In
this paper we use the term trader and speculator interchangeably from now on.

The currency management undertaken by multinational firms (MNF) constitutes only a
small fraction (5–10%) of total FX transactions. Yet for the purpose of treasury management
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Figure 1. FX decisions and risk attitudes.

hedging and limited trading are of vital importance to the corporations and FX decisions
can be categorised as shown in figure 1, Taylor [34]. Whereas introducing some element of
FX trader (speculator) approach may lead to a better FX decision making there are natural
pitfalls for an MNF should it move too far to the right of the scale shown in figure 1. The
well-known case of Metallgesellschaft A.G. is one of a few notorious examples of the plight
of MNFs who ventured into FX trading activities largely from the position of a speculator. In
this paper we are concerned with risk exposure of a multinational firm (MNF) and treasury
risk management requirement in respect of FX exposure.

The traditional foreign currency exposure represents a certain (known in advance) volume
of foreign currency cash flows exchanged to the domestic currency at an uncertain future
exchange rate. The optimal hedge ratio represents the ratio of the amount of foreign currency
cash flow covered by forward contracts to the uncovered future foreign currency cash flow,
such that this ratio minimises the risk (measured by variance) of the portfolio formed
by future cash flows and a position in forward contracts. The optimal hedge ratio can
be calculated by creating a portfolio of two assets: an unhedged future foreign currency
cash flow and a position in a forward currency market. Then it can be shown that the
minimum variance portfolio is achieved when the optimal hedge ratio takes the value
[−cov(st , ft )/var( ft )], where st, ft are the spot and forward exchange rates respectively.
Provided the future cash flow stream is known with certainty it is very likely for the value
of the optimal hedge ratio to be in the region of 0.9 or higher [14, 25, 33] for most of the
currencies.

Adler and Dumas [2], Eaker and Grant [13], and Shapiro [29] have addressed various
implications of uncertain cash flows on hedging decisions. Eaker and Grant study the effect
of new information on the optimal hedge, while Shapiro examines the case of multiple
hedging tools. Adler and Dumas show that the optimal hedge ratio is the coefficient of a
regression of the cash flow (expressed in home currency) on the exchange rate. First the
treasury manager specifies a number of future states of nature regarding cash flows, exchange
rates, and their respective probabilities. Then the regression coefficient is estimated from
a linear regression across the states of nature. Rolfo [28], Stiglitz [32], Britto [8], and
Hirshleifer [20] have examined the problem of hedging uncertain production and hedging
in macro-market frameworks.

A more realistic setting, where an MNF has to hedge both uncertain FX exposure and
uncertain future foreign currency cash flows simultaneously was investigated by Kerkvliet
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and Moffett [21]. They show that the optimal hedging decisions will be firm-specific and
depend on the extent of correlation among the cash flows, spot and futures exchange rates.

FX risk hedging in a static, single-period framework is a straightforward decision prob-
lem. The variance-minimising hedge involves taking a position in forward FX market equal
in size but opposite in sign to the particular future foreign currency cash flow exposure. It
can be shown that this exposure represents the regression coefficient of the cash flow on the
exchange rate.

In a multi-period setting optimal hedging is less straightforward. The hedging decision
taken at an early stage may be revised many times due to new information being revealed to
the market. These frequent revisions may themselves constitute additional risks to the MNF.
Dumas [12] investigates the timing when it is optimal to initialise a hedge. He examines the
case of deliberately leaving the cash flows unhedged for some time, initiating the hedge at
some appropriate time and then leaving the hedge unchanged until the cash flow is received
or paid. He states that the appropriate timing of the optimal hedging decision depends on
whether the cash flow to be hedged is correlated with the changes in the exchange rates or
with its level.

Sharda and Musser [30] used a multi-objective goal programming model for bond port-
folios. Their approach is to dynamically hedge interest rate risk using futures contracts.
In 1993 Sharda and Wingender [31] reapplied the same model with some modifications to
hedging foreign currency accounts receivables using foreign exchange futures. Wingender
and Sharda [37] in their later paper modified their original model in several ways. They
examined a portfolio of Treasury Notes, incorporation of priorities and the previous week’s
futures position. The above three studies improve on the static framework by allowing the
treasury manager to re-estimate and re-adjust the optimal hedging decisions every time
period of the multi-period time horizon. Although these are otherwise comprehensive opti-
mum decision models, the main shortcomings of these studies are that they consider neither
stochastic cash flows nor stochastic future exchange rates.

In many real world problems, the uncertainty relating to one or more parameters can be
modelled by means of probability distributions. In essence, every uncertain parameter is
represented by a random variable over some canonical probability space; this in turn quan-
tifies the uncertainty. Stochastic Programming (SP) enables modellers to incorporate this
quantifiable uncertainty into an underlying optimisation model. Stochastic Programming
models combine the paradigm of dynamic linear programming with modelling of random
parameters, providing optimal decisions which hedge against future uncertainties.

Two-stage and multistage SP framework provides a logical extension of the determin-
istic approach to optimum decision models. SP incorporates uncertain parameters into the
model, and the optimal decisions recommended by the model take into account a multi-
period time horizon. There have been numerous applications of SP methodology to real
life problems over the last two decades. Kusy and Ziemba [24] formulated a multistage
SP to balance a bank’s revenues from a set of assets against a set of liabilities. The assets
consist of investments and loans with uncertain returns and varying risk levels, whereas
the liabilities represent depositor’s withdrawals from demand accounts. Klaassen et al. [22]
use a multistage SP model to select a minimal cost currency option portfolio to hedge
FX exposure faced by an MNF. The portfolio guarantees an acceptable level of dollar
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revenues subject to a certain (known) quantity of a foreign currency to be exchanged in the
future. Carino et al. [9] modelled a problem of asset management for a property insurance
company as a multistage linear SP model. Golub et al. [17] developed a two-stage SP model
for money management using mortgage-backed securities. Beltratti et al. [5] formulated an
SP model for portfolio management in the international bond markets. In Topaloglou et
al. [35] an integrated simulation and optimisation framework for multicurrency asset allo-
cation problems is reported. The authors examine empirically the benefits of international
diversification and the impact of hedging policies on risk-return profiles of portfolios. In
Beltratti et al. [5] the authors develop a scenario based optimisation model that simultane-
ously makes optimal asset allocation and hedging decisions, They contrast selective hedging
with complete hedging and no-hedging strategies. Wu and Sen [38] used SP approach to
develop currency option hedging models, which addresses a problem with multiple ran-
dom factors in imperfect markets. Kouwenberg [23] developed a multi-stage SP model for
pension fund asset liability management using rolling horizon simulations. The use of two
stage stochastic programming model to determine the natural oil buying policy of an MNF
taking up a forward position is discussed in Poojari et al. [27].

A number of different hedging instruments are available to the treasury managers [1]
but in this paper we only consider forward currency contracts since they are the simplest
and one of the most popular hedging products available to MNFs. The specification of the
contract can be tailored to the requirements of the customer such as maturity date and size
of the contract. Also the forward FX market is very liquid for major currencies and for
maturities under two years, which makes it a perfect choice for the problem at hand.

In this study we have applied two-stage Stochastic Program (TWOSP) with recourse as
a decision model. By using an SP framework we are able to take into account both time and
uncertainty in our ex ante decision model. We also apply an ex post results analysis, which
is based on backtesting with historical data.

The rest of this paper is organised in the following way. In Section 2 (with more details
in Appendix A) we describe how the random exchange rate (forward and spot) fluctuations
over future time periods are modelled. The forward rate and spot rate are modelled together
using a vector error correction model (VECM).

In Section 3 we introduce a two stage stochastic programming (TWOSP) model, which is
used for optimum (hedged) decision making under uncertainty. The decision model uses the
random parameter values computed by the VECM model and presented as a scenario tree
to the TWOSP. In addition to SP formulation the model incorporates a goal programming
structure such that (a) the revenue in GBP after conversion is maximised (b) possible
margin account “top ups” (virtual) for the “forward positions” are minimised and (c) target
deviations from exact cash flow1 matching by deviational variables are minimised. A full
description of the model formulation is given in this section.

In Section 4 the TWOSP model is embedded as a rolling decision model within a sim-
ulation framework. Using historical data backtesting is carried out and the actual revenues
achieved are tabulated and displayed in the form of a histogram. The results are analysed
for the purpose of model validation and also to compute the Value-at-Risk (VaR) exposure.
Finally, we draw our conclusions in Section 5 and discuss the scope of future work.
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2. Modelling stochastic processes

2.1. Scenario generation

The econometric model used for generating scenarios of future exchange rates is described
in Appendix A.

The data set used in our empirical analysis consists of 241 observations of the spot and
forward (thirty-day rate) Sterling/Dollar exchange rate for the period from January 1984 to
January 2004. The spot and forward exchange rates were found to be integrated of order
one and to cointegrate.2 This is in agreement with other studies.

Scenarios are generated using a series of recursive forecasts, which are computed in the
following way. For a given bivariate time series {wt = ( ft , st )′}T

t=1 a VEC model is fitted
to the subseries {wt = ( ft , st )′}T −n

t=1 , where n is the desired number of forecasts and 12 is
the longest forecast horizon under consideration, and ft,t ′ and st ′ are the relevant forecasts.

Using t = T − n as the forecast origin, 100 sequences of t ′-step-ahead forecasts are
generated from the fitted models for t ′ ∈ {1, . . . , 12}, by drawing {u∗

t } randomly from the
bivariate normal distribution of {ut }. To ensure the relevance of our artificial time series,
the values of the parameters σ 2

s , σ 2
f and σs, f are chosen on the basis of the empirical

variance-covariance matrix obtained with the Sterling/Dollar exchange rate data.
The forecast origin is then rolled forward one period to t = T − n + 1, the parameters of

the forecast models are re-estimated and other 100 sequences of one-step-ahead to 12-step-
ahead forecasts are generated. The procedure is repeated until 100 forecasts are obtained
for each t ′ ∈ {1, . . ., 12}, which are used as an input to the SP decision model.

2.2. The scenario tree

Consider a probability space, (�, F, P) where ω ∈ � denotes parameter realisations
with probability p(ω) ∈ P and F is a σ -field on �. For the current time period t = 0:
f0,t ′ and s0 are known with certainty. Whereas, the data paths are depicted by the triplet
( ft ′,t ′ (ω), st ′ (ω), p(ω)), t = 1..T , t ′ = 1..T ′, ω = 1..|�|, which provide all the necessary
information about the forward and spot rates in the future. In out model p(ω) = 1

|�| , that
is, all the data paths are equiprobable.

The model introduced and validated in Appendix A represents a stochastic process. For
the purpose of visualisation and a simple description, the behaviour of the parameters st ′ (ω)
and ft,t ′ (ω) over time, is illustrated by a tree of alternatives of possible parameter values
with corresponding probability weightings. Each expected path in this tree from the origin
to the end of the time horizon T ′ is a “data path”. The scenario tree is illustrated in figure 2.

3. The problem setting

3.1. Two stage SP model with recourse

Stochastic Programming Problems with recourse are dynamic LP models characterised by
uncertain future outcomes for some parameters. For decisions made under uncertainty it is
a natural extension of the LP model.
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Figure 2. Scenario tree.

Consider the deterministic LP problem

z = Min cx (3.1)

s.t. Ax = b (3.2)

x ≥ 0 (3.3)

where A ∈ �m×n, c, x ∈ �n, b ∈ �m (3.4)

Let (�, F , P) be the probability space, ω ∈ � the realisations of the uncertain parameters,
F is a σ -field and P(ω) the probability of such realisations, and let ξ (ω) = (A, b, c)ω denote
the vector of random model parameters which depends on the realisation of ω, also called a
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scenario. Let Cω = {x | Ax = b, x ≥ 0} for (A, b, c)ω define the feasibility set for a given
scenario (realisation) ω.

In general, a stochastic programming model is used to make a “Here and Now” (HN)
ex-ante decisions and is formulated as set out in (3.5) to (3.11).

The classical stochastic linear program with recourse makes the dynamic nature of SP
explicit, by separating the model’s decision variables into the first stage strategic decisions,
which are taken facing future uncertainties and the second stage recourse (corrective) ac-
tions, taken once the uncertainty is revealed. The formulation of the classical two-stage SP
model with recourse is as follows:

Z = min cx + Eω Q(x, ω) (3.5)

subject to Ax = b (3.6)

x ≥ 0, (3.7)

where:

Q(x, ω) = min f (ω)y(ω) (3.8)

subject to W (ω)y(ω) = d(ω) + T (ω)x (3.9)

y(ω) ≥ 0 (3.10)

ω ∈ � (3.11)

The matrix A and the vector b are known with certainty. The function Q(x, ω), referred
to as the recourse function, is in turn defined by the linear program defined by (4) to (7).
The recourse matrix W(ω), the right-hand side d(ω), the technology matrix T(ω), and the
objective function coefficients f (ω) of this linear program are random. For a given first stage
decision x and a given realisation ω, the corresponding recourse action y(ω) is obtained by
solving the problem set out in (3.8) to (3.11).

The stochastic properties of the recourse model are characterised by analysing three
alternative problems:

(a). The first problem is defined using the expected value over the set �. In this approach the
stochastic parameters are substituted by their expected values. The “Expected-Value”
model becomes:

zev = min f (x, ξ̄ ) (3.12)

The expectation of the expected value problem over the given scenarios is defined as:

zeev = Eξ [ f (x̄(ξ̄ ), ξ (ω))] (3.13)
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(b). A second approach that relies on perfect information is called the “Wait-and-See”
model:

zω = min f (x, ξ (ω)), x ∈ Cω, ∀ω (3.14)

Therefore

zws = E(zω) =
∑

ω∈�

p(ω)zω (3.15)

(c). A third approach so-called “Here-and-Now” where the decision-maker makes the de-
cision “now”:

zhn = min E[ f (x, ξ )] = min E[cx], x ∈ C =
⋂

ω∈�

Cω, (3.16)

where the optimal solution x∗ ∈ C hedges against all possible (known) contingencies
ω ∈ � that may occur in the future.

To assume the expected value scenario will occur and accept the solution of the expected
value problem, is not always the right decision, since the expected value might be far from
the scenario that actually takes place. The Wait-and-See problem cannot be implemented
in reality, as the decision-maker must wait to take the decision only when the uncertainty
is resolved. This is not realistic, since the decision-maker needs to decide before hand.
Thereafter, to consider at a time all the possible (known) scenarios, so-called the Here-
and-Now approach, is the most appropriate, since it hedges against all the uncertain future
outcomes. The solution that this model provides is not optimum for any one outcome, but
is the best for many outcomes considered altogether.

To verify whether the stochastic approach is better than any other, some SP analysis must
be carried out. The analysis of stochastic programming models requires that we

(i) investigate the underlying expected value (EV) problem, and
(ii) compute stochastic information, such as the Expected Value of Perfect Information

(EVPI), and the Value of the Stochastic Solution (VSS) defined below:

(a) Expected value of perfect information (EVPI):

EVPI measures the maximum amount a decision-maker would be ready to pay in return
for complete (and accurate) information about the future.

Let zhn = minx Eξ f (x, ξ ), and zws = Eξ�minx f (x, ξ )� then:

EVPI = zhn − zws (3.17)
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(b) Value of the stochastic solution (VSS):

Let EV = minx z(x, ξ̄ ), where ξ̄ = E(ξ ), and x̄(ξ̄ ) an optimal solution to the EV
problem. Let

E EV = Eξ [ f (x̄(ξ̄ ), ξ )] (3.18)

Then, VSS measures the cost of ignoring uncertainty in choosing a decision and is
defined as:

V SS = zeev − zhn. (3.19)

It can be shown that the three objective function values zeev, zhn, zws are connected by the
following ordered relationship:

zws ≤ zhn ≤ zeev (3.20)

The inequality:

zhn ≤ zeev (3.21)

can be argued in the following way: any feasible solution of the average value approximation
is already considered in the Here and Now model, therefore the optimal Here and Now
objective must be better.

Bounds on EVPI and VSS

Some useful bounds on the EVPI and VSS are presented below:

0 ≤ EVPI ≤ zhn − zev ≤ zeev − zev (3.22)

0 ≤ VSS ≤ zeev − zev (3.23)

These can help in estimating the relative benefit of implementing the computationally
costly Stochastic Programming solution, as opposed to approximate solutions obtained by
processing the Expected Value LP problem.

3.2. The SP decision model

The problem under investigation is to determine a strategy for employing forward exchange
rate contracts to hedge against fluctuations in the spot rate between the US dollar and UK
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sterling. Currently, the Company receives a positive cash flow stream of US dollars every
month that they convert into UK sterling using the available spot rate. Although the spot
rate is uncertain for future time periods the Company has not engaged in using forward
contracts. We wish to determine a policy of hedging against such uncertainties by allowing
the Company to engage in forward contracts on exchange rates. Given the inherent risks in
speculative trading in foreign exchange we include limits to reduce the risks of speculation
on forward exchange rates.

The uncertainties involving forward exchange rates have been modelled as a discrete set of
scenarios based on our work in VEC forecasting. We now develop a stochastic optimisation
model for determining the best “hedged” investments in forward contracts of exchange
rates. The first stage decisions represent the contracts on the forward exchange rates that
should be purchased while the second stage decisions are of two types: goal deviational
variables and future decisions about purchases of forward exchange rate contracts. We have
adopted a similar approach to that of Sharda and Wingender (1991). They formulate a
goal-programming model to dynamically hedge accounts receivables with futures currency
contracts. We extend this method as follows:

Our objective function has three main components: (i) minimizing deviations from trea-
sury targets, similar to that of Sharda’s Goal Programming Model; (ii) minimizing trans-
action costs and (iii) we maximise the company’s expected GBP-equivalent total income
over the next 4 quarters. The treasury manager specifies the weights attached to each of
these main goals. In addition they also set the level of risk exposure in achieving the third
component of the objective.

By varying the weights assigned to different goals and varying the maximum forward
exposure limit, the treasury manager has the flexibility to choose their preferred strategy.
The two-stage stochastic programming decision model is formulated below.

Indices

t = 1, 2, 3: the set of future time periods in the planning horizon, corresponding to the end
of each of the next 3 quarters from now.

t ′ = 1, 2, 3, 4: the forward currency contract maturity dates.
t ′′ = 1, 2, 3, 4: the set of time periods in the planning horizon when we assess the cumulative

forward position.

ω = 1, . . . , |�| : set of scenarios. |�| = 100.

Data

Transaction cost:

TransCost: The transaction cost of acquiring/selling a forward currency contracts. Theo-
retically there is no charge for entering a forward agreement though the bank could charge for
selling back the outstanding forward contract (closing out a forward position). Transaction
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cost can also reflect an ask-bid spread. In this study we set the value of transaction costs at
0.1% of the contract value.

Exchange rates:

USDFwdRateCurrentt ′ : Currently available forward exchange rate on selling USD with
maturity t ′.

USDFwdRateFutureω,t,t ′ : Forecasted forward exchange rate on selling (buying) USD at
time t with maturity t ′ under scenario ω, for ω ∈ �, t ∈ [1, 2, 3], t ′ ∈ [2, 3, 4] and
t ′ > t .

USDSpotRateω,t ′ : Forecasted spot exchange rate on selling USD at a future time t ′ under
scenario ω, for ω ∈ �, t ′ ∈ [1, 2, 3, 4].

USDSpotRateCurrent: Current spot exchange rate on selling USD for GBP.

Cash Flows:

NetCashFlowt ′ : Amount of USD revenue less expenses in month t ′, for t ′ ∈ [1, 2, 3, 4].

Initial data:

FwdPrevt ′ : Number of forward currency contracts brought forward from the previous quarter
with maturity month t ′, for t ′ ∈ [1, 2, 3].

Other data:

UpperLimitOnHedge: Treasury set upper limit on the proportion of the net cash flows to be
offset by taking a position in the forward exchange rate contracts.

Probω: Probability of scenario ω.
W1W2 and W3: The weights assigned to the three main components of the objective.
w1,1, w1,2, w1,3: The weights assigned to the 1-st, the 2-nd and the 3-rd goal associated

with deviation from treasury targets.

First-Stage Decision Variables

XFwdHoldt ′ : The total amount of current USD forward currency contracts held with maturity
date t’, for t’ ∈ [1, 2, 3, 4].

XFwdBuyt ′ : The number of forward currency contracts acquired at the beginning of the
current month with maturity date t ′, for t ′ ∈ [1, 2, 3, 4].

XFwdSellt ′ : The number of forward currency contracts settled (sold) at the beginning of the
current month with maturity t ′, for t ′ ∈ [1, 2, 3, 4].

Second-Stage Variables

YFwdBuyω,t,t ′ : The amount of USD to buy forward at the beginning of month t with maturity
date t ′ under scenario ω where t < t ′, for ω ∈ �, t ∈ [1, 2, 3], t ′ ∈ [2, 3, 4].
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YFwdSellω,t,t ′ : The expected amount of USD to sell forward at the beginning of month t
with maturity date t ′ under scenario ω where t < t ′, for ω ∈ �, t ∈ [1, 2, 3], t ′ ∈ [2, 3,
4].

ExpectedGBPValFromSpot: A reporting variable representing the expected GBP-converted
income from future net cash flows for quarters: 1, 2, 3 and 4 using spot exchange rates
at the same time as when the income stream is received.

ExpectedGBPValFromForward: The expected GBP-converted income e.g. gain or loss, from
the positions taken in forward currency contracts made over the next 4 quarters.

ExpTransCost: The expected transaction costs for the positions taken in forward currency
contracts over the next 4 quarters.

UnderHedgeω,t ′ : A goal variable representing the GBP amount by which the change in cash
flows with maturity t ′ is larger than the change in forward currency position for quarter
t ′ under scenario ω, for ω ∈ �, t ′ ∈ [1, 2, 3, 4].

OverHedgeω,t ′ : A goal variable representing the GBP amount by which the change in cash
flows with maturity t ′ is less than the change in forward currency position for quarter t ′

under scenario ω, for ω ∈ �, t ′ ∈ [1, 2, 3, 4].
TopUpω,t ′ : A goal variable representing the speculative loss, i.e. the amount of GBP top-up

to the “virtual margin account” during quarter t’ under scenario ω, for ω ∈ �, t ′ ∈ [1, 2,
3, 4].

Objective Function

The objective function represents a trade-off between the immediate potential losses in
the first quarter, the expected transaction costs and the value of the wealth over the whole
planning horizon. These are now described.

Goal 1: Minimize deviations from the treasury targets (imminent losses)

By assigning different (respective) weights and summing into a linear form this goal is
decomposed into three sub-goals summarized below.

1. Minimize the expected change in the cash flow over the change in the forward position.
2. Minimize the expected change in the forward currency position over the change in the

cash flows.
3. Minimize the expected top-up amount on the “virtual margin account” i.e. speculative

loss.

Goal 2: Minimize expected transaction costs over the next four quarters

Goal 3: Maximize expected cumulative GBP-equivalent income over the next four quarters

This goal is achieved by maximizing the two sub-goals shown below:

Future net cash flows over t ′, where t ′ ∈ [1, 2, 3, 4], converted to GBP at the spot exchange
rates at the time income is received.
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Expected cumulative GBP-equivalent gain or loss made over t ′, where t ′ ∈ [1, 2, 3, 4] from
taking positions in forward exchange rate contracts.

The algebraic representation of the complete objective function is as follows:

MinZ = W∗
1

(
w∗

1,1

∑

ω∈�

Prob∗
ω

T ′∑

t ′=1

UnderHedgeω,t′

+ w∗
1,2

∑

ω∈�

Prob∗
ω

T ′∑

t ′=1

OverHedgeω,t ′ + w∗
1,3

∑

ω∈�

Prob∗
ω

T ′∑

t ′=1

TopUpω,t′

)

+ W ∗
2 ExpTransCost − W ∗

3 (ExpectedGBPValFromSpot

+ ExpectedGBPValFromForward) (3.24)

subject to:

(1) Constraints related to treasury target

XFwdHold1(1/USDFwdRateCurrent1−1/USDSpotRateω,1) + UnderHedgeω,1

−OverHedgeω,1 = NetCashFlowω,1(1/USDSpotRateCurrent

− 1/USDSpotRateω,1) ∀ω (3.25)

Equation (3.25) seeks to establish the necessary forward position for maturity t ′ = 1 in
order to offset the changes in the net cash flows in three months time. The UnderHedgeω,1

and OverHedgeω,1 represent under and over achievements of this goal. Although the model
is developed over four (quarters) time periods, we are more concerned with potential losses
in the next quarter. This constraint emphasises that this can be hedged against by committing
to more forward contracts.

XFwdHoldt ′ (1/USDFwdRateCurrentt ′−1/USDFwdRateFutureω,1,t ′ )

+ UnderHedgeω,t ′−OverHedgeω,t ′= NetCashFlowω,t ′ (1/USDSpotRateCurrent

− 1/USDSpotRateω,1) ∀ω, t′>1 (3.26)

Equation (3.26) similarly considers the same issues as for Eq. (3.25) but for contracts
with maturities t ′ > 1. The UnderHedgeω,t ′ and OverHedgeω,t ′ represent under and over
achievements of this goal.

XFwdHold1(1/USDFwdRateCurrent1−1/USDSpotRateω,1) + TopUpω,1 ≥ 0 ∀ω

(3.27)

Equations (3.25) and (3.26) encourage investing in forward contracts, while constraint (3.27)
accounts for possible losses incurred in these forward contracts and as such, conflicts with
constraint (3.25). By changing the weights in the objective of these deviational variables
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it is possible to investigate different strategies for controlling speculation in the forward
market.

XFwdHoldt ′ (1/USDFwdRateCurrentt ′−1/USDFwdRateFutureω,1,t ′ )

+ TopUpω,t ′ ≥ 0 ∀ω, t′>1 (3.28)

Similarly, the set of Eq. (3.28) account for losses in forward contracts maturing in later time
periods.

(2) Expected transaction cost sonstraint

ExpTransCost = TransCost ∗
T ′∑

t ′=1

(XFwdBuyt ′ + XFwdSellt ′ )

+ TransCost ∗
∑

ω∈�

Probω ∗
t ′−1∑

t=1

T ′∑

t ′=1

(YFwdBuyω,t,t ′

+ YFwdSellω,t,t ′ ) (3.29)

Equation (3.29) measures the expected transaction costs for the next 4 quarters from pur-
chasing (selling) forward currency contracts.

(3) Constraints related to the final wealth objective

The following constraints are all related to measuring the final wealth of the revenues
converted to sterling. The first set of constraints are balance constraints for forward contracts
with maturity t ′ quarters ahead

XFwdHoldt ′ = FwdPrevt ′ + XFwdBuyt ′ − XFwdSellt ′ ∀t ′ (3.30)

Equation (3.30) represents a balance constraint on the activities with forward exchange rate
contracts, which actually take place at the beginning of the current time period.

XFwdHoldt ′ +
t ′′∑

t=1

(YFwdBuyω,t,t ′−YFwdSellω,t,t ′ )

≤ UpperLimitOnHedge ∗ NetCashFlowω,t ′ ∀ω, t ′ > 1, t ′′ = 1..t ′ − 1 (3.31)

Equations (3.31) represent an upper limit on the expected cumulative forward exchange
rate position at any future time period t ′′.

XFwdHoldt ′+
t ′′∑

t=1

(YFwdBuyω,t,t ′−YFwdSellω,t,t ′ ) ≥ 0 ∀ω, t ′>1, t ′′=1..t ′ − 1

(3.32)
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Equation (3.32) states that no short sales are allowed on forward contracts.

YFwdBuyω,t,t ′ + YFwdSellω,t,t ′ ≤ UpperLimitOnHedge ∗ NetCashFlowω,t ′

∀ω, t ′ > 1, t = 1..t ′ − 1 (3.33)

Equation (3.33) defines the upper limit on the future expected forward exchange rate trades.

XFwdHoldt ′ ≤ UpperLimitOnHedge ∗ NetCashFlowω,t ′ ∀ω, t ′ > 1 (3.34)

Equation (3.34) represents an upper limit on the actual forward exchange rate position
opened during the current time period.

ExpectedGBPValFromSpot =
∑

ω∈�

Probω ∗
T ′∑

t ′=1

NetCashFlowω,t ′/USDSpotRateω,t ′

(3.35)

Equation (3.35) reports the expected GBP-valued cumulative net cash flows for the 4 quarters
using spot exchange rates at the time when the cash flow is received.

ExpectedGBPValFromForward

=
∑

ω∈�

Probω ∗
T ′∑

t ′=1

XFwdHoldt ′ (1/USDFwdRateCurrentt ′

−1/USDSpotRateω,t ′ ) +
∑

ω∈�

Probω ∗
t ′−1∑

t=1

T ′∑

t ′=1

(YFwdBuyω,t,t ′ − YFwdSellω,t,t ′ )

× (1/USDFwdRateFutureω,t<t ′,t ′ − 1/USDSpotRateω,t ′ ) (3.36)

Equation (3.36) measures the expected marginal benefit from using forward currency con-
tracts for the planning horizon, e.g. the company either obtains a speculative gain or a loss
from entering forward currency contracts with various maturities.

4. Backtesting and rolling forward the SP decision model

Our modelling framework has three aspects (a) calibration of the VECM model, which
is used for scenario generation, (b) a decision model, (c) a simulation model to evaluate
the decisions (backtesting). In our case there are three decision models, namely, Here-and-
Now (HN), Expected Value (EV) and Perfect Information (PI) models (see Section 4.3).
It is widely accepted by practitioners that out-of-sample simulation (see Michaud), which
includes backtesting is an important step in validating practical financial models. For the
purpose of simulation and backtesting we split the historical data into two parts. The Part 1
comprises first 169 monthly observations (Jan. 1984 to Jan. 1998) and the Part 2 comprises
60 months (Feb. 1998 to Jan. 2003) of the remaining 72 months3 (Feb. 1998 to Jan 2004).
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Figure 3. Breakdown of the historical data sample into a training sub-sample and backtesting sub-sample.

In figure 3 we explain this using a time line where T sim
start = 169 and T sim

end = 229 indicate the
months, when backtesting starts and ends respectively.

The experimental set up is progressively described in the following sections: in Sec-
tion 4.1 we discuss how the databases are updated for the decision model as we step
through time (month at a time), Section 4.2 explains the rolling of the decision model, then
in Section 4.3 we contrast three different decision models on the basis of Risk and Return (In-
come) and in Section 4.4 we compare different treasury strategies on the basis of stochastic
measures.

4.1. Dynamic data model

The role of the historical market data, the organisational data, their interaction with the
decision model and backtesting are illustrated in figure 4. The experimental set up requires
that we dynamically:

(i) Use market data in order to revalue the forward positions, a well-known “mark to
market” procedure.

(ii) We also record the decisions made in the current step of the model as an input of the
starting position of the next “roll” of the model.

Whereas in futures currency contracts there is an external requirement for “marking to
market”, for forward positions there is no such obligation. As an “internal good practice
procedure”, however, we have introduced this in our “Forward currency contract” decision
model so that we are able to compute the “moneyness” of the current positions to give some
indication of ongoing performances.

Thus for each time movement the model database is updated with the most currently
available forward rates and spot rates. By accessing our current forward commitments along
with their current marked to market forward rate from the model database, we adjust our
forward rates to be the same as the current month forward rates. The process of “marking to
market” of our currently held forward contracts involves realigning the contracts by one time



TREASURY MANAGEMENT MODEL WITH FOREIGN EXCHANGE EXPOSURE 195

Figure 4. Rolling the model forward and “Mark to Market” process.

period as well as determining the financial losses or gains made on our forward positions.
Similarly, we close out the opening income stream using a combination of currently maturing
forward contracts and the current spot rate. All these cash transactions, namely the marking
to market of forwards contracts and conversion of the current income revenue are recorded
in our financial database.
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4.2. The rolling decision model

The decision model uses data sets, which are updated every month. The scenario generator
uses the historical spot rates and historical forward rates data having stepped through by
one month t = t + 1. Thus the scenario generator creates a completely new set of scenarios
looking ahead over a time horizon of T = 12 months. In respect of revenues we have
developed a scenario generator for representing alternative realisations of the future income
but in our current analyses we have assumed that the income stream remains constant.

Given that the decisions are made altogether 60 times by stepping through the time line
t = T sim

start(1)T sim
end we process the corresponding TWOSP model 60 times using the SPInE

system. The SPInE system has the dual capability of SP decision modelling and simulation
(see Valente et al. 2004; Di Domenica et al. 2004).

When rolling the model forward we mark to market positions held in forward contracts,
which may have two outcomes. Firstly, in realigning our forward contracts to the current
rates we either make some profit on our currently held forward contracts or our speculation
has led to a loss, these are represented by the red bars. Secondly, in processing the current
month’s revenue we use the spot rate thus the income revenue is marked to market and is
represented by the blue bars.

4.3. Simulation 1: Risk and return analysis

In this paper we estimate risk exposure of each treasury strategy by calculating Value-at-Risk
(VaR) measure. The meaning of VaR in our paper is slightly different from the conventional
one. When dealing with returns on investments VaR represents the maximum loss incurred
with certain probability (e.g. 95%). In our case, since we are dealing with revenues, not
returns, VaR represents the lowest monthly revenue achieved with certain probability. As a
result, in the case of returns one aims at a smaller VaR, i.e. smaller loss but in our case we
are better off having larger VaR, i.e. larger monthly revenues at a certain probability level.

We have assumed constant revenue throughout the planning horizon, also the financial
decisions made prior to each optimisation run are independent; we run the rolling decision
model and create a histogram with appropriate bins and compute VaR values for different
probability levels for the monthly income.

In order to evaluate the impact of randomness on (optimal) decision we backtest the three
rolling models over 60 months of the historical sample, Feb. 1998 to Jan. 2003.

• Here-and-Now (HN): represents the TWOSP model described in Section 3.2.
• Expected Value (EV): is the deterministic representation of our treasury model for foreign

exchange rate exposure with the uncertain parameters replaced with by their expected
values.

• Perfect Information (PI): is the deterministic representation of our treasury model for
foreign exchange rate exposure with the true realised data for the uncertain parameters
(historical data as scenarios). This model is the true upper bound on the overall optimi-
sation problem.
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Figure 5. Histograms of monthly revenues associated with the output of each of the 3 models (HN, EV, PI),
backtested to identify the revenue that those models (decisions) would have yielded.

We backtest the above models for all the strategies outlined earlier. In figure 5 we show
the performance of our models over the 60 months period, using the following strategy:
UpperLimitOnHedge = 3, W1 = 0, w1,1 = 0.3, w1,2 = 0.3, w1,3 = 0.4, W2 = 1 and
W3 = 1.

Figure 5 shows that the EV model has a marginally longer right tail than that of the HN
model. It also shows that for this strategy the distribution for the EV decision is preferable
to that of HN. However, if we consider a range of strategies as in Table 1 we see that this
is not always the case.

Table 1 summarises the risk and returns measures for the 3 models investigated: PI, HN
and EV over various treasury strategies. Each simulation run provides a possible realisation
of the financial income received for any given time period. Experiments have been carried
out on a number of different strategies each representing a particular upper limit on the
forward exchange rate position and a combination of different penalties for not meeting the
treasury targets.

As we can see from the above table, VaR5% there is a trade-off between VaR and Revenues.
Surprisingly, EV Model did not do worse that HN Model, which reflects the quality of the
scenario generator. At the same time if we could “perfectly” foresee the future realisations
of exchange rates we would receive higher monthly revenues. This also shows the potential
for achieving better results by improving scenario generation model.

In the results displayed, the base strategy represents the current company practice of spot
only conversion and not entering into forward contracts. The results indicate that there is
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Figure 6. Income relationship for HN model.

scope of making more (marginal) income by using forward contracts. Although the risk
increases with increased speculation as seen by the VaR values. The treasury manager can
plot VaR against return (total terminal income) to determine their preferred strategy as
shown in the figure 6.

By analysing the graph above a frontier can be plotted whereby strategies with points
below this frontier are sub-optimal with respect to either return or VaR. For any inefficient
strategy we can find an efficient point with more return for this level of VaR, or higher VaR
for this given level of return. Our current investigations are looking at how easy it is to
determine the various strategies to create points on the “efficient” frontier.

4.4. Simulation 2: Stochastic measures

In SP models the expected value of perfect information (EVPI) indicates, how far the
stochasticity impinges on the decision-making. EEV stands for the expectation of the ex-
pected value (EEV) problem. The methods of computing these measures are summarised
in Section 3.1. For a full discussion of stochastic measures including EVPI and EEV we
refer the reader to Birge and Louveaux [16], p. 138–142.

We first solved HN, WS and EV models and then computed EEV and EVPI measures.
The computations are conducted for October 2002 across all treasury strategies. The results
are summarised in Table 2.

We have also investigated the dynamic behaviour of EVPI over 60 months time pe-
riod. Figures 7 and 8 show respectively the dynamics of EVPI and the histogram over
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Table 2. Stochastic measures computed for October 2002 for a representative four quarter model across all
treasury strategies.

Strategies WS HN EEV EVPI VSS

Strategy 1 (Base) −1,937,463 −1,937,463 −1,937,463 0 0

Strategy 2 (Naı̈ve Hedge) −2,036,976 −2,036,976 −2,036,976 0 0

Strategy 3 −4,287,880 −4,137,954 −4,137,252 149,926 702

Strategy 4 25,699 36,271 39,849 10,572 3,578

Strategy 5 −2,103,658 −2,040,550 −2,035,255 63,108 5,295

Strategy 6 −2,123,410 −2,051,963 −2,039,159 71,447 12,804

Strategy 7 −3,421,978 −3,302,915 −3,302,915 119,063 0

Strategy 8 −4,163,512 −4,063,561 −4,063,093 99,951 468

Strategy 9 25,726 36,271 39,849 10,545 3,578

Strategy 10 −4,039,144 −3,989,168 −3,988,934 49,976 234

Strategy 11 27,016 36,271 39,514 9,255 3,243

Figure 7. EVPI over time for strategy 3.

60 months of historical sample (Feb-1998 to Jan-2003) for just one treasury strategy:
UpperLimitOnHedge = 3, W1 = 0, w1,1 = 0.3, w1,2 = 0.3, w1,3 = 0.4, W2 = 1 and
W3 = 1.

The average EVPI over 60 months4 of historical sample equals 106, 818. In our context
it could be interpreted as the average upper bound on the price of insurance to protect
company’s foreign currency revenues against uncertain exchange rates.
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Figure 8. Histogram of EVPI for strategy 3.

5. Conclusions

We have considered an FX trading problem and proposed decision models, which can be
used to develop and test alternative trading strategies. We have proposed a novel approach
using SP as an ex-ante decision tool, which can be used by MNFs for the purpose of treasury
management. The tool can be used both for decision making and simulation evaluation.

The VECM model (Appendix A) has been adopted in an innovative fashion to create
exchange rate (forward and spot) scenarios, which are used in an SP decision model. We
have applied ex post analysis of our decisions through backtesting (simulation).

Given that we roll the decision model over 60 months we have calculated the EVPI and
VSS for each of these strategies 60 times. Although VSS is very small for all strategies,
it cannot be deduced at the start of the investigation that the stochastic optimisation is
redundant. However, for our application we can conclude that the HN and the EV models
both provide good quality hedging decisions. This finding is also supported by backtesting
both the HN model and the EV model over 60 months; both models produced similar results.

These results are for a constant cash (revenue) stream. These models can be easily
extended to the situation when the revenue stream is random provided we know, how it
relates to the fundamentals (interest rate, dividend rate, etc.), which also affect the FX rates.
For random revenue stream it is likely that the VSS and EVPI might have larger values and
HN might perform better than EV. The strategies for which EVPI has a relative high value
may indicate that there is scope for performance improvement.

In summary we can state that:

(i) The effects of stochasticity on our hedging decisions are limited. Thus an EV model
(LP) works nearly as well as an HN model.
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(ii) For all the strategies considered both models provide much better results than “no
hedging” spot only base strategy.

(iii) Backtesting PI model results in higher return and lower risk than both HN model and
EV model for most of the strategies. This is only expected given the nature of PI model
and can be taken as a benchmark or upper bound on the model performance.

Appendix A: Modelling exchange rates

The exchange rates: A model of cointegration between spots and forwards

The future realisation of the exchange rates, in particular their mean and variability over
time, has the most important impact on the choice of currency hedging strategy. The two
exchange rates (forward and spot) are forecast by suitable time series models. These appear
as random parameters in our time staged currency hedging SP decision model, which is
introduced in Section 3.

Our forecasting model is based on economic theories, which suggest the existence of
long-run equilibrium relationships among variables. The idea is that even though short-run
deviations from the equilibrium point are most likely, these deviations are bounded since
stabilizing mechanisms tend to bring the system back to the equilibrium. Granger [18, 19]
introduced and Engle and Granger [15] developed what can be regarded as the statistical
counterpart of this idea: the concept of cointegration.

Cointegration allows individual time series to be stationary in first differences, while
some linear combinations of the series are stationary in levels. By interpreting such a linear
combination as a long-run relationship or an “attractor” of the system, cointegration implies
that deviations from this attractor are stationary, even though the series themselves have
infinite variance.

Granger [19] showed that there is a natural connection between the concept of cointegra-
tion and error-correction models. The latter may be thought of as providing an adjustment
process through which deviations from a long-run equilibrium relationship (or an attractor)
are corrected for.

The long-run relationship between the spot and the forward exchange rate has been
studied by several authors, and the exchange rates are usually modelled by means of a
vector error correction (VEC) model (see Zivot [39], for a survey). 5 In what follows we
first review the statistical properties of such a model.

Consider the following model for the observed bivariate time series {wt = ( ft , st )′}T
t=1,

where ft is the one-period forward exchange rate and st is the spot exchange rate:6

wt = A0 + A1wt−1 + ut (A1)

and,

ut ∼ N

([
0

0

]
,

[
σ 2

f σs, f

σs, f σ 2
s

])
. (A2)
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Equation (A1) is a bivariate vector autoregressive (VAR) model, which can also be written
as:

�wt = A0 + �wt−1 + ut , (A3)

where � denotes the first-difference operator defined by �wt = wt −wt−1 and � = A1− I .
Granger’s representation theorem asserts that under the assumption of cointegration, and

therefore if the coefficient matrix � has rank 1, then there exist 2 × 1 vectors α and β such
that � = αβ ′, and β ′wt is stationary.

Therefore, using the normalisation β = (1, −βs), Equation (A3) becomes the VEC
model:

�st = As + αs( ft−1 − βsst−1) + ust,

� ft = A f + α f ( ft−1 − β f st−1) + uft, (A4)

where ft−1 − βsst−1 represents deviation from long-run equilibrium at time t − 1, and the
alphas are the adjustment parameters.

Note that if there is no cointegrating relation between ft and st (i.e. as αs = α f = 0),
standard time series analyses, such as the (unrestricted) VAR, may be applied to the first-
differences of the data as the levels of the series each follows a random walk process with
drift.

Comparing alternative models and model validation

We now examine the forecast performance of the VEC model and compare it with the
benchmark random walk (RW) model, which is obtained by setting αs = α f = 0 in
Eq. (A4).

We calculate traditional accuracy measures defined on the forecast errors et+h = wt+h −
ŵt+h, h ≥ 1, where ŵt+h denotes the h-step-ahead forecast average of the 100 sequences
at the forecast origin t . Given n forecast errors {et+h,i }n

i=1,popular measures of accuracy,
such as the mean squared error, MSE(h) = (1/n)

∑n
i=1 e2

t+h,i , and the mean absolute error,
MAE(h) = (1/n)

∑n
i=1 |et+h,i |, are calculated for both the VEC and the RW. Furthermore,

to assess whether MSE(h) and MAE(h) from the two competing models are statistically
different, we use a test of equal forecast accuracy due to Diebold and Mariano [10]. If
{di (h)}n

i=1 are the loss differentials associated with the h-step-ahead forecasts from VEC
model and RW, the test is based on the statistic DM(h) = [

∑n
i=1 di (h)]/.

√
nτ̂ 2

h where τ̂ 2
h is

a consistent estimator of τ 2
h = limn→∞(1/n)Var�∑n

i=1 di (h)�. Under the null hypothesis of
equal forecast accuracy (which entails E[di ] = 0), DM(h) has a standard normal asymptotic
distribution.

A related criterion, widely used in evaluations of ex post forecasts, is Theil’s inequality
coefficient, U (h), which, by construction, satisfies 0 ≤ U (h) ≤ 1. If U (h) = 0, there is a
perfect prediction; if, on the other hand, U (h) = 1, the forecast performance of the model
is as bad as it can be.
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Figure A.1. Random Walk vs. Error Correction Model out-of-sample forecasts comparison.
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On the basis of the various criteria that are used to evaluate the forecast accuracy, the
results are clearly in favour of the VEC model specification. Therefore the VEC model is
used for simulating scenarios of future exchange rates. Figure A-1 demonstrates the one-,
two- and three-step-ahead out-of-sample forecasts of RW and ECM of exchange rates. The
ECM follows more closely both spot and forward exchange rates.

Notes

1. In this Paper we assume cash flows are deterministic, since we want to focus on the effect of exchange rates
on the optimal treasury decisions. More general model would account for the possibility that the cash flows
follow a stochastic process, which could be easily accommodated in our setup. We leave such an extension as
a topic for future investigation.

2. See note 2.
3. We do not conduct backtesting of the decision model over the remaining 12 months of the historical sample,

Feb. 2003 to Jan. 2004 because when solving PI model we need 12 months of future actual realised exchange
rates. Thus, the last roll of the decision model should be 12 months before the end of the historical sample of
exchange rates. In order to compare PI model with HN and EV models on like-for-like bases we use the same
backtesting time period for all the models.

4. It should be reiterated that we roll the model forward, at every time period we hedge (speculate) only the
revenues expected in 3, 6, 9 and 12 months from the current time period.

5. A vector error correction model is a restricted vector autoregressive model that it is designed for use with
nonstationary series that are known to be cointegrated. It restricts the long-run behaviour of the variables to
converge to their cointegrating relationships while allowing for short-run dynamics.

6. Note that we will also consider model of cointegration between spot and 3, 6, 9 and 12-month forward rates.
However, for explanation purposes, our attention will be restricted to the 1-month forward rate.
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