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Abstract. A discrete filled function method is developed in this paper to solve discrete global optimization
problems over “strictly pathwise connected domains.” Theoretical properties of the proposed discrete filled function
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1. Introduction

Optimization of a general cost function over discrete variables arises frequently in vari-
ous applications such as combinatorics, scheduling, design and operations problems. Even
though some discrete optimization problems have been studied since ancient times, the
impacts of discrete optimization have become influential only in the last few decades due to
the advancement of computer technologies. The literature on discrete global optimization
can be divided into two classes, deterministic approaches and stochastic approaches.

Various deterministic solution methods for solving discrete optimization problems have
been proposed during the last two decades. The branch and bound method (see, e.g., [12,
15]) searches a solution based on successively subdividing the feasible region and estimat-
ing lower bounds by solving the continuous relaxation problems. It is clear that branch
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and bound methods may fail to find an optimal solution in the absence of convexity.
When the objective function and constraint functions are separable and there exist only
a few constraints, dynamic programming method (see, e.g., [3, 4]) can be used to solve the
discrete optimization problem. Lagrangian method (see, e.g., [6, 10]) deals with discrete
optimization problems in an indirect way by incorporating constraints into the objective
function, forming a relaxation problem and performing a dual search to find an optimal
primal solution. Unlike its success in continuous optimization, Lagrangian method often
fails to identify an optimal primal solution even in linear or convex situations. Nonlinear
Lagrangian formulations [17, 18, 26, 28] have been recently proposed to guarantee an exis-
tence of an optimal primal-dual pair and an identification of an optimal primal solution via
dual search. A major difficulty associated with nonlinear Lagrangian formulations is how
to globally and efficiently solve the resulting nonlinear Lagrangian relaxation problem.

Stochastic approaches for discrete optimization include, for example, the simulated
annealing algorithms, the genetic algorithms, and the tabu search algorithms. Recently,
Litinetski and Abramzon [19] generalized the existing random search methods with sys-
tematic reduction of the search region (see, e.g., [21]) and suggested a new multi-start,
adaptive, random search method; Mohan and Nguyen [22] modified the traditional con-
trolled random search technique (see, e.g., [24]) and incorporated the simulated annealing
concept of accepting occasional uphill moves to achieve a higher reliability in obtaining
a global optimal solution. Although there is no guarantee of attaining an optimality when
adopting stochastic methods, they are quite efficient in finding a near-optimal solution for
a variety of discrete global optimization problems.

Several continuous global optimization methods, such as the tunneling algorithm [16] and
the filled function method [7], search for a global minimum among the local minima. More
specifically, they invoke certain auxiliary functions to move successively from one local
minimum to another better one. The concept of the filled functions was introduced by Ge in
[7] for continuous global optimization. Thereafter further results on filled function methods
have been reported by various authors (see, e.g., [9, 13, 20, 27, 30]). In order to tackle
discrete global optimization problems, Ge and Huang [8] and Zhang et al. [29] transformed
discrete global optimization problems into continuous global optimization problems and
then solve them by the continuous filled function method [7] or some other continuous
global optimization algorithms. Zhu [32] also used a continuous filled function method to
solve discrete global optimization problems, while using a discrete direct search method to
obtain a local minimum. In general, the third condition of the continuous filled function does
not hold in discrete cases. (The details are discussed in the next section.) Difficulties may
also occur when applying continuation methods to discrete optimization problems where the
gradient vectors are unavailable or expensive to compute, as indicated in [29]. It is clear that
the implementability and efficiency of the existing solution schemes of applying continuous
filled function methods to solve discrete optimization problems need further improvement.

The main purpose of this paper is to propose and formalize a discrete version of the
filled functions. By exploring certain special features of integer programming, the proposed
discrete filled function seems to be better suited for discrete global optimization, as witnessed
in our numerical experiments. The paper is organized as follows. Following this introduction,
we present some preliminaries in Section 2 and define then a discrete filled function. In
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Section 3, we propose a new discrete filled function and investigate its properties as well.
In Section 4, we consider the numerical implementation of the proposed discrete filled
function and suggest a solution algorithm. In Section 5, we first demonstrate the solution
procedures of the algorithm by an illustrative example. We then report the results of the
algorithm in solving several test problems with up to 200 variables. Finally, we draw some
conclusions in Section 6.

2. Preliminaries

Let Z
n be the set of integer points in R

n . We consider the following discrete global opti-
mization problem:

(P) min
x∈X⊂Zn

f (x)

and make the following assumptions in this paper:

Assumption 1. X ⊂ Z
n is a bounded set which contains more than one point. This implies

that there exists a constant K > 0 such that

1 ≤ K = max
x (1),x (2)∈X

∥∥x (1) − x (2)
∥∥ < ∞, (1)

where ‖·‖ is the usual Euclidean norm.

Assumption 2. X is a strictly pathwise connected domain (see Definition 1).

Assumption 3. f : X �→ R satisfies the following Lipschitz condition for every x (1), x (2) ∈
X : ∣∣ f

(
x (1)

) − f
(
x (2)

)∣∣ ≤ L
∥∥x (1) − x (2)

∥∥, (2)

where 0 < L < ∞ is a constant.

Notice that the formulation in (P) allows the set X to be defined by box constraints as well
as inequality constraints. Furthermore, when f is coercive, i.e., f → ∞ as ‖x‖ → ∞,
there always exists a box which contains all discrete global minimizers of f . Thus, the
unconstrained discrete global optimization problem, minx∈Zn f (x) can be reduced into an
equivalent problem formulation in (P). In other words, both unconstrained and constrained
discrete global optimization problems can be considered in (P).

To simplify the discussion in this paper, we recall some definitions in discrete analy-
sis and discrete optimization. Moreover, we extend some definitions in continuous global
optimization to discrete global optimization.

Definition 1. A sequence {x (i)}u
i=−1 is called a DISCRETE PATH in X between two distinct

points x∗ and x∗∗ in X if x (−1) = x∗, x (u) = x∗∗, x (i) ∈ X , for all i ; x (i) 	= x ( j), for
i 	= j ; and ‖x (0) − x∗‖ = ‖x (i+1) − x (i)‖ = ‖x∗∗ − x (u−1)‖ = 1, for all i . If, in addition,
‖x (i) − x∗‖ < ‖x (i+1) − x∗‖, for all i , or equivalently, ‖x (i) − x∗∗‖ > ‖x (i+1) − x∗∗‖, for all
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i , the sequence is also called a STRICT DISCRETE PATH in X between x∗ and x∗∗. If such a
(strict) discrete path exists, then x∗ and x∗∗ are said to be (STRICTLY) PATHWISE CONNECTED

in X . Furthermore, if every two distinct points in X are (strictly) pathwise connected in X ,
then X is called a (STRICTLY) PATHWISE CONNECTED DOMAIN.

Example 1. Let X = {x ∈ � ∩ Z
n: � ⊂ R

n is convex}. If X is a nonempty and pathwise
connected domain, then X is a strictly pathwise connected domain.

Example 2. Let � = {(x1, x2) ∈ R
2: x1 ≥ 0, x2 ≤ 2, x2 ≤ x2

1}. Then � is a nonconvex
domain but X = � ∩ Z

2 is a strictly pathwise connected domain.

Definition 2. The set of all directions in Z
n is defined by D = {±ei : i = 1, 2, . . . , n},

where ei is the i th unit vector (the n dimensional vector with the i th component equal to
one and all other components equal to zero).

Definition 3. For any x ∈ Z
n , the DISCRETE NEIGHBORHOOD of x is defined by N (x) =

{x, x ± ei : i = 1, 2, . . . , n}.

Definition 4. The DISCRETE INTERIOR of X is defined by int X = {x ∈ X : N (x) ⊂ X}.
While, the DISCRETE BOUNDARY of X is denoted by ∂ X = X \ int X .

Note that, if X contains less than or equal to 2n points, then int X = ∅ and ∂ X = X .

Definition 5. A point x∗ ∈ X is called a DISCRETE LOCAL MINIMIZER of f over X if
f (x∗) ≤ f (x), for all x ∈ X ∩ N (x∗). Furthermore, if f (x∗) ≤ f (x), for all x ∈ X , then
x∗ is called a DISCRETE GLOBAL MINIMIZER of f over X . If, in addition, f (x∗) < f (x), for
all x ∈ X ∩ N (x∗) \ x∗, then x∗ is called a STRICT DISCRETE LOCAL (GLOBAL) MINIMIZER

of f over X .

Definition 6. A point x̃ ∈ X is called a DISCRETE SADDLE POINT of f over X if there
exists a partition {A, B} of the set {1, 2, . . . , n} such that A, B 	= ∅; A ∩ B = ∅; A ∪ B =
{1, 2, . . . , n}; f (x̃ ± ei ) ≥ f (x̃), for all i ∈ A; and f (x̃ ± e j ) ≤ f (x̃), for all j ∈ B.
Furthermore, if f (x̃ ± ei ) > f (x̃), for all i ∈ A, and f (x̃ ± e j ) < f (x̃), for all j ∈ B, then
x̃ is called a STRICT DISCRETE SADDLE POINT of f over X .

Definition 7. For any x ∈ X , d ∈ D is said to be a DESCENT DIRECTION of f at x over X if
x + d ∈ X and f (x + d) < f (x); besides, d∗ ∈ D is called a DISCRETE STEEPEST DESCENT

DIRECTION of f at x over X if f (x + d∗) ≤ f (x + d), for all d ∈ D∗, where D∗ is the set
of all descent directions of f at x over X .

In the following, we present a discrete steepest descent method for finding a local mini-
mizer of f over X from a given initial point x ∈ X .

Algorithm 1 (Discrete steepest descent method)

1. Start from an initial point x ∈ X.
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2. If x is a local minimizer of f over X , then stop. Otherwise, a discrete steepest descent
direction d∗ of f at x over X can be found.

3. Let x := x + λd∗, where λ ∈ Z+ is the step length such that f has maximum reduction
in the direction d∗, and go to Step 2.

In the context of continuous global optimization, we have definitions of a basin, a
lower/higher basin, a hill, etc. [5, 7]. We define similar terms in the following for discrete
global optimization.

Definition 8. Given that x∗ is a local minimizer of f over X . B∗ is said to be a DISCRETE

BASIN of f at x∗ over X if B∗ ⊂ X is a pathwise connected domain which contains x∗ and
in which a discrete steepest descent trajectory from any initial point in B∗ converges to x∗,
but outside which the discrete steepest descent trajectory from any initial point in X\B∗

does not converge to x∗.

Definition 9. Given that x∗ and x∗∗ are two distinct local minimizers of f over X . The
discrete basin B∗∗ of f at x∗∗ over X is said to be LOWER than the discrete basin B∗ of f
at x∗ over X if f (x∗∗) < f (x∗). Equivalently, B∗ is said to be HIGHER than B∗∗.

Definition 10. Given that x̂ is a local minimizer of − f . The discrete basin of − f at x̂ over
X is called the DISCRETE HILL of f at x̂ over X .

The continuous filled function was introduced by Ge [7] as follows:

Definition 11 (Continuous filled function in [7]). Given that xC
∗ is an isolated local mini-

mizer of f : XC �→ R, where XC ⊂ R
n . Let BC

∗ be the basin of f at xC
∗ over XC . A function

F : XC �→ R is said to be a FILLED FUNCTION of f at xC
∗ if it satisfies the following:

(C1) xC
∗ is a maximizer of F and the whole basin BC

∗ of f at xC
∗ over XC becomes a part

of a hill of F ;
(C2) F has no minimizers or saddle points in any basin of f higher than BC

∗;
(C3) if f has a basin BC

∗∗ at xC
∗∗ that is lower than BC

∗, then there is a point xC
′ ∈ BC

∗∗

that minimizes F on the line through xC
∗ and the current iterative point.

We now modify it for discrete cases.

Definition 12 (Discrete filled function). Given that x∗ is a discrete local minimizer of
f : X �→ R, where X ⊂ Z

n . Let B∗ be the discrete basin of f at x∗ over X . A function
F : X �→ R is said to be a DISCRETE FILLED FUNCTION of f at x∗ if it satisfies the following:

(D1) x∗ is a strict local maximizer of F over X ;
(D2) F has no discrete local minimizers in B∗ or in any discrete basin of f higher than B∗;
(D3) if f has a discrete basin B∗∗ at x∗∗ that is lower than B∗, then there is a discrete point

x ′ ∈ B∗∗ that minimizes F on a discrete path {x∗, . . . , x ′, . . . , x∗∗} in X .
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Adopting the concept of the filled functions in [7], we solve a discrete global optimization
problem via a two-phase cycle. In Phase 1 (Local Search), we start from a given point in
X and use the discrete steepest descent method (Algorithm 1) to find a local minimizer x∗

of f over X . In Phase 2 (Global Search), we construct a discrete filled function at x∗ and
search for a minimum of the discrete filled function on a discrete path in X via some special
search directions, in order to identify a point x ′ in a discrete basin lower than the discrete
basin of f at x∗. This process repeats until the time when minimizing the discrete filled
function does not yield a better solution. The current local minimizer will be then taken as
a global minimizer of f .

Notice that, a continuous filled function requires that there be no saddle points in any
basin of f higher than the current basin, otherwise the saddle points in higher basins
may stop the minimization process in Phase 2. On the contrary, a discrete saddle point
of f does have a descent direction of f over X provided it is not a local minimizer of
f at the same time. Hence the existence of discrete saddle points in discrete basins of
f higher than the current discrete basin will not stop the minimization process in
Phase 2.

A continuous filled function requires that if f has a basin BC
∗∗ that is lower than the current

basin BC
∗, then there is a point xC

′ in BC
∗∗ that minimizes the continuous filled function

on a straight line connecting xC
∗ and the current iterative point x . These requirements are

unlikely to be satisfied in discrete cases, not only because xC
′ may not be a discrete point,

but also because not every point on the straight line is feasible in a discrete domain. In the
proposed discrete filled function method, we consider minimization on a discrete path that
in general is not a straight line.

3. Discrete filled function and its properties

Now, we propose a two-parameter discrete filled function for problem (P) at a local mini-
mizer x∗ as follows:

Fµ,ρ(x ; x∗) = f (x∗) − min[ f (x∗), f (x)] − ρ ‖x − x∗‖2

+ µ{max[0, f (x) − f (x∗)]}2. (3)

In other words, when f (x) ≥ f (x∗),

Fµ,ρ(x ; x∗) = µ [ f (x) − f (x∗)]2 − ρ ‖x − x∗‖2, (4)

while when f (x) ≤ f (x∗),

Fµ,ρ(x ; x∗) = f (x∗) − f (x) − ρ ‖x − x∗‖2. (5)

In the following subsections, we will show that Fµ,ρ(·; x∗) satisfies the conditions to be
qualified as a discrete filled function under certain conditions on the parameters ρ and µ.
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3.1. The proposed discrete filled function satisfies condition (D1)

Lemma 1. Given that x∗ is a local minimizer of f over X. Suppose that x̄ ∈ X is
a point such that x̄ 	= x∗ and f (x̄) ≥ f (x∗). If ρ > 0 and 0 ≤ µ < ρ/L2, then
Fµ,ρ(x̄ ; x∗) < 0 = Fµ,ρ(x∗; x∗).

Proof: Since f (x̄) ≥ f (x∗), then, by Assumption 3, we have

0 ≤ f (x̄) − f (x∗) ≤ L ‖x̄ − x∗‖.

Since ‖x̄ − x∗‖ > 0, so if ρ > 0 and 0 < µ < ρ/L2, then

Fµ,ρ(x̄ ; x∗) = µ [ f (x̄) − f (x∗)]2 − ρ ‖x̄ − x∗‖2

≤ µL2‖x̄ − x∗‖2 − ρ ‖x̄ − x∗‖2 < 0 = Fµ,ρ(x∗; x∗).

This completes the proof.

Corollary 2. Given that x∗ is a local minimizer of f over X. If ρ > 0 and 0 ≤ µ < ρ/L2,
then x∗ is a strict local maximizer of Fµ,ρ(·; x∗) over X. If, in addition, x∗ is a global
minimizer of f over X , then Fµ,ρ(x ; x∗) < 0, for all x ∈ X \ x∗.

Proof: Since x∗ is a local minimizer of f over X , thus f (x̄) ≥ f (x∗), for all x̄ ∈ X∩N (x∗).
Hence, by Lemma 1, Fµ,ρ(x̄ ; x∗) < 0 = Fµ,ρ(x∗; x∗), for all x̄ ∈ X ∩ N (x∗) \ x∗. Thus, x∗

is a strict local maximizer of Fµ,ρ(·; x∗).
If x∗ is a global minimizer of f over X , then f (x) ≥ f (x∗), for all x ∈ X . Thus, by

Lemma 1, the result follows.

From Corollary 2, we conclude that Fµ,ρ(·; x∗) satisfies the discrete filled function con-
dition (D1) if ρ > 0 and 0 ≤ µ < ρ/L2.

3.2. The proposed discrete filled function satisfies condition (D2)

Lemma 3. Given that x (1), x (2), and x∗ are three distinct points in X. If ‖x (2) − x∗‖ >

‖x (1) − x∗‖, then

1 ≤
∥∥x (2) − x (1)

∥∥∥∥x (2) − x∗∥∥ − ∥∥x (1) − x∗∥∥ < 2K 2.

Proof: On one hand, we consider

∥∥x (2) − x∗∥∥ ≤ ∥∥x (2) − x (1)
∥∥ + ∥∥x (1) − x∗∥∥.
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Since ‖x (2) − x∗‖ > ‖x (1) − x∗‖, we have

0 <
∥∥x (2) − x∗∥∥ − ∥∥x (1) − x∗∥∥ ≤ ∥∥x (2) − x (1)

∥∥,

and hence

1 ≤
∥∥x (2) − x (1)

∥∥∥∥x (2) − x∗∥∥ − ∥∥x (1) − x∗∥∥ .

On the other hand, we consider for every x ∈ Z
n , ‖x‖2 ∈ Z and hence ‖x (2) − x∗‖2 −

‖x (1) − x∗‖2 ∈ Z. Since ‖x (2) − x∗‖ > ‖x (1) − x∗‖, we have

∥∥x (2) − x∗∥∥2 − ∥∥x (1) − x∗∥∥2 ≥ 1.

Moreover, due to ‖x (2) − x∗‖ > ‖x (1) − x∗‖, we have

∥∥x (2) − x∗∥∥ + ∥∥x (1) − x∗∥∥ > 0.

Therefore, from Assumption 1, we have

∥∥x (2) − x∗∥∥ − ∥∥x (1) − x∗∥∥ ≥ 1∥∥x (2) − x∗∥∥ + ∥∥x (1) − x∗∥∥ >
1

2K
,

and thus ∥∥x (2) − x (1)
∥∥∥∥x (2) − x∗∥∥ − ∥∥x (1) − x∗∥∥ <

K

1/(2K )
= 2K 2.

This completes the proof.

Lemma 4. Given that x∗ is a local minimizer of f over X. Suppose that x (1), x (2) ∈ X
are two points such that 0 < ‖x (1) − x∗‖ < ‖x (2) − x∗‖ and f (x∗) ≤ f (x (1)) ≤ f (x (2)). If
ρ > 0 and 0 ≤ µ ≤ ρ/(2K 2L2), then

Fµ,ρ

(
x (2); x∗) < Fµ,ρ

(
x (1); x∗) < 0 = Fµ,ρ(x∗; x∗).

Proof: Consider

Fµ,ρ

(
x (2); x∗) − Fµ,ρ

(
x (1); x∗)

= µ
{[

f
(
x (2)

) − f (x∗)
]2 − [

f
(
x (1)

) − f (x∗)
]2}

− ρ
(∥∥x (2) − x∗∥∥2 − ∥∥x (1) − x∗∥∥2)



DISCRETE FILLED FUNCTION METHOD FOR DISCRETE GLOBAL OPTIMIZATION 95

= (∥∥x (2) − x∗∥∥2 − ∥∥x (1) − x∗∥∥2)
·
{

µ

[
f
(
x (2)

) − f (x∗)
]2 − [

f
(
x (1)

) − f (x∗)
]2∥∥x (2) − x∗∥∥2 − ∥∥x (1) − x∗∥∥2 − ρ

}

= (∥∥x (2) − x∗∥∥2 − ∥∥x (1) − x∗∥∥2)
·
{

µ

[
f
(
x (2)

) − f (x∗) + f
(
x (1)

) − f (x∗)∥∥x (2) − x∗∥∥ + ∥∥x (1) − x∗∥∥
]

·
[

f
(
x (2)

) − f
(
x (1)

)∥∥x (2) − x∗∥∥ − ∥∥x (1) − x∗∥∥
]

− ρ

}
.

Then, by Assumption 3 and Lemma 3, we have

Fµ,ρ

(
x (2); x∗) − Fµ,ρ

(
x (1); x∗)

<
(∥∥x (2) − x∗∥∥2 − ∥∥x (1) − x∗∥∥2)

(µ · L · 2K 2L − ρ) ≤ 0.

The second inequality in the conclusion of the lemma follows directly from Lemma 1.

Lemma 5. Given that x∗ is a local minimizer of f over X. Suppose that x (1), x (2) ∈ X
are two points such that 0 < ‖x (1) − x∗‖ < ‖x (2) − x∗‖ and f (x∗) ≤ f (x (2)) ≤ f (x (1)). If
ρ > 0 and µ ≥ 0 then

Fµ,ρ

(
x (2); x∗) < Fµ,ρ

(
x (1); x∗) < 0 = Fµ,ρ(x∗; x∗).

Proof: Consider

Fµ,ρ

(
x (2); x∗) − Fµ,ρ

(
x (1); x∗)

= µ
{[

f
(
x (2)

) − f (x∗)
]2 − [

f
(
x (1)

) − f (x∗)
]2}

− ρ
(∥∥x (2) − x∗∥∥2 − ∥∥x (1) − x∗∥∥2)

< 0.

The second inequality in the conclusion of the lemma follows directly from Lemma 1.

Theorem 6. Given that x∗ is a local minimizer of f over X. Suppose that x̄ ∈ X is a point
such that x̄ 	= x∗ and f (x̄) ≥ f (x∗). If ρ > 0 and 0 ≤ µ ≤ ρ/(2K 2L2), then for each
d̄ ∈ D such that x̄ + d̄ ∈ X , f (x̄ + d̄) ≥ f (x∗) and ‖x̄ + d̄ − x∗‖ > ‖x̄ − x∗‖, it satisfies

Fµ,ρ(x̄ + d̄; x∗) < Fµ,ρ(x̄ ; x∗) < 0 = Fµ,ρ(x∗; x∗). (6)

Proof: Consider the following two cases:

1. If f (x̄) ≤ f (x̄ + d̄), we have f (x∗) ≤ f (x̄) ≤ f (x̄ + d̄). Due to 0 < ‖x̄ − x∗‖ <

‖x̄ + d̄ − x∗‖, ρ > 0 and 0 ≤ µ ≤ ρ/(2K 2L2), then (6) holds by Lemma 4.
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2. If f (x̄) ≥ f (x̄ + d̄), we have f (x∗) ≤ f (x̄ + d̄) ≤ f (x̄). Due to 0 < ‖x̄ − x∗‖ <

‖x̄ + d̄ − x∗‖, ρ > 0 and µ ≥ 0, then (6) holds by Lemma 5.

This completes the proof.

Theorem 6 clearly reveals that d̄ is a descent direction of Fµ,ρ(x̄ ; x∗) if f (x̄ + d̄) ≥ f (x∗).
Therefore, Fµ,ρ(·; x∗) satisfies the discrete filled function condition (D2) if ρ > 0 and
0 ≤ µ ≤ ρ/(2K 2L2). We further enhance this conclusion by the following corollary.

Corollary 7. Given that x∗ is a local minimizer of f over X and B∗ is the discrete basin
of f at x∗. If ρ > 0 and 0 ≤ µ ≤ ρ/(2K 2L2), then Fµ,ρ(·; x∗) has no local minimizers in
B∗ or in any discrete basin of f higher than B∗.

Proof: From the definition of the discrete basin (Definition 8), every point x̄ in B∗ or
in any discrete basin of f higher than B∗, then f (x̄ + d̄) ≥ f (x∗), for all d̄ ∈ {d ∈ D:
x̄+d ∈ X, ‖x̄+d−x∗‖ > ‖x̄−x∗‖}. Therefore, from Theorem 6, we have Fµ,ρ(x̄+d̄; x∗) <

Fµ,ρ(x̄ ; x∗) < 0 = Fµ,ρ(x∗; x∗). This completes the proof.

3.3. The proposed discrete filled function satisfies condition (D3)

Theorem 8. Given that x∗ and x∗∗ are two distinct local minimizers of f over X such
that f (x∗) > f (x∗∗). Let x ′ and x ′ + d ′ be two points in the discrete basin B∗∗ of f at x∗∗

over X , where d ′ is a descent direction of f at x ′ over X and

f (x ′) ≥ f (x∗) > f (x ′ + d ′). (7)

Suppose that there is a strict discrete path {x (i)}u
i=−1 in X between x∗(≡ x (−1)) and x ′(≡

x (u)) such that f (x (i)) ≥ f (x∗), for all i = 0, 1, 2, . . . , u. If 0 ≤ µ ≤ ρ/(2K 2L2) and
0 < ρ < ρ0, where

ρ0 = f (x∗) − f (x ′ + d ′)
‖x ′ + d ′ − x∗‖2

, (8)

then there is a discrete path {x (i)}u+v
i=−1 in X between x∗(≡ x (−1)) and x∗∗(≡ x (u+v)) such

that x ′ + d ′ ≡ x (u+1), x ′ ≡ x (u) and x ′ is a minimizer of Fµ,ρ(·; x∗) on the discrete path. If,
in addition,

0 < ρ < min

{
ρ0,

f
(
x (u+ j−1)

) − f
(
x (u+ j)

)
∥∥x (u+ j) − x∗∥∥2 − ∥∥x (u+ j−1) − x∗∥∥2

}
, (9)

for all j ∈ {2, . . . , v} such that ‖x (u+ j) − x∗‖ > ‖x (u+ j−1) − x∗‖, then x ′ is the unique
minimizer of Fµ,ρ(·; x∗) on the discrete path.
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Proof: Since ρ > 0, 0 ≤ µ ≤ ρ/(2K 2L2) < ρ/L2, x (0) 	= x∗ and f (x (0)) ≥ f (x∗), thus,
from Lemma 1, we have Fµ,ρ(x (0); x∗) < Fµ,ρ(x∗; x∗) = 0.

Moreover, due to ρ > 0, 0 ≤ µ ≤ ρ/(2K 2L2), f (x (i)) ≥ f (x∗), for i = 0, 1, 2, . . . , u,
and ‖x (i−1) − x∗‖ < ‖x (i) − x∗‖, for i = 1, 2, . . . , u, then, from Lemmas 4 and 5,
Fµ,ρ(x (i); x∗) < Fµ,ρ(x (i−1); x∗) < 0, for i = 1, 2, . . . , u.

Since d ′ satisfies (7), so if 0 < ρ < ρ0, then

Fµ,ρ(x ′ + d ′; x∗) = f (x∗) − f (x ′ + d ′) − ρ ‖x ′ + d ′ − x∗‖2 > 0.

Therefore, x ′ minimizes Fµ,ρ(·; x∗) on the discrete path {x (i)}u+1
i=−1 in X between x∗ and

x ′ + d ′.
If x ′ + d ′ = x∗∗, then the theorem is proved. On the other hand, suppose that x ′+d ′ 	= x∗∗.

Since x ′ + d ′ ∈ B∗∗, there exists a discrete steepest descent trajectory {x (i)}u+v
i=u+1 of f in X

from x ′ + d ′ to x∗∗. Hence, the first part of the theorem is proved.
To prove the remaining part of the theorem for the case that x ′+d ′ 	= x∗∗, we consider the

following two cases with the fact that f (x∗) > f (x (u+1)) > f (x (u+2)) > · · · > f (x (u+v)):

1. If ‖x (u+ j−1) − x∗‖ ≥ ‖x (u+ j) − x∗‖, for some j ∈ {2, . . . , v}, the following holds for
any ρ > 0:

Fµ,ρ

(
x (u+ j−1); x∗) = f (x∗) − f

(
x (u+ j−1)

) − ρ
∥∥x (u+ j−1) − x∗∥∥2

< f (x∗) − f
(
x (u+ j)

) − ρ
∥∥x (u+ j) − x∗∥∥2

= Fµ,ρ

(
x (u+ j); x∗).

2. On the other hand, if ‖x (u+ j−1) − x∗‖ < ‖x (u+ j) − x∗‖, for some j ∈ {2, . . . , v}, then
Fµ,ρ(x (u+ j−1); x∗) < Fµ,ρ(x (u+ j); x∗) when

0 < ρ <
f
(
x (u+ j−1)

) − f
(
x (u+ j)

)
∥∥x (u+ j) − x∗∥∥2 − ∥∥x (u+ j−1) − x∗∥∥2 .

Therefore, if ρ satisfies (9), then x ′ is the unique minimizer of Fµ,ρ(·; x∗) on the discrete
path.

From Theorem 8, we conclude that Fµ,ρ(·; x∗) satisfies the discrete filled function con-
dition (D3) if ρ > 0 is sufficiently small and 0 ≤ µ ≤ ρ/(2K 2L2).

From Sections 3.1–3.3, we conclude that Fµ,ρ(·; x∗) is a discrete filled function if ρ > 0
is sufficient small and 0 ≤ µ ≤ ρ/(2K 2L2).

3.4. Further properties of the proposed discrete filled function

Lemma 9. For every x ′, x∗ ∈ X , if there exists i ∈ {1, 2, . . . , n} such that x ′ ± ei ∈ X ,
then there exists d ∈ {±ei } such that ‖x ′ + d − x∗‖ > ‖x ′ − x∗‖.
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Proof: If there is an i ∈ {1, 2, . . . , n} such that [x ′]i ≥ [x∗]i , where [x]i is the i th
component of any vector x ∈ X , then d = ei . On the other hand, if there is an i ∈
{1, 2, . . . , n} such that [x ′]i ≤ [x∗]i , then d = −ei .

Theorem 10. Suppose that x∗ ∈ X and x ′ ∈ int X are local minimizers of f and Fµ,ρ(·; x∗)
over X , respectively. If ρ > 0 and 0 ≤ µ ≤ ρ/(2K 2L2), then

1. when f (x ′) ≥ f (x∗), then f (x ′ + d ′) < f (x∗) for all d ′ ∈ D1, where D1 ≡ {d ∈
D: x ′ + d ∈ X, ‖x ′ + d − x∗‖ > ‖x ′ − x∗‖};

2. x ′ is in a discrete basin of f that is lower than the discrete basin B∗ of f at x∗.

Proof: Suppose that ρ > 0, 0 ≤ µ ≤ ρ/(2K 2L2) and f (x ′) ≥ f (x∗). Since, from
Corollary 2, x∗ is a strict local maximizer of Fµ,ρ(·; x∗), but it is assumed that x ′ is a local
minimizer of Fµ,ρ(·; x∗), therefore x∗ 	= x ′. Since x ′ ∈ int X , then by Lemma 9, there exists
d ′ ∈ D such that x ′ + d ′ ∈ X and ‖x ′ + d ′ − x∗‖ > ‖x ′ − x∗‖ and thus D1 	= ∅. For every
d ′ ∈ D1, if f (x ′ + d ′) ≥ f (x∗), then, by Theorem 6, Fµ,ρ(x ′ + d ′; x∗) < Fµ,ρ(x ′; x∗). It
contradicts the assumption that x ′ is a local minimizer of Fµ,ρ(·; x∗). Hence, f (x ′ + d ′) <

f (x∗) for all d ′ ∈ D1. Therefore, the first part of the theorem holds.
Moreover, it is obvious that any point x ′ ∈ {x ∈ X : f (x) < f (x∗)} is in a lower

discrete basin of f than B∗. If f (x ′) ≥ f (x∗), the first part of the theorem shows that
f (x ′ + d ′) < f (x∗), for all d ′ ∈ D1. Now, let d∗ be the discrete steepest descent direction
at x ′ of f over X . Thus, f (x ′ + d∗) ≤ f (x ′ + d ′) < f (x∗). Moreover, x ′ and x ′ + d∗ are
belonging to the same discrete basin. Therefore, x ′ is in a discrete basin of f that is lower
than B∗.

Theorem 10 shows a very nice property of the discrete filled function proposed in this
paper: Every local minimizer of the discrete filled function is in a discrete basin of f that
is lower than the current discrete basin of f .

4. Numerical implementation and solution algorithm

Based on the theoretical results in the previous section, a global optimization algorithm
(Algorithm 2) is proposed in this section. In the following, we first present the algorithm. We
then explain the motivation and mechanism behind the algorithm. Through the algorithm,
we denote by x the current iterative point. At the kth iteration of the algorithm, we denote
by x (0)

k the feasible initial point; x ′
k the local minimizer of Fµ,ρ(·; x∗) on a discrete path; and

x∗
k the local minimizer of f over X obtained by the algorithm.

Algorithm 2 (Discrete filled function method)

1. Input:

(a) an initial point x (0)
0 ∈ X ;

(b) two fractions: ρ̂ (0 < ρ̂ < 1) and µ̂ (0 < µ̂ < 1);
(c) the lower bound of ρ, namely ρL > 0.



DISCRETE FILLED FUNCTION METHOD FOR DISCRETE GLOBAL OPTIMIZATION 99

2. Initialization:

(a) starting from the user provided initial point x (0)
0 , minimize f and obtain an initial

local minimizer x∗
0 of f over X ;

(b) set the iteration count to zero, i.e., k := 0;
(c) set ρ, µ := 1: the initial parameters of the proposed discrete filled function in (3).

3. Generate initial points:

(a) generate a set of m initial points for the proposed discrete filled function method,
namely {x (0)i

k ∈ X \ x∗: i = 1, 2, . . . , m};
(b) initialize the vector of the trial order of the initial points, namely set J := [1, 2, . . . ,

m] and j := 1.

4. Set i := Jj and x := x (0)i
k .

5. If f (x) < f (x∗
k ), then

(a) use x as an initial point for a discrete local minimization method to find x∗
k+1 such

that f (x∗
k+1) < f (x∗

k );
(b) increase the iteration count by one, i.e., set k := k + 1;
(c) go to Step 3.

6. Let D0 := {d ∈ D: x + d ∈ X}. If there exists d ∈ D0 such that f (x + d) < f (x∗
k ),

then

(a) use x + d∗, where d∗ = arg mind∈D0{ f (x + d)}, as an initial point for a discrete
local minimization method to find x∗

k+1 such that f (x∗
k+1) < f (x∗

k );
(b) increase the iteration count by one, i.e., set k := k + 1;
(c) go to Step 3.

7. Let D1 := {d ∈ D0: ‖x + d − x∗‖ > ‖x − x∗‖}. If D1 = ∅, then go to Step 10.
8. If there exists d ∈ D1 such that Fµ,ρ(x + d; x∗) ≥ Fµ,ρ(x ; x∗), then

(a) reduce µ by a user pre-defined fraction, i.e., set µ := µ̂µ;
(b) set J := [Jj , . . . , Jm, J1, . . . , Jj−1];
(c) set j := 1;
(d) go to Step 4.

9. Let D2 := {d ∈ D1: f (x + d) < f (x)}. If D2 	= ∅, then set

d∗ := arg min
d∈D2

{ f (x + d) + Fµ,ρ(x + d; x∗)}

otherwise set

d∗ := arg min
d∈D1

{Fµ,ρ(x + d; x∗)}.

After that, set x := x + d∗ and go to Step 6.
10. If j < m, then set j := j + 1 and go to Step 4.
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11. Reduce ρ by a user pre-defined fraction, i.e., set ρ := ρ̂ρ. If ρ ≥ ρL , then go to Step 3.
On the other hand, if ρ < ρL , then the algorithm is incapable of finding a better local
minimizer starting from the initial points, {x (0)i

k : i = 1, 2, . . . , m}. The algorithm stops
and x∗

global := x∗
k is taken as a global minimizer.

The motivation and mechanism behind the algorithm are explained below.
A set of m initial points is generated in Step 3 to minimize the discrete filled function.

According to Corollary 2, the current local minimizer x∗
k of f over X is a strict maximizer of

Fµ,ρ(·; x∗). If no additional information about the objective function is provided, we set the
initial points symmetric about x∗

k . For example, we would set m = 2n and choose x∗
k ± ei ,

for i = 1, 2, . . . , n, as initial points for the discrete filled function method.
Step 5 represents the situation where the current computer generated initial point for the

discrete filled function method satisfies f (x) < f (x∗
k ). Therefore, we can further minimize

the primal objective function f by any discrete local minimization method starting from
x . Note that, Step 5 is needed only if we choose some initial points outside the associated
discrete basin B∗

k of f at x∗
k over X .

Step 6 is based on Theorems 8 and 10. If the current iterative point x is in the discrete
basin B∗

k+1 of f at x∗
k+1 over X and there exists a feasible direction such that x + d ∈ X

and f (x + d) < f (x∗
k ), then we switch from minimization of the discrete filled function

Fµ,ρ(·; x∗) to a local search for the primal objection function f using x + d∗ as an initial
point, where d∗ is the discrete steepest descent direction of f at x over X .

Steps 7 and 8 are due to Theorem 6. First, we define a set D1 as all feasible directions
that can move further away from x∗

k than x . If D1 is an empty set, we restart the searching
procedure using another initial point. On the other hand, if D1 is a nonempty set, then
Theorem 6 guarantees that every d ∈ D1 holds either f (x + d) < f (x∗

k ) or Fµ,ρ(x + d; x∗) <

Fµ,ρ(x ; x∗) if µ is chosen small enough. Notice that if the algorithm goes from Steps 6 to
7, every d ∈ D1 must satisfy f (x + d) ≥ f (x∗

k ). Thus, if there exists d ∈ D1 such that
Fµ,ρ(x + d; x∗) ≥ Fµ,ρ(x ; x∗), it implies that µ is not chosen small enough. Therefore, the
value of µ is reduced by a fraction and the searching procedure is restarted. Since the initial
points x (0)i , for i = J1, . . . , Jj−1, did not lead to a better local minimizer with the previous
µ, they are not as promising as the remaining initial points, we reorder the trial-order list
in the vector J .

Step 9 aims at selecting a more promising successor point. Note that if the algorithm
goes from Steps 8 to 9, every d ∈ D1 must satisfy f (x +d) ≥ f (x∗

k ) and Fµ,ρ(x + d; x∗) <

Fµ,ρ(x ; x∗). If there exists d ∈ D1 such that f (x + d) < f (x), we reduce both the objective
function and the discrete filled function at the same time in order to take advantages of
their reductions, as suggested in [30]. On the other hand, if every d ∈ D1 is an increasing
direction of f at x , we reduce the discrete filled function alone.

Recall from Theorem 8 that the value of ρ should be selected small enough. Otherwise,
there could be no minimizer of Fµ,ρ(·; x∗) in a better basin. Thus, the value of ρ is reduced
successively in the solution process in Step 11 if no better solution is found when minimizing
the discrete filled function. If the value of ρ reaches its lower bound ρL and no better solution
is found, Corollary 2 implies that the current local minimizer is probably a global minimizer.
Therefore, the algorithm stops and x∗

k is taken as a global minimizer.
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5. Numerical experiment

In this section, the proposed solution algorithm is programmed in Matlab 5.3 Release 11
for working on the Sun Blade 2000 system with 900 MHz CPU. In the following, we first
give an illustrative example to show the solution procedure of the algorithm described in the
previous section. We then report the results of the algorithm in solving several test problems.
Some of those test problems are taken from the literature and some of them are the discrete
counterparts of some continuous or mixed global optimization problems as adopted in [22]
and [31].

Through out the tests, we use the discrete steepest descent method (Algorithm 1) to
perform local searches. Suppose that we obtain a local minimizer x∗

k of f over X at the kth
iteration using x∗

k−1 +e j as the initial point, where x∗
k−1 is the local minimizer of f obtained

at the (k − 1)st iteration, we then use the neighboring points of x∗
k as the initial points in

minimizing the discrete filled function in the following order:

x∗
k + e j ,

x∗
k + e j+1, x∗

k − e j+1, . . . , x∗
k + en, x∗

k − en,

x∗
k + e1, x∗

k − e1, . . . , x∗
k + e j−1, x∗

k − e j−1,

x∗
k − e j .

Notice that, if x∗
k ∈ ∂ X , we would have less than 2n initial points. In addition, we set

ρ = ρL = 1 in the tests. In other words, if the algorithm could not find a minimizer of
Fµ,ρ(·; x∗) using all initial points, we stop the algorithm immediately. Besides these, we set
µ = 1 at the beginning of the algorithm. Once the current µ is classified as insufficiently
small, we reduce µ to µ/10.

In each test problem, we will first give a mathematical model. After that, we will summa-
rize the computational results of the proposed method with the user-provided initial point:
x (0)

0 ; the global minimizer or the best known solution: x∗
global; the number of iteration cycles:

# iter; the CPU time in seconds to obtain the final results: CPUfinal; the CPU time in sec-
onds for the algorithm to stop at Step 11: CPUstop; the total numbers of objective function
evaluations to obtain the final results and to stop at Step 11: # ffinal and # fstop, respectively.

Now, we consider the following illustrative example.

Example 3 (Example 5.2 in [8], Problem 1 in [29]).

min f (x) = x1 + 10x2

s.t. 66x1 + 14x2 ≥ 1430,

−82x1 + 28x2 ≥ 1306,

0 ≤ x1 ≤ 15, 68 ≤ x2 ≤ 102, x1, x2 integers.

This problem is a LINEAR INTEGER PROGRAMMING PROBLEM. It has 314 feasible points
where seven of them are local minimizers and one of these local minimizers is the global
minimum solution: x∗

global = (7, 70) with f (x∗
global) = 707.
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We start from a feasible point x (0)
0 = (15, 102) with f (x (0)

0 ) = 1035 and use the discrete
steepest descent method to minimize f . After 30 function evaluations, we obtain an initial
local minimizer x∗

0 = (3, 88) with f (x∗
0 ) = 883.

In the first iteration of the algorithm, µ = 1, 0.1 and 0.01 are found to be not sufficiently
small enough. When µ = 0.001, we start from x (0)

1 = (4, 88) and reach x ′
1 = (4, 87) with

f (x ′
1) = 874 < f (x∗

0 ). We then switch to the local search again and obtain x∗
1 = (4, 84)

with f (x∗
1 ) = 844. The cumulative number of function evaluations is 38.

In the second iteration of the algorithm, we start from x (0)
2 = (5, 84) and reach x ′

2 = (5, 83)
with f (x ′

2) = 835 < f (x∗
1 ). We then switch to the local search and obtain x∗

2 = (5, 79)
with f (x∗

2 ) = 795. The cumulative number of function evaluations is 47.
In the same fashion, we have x (0)

3 = (6, 79), x ′
3 = (6, 78) with f (x ′

3) = 786 < f (x∗
2 ),

x∗
3 = (6, 74) with f (x∗

3 ) = 746, x (0)
4 = (7, 74), x ′

4 = (7, 73) with f (x ′
4) = 737 < f (x∗

3 ),
x∗

4 = (7, 70) with f (x∗
4 ) = 707 and the cumulative numbers of function evaluations are 56

and 63 in the third and fourth iterations, respectively.
In the fifth iteration of the algorithm, three starting points, (8, 70), (6, 70) and (7, 69), are

infeasible. Besides these, the algorithm cannot find a feasible point with function value less
than f (x∗

4 ) using the remaining starting point (7, 71). The cumulative number of function
evaluations is 94.

In general, we should reduce ρ by a fraction and continue the process until ρ < ρL .
Since ρ = ρL = 1 is selected in the numerical tests, and thus the algorithm is terminated.
Therefore, we take # iter = 4, x∗

global = x∗
4 = (7, 70), f (x∗

global) = f (x∗
4 ) = 707, # ffinal =

63 and # fstop = 94. The ratio of the number of function evaluations to reach the global
minimum to the number of feasible points is 63/314 ≈ 0.2006.

In the following, we report some numerical results of the algorithm in solving several
test problems.

Problem 1 (Example 4.3 in [2], Problem 8 in [22]).

min f (x) = x2
1 + x2

2 + 3x2
3 + 4x2

4 + 2x2
5 − 8x1 − 2x2 − 3x3 − x4 − 2x5,

s.t. x1 + 2x2 + 2x3 + x4 + 6x5 ≤ 800,

2x1 + x2 + 6x3 ≤ 200,

x3 + x4 + 5x5 ≤ 200,

x1 + x2 + x3 + x4 ≥ 48,

x2 + x4 + x5 ≥ 34,

6x1 + 7x5 ≥ 104,

55 ≤ x1 + x2 + x3 + x4 + x5 ≤ 400,

0 ≤ xi ≤ 99, xi integer, i = 1, 2, 3, 4, 5.

This problem is a QUADRATIC INTEGER PROGRAMMING PROBLEM. It has 251401581 fea-
sible points. The solution to the problem was given in [2] as x∗

global = (17, 18, 7, 7, 9) with
f (x∗

global) = 900. We used five initial points in our experiment: x (0)
0 = (17, 18, 7, 7, 9),
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(21, 34, 0, 0, 0), (0, 0, 0, 48, 15), (100, 0, 0, 0, 40) and (0, 8, 32, 8, 32). For every experi-
ment, the proposed method succeeded in identifying a better minimum solution x∗

global =
(16, 22, 5, 5, 7) with f (x∗

global) = 807, which is the same as the optimal solution given
in [22]. Moreover, the maximum numbers of function evaluations to reach the global
minimum and to stop were only 6876 and 10827, respectively. They were much smaller
than the average number of function evaluations (187794) reported in [22]. The maximum
CPU time to reach the global minimum was about 11.57 seconds. The ratio of the maximum
number of function evaluations to reach the global minimum to the number of feasible points
was about 2.74 × 10−5. A summary of the computational results is displayed in Table 1 in
the Appendix.

Problem 2 (Example 4.1 in [2], Problem 2 in [22], Problem 3 in [29]).

max f (x) = x2
1 + x1x2 − x2

2 + x3x1 − x2
3 + 8x2

4 − 17x2
5 + 6x3

6

+ x6x5x4x7 + x3
8 + x4

9 − x5
10 − x10x5 + 18x3x7x6,

s.t. 0 ≤ xi ≤ 99, xi integer, i = 1, 2, . . . , 10.

This problem is a BOX CONSTRAINED/UNCONSTRAINED NONLINEAR INTEGER PROGRAM-
MING PROBLEM. It has 1020 feasible points. The objective function value of the global
solution to the problem as given in [2] is 197580315. Mohan and Nguyen [22] reported a
better solution with function value 209205232. We used ten initial points in our experiment:
x (0)

0 = (0, . . . , 0), (20, . . . , 20), (40, . . . , 40), (60, . . . , 60), (80, . . . , 80), (99, . . . , 99),
(0, . . . , 0, 0, 99, . . . , 99), (99, . . . , 99, 99, 0, . . . , 0), (0, 99, 0, 99, . . .) and (99, 0, 99, 0,
. . .). For every experiment, the proposed method succeeded in identifying a better solu-
tion: x∗

global = (99, 49, 99, 99, 99, 99, 99, 99, 99, 0) with f (x∗
global) = 216300719, during

initialization (Step 2). Moreover, the maximum number of function evaluations to reach
the new best known solution was only 942. It was much smaller than the average number
of function evaluations (2695) reported in [22]. The maximum CPU time to reach the new
best known solution was about 0.36 seconds. The ratio of the maximum number of function
evaluations to reach the new best known solution to the number of feasible points was
about 9.42 × 10−18. A summary of the computational results is displayed in Table 2 in the
Appendix.

Problem 3 (Problem 16 in [22]).

min f (u, v) = cT u − 1

2
uT Qu + dT v,

s.t. 2u1 + 2u2 + v6 + v7 ≤ 10,

2u1 + 2u3 + v6 + v8 ≤ 10,

2u2 + 2u3 + v7 + v8 ≤ 10,

−2u4 − v1 + v6 ≤ 0,

−2v2 − v3 + v7 ≤ 0,

−2v4 − v5 + v8 ≤ 0,

−8ui + vi+5 ≤ 0, i = 1, 2, 3,
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u j , vk ∈ {0, 1}, j = 1, 2, 3, 4, k = 1, 2, 3, 4, 5, 9,

vl ∈ {0, 1, 2, 3}, l = 6, 7, 8,

where cT = (5, 5, 5, 5), Q = 10 ∗ I4, dT = (−1, . . . ,−1), x = (u, v).

This problem is a QUADRATIC INTEGER PROGRAMMING PROBLEM. It has 5488 feasible
points where 1923 of them are local minimizers but only sixteen of those local minimizers
are the global minimum solutions: x∗

global = (u1, u2, u3, u4, 1, 1, 1, 1, 1, 3, 3, 3, 1), for all
u1, u2, u3, u4 ∈ {0, 1}, with f (x∗

global) = −15. We used ten randomly generated initial points
in our experiment. For every experiment, the proposed method succeeded in identifying a
global minimum solution. Moreover, the maximum numbers of function evaluations to
reach the global minimum and to stop were only 180 and 868, respectively. They were
much smaller than the average number of function evaluations (7887) reported in [22]. The
maximum CPU time to reach the global minimum was about 0.26 seconds. The ratio of the
maximum number of function evaluations to reach the global minimum to the number of
feasible points was about 3.28×10−2. A summary of the computational results is displayed
in Table 3 in the Appendix.

Problem 4.

min f (x) =
9∑

i=1

{
exp

[
− (ui − x2)x3

x1

]
− i

100

}2

,

s.t. 1 ≤ x1 ≤ 100, 0 ≤ x2 ≤ 25, xi integer, i = 1, 2,

x3 = j/2, 0 ≤ j ≤ 10, j integer,

where ui = 25 + [−50 log(i/100)]2/3.

This problem is a discrete counterpart of the problem 1 in [22]. It is a BOX CON-
STRAINED/UNCONSTRAINED NONLINEAR INTEGER PROGRAMMING PROBLEM. It has 28600
feasible points and many local minimizers. More precisely, it has 12555 and 1484 local min-
imizers in the interior and on the boundary of the box constraints, respectively. Nevertheless,
it has only one global minimum solution: x∗

global = (50, 25, 1.5) with f (x∗
global) ≈ 0. We used

nine initial points in our experiment: x (0)
0 = (1, 0, 0), (25, 6, 1), (50, 12, 2.5), (75, 18, 3.5),

(100, 25, 5), (1, 0, 5), (100, 25, 0), (1, 25, 0) and (100, 0, 5). For every experiment, the pro-
posed method succeeded in identifying the global minimum solution. The maximum CPU
time to reach the global minimum was about 4.10 seconds. The ratio of the maximum num-
ber of function evaluations to reach the global minimum to the number of feasible points
was about 0.1117. A summary of the computational results is displayed in Table 4 in the
Appendix.

Problem 5 (Colville’s function 4).

min f (x) = 100
(
x2 − x2

1

)2 + (1 − x1)2 + 90
(
x4 − x2

3

)2 + (1 − x3)2

+ 10.1[(x2 − 1)2 + (x4 − 1)2] + 19.8(x2 − 1)(x4 − 1),

s.t. −10 ≤ xi ≤ 10, xi integer, i = 1, 2, 3, 4.
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This problem is a discrete counterpart of the problem 38 in [14] and the problem 260
in [25]. It is a BOX CONSTRAINED/UNCONSTRAINED NONLINEAR INTEGER PROGRAMMING

PROBLEM. It has 214 ≈ 1.94 × 105 feasible points where 41 of them are local minimizers
but only one of those local minimizers is the global minimum solution: x∗

global = (1, 1, 1, 1)
with f (x∗

global) = 0. We used nine initial points in our experiment: x (0)
0 = (−10, . . . ,−10),

(−5, . . . ,−5), (0, . . . , 0), (5, . . . , 5), (10, . . . , 10), (−10, −10, 10, 10), (10, 10, −10, −10),
(−10, 10, −10, 10) and (10, −10, 10, −10). For every experiment, the proposed method
succeeded in identifying the global minimum solution. The maximum CPU time to reach
the global minimum was about 5.08 seconds. The ratio of the maximum number of func-
tion evaluations to reach the global minimum to the number of feasible points was about
1.77×10−2. A summary of the computational results is displayed in Table 5 in the Appendix.

Problem 6 (Goldstein and Price’s function, Problem D.1 in [31]).

min f (x) = g(x)h(x),

s.t. xi = 0.001 j, −2000 ≤ j ≤ 2000, j integer, i = 1, 2,

where

g(x) = 1 + (x1 + x2 + 1)2
(
19 − 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
)
,

h(x) = 30 + (2x1 − 3x2)2
(
18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2

)
.

This problem is a discrete counterpart of the Goldstein and Price’s function in [11]
and was adopted in [31]. It is a BOX CONSTRAINED/UNCONSTRAINED NONLINEAR INTE-
GER PROGRAMMING PROBLEM. It has 40012 ≈ 1.60 × 107 feasible points and many local
minimizers. More precisely, it has 207 and 2 local minimizers in the interior and on the
boundary of the box constraints, respectively. Nevertheless, it has only one global min-
imum solution: x∗

global = (0, −1) with f (x∗
global) = 3. We used seven initial points in our

experiment: x (0)
0 = (−2, −2), (−1, −1), (0, 0), (1, 1), (2, 2), (−2, 2) and (2, −2). For every

experiment, the proposed method succeeded in identifying the global minimum solution.
The maximum CPU time to reach the global minimum was about 50.52 seconds. The ratio
of the maximum number of function evaluations to reach the global minimum to the num-
ber of feasible points was about 2.53 × 10−3. A summary of the computational results is
displayed in Table 6 in the Appendix.

Problem 7 (Beale’s function).

min f (x) = [1.5 − x1(1 − x2)]2 + [
2.25 − x1

(
1 − x2

2

)]2

+ [
2.625 − x1

(
1 − x3

2

)]2
,

s.t. xi = 0.001 j, −104 ≤ j ≤ 104, j integer, i = 1, 2.
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This problem is a discrete counterpart of the problem 5 in [23] and the problem 203 in [25].
It is a BOX CONSTRAINED/UNCONSTRAINED NONLINEAR INTEGER PROGRAMMING PROBLEM.
It has 200012 ≈ 4.00 × 108 feasible points and many local minimizers, but only one global
minimum solution: x∗

global = (3, 0.5) with f (x∗
global) = 0. We used seven initial points in our

experiment: x (0)
0 = (−10, −10), (−5, −5), (0, 0), (5, 5), (10, 10), (−10, 10) and (10, −10).

For every experiment, the proposed method succeeded in identifying the global minimum
solution. The maximum CPU time to reach the global minimum was about 19.39 minutes.
The ratio of the maximum number of function evaluations to reach the global minimum
to the number of feasible points was about 2.61 × 10−3. A summary of the computational
results is displayed in Table 7 in the Appendix.

Problem 8.

min f (x) = 100
(
x2 − x2

1

)2 + (1 − x1)2,

s.t. x2
1 + x2

2 ≥ 0.25, −1

3
x1 + x2 ≥ −0.1,

xi = ji × 10−4, 0 ≤ ji ≤ 105, ji integer, i = 1, 2.

This problem is a combination of the discrete counterparts of the problems 231 and 233
in [25]. It is a NONCONVEX NONLINEAR INTEGER PROGRAMMING PROBLEM. It has about
1.00 × 1010 points in the box 0 ≤ xi ≤ 10 (i = 1, 2), but not all of them are feasible. It
has many local minimizers, but only one global minimum solution: x∗

global = (1, 1) with
f (x∗

global) = 0. We used nine initial points in our experiment: x (0)
0 = (2, 2), (4, 4), (6, 6),

(8, 8), (10, 10), (0, 0.5), (0, 10), (10, 3.2334) and (0.3536, 0.3536). For every experiment,
the proposed method succeeded in identifying the global minimum solution. The maximum
CPU time to reach the global minimum was about 52.21 minutes. The ratio of the maximum
number of function evaluations to reach the global minimum to the number of points in the
box was about 2.47×10−4. A summary of the computational results is displayed in Table 8
in the Appendix.

Problem 9 (Powell’s singular function).

min f (x) = (x1 + 10x2)2 + 5(x3 − x4)2 + (x2 − 2x3)4 + 10(x1 − x4)4,

s.t. xi = 0.001 j, −104 ≤ j ≤ 104, j integer, i = 1, 2, 3, 4.

This problem is a discrete counterpart of the problem 13 in [23] and the problem 256
in [25]. It is a BOX CONSTRAINED/UNCONSTRAINED NONLINEAR INTEGER PROGRAMMING

PROBLEM. It has 200014 ≈ 1.60 × 1017 feasible points and many local minimizers, but only
one global minimum solution: x∗

global = (0, 0, 0, 0) with f (x∗
global) = 0. We used ten initial

points in our experiment: x (0)
0 = (−10, . . . ,−10), (−6, . . . ,−6), (−3, . . . ,−3), (3, . . . , 3),

(6, . . . , 6), (10, . . . , 10), (−10, −10, 10, 10), (10, 10, −10, −10), (−10, 10, −10, 10) and
(10, −10, 10, −10). For every experiment, the proposed method succeeded in identifying
the global minimum solution. The maximum CPU time to reach the global minimum was
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about 1.71 hours. The ratio of the maximum number of function evaluations to reach the
global minimum to the number of feasible points was about 3.45 × 10−11. A summary of
the computational results is displayed in Table 9 in the Appendix.

Problem 10.

min f (x) = (x1 − 1)2 + (xn − 1)2 + n
n−1∑
i=1

(n − i)
(
x2

i − xi+1
)2

,

s.t. −5 ≤ xi ≤ 5, xi integer, i = 1, 2, . . . , n.

This problem is a generalization of the problem 282 in [25]. It is a BOX CONSTRAINED/
UNCONSTRAINED NONLINEAR INTEGER PROGRAMMING PROBLEM. It has 11n feasible points
and many local minimizers (4, 6, 7, 10 and 12 minimizers for n = 2, 3, 4, 5 and 6,
respectively), but only one global minimum solution: x∗

global = (1, . . . , 1) with f (x∗
global) =

0, for all n. We considered three sizes of the problem: n = 25, 50 and 100. In other
words, there were about 1.08 × 1026, 1.17 × 1052 and 1.38 × 10104 feasible points, for
n = 25, 50 and 100, respectively. For all problems with different sizes, we used nine
initial points in our experiment: x (0)

0 = (−5, . . . ,−5), (−3, . . . ,−3), (0, . . . , 0), (3, . . . , 3),
(5, . . . , 5), (−5, . . . ,−5, −5, 5, . . . , 5), (5, . . . , 5, 5, −5, . . . ,−5), (−5, 5, −5, 5, . . .) and
(5, −5, 5, −5, . . .). For every experiment, the proposed method succeeded in identifying
the global minimum solution. The maximum CPU times to reach the global minima were
about 5.54 minutes, 11.82 seconds and 5.63 hours, for n = 25, 50 and 100, respectively.
The ratios of the maximum numbers of function evaluations to reach the global minima to
the numbers of feasible points were about 2.51 × 10−21, 1.59 × 10−48 and 1.14 × 10−97,
for n = 25, 50 and 100, respectively. A summary of the computational results is displayed
in Table 10 in the Appendix.

Problem 11 (Rosenbrock’s function).

min f (x) =
n−1∑
i=1

[
100

(
xi+1 − x2

i

)2 + (1 − xi )
2
]
,

s.t. −5 ≤ xi ≤ 5, xi integer, i = 1, 2, . . . , n.

This problem is a generalization of the problems 294–299 in [25]. It is a BOX CON-
STRAINED/UNCONSTRAINED NONLINEAR INTEGER PROGRAMMING PROBLEM. It has 11n fea-
sible points and many local minimizers (5, 6, 7, 9 and 11 minimizers for n = 2, 3, 4,
5 and 6, respectively), but only one global minimum solution: x∗

global = (1, . . . , 1) with
f (x∗

global) = 0, for all n. We considered three sizes of the problem: n = 25, 50 and 100. In
other words, there were about 1.08 × 1026, 1.17 × 1052 and 1.38 × 10104 feasible points,
for n = 25, 50 and 100, respectively. For all problems with different sizes, we used nine
initial points in our experiment: x (0)

0 = (−5, . . . ,−5), (−3, . . . ,−3), (0, . . . , 0), (3, . . . , 3),
(5, . . . , 5), (−5, . . . ,−5, −5, 5, . . . , 5), (5, . . . , 5, 5, −5, . . . ,−5), (−5, 5, −5, 5, . . .) and
(5, −5, 5, −5, . . .). For every experiment, the proposed method succeeded in identifying
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the global minimum solution. The maximum CPU times to reach the global minima were
about 4.37 minutes, 35.27 minutes and 4.76 hours, for n = 25, 50 and 100, respectively.
The ratios of the maximum numbers of function evaluations to reach the global minima to
the numbers of feasible points were about 1.91 × 10−21, 1.40 × 10−46 and 9.58 × 10−98,
for n = 25, 50 and 100, respectively. A summary of the computational results is displayed
in Table 11 in the Appendix.

Problem 12.

min f (x) =
n∑

i=1

x4
i +

(
n∑

i=1

xi

)2

s.t. −5 ≤ xi ≤ 5, xi integer, i = 1, 2, . . . , n.

This problem is a BOX CONSTRAINED/UNCONSTRAINED NONLINEAR INTEGER PROGRAM-
MING PROBLEM. It has 11n feasible points and many local minimizers (3, 7, 19, 51 and 141
minimizers for n = 2, 3, 4, 5 and 6, respectively), but only one global minimum solution:
x∗

global = (0, . . . , 0) with f (x∗
global) = 0, for all n. We considered three sizes of the problem:

n = 25, 50 and 100. In other words, there were about 1.08×1026, 1.17×1052 and 1.38×10104

feasible points, for n = 25, 50 and 100, respectively. For all problems with different sizes, we
used ten initial points in our experiment: x (0)

0 = (−5, . . . ,−5), (−3, . . . ,−3), (−1, . . . ,−1)
(1, . . . , 1), (3, . . . , 3), (5, . . . , 5), (−5, . . . ,−5, −5, 5, . . . , 5), (5, . . . , 5, 5, −5, . . . ,−5),
(−5, 5, −5, 5, . . .) and (5, −5, 5, −5, . . .). For every experiment, the proposed method
succeeded in identifying the global minimum solution. The maximum CPU times to reach
the global minima were about 3.96 minutes, 31.81 minutes, and 4.34 hours, for n = 25, 50
and 100, respectively. The ratios of the maximum numbers of function evaluations to reach
the global minima to the numbers of feasible points were about 1.93 × 10−21, 1.39 × 10−46

and 9.42 × 10−98, for n = 25, 50 and 100, respectively. A summary of the computational
results is displayed in Table 12 in the Appendix.

Problem 13.

min f (x) = xT Qx,

s.t.
n∑

i=1

x2
i

9n + i
≤ 1,

n∑
i=1

i xi ≥ n

2
,

−5 ≤ xi ≤ 5, xi integer, i = 1, 2, . . . , n,

where Q = [Qi j ], Qii = 2, Qi j = 1, for i 	= j.
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This problem is a CONVEX NONLINEAR INTEGER PROGRAMMING PROBLEM. It has 11n

points in the box −5 ≤ xi ≤ 5 (i = 1, 2, . . . , n) but not all of them are feasible. It has
many local minimizers, but only a few of them are global minimizers. More precisely,
it has �n/2�(�n/2� + 1)/2 global minimum solutions: x∗

global = (0, . . . , 0, −1, 0, . . . , 0,
1, 0, . . . , 0) with f (x∗

global) = 2, where [x∗
global]i = −1, [x∗

global] j = 1, j ≥ �n/2� + 1,
i ≤ j − �n/2�, for all n. We considered four sizes of the problem: n = 25, 50, 100
and 200. In other words, there were about 1.08 × 1026, 1.17 × 1052, 1.38 × 10104 and
1.90 × 10208 points in the box −5 ≤ xi ≤ 5 (i = 1, 2, . . . , n), for n = 25, 50, 100
and 200, respectively. For all problems with different sizes, we used six initial points in
our experiment: x (0)

0 = (α, . . . , α) and (α, −α, α, −α, . . .), for α = 1, 2, 3, when n is
odd; x (0)

0 = (α, . . . , α) and (−α, α, −α, α, . . .), for α = 1, 2, 3, when n is even. For
every experiment, the proposed method succeeded in identifying a global minimum so-
lution. The maximum CPU times to reach the global minima were about 1.68 minutes,
11.24 minutes, 1.67 hours and 17.44 hours, for n = 25, 50, 100 and 200, respectively.
The ratios of the maximum numbers of function evaluations to reach the global min-
ima to the numbers of points in the box −5 ≤ xi ≤ 5 (i = 1, 2, . . . , n) were about
6.91 × 10−22, 4.18 × 10−47, 3.04 × 10−98 and 1.84 × 10201, for n = 25, 50, 100 and
200, respectively. A summary of the computational results is displayed in Table 13 in the
Appendix.

6. Conclusions

How to globally solve discrete optimization problems has posed a great challenge in
front of the optimization research community. A discrete filled function has been de-
veloped in this paper which enables us to move from the current local minimum to a
better one, if it exists. Promising computation results have been observed from our numer-
ical experiments of large scales. Recently, global optimality conditions have been derived
in [1] for quadratic binary integer programming problems. An integration with global op-
timality conditions will provide solid stopping conditions for a discrete filled function
method.

Appendix

Table 1. Summary of the computational results for Problem 1.

# iter CPUfinal CPUstop # ffinal # fstop

n = 5 Number of experiments = 5

Minimum 6 3.91 9.63 2272 6223

Mean 28.20 8.35 14.09 4474.60 8425.60

Median 36.00 8.84 14.61 4407.00 8358.00

Maximum 43 11.57 17.37 6876 10827
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Table 2. Summary of the computational results for Problem 2.

# iter CPUfinal CPUstop # ffinal # fstop

n = 10 Number of experiments = 10

Minimum 0 0.11 173.11 176 121847

Mean 0.00 0.25 174.64 621.90 122496.90

Median 0.00 0.26 175.19 637.00 122562.00

Maximum 0 0.36 176.51 942 122953

Table 3. Summary of the computational results for Problem 3.

# iter CPUfinal CPUstop # ffinal # fstop

n = 13 Number of experiments = 10

Minimum 0 0.07 1.70 50 738

Mean 2.10 0.17 1.76 104.90 792.90

Median 2.00 0.19 1.76 107.00 795.00

Maximum 4 0.26 1.85 180 868

Table 4. Summary of the computational results for Problem 4.

# iter CPUfinal CPUstop # ffinal # fstop

n = 3 Number of experiments = 9

Minimum 0 0.04 3.17 29 2532

Mean 10.33 2.01 4.90 1574.22 3904.33

Median 9.00 1.33 4.18 1063.00 3479.00

Maximum 19 4.10 6.71 3194 5305

Table 5. Summary of the computational results for Problem 5.

# iter CPUfinal CPUstop # ffinal # fstop

n = 4 Number of experiments = 9

Minimum 1 1.79 4.25 1262 3404

Mean 3.33 2.86 5.51 2121.11 4263.11

Median 4.00 2.34 5.08 1659.00 3801.00

Maximum 6 5.08 7.93 3442 5584
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Table 6. Summary of the computational results for Problem 6.

# iter CPUfinal CPUstop # ffinal # fstop

n = 2 Number of experiments = 7

Minimum 0 0.38 76.23 1007 64533

Mean 16.86 15.46 132.88 13709.86 111125.86

Median 1.00 3.73 151.65 4865.00 126734.00

Maximum 112 50.52 156.86 40498 132975

Table 7. Summary of the computational results for Problem 7.

# iter CPUfinal CPUstop # ffinal # fstop

n = 2 Number of experiments = 7

Minimum 3 1.51 744.97 3671 632329

Mean 5.14 682.41 1080.43 607880.71 939209.57

Median 4.00 486.12 831.12 421984.00 703758.00

Maximum 11 1163.32 1502.13 1043639 1325413

Table 8. Summary of the computational results for Problem 8.

# iter CPUfinal CPUstop # ffinal # fstop

n = 2 Number of experiments = 9

Minimum 192 12.09 4081.22 18867 3062103

Mean 202.67 2074.91 4720.13 1608067.33 3562771.33

Median 208.00 3092.60 4995.15 2342322.00 3752760.00

Maximum 208 3132.64 5065.76 2470191 3880629

Table 9. Summary of the computational results for Problem 9.

# iter CPUfinal CPUstop # ffinal # fstop

n = 4 Number of experiments = 10

Minimum 53 5213.99 7687.18 4692269 6924077

Mean 53 5670.63 8171.75 5105399.50 7337207.50

Median 53 5673.52 8182.02 5102831.50 7334639.50

Maximum 53 6167.48 8717.02 5513394 7745202
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Table 10. Summary of the computational results for Problem 10.

# iter CPUfinal CPUstop # ffinal # fstop

n = 25 Number of experiments = 9

Minimum 0 0.96 297.95 1451 248497

Mean 1.11 124.65 426.06 102883.22 346738.11

Median 1.00 1.65 318.49 2389.00 253188.00

Maximum 2 332.53 633.95 271472 510362

n = 50

Minimum 0 2.60 2336.51 5401 1970943

Mean 1.11 5.35 2430.30 9840.67 1976994.22

Median 1.00 4.87 2354.87 9477.00 1975114.00

Maximum 2 11.82 2542.74 18634 1990007

n = 100

Minimum 0 9.27 18815.12 20801 15378460

Mean 1.33 8531.79 27942.27 6704633.00 22013196.67

Median 1.00 47.18 20092.05 74759.00 15453726.00

Maximum 4 20252.79 40130.61 15686480 30918516

Table 11. Summary of the computational results for Problem 11.

# iter CPUfinal CPUstop # ffinal # fstop

n = 25 Number of experiments = 9

Minimum 0 0.76 292.03 1451 243866

Mean 1.00 110.98 396.72 90586.11 320610.44

Median 1.00 1.77 316.24 2470.00 248607.00

Maximum 2 262.46 535.16 207512 421068

n = 50

Minimum 0 2.76 2150.75 5401 1707270

Mean 1.00 924.07 3093.73 727641.22 2422960.00

Median 1.00 6.16 2196.06 9219.00 1711088.00

Maximum 2 2115.99 4318.59 1641022 3328153

n = 100

Minimum 0 9.91 17245.42 20801 13466632

Mean 1.00 7574.43 25025.92 5861265.44 19293079.56

Median 1.00 23.19 17650.40 35944.00 13481775.00

Maximum 2 17149.97 34788.45 13206805 26621098
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Table 12. Summary of the computational results for Problem 12.

# iter CPUfinal CPUstop # ffinal # fstop

n = 25 Number of experiments = 10

Minimum 11 80.77 367.62 70991 316241

Mean 11.60 131.68 417.85 116765.50 362015.50

Median 12.00 102.00 389.54 90976.50 336226.50

Maximum 12 237.88 526.14 209373 454623

n = 50

Minimum 24 615.15 2919.34 537101 2487001

Mean 24.40 1154.35 3473.98 997241.30 2947141.30

Median 24.00 873.73 3176.16 767103.50 2717003.50

Maximum 25 1908.61 4261.42 1629880 3579780

n = 100

Minimum 48 5115.32 24250.06 4266745 19816545

Mean 49.20 9438.91 28793.14 7770218.80 23320018.80

Median 49.00 6464.21 25941.07 5319711.00 20869511.00

Maximum 50 15608.43 35047.98 12981570 28531370

Table 13. Summary of the computational results for Problem 13.

# iter CPUfinal CPUstop # ffinal # fstop

n = 25 Number of experiments = 6

Minimum 6 21.40 110.77 15412 76138

Mean 10.00 61.55 153.39 45158.50 107159.17

Median 11.50 61.02 148.67 44490.50 103546.00

Maximum 12 100.97 200.52 74920 141589

n = 50

Minimum 14 177.56 836.97 124046 568296

Mean 20.67 449.51 1152.95 323156.50 798155.17

Median 23.50 493.05 1166.66 353124.50 809832.00

Maximum 24 674.59 1451.81 490831 1014817

n = 100

Minimum 30 1605.85 7141.80 1023355 4470080

Mean 42.67 4007.01 10620.15 2734844.50 6895923.00

Median 48.50 4370.02 10749.29 2980797.00 7030953.00

Maximum 49 6016.65 13967.35 4188140 9177210

n = 200

Minimum 61 19423.57 75790.70 8102139 35472766

Mean 86.67 42275.21 112095.34 22585087.67 56542608.00

Median 98.00 44403.64 113046.62 24530982.50 57848377.00

Maximum 99 62789.41 143369.89 34915219 76304770
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