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Abstract
Organizations are complex systems comprised of many dynamic and evolving inter-
action patterns among individuals and groups. Understanding these interactions and 
how patterns, such as informal structures and knowledge sharing behavior, emerge 
are crucial to creating effective and efficient organizations. Studying organizations as 
complex systems is a challenge as we must account for hierarchically nested struc-
tures, multi-level processes, and changes over time. Informal structures interact with 
individual attitudes to influence organizational processes such as knowledge shar-
ing, a process vital to organizational performance and innovation. To explore such 
organizational dynamics, we integrate dynamic social networks, a cognitive model 
of attitude formation and change, and a physical environment into an agent-based 
model, the combination of which represents a novel way to study organizations. 
We use a hospital in southwest Virginia as our case study. The agents in the model 
are the healthcare workers within the hospital and agent movement occurs over 
the physical environment of the hospital. Results show that the simulated hospital 
is resilient to impacts from employee attrition but that communication approaches 
must be thought through strategically so as not to hinder knowledge sharing. For 
managers, this type of modeling approach can provide resource and planning guid-
ance in regards to attrition-based strategies and communication approaches.

Keywords Agent-based modeling · Social network analysis · Organizations · 
Knowledge sharing · Artificial neural networks · Theory of reasoned action

 * Bianica Pires 
 bpires@mitre.org

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10588-023-09373-8&domain=pdf
http://orcid.org/0000-0002-4710-4849


76 B. Pires et al.

1 3

1 Introduction

In understanding organizational processes, research must appreciate organiza-
tions as complex systems (Anderson 1999; Pires and Vieira 2019). Organizational 
complexity arises from the dynamic interaction patterns among individuals and 
groups (Axelrod 1997; Prietula et al. 1998; Kozlowski et al. 2013). Understand-
ing how these interactions impact organizational processes, such as knowledge 
sharing, is crucial for creating effective, efficient, and resilient organizations. 
Knowledge sharing is the transfer of information, experience, and know-how 
from an individual who has specific knowledge to an individual who needs the 
knowledge (Hinds et  al. 2001). It has been shown to be vital for organizational 
performance and innovation (e.g., Cummings 2004; Lin 2007; Mesmer-Magnus 
and DeChurch 2009).

Early knowledge sharing studies mostly focused on explicit knowledge (e.g., 
documents, instructions) and initiatives to use technology to transfer information. 
However, many of these initiatives failed in part because they did not account for 
the multiple channels through which knowledge is shared, including face-to-face 
interactions (Parise 2007). This created a shift in focusing on tacit knowledge, 
which is primarily transferred through direct contact and observation of behavior 
(Mongkolajala et al. 2012). Tacit knowledge generally consists of ideas, experi-
ence, and competencies and, as such, relies more on informal roles and organiza-
tional culture (Bock et al. 2005). For example, one study found that verbal com-
munication between nurses was one of the most important ways to transfer tacit 
knowledge, whereas communicating through weblogs or emails were some of the 
least important ways (Dehghani et al. 2013).

Tacit knowledge sharing is influenced by informal structures such as organi-
zational subcultures and informal roles, which emerge through the organization’s 
social network (e.g., Cummings 2004; Lin 2007; Mesmer-Magnus and DeChurch 
2009). Social network analysis (SNA) has been an important method for studying 
the interactions and relationships between individuals and groups within organi-
zations (Liu et  al. 2011; Merrill et  al. 2007, 2008). SNA uses graph theoretic 
methods to map and measure the interactions and relationships between people 
and groups (Wasserman 1994). While social networks are often studied in a static 
way, understanding how relationships and communication changes over time and 
how these changes effect organizational structure requires that we model these 
interactions dynamically. Despite much research in the area, however, studying 
organizations as a complex system remains a challenge (National Research Coun-
cil 2008).

In order to capture organizational dynamics, we integrate dynamic social net-
works, a cognitive model of attitude formation and change, and a physical envi-
ronment into an agent-based model (ABM). The combination of these methods 
represents a novel way to study organizations. ABM, which is well suited for 
modeling complex systems, is a type of computational method that allows for 
the modeling of the individual localized behavior of agents and at the same time 
observe the macro-behaviors that emerge. Within an “artificial” society, agents 
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interact with each other and the environment (Macal and North 2010). Kozlowski 
et  al. (2013) stress the advantages of using computational modeling, and ABM 
specifically, to model the multi-level nature of organizations from the bottom-
up. In addition, ABM has been promoted as particularly useful for understand-
ing social context within organizations (National Research Council 2014). While 
research has integrated these methods to explore specific social phenomena (e.g., 
Pires and Crooks 2017; Tolk et al. 2022), to the best of our knowledge, the com-
bination of these approaches has not been applied to the study of organizations.

Prior studies have used ABMs to investigate organizational knowledge dynamics, 
however, many have been highly theoretic and have not utilized empirical data (e.g., 
Nissen and Levitt 2004; Sáiz-Bárcena et  al. 2015; Wang et  al. 2009). Most have 
also not accounted for the physical space of the workplace beyond abstract repre-
sentations of the environment (e.g., Miller and Lin 2010). However, physical spaces 
can potentially encourage knowledge sharing and interactions with open spaces or 
discourage it with functionally segmented workspaces (Jones 2005; Tagliaventi and 
Mattarelli 2006). Levine and Prietula (2012) use empirical data to inform the behav-
ior of agents in an ABM of knowledge transfer across an organization, but agents 
are connected via a prescribed (static) social network. Other ABMs of organiza-
tions have implemented dynamic social networks (e.g., Jamshidnezhad and Carley 
2015; Sánchez-Maroño et al. 2014; Vázquez and López y López 2007), but empiri-
cally grounding these models in the physical environment has not been done. For 
instance, Rouchier et al. (2014) found that opinions persist in an organization despite 
a flow of joiners and leavers.

We use a hospital in southwest Virginia as our case study. The agents in our 
model are the individual healthcare workers within the hospital and agent movement 
occurs over the true physical environment of the hospital. This pattern of movement 
informs the development of the organization’s social network. Agents must decide 
whether or not to share knowledge with their colleagues. In the context of a hospital, 
an example of tacit knowledge is an understanding of hand hygiene practices. This 
work extends earlier research completed by Pires et  al. (2017), where the authors 
demonstrate that developing a simple ABM of hospital dynamics provides insights 
that would be challenging to show with a static model.

2  Background

Individual interactions, informal structures, and cognitive processes such as attitude 
formation and change interact to influence organizational processes such as knowl-
edge sharing. Limited research has studied these processes simultaneously (Mason 
et al. 2007), and to the best of our knowledge, these processes have not been studied 
simultaneously within a computational model of an organization. In this section, we 
describe informal structures as important aspects of an organizational system, dis-
cuss the role that attitudes play in influencing organizational processes, and discuss 
different mechanisms for simulating knowledge sharing behavior.
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2.1  Informal structures in organizations

Formal (prescribed organizational hierarchy) and informal (emergent) structures in 
organizations interact to influence processes such as knowledge sharing (De Long 
and Fahey 2000; Soda and Zaheer 2012; Tichy et  al. 1979; Weiss and Jacobson 
1955). Informal structures emerge through the organization’s social network – a 
social structure made up of nodes (i.e., social agents) and ties (i.e., edges between 
agents) (Wasserman 1994). SNA can help us identify such informal structures 
(National Research Council 2014; DeKlepper et al. 2013; Podolny 2010). We dis-
cuss two types of informal structures: cohesive subgroups and informal roles.

Individuals in cohesive subgroups have strong social ties with one another. These 
informal subgroups are driven by homophily, attraction, agency, and proximity, all 
of which promotes communication, shared attitudes, and feelings of trust (Soda 
and Zaheer 2012; Feld 1982; Festinger 1954; Brass et al. 2004). The resulting sub-
groups have their distinct sets of attitudes, practices, and culture, which can distin-
guish them from an organization’s overall culture and other subgroups (De Long 
and Fahey 2000). Homophily, a measure of “similarity”, facilitates the formation of 
bonds (ties) between “similar” individuals (McPherson et  al. 2001). Moreover, as 
ties are formed, attitudes may begin to converge, a process known as social influence 
(Friedkin 2006). This in turn, may strengthen social ties because individuals become 
more “alike”, creating a potential situation of positive reinforcement. For instance, 
subgroups may form around functional units or professions of an organization, as 
members often have similar educational backgrounds or organizational experiences 
(Schein 1996). Research has shown that social cohesion is positively associated with 
knowledge sharing (Reagans and McEvily 2003).

Formal roles follow the workflow or organizational hierarchy, whereas informal 
roles are characterized by the pattern of connections within and across these sub-
groups and the broader organizational network (Ghoshal and Bartlett 1990; Tichy 
et al. 1979). Informal roles include informal leaders, influencers, and brokers, each 
of which can play critical roles in information flows (Ahuja 2000; Burt 2000). Bro-
kers, for instance, can bridge two groups that would be otherwise disconnected (e.g., 
two divisions within an organization), allowing knowledge to be exchanged more 
effectively within a network (Ahuja 2000; Burt 2000). Informal leaders on the other 
hand, are highly connected individuals that may or may not serve formal leadership 
roles in the organization. Starting the process of knowledge sharing with such indi-
viduals may be more effective (Parise 2007).

2.2  Attitude formation and change

Attitudes are the positive or negative assessment of things, people, groups, and 
ideas (Bohner and Dickel 2011). The attitudes of employees towards an organiza-
tion, towards their colleagues and leadership, or towards different work processes 
(e.g., knowledge sharing, job tasks) can impact the actions individuals take within 
an organization. There are a number of theories that seek to explain the process 
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of attitude formation and change. For example, the Health Belief Model (Rosen-
stock 1974) and the Attitude-Behaviour-Context Model (Stern 2000) were devel-
oped to study health and environmentally significant behaviors, respectively. While 
these theories may have aspects that apply to other types of behaviors, they have 
not been used to study organizational behavior. The Transtheoretical Model (Cun-
ningham et al. 2002) has been used to study organizational processes but was found 
to lack specification and predictive power when compared to the Theory of Rea-
soned Action (TRA) (Armitage and Arden 2002). TRA posits that attitude towards 
a behavior (e.g., knowledge sharing is good) and perceived social norms around the 
behavior (e.g., most of my coworkers share knowledge) determine the intention to 
perform the behavior (Ajzen 1991). A large body of research has utilized TRA to 
study worker behaviors in organizations, including organizational misbehavior (e.g., 
Vardi and Weitz 2002), adoption of strategic information systems by senior manage-
ment (e.g., Mykytyn and Harrison 1993), use of Expert Systems within accounting 
firms (e.g., Liker and Sindi 1997), and knowledge sharing within organizations (e.g., 
Bock et al. 2005; Ryu et al. 2003; Reychav and Weisberg 2010).

An extension of TRA by Orr et  al. (2013) further accounts for the dynamic 
nature of individual behaviors due to our social context – an important consider-
ation given the social dynamics that are inherent in organizations. The attitudinal 
state of an individual at any point in time consists of a set of beliefs, valence units, 
and a constraint satisfaction process. Figure 1 represents a conceptual model of an 
agent’s attitude. In this example, attitude is comprised of three beliefs as indicated 
by the number in each circle. Beliefs on knowledge sharing include, for example, 
“knowledge sharing with other organizational members will be an enjoyable experi-
ence,” and “knowledge sharing with other organizational members will make me 
feel valued” (Bock et al. 2005). A single belief is split between positive and nega-
tive valence units. Each valence unit can have a numeric value between 0 and 1 that 

Fig. 1  A conceptual model of an agent’s attitudinal state. The attitude shown is comprised of three 
beliefs numbered 1 to 3 and each belief is split among a positive (white circles) and negative (grey cir-
cles) valence unit. The connections between valence units within a belief is always inhibitory. The con-
nections between different beliefs can be inhibitory or excitatory. Thus, the activation of one belief can 
lead to the activation or inhibition of other beliefs. The immediate social context is quantified through the 
value of the valence units of another agent and weight of the social tie between the two agents



80 B. Pires et al.

1 3

represents the activation of the valence for that belief. There is an inhibitory connec-
tion between the valence units where each valence of a belief constrains the other 
valence of the same belief to be less active. The immediate social context are the 
agent dyads in the social network.

Constraint satisfaction refers to the connection between different beliefs and the 
expectation that when certain beliefs are activated, it leads to the activation or inhi-
bition of other beliefs (Read and Miller 1998). Each belief has excitatory, inhibitory, 
or no constraints with every other belief, and these constraints are reflected in con-
nections between the beliefs. These connections are not pre-specified, but learned by 
the system from past experience through modification of the strength and sign (e.g., 
inhibitory) of the connections. For instance, given a prior social context in which 
knowledge sharing was seen as valued and enjoyable, we would expect an excitatory 
constraint between the beliefs “knowledge sharing will make me feel valued” and 
“knowledge sharing will be enjoyable.” An agent’s attitude is updated based on the 
input from the other agent’s last attitude and the weight of the social tie between the 
two agents. As such, the development of dynamic social networks is critical to the 
process as it directly influences attitude formation.

2.3  Knowledge sharing

Diffusion is defined as “the spread of something within a social system” (Strang and 
Soule 1998). “Something” could include a rumor, an infectious disease, attitudes, or 
knowledge. There are a variety of models one could use to simulate a diffusion pro-
cess such as tacit knowledge in an organization.

The literature describes two basic types of diffusion models: independent cas-
cade models and linear threshold models (Das et  al. 2014). These models have 
provided the basic mechanisms from which to simulate diffusion processes across 
many ABMs (e.g., Goldenberg et  al. 2001; Schelling 1971). Cascade models are 
the simplest. Nodes (agents) in a network are said to be either active or inactive. For 
instance, we can say that an “active” agent is one which has received some piece of 
information or knowledge. Active nodes can then trigger activation in inactive nodes 
given some success probability. Agents in threshold models are influenced by their 
“neighbors”, who may be physically or socially near. If the number of active neigh-
bors surpasses the threshold, the agent may become active (e.g., Granovetter 1978; 
Schelling 1971). We explored cascade and threshold models in the initial implemen-
tation of this work in (e.g., Pires and Crooks 2017). Psychological theory such as 
the TRA, on the other hand, stresses the importance of attitudinal states in determin-
ing our intention to perform a behavior such as knowledge sharing (see Sect. 2.2). 
Behavior change is the result of integrating an individual’s previous internal set of 
beliefs (related to both attitudes and social norms) with the immediate social context 
(e.g., direct exposure to another person’s set of beliefs). Given TRAs direct link to 
behaviors, the theory has been used extensively in models of diffusion processes, 
such as the adoption of innovations by consumers and organizations (e.g., Myky-
tyn and Harrison 1993; Schwarz and Ernst 2009) and the social diffusion of health 
behaviors (e.g., Orr et al. 2013).
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Research has found that individuals’ attitudes toward knowledge sharing sig-
nificantly predicts explicit and tacit knowledge sharing intentions and behaviors in 
organizations (Bock et al. 2005; Mongkolajala et al. 2012; Reychav and Weisberg 
2010; Rahab and Wahyuni 2013; Zhikun and Fungfai 2009). In hospital settings, 
subjective norms and attitude were the two strongest predictors of knowledge shar-
ing among physicians (Ryu et al. 2003).

3  Conceptual model

We developed an ABM that simulates the dynamics of an organization within a 
hospital setting. The model was developed in Mesa, a Python framework for agent-
based modeling (Masad and Kazil 2015), and uses PostgreSQL for storage and 
retrieval of input data. We utilize a previously developed computational formaliza-
tion of TRA using artificial neural networks (ANN) for studying the dynamics of 
attitude formation and change (Orr and Plaut 2014; Orr et al. 2013) (see Sect. 2.2). 
This cognitive model is a modified version of lens (the light, efficient network simu-
lator), a neural network simulator written primarily in C (Rohde 2002). This section 
describes the ABM using an adapted version of the Overview, Design Concepts, 
Details, and Human Decision-Making (ODD + D) protocol (Müller et  al. 2013). 
A more detailed ODD + D, the source code, and the input data can be downloaded 
from  https:// www. comses. net/ codeb ases/ 3fcbf 222- fb89- 499c- 8859- 82d48 ac2b8 33/ 
relea ses/1. 0.0/.

3.1  Overview

Figure 2 is a conceptual diagram of the model. A central feature of the model is 
the agent, which represent the healthcare workers of the hospital. Agent move-
ment occurs over the physical environment of the hospital. This pattern of move-
ment creates the agents’ contact network, providing input into the development 
of the organization’s social network. The emergence of social networks gives us 
insight into the informal roles that emerge at the individual level and subcul-
tures that emerge at the group level within an organization. Another feature of 
the model is the agents’ attitude towards tacit knowledge sharing, which drives 

Fig. 2  Conceptual diagram of the agent-based model (reprinted with permission from Pires et  al. 
(2017)). Agent movement occurs over the physical environment of the hospital. This pattern of move-
ment creates the agents’ contact network, providing input into the development of the organization’s 
social network. The agents’ attitude towards knowledge sharing drives behavior, which is the decision to 
share (or not) knowledge. Attitudes dynamically affect the creation of the social networks

https://www.comses.net/codebases/3fcbf222-fb89-499c-8859-82d48ac2b833/releases/1.0.0/
https://www.comses.net/codebases/3fcbf222-fb89-499c-8859-82d48ac2b833/releases/1.0.0/
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behavior. Behavior is the decision to share (or not) tacit knowledge. As a feed-
back system, individual attitudes dynamically provide input into the creation of 
the social networks.

3.1.1  Purpose

The purpose of the model is to explore how individual-level interactions over time 
and physical space interact with individual attitudes to influence the emergence of 
informal structures, all of which impact knowledge sharing within an organization. 
An ABM is integrated with a physical environment, dynamic social networks, and a 
cognitive model of attitude formation and change for this purpose.

3.1.2  Entities, state variables and scales

The model contains the following entities, from lowest to highest in hierarchical 
scale: (1) the agents, (2) the contact and social networks, and (3) the physical envi-
ronment and population. The agents represent the healthcare workers in the hospi-
tal. These synthetic individuals span approximately 30 different healthcare profes-
sions (e.g., physicians, nurses, nurse assistants, social workers, physical therapists). 
Table 1 shows the set of agent parameters. The source of the first three parameters 
is Jiménez (2014). The attitudinal state of agents is discussed further in Sects. 3.3.1 
and 3.3.3.

Agents’ movement is driven by their activity schedules. Figure  3 provides an 
example schedule of the activities associated with a day shift Intensive Care Unit 
(ICU) nurse. As seen in the figure, an ICU nurse will perform a series of differ-
ent activities throughout the day, including participating in shift meetings, assessing 
patients, and going to lunch.

This pattern of movement drives development of the contact network. We define 
a “contact” as an event where two or more agents are at the same physical location 
(e.g., a patient room) at the same time. The average number of activities and con-
tacts in the hospital simulation during the course of 30 days is 8,234 and 164,176, 
respectively. As agents move about the hospital according to their activity schedules, 

Table 1  Agent parameters

Parameter Description

Agent ID The unique identifier of the agent (Jiménez 2014)
Profession The healthcare discipline assigned to the agent (Jiménez 2014)
Activity Schedule The agent’s pre-determined schedule for the course of the simula-

tion, including start and end times (in minutes) and the room 
number identifying the location of the activity (Jiménez 2014)

Knowledge A binary variable indicating whether the agent has the knowledge
Attitudinal State The agent’s attitudinal state, which is composed of an internal set 

of beliefs, connection weights between and within beliefs, and 
an internal bias towards a positive or negative attitude towards 
knowledge sharing (see Fig. 1)
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we can visualize these contacts through the diagram in Fig. 4. The requirement that 
agents’ be physically near provides us with an accurate estimate of physical proxim-
ity, an important consideration in the formation of social ties (see Sect. 2.1).

Fig. 3  An example of an activity schedule for an ICU nurse (adapted from Jiménez et al. (2013)). The 
ICU nurse here begins the day by attending a staff meeting at the nurse’s station and then performs two 
patient assessments in different ICU rooms. From there, the nurse may perform one of several activities, 
including monitoring the patients, conducting treatment, or going to lunch. Finally, the nurse will end the 
day by following-up on the patients

Fig. 4  The hospital simulation. (Left) The daily activities in the hospital for agents on a floor of the hos-
pital. Each dot represents an agent. (Right) The contact network diagram of the hospital population over 
one month. Agents are represented by the dots and contacts between agents are represented by the lines 
(source: Jiménez et al. 2013)



84 B. Pires et al.

1 3

In addition to physical proximity, social networks are said to be driven by sim-
ilarity (homophily) and social influence. We measure homophily as a function of 
profession and attitude similarity. Social influence is the feedback between attitude 
homophily and the strength of social ties that occurs dynamically as social ties 
increase in strength when attitudes are similar. The social network is thus a function 
of the contact network, profession homophily, and attitude homophily. Implementa-
tion of the contact and social networks are discussed in more detail in Sect. 3.3.3.

The physical environment is the physical layout of the hospital in southwest Vir-
ginia (Fig. 4 displays the layout for one floor of the hospital). The hospital contains 
nine floors and over 1,000 locations, including patient rooms and employee lounges. 
The population is the 2,127 synthetic healthcare workers of the hospital.

3.1.3  Process overview and scheduling

The model proceeds in one minute time steps. While employee schedules were pro-
vided by second, a minute allows us to capture the individual interactions and activ-
ity patterns that are important to the development of social networks (Torrens 2014), 
and at the same time, maintains the computational feasibility of running the model. 
Figure 5 illustrates the model’s key processes (discussed further in Sect. 3.3). Agent 
behavior is broken out into five sub-models discussed in Sect.  3.3.3: the Activity 
Scheduler, the Dynamic Contact Network, the Dynamic Social Network, the Atti-
tude Formation and Change Model, and Knowledge Sharing.

At the start of the simulation, agents run the Activity Scheduler. The Activity 
Scheduler pulls information from the PostgreSQL database containing the pre-deter-
mined schedules, including the start time, end time, and location of the agent’s cur-
rent activity. It then searches for any other agents who are at the same location, at 
the same time. If other agents are present, the contact network is updated, which 
consists of either creating a new tie (if one did not exist) or updating an existing tie. 
The strength of the contact tie, in addition to agent attributes, is then used as input 
into the computing the strength of the social tie. The agent will then evaluate its atti-
tude in the Attitude Formation and Change Model based on interactions with other 
agents. Next, the agent will determine whether to share knowledge with one of the 
interacting agents in the Knowledge Sharing submodel. At completion of the activ-
ity, agents will evaluate their next activity by re-running the Activity Scheduler. In 
addition to this process, agents will periodically evaluate the need to decay any ties 
in their social network.

3.2  Design concepts

Decision-making is at the individual agent level. If an agent has knowledge, the 
agent must make the decision to share (or not) that knowledge with another agent 
with whom it is currently interacting with. The decision to share knowledge is a 
function of the agent’s attitude towards knowledge sharing. In terms of learning, 
we account for past experiences and create the agents pre-existing attitudinal state 
by providing each agent with a set of training examples during model initialization. 
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This process allows the model to use past experiences to learn the weights between 
valence units and the biases of the individual units. With respect to sensing, the 
agents are aware of their interactions and their social networks. They are aware of 
who in their social network currently does not have knowledge, as they will only 
share with those whom currently do not have the knowledge. As agents go about 
their routine activities, they interact with other agents. With each interaction, a tie 
in the contact network is either created or strengthened. This provides an impor-
tant input into the social network. Each interaction can result in an update to the 
individual agent’s attitude towards knowledge sharing, which subsequently effects 
the decision on whether to share knowledge (if the agent has knowledge). Agents 
are heterogeneous in terms of their profession, attitudinal states, and pre-determined 
activity schedules, which vary based on profession, shift, and department.

Fig. 5  Process flow diagram of the model’s key processes
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At the global level, we monitor several statistics: the direction of knowledge 
flows (i.e., from/to agent), the individual agents attitude towards knowledge shar-
ing, the interactions (contacts) of the agents, and the social network. Agent atti-
tudes and knowledge flows are collected by time step, while the contact and social 
networks are collected at the end of each simulation day. The model exports a 
series of files capturing these statistics.

3.3  Details

3.3.1  Initialization

Upon model initialization, agent’s are assigned a profession and activity sched-
ule and a pre-determined number of agents are selected to have the piece of 
knowledge. Agents must then learn their initial attitudinal state. The weights and 
biases of neural network si for agent i are determined using a supervised learn-
ing algorithm. The learning process requires that we input a set of initial condi-
tions, including the desired output (prototype), the set of input patterns (training 
examples), a criterion (minimum error rate), and the maximum number of epochs 
(training cycles). Prototypes are binary vectors of length 20 representing either 
a positive attitude or negative attitude. For instance, in a positive prototype the 
first 10 items in the vector are 1 and the second ten items are 0. The input pat-
terns are 50 training examples of the prototype used for learning. The criterion is 
the minimum error allowed, where error is calculated using a cost function. One 
epoch represents one cycle through the 50 training examples. We set the maxi-
mum number of epochs at 1,000. Learning will stop once the network is either 
below the criterion or has reached the maximum number of epochs. Initial input 
parameter settings were selected based on earlier research by Orr, Ziemer, and 
Chen (2017).

We construct two different training sets (i.e., input patterns) representing the pos-
itive and negative prototypes. All things being equal, these training sets lead to an 
internal bias that is captured by changes in the weights towards positive or negative 
attitudes of knowledge sharing, respectively. After each training cycle, the error is 
calculated using a cost function. If the error is greater than the criterion and the 
maximum number of epochs has not been reached, then the weights and bias are 
adjusted given the error rate. Once learning is complete, we have the weights and 
biases of each agent’s cognitive model that will be used for the course of the simula-
tion. This structure represents the agents pre-existing attitudinal state.

While we can think of the agents’ learned attitudinal state as representing a 
tendency towards positive or negative attitudes on knowledge sharing, in order 
to initialize the model, we still need to provide each agent with an initial input 
activation. For this purpose, a pre-determined number of agents are seeded with 
a positive attitude towards knowledge sharing (a vector of length 20 with the first 
10 items being 1s and the second ten items being 0s), while the remaining agents 
have a neutral attitude (a vector of 0s of length 20).
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3.3.2  Input data

We utilized data collected for an earlier study that explored the potential outbreak 
of healthcare acquired infections in a hospital in southwest Virginia (Jiménez 2014). 
Data was collected from 431 healthcare workers in the hospital representing 30 dif-
ferent healthcare disciplines (e.g., physicians, nurses, social workers, physical ther-
apists) by directly observing and shadowing the employees during normal hospi-
tal operations. The physical environment is the true physical layout of the hospital 
in southwest Virginia. The hospital contains nine floors and over 1,000 locations, 
such as patient rooms and employee lounges. Through a population builder program 
developed by Jiménez (2014), a synthetic population of the entire hospital was cre-
ated including the 2,127 synthetic individuals representing the hospital’s healthcare 
workers and their movement (i.e., activity schedules) across the hospital over the 
course of 200 days. Jiménez (2014) generated the activity schedules by shadowing 
employees over 4 to 8 hour time spans during normal hospital operation times. The 
synthetic individuals represent 30 different healthcare professions (e.g., physicians, 
nurses, nurse assistants, social workers, physical therapists).

3.3.3  Submodels

There are four sub-models that together determine agent behavior. The Activity 
Scheduler determines the agent’s current activity and any interactions. The Dynamic 
Contact Network creates new contact ties and updates existing contact ties based on 
these interactions. The Dynamic Social Network creates new social ties and updates 
existing social ties based on the contact network and other effects. Attitudes diffuse 
or update through the Attitude Formation and Change sub-model. The Knowledge 
Sharing sub-model determines whether or not agents will share knowledge with 
interacting agents. We describe each of these sub-models in detail.

Activity scheduler.  Because schedules are pre-determined, running the scheduler 
consists of querying the PostgreSQL database for the activity associated with the 
current simulation time. From the database, we get a start time, end time, and loca-
tion of the activity. We then query the database for any other agents at the same 
location during the same time. If other agents are present, the time that the agent is 
in the same room as other agents is calculated. This is the interaction time of agent 
dyads and is used as input into development of the contact network. Given the static 
nature of these schedules across runs, we chose to introduce a small level of noise 
into these interactions. After each activity, there is a small probability that the agent 
will interact with an agent selected at random.

Dynamic contact network. The contact network Xc is a network of physical proxim-
ity, in that contact ties are created or strengthened only when agents are geographi-
cally near. Physical proximity to other agents is determined by cross-referencing the 
current simulation time with the agents’ activity schedule as described in the Activ-
ity Scheduler sub-model.
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The contact network is a weighted two-mode affiliation network, where agents ai ( i = 1 
to n number of agents) and aj ( j = 1 to n − 1 ) represent the first mode and the events eij 
that affiliate the agents represent the second mode (Wasserman, 1994). The weight of the 
tie wc

ij
 and wc

ji
 ( wc

ij
=wc

ji
 , 0 ≤ wc

ij
,wc

ji
 ≤ 1) in Xc as shown in Equation 1 is a function of the 

duration of contact events eij and the total time T that has passed in the simulation.

Dynamic social network.  In contrast to contact ties, social ties account for factors 
beyond agent contacts (see Sect. 2.1). The social network Xs is a weighted one-mode 
network between agents ai ( i = 1 to n) and aj ( j = 1 to n-1). The weight of the tie ws

ij
 

and ws
ji
 ( ws

ij
= ws

ji
 , 0 ≤ ws

ij
,ws

ji
 ≤ 1) as shown in Equation 2 is a function of wc

ij
 , profession 

homophily Pij , and attitude homophily Aij . The effect size of each of these parameters 
on the social tie weight is represented by �1 and �2.

Attitude formation and change.  We implement the computational formalization of 
TRA discussed in Sect. 2.2. We use a fully recurrent neural network (RNN) that allows 
for modeling the dynamic process of constraint satisfaction. The neural network si of 
agent i has two layers – an input layer l1 and an output layer l2 . Each layer has 20 units 
al ∈ {1,… , 20} representing the positive and negative valence units of ten beliefs. The 
weight of the connections between beliefs and valence units and the bias of each unit 
represents agent i’s current attitudinal state si . Moreover, valence unit activation ranges 
between 0 and 1, where 0 is not active and 1 is highly active. We can think of activation 
as analogous to the strength of a belief within a person’s memory. The stronger the acti-
vation, the stronger the belief is activated in memory (Orr and Plaut 2014).

During interactions, agents have the potential to influence another agent’s atti-
tude. This interaction between agent dyads captures the immediate social context. 
The stronger the social tie between the agents, the more likely they are to influence 
one another’s attitudes towards knowledge sharing. Specifically, we compute the 
input vector a1

i
(t) as a function of agent i’s previous output activation aL

i
(t − 1) , agent 

j’s output activation aL
j
(t − 1) , and the weight of the social tie ws

ij
(t) between agents i 

and j, such that:

(1)wc
ij
(t) =

∑t

0
eij(t)

T

(2)

ws
ij
(t) = �1[w

c
ij
(t)] + �2[e

|Aij(t−1)| + Pij],

where Aij(t − 1) = Ai(t − 1) − Aj(t − 1),

− 1 ≤ Ai,Aj ≤ 1,

Pij =

{
1, if Pi = Pj

0, otherwise

(3)a1
i
(t) =

aL
j
(t − 1) − aL

i
(t − 1)

2
ws
ij
(t) + aL

i
(t − 1)
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This provides the dynamic input into the cognitive model. The output activation aL
i
 

of agent i after an interaction with agent j is therefore a function of a1
i
 and the agents 

pre-existing attitudinal state si.

The resulting output aL
i
(t) is the agent’s updated vector of valence unit values. We 

use aL
i
(t) to determine an agent’s attitude Ai(t) (−1 ≤ A ≤ 1) at time t, which is com-

puted simply as the average of the difference between positive and negative valence 
units (n is the number of valence units).

Agent attitudes can change over the course of the simulation. Thus, an agent’s deci-
sion to share tacit knowledge changes as that agent’s attitude on knowledge sharing 
evolves.

Knowledge Sharing. The probability p that agent i will share knowledge at time t 
is a function of Ai(t) . This is operationalized through the logistic function below, 
where r is the rate at which the curve rises or falls (0 ≤ r ≤ 10).

4  Results

In this section we discuss the results of the model, focusing in particular on the social 
networks that emerged and the dynamics of knowledge sharing. The simulation ran 
for 4 simulation weeks (40,320 ticks) at full scale (2,127 agents). At initialization, 10 
agents are randomly selected to have the knowledge. The effect of the initial number 
of agents has an increasing but weak effect on the rate of knowledge spread as deter-
mined through sensitivity analysis. Knowledge sharing begins on simulation day 7 (tick 
10,080). We select day 7 because we wanted to ensure network structures were stable 
before starting the process of knowledge sharing in the simulation.

4.1  Social networks

Few ABMs have integrated empirically-grounded social networks that emerge 
dynamically as a consequence of agent interactions and social influence (e.g., Pires 
and Crooks 2017). Because the structure of the social network is not pre-deter-
mined, we have the unique opportunity to perform a social network analysis on 
emergent, synthetic network structures. We use metrics from SNA to explore dif-
ferences in network structures over time and across simulation runs. These methods 

(4)aL
i
(t) = f [si, a

L
i
(t − 1), aL

j
(t − 1),ws

ij
(t)]

(5)Ai(t) =

∑n∕2

k=1
aL
ik
(t) −

∑n

k=n∕2+1
aL
ik
(t)

n∕2

(6)pi(t) =
1

1 + e−Ai(t)r
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help us identify informal structures, such as prominent agents (e.g., informal lead-
ers, influencers, or brokers) and subcultures. We show results by the most common 
professions in the hospital: nurses, physicians, counselors, technicians, therapists, 
and sitters.1

The most commonly used network measures are those that indicate the central-
ity of an agent (Frantz and Carley 2009). Agents with high degree centrality are 
typically “most visible" in a network, while agents with high betweenness centrality 
potentially have some level of control over the communication between two agents 
or two cluster of agents (Wasserman and Pattison 1996; Long et al. 2013). We oper-
ationalize a prominent agent as one who has high centrality (see Brass et al. 2004; 
Ibarra 1993). Figure 6 shows centrality results of the social network by profession. 
The line indicates the median value across all agents of that profession, the dark 
shaded area represents the 25th and 75th quartiles, and the light shaded area repre-
sents the 90th and 10th quartiles. We find that network centrality stabilizes for most 
professions around day 4 of the simulation, potentially indicating that social net-
works are well established at that point. We find that nurses and physicians, followed 
by technicians, have the highest variation in degree centrality while counselors and 
sitters have higher variations in betweenness centrality.

In terms of knowledge flows, the outliers (those with high betweenness centrality 
in particular) may play a critical role. These agents will have few direct ties but will 
be linked to highly connected agents and may be potential brokers in the network. 
In Fig. 7, we can identify these individuals as those in the bottom right-hand corner 
of the plot. We can further visualize specific individuals as in the network shown on 
the left. The larger blue circle is the “sitter" agent shown in the far right hand corner 
of plot  on the left. This agent is serving the role of connecting directly to agents 
across multiple clusters, a potentially critical role for information flows. We can fur-
ther identify highly connected agents as shown in the figure and potential informal 
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Fig. 6  Standardized degree and betweenness centrality results by profession. The dotted line indicates 
the median value across all agents of the profession, the dark shaded area represents the 25th and 75th 
quantiles, and the light shaded area represents the 90th and 10th quantiles

1 Sitters are healthcare workers that monitor and interact with patients (particularly high-need patients).
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leaders, i.e., those with both high degree and high betweenness centrality. We find 
that most of these agents are nurses and physicians, similar to what we found in 
Fig. 6.

Positional analysis can identify those groups of agents (clusters) that have sim-
ilar patterns of relationships in a social network. Positional analysis requires that 
we define a measure of structural equivalence and an algorithm for grouping agents 
that are similarly structurally equivalent. We selected to use hierarchical clustering 
in our analysis as it provides clearly specifiable criteria for partitioning agents into 
groups and is well suited for partitioning agents into positions (Wasserman 1994). 
We evaluate results by profession to see if there is a relationship between the agents 
formal (prescribed) role and their position in the social network. If clusters align 
with professions this is evidence that formal roles are important in the structure of 
the informal network, and therefore, in information flows. The results of the cluster 
analysis are shown in Fig. 8. We find that a large proportion of nurses and physicians 
(approximately 15%) are assigned to the same cluster and 25% of technicians are in 

Fig. 7  Degree and betweenness centrality results in the social network by profession. (Left) Standard-
ized degree centrality on the y-axis and standardized betweenness centrality. The dots represent median 
values of individual agents on day 28 across all simulation runs. Dot colors represent the agents’ profes-
sions. (Right) The ego network (order = 2) of the “sitter" at the very lower right-hand corner of the plot 
to the right. The larger blue node is the “sitter" agent. The connecting nodes are colored based on the 
profession of the agent

Fig. 8  Hierarchical cluster analysis for a simulation run. The horizontal axis are the most common pro-
fession categories and each rectangle represents a cluster. The shading indicates the proportion of agents 
of the same profession that are clustered together
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the same cluster. Counselors, sitters, and therapists, on the other hand, are clustered 
almost exclusively together, but across 12 to 13 clusters. These results indicate that 
the agents’ professions play a role in the hospital’s informal structure, but the degree 
to which formal roles matter varies across professions.

4.2  Dynamics of knowledge sharing

We explore the rate of knowledge spread under three scenarios: (1) ten random 
agents are seeded with knowledge at model initialization (this is the baseline sce-
nario described in the above section), (2) ten random agents are seeded with knowl-
edge but ten prominent agents in the network are removed, and (3) the prominent 
agents are seeded with knowledge. Prominent agents are those with the highest cen-
trality (e.g., degree, betweenness) in the network.

We find that removing prominent agents has little effect on the rate of spread 
when compared to the baseline. On the other hand, seeding the knowledge with 
prominent agents resulted in a substantial decrease in the rate of knowledge spread. 
Investigating this revealed that the “prominent” agents were all from the same sub-
graph. Once knowledge has been shared within this subgraph, it took a longer time 
to reach other subgraphs in the network.

These results led us to redefine a prominent agent as one with high centrality 
within a subgraph/subculture. From the ten largest subgraphs, we selected the agents 
with the highest centrality within each subgraph. Figure  9 compares the rate of 
knowledge spread using the redefined version of prominent agents. While removing 
prominent agents again has little effect, seeding knowledge with prominent agents 
has a small but increased rate of knowledge spread.

Comparing the professions of prominent agents according to the two definitions, 
we find that the ten most prominent agents under the original definition include only 
nurses and physicians. When prominent agents are redefined, professions include 

Fig. 9  The number of agents with knowledge by simulation day. The solid lines represent the median val-
ues for the three scenarios. The shaded regions represent the minimum and maximum values
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nurses, physicians, technicians, and sitters. We get more variation both in the agents’ 
professions and potentially in network positions. Recall that nurses and physicians 
generally have high degree centrality but sitters have high betweenness and low 
degree centrality (see Figs. 6, 7).

We can further explore the rate of knowledge spread by profession. Figure  10 
shows the median cumulative number of agents that information was shared with 
by profession. For instance, by the end of a simulation run (day 28), a nurse had 
typically shared knowledge with 20 other agents over the course of the run. Interest-
ingly, therapists spread knowledge to more agents than any other profession. They 
likely have critical positions in the network that were not identified in our network 
analysis. On the other hand, sitters spread information to the the least agents, but we 
know they play an important role in the network due to their brokerage positions. 
They are likely responsible for spreading knowledge to some of the most highly con-
nected agents, such as nurses and physicians.

5  Discussion and conclusions

Organizations represent complex systems in that they are composed of dynamic 
networks of interactions among individuals and groups that change and adapt at 
both the individual and group levels. We demonstrate that the integration of ABM 
with dynamic social networks and a physical environment is effective for explor-
ing dynamic organizational processes such as knowledge sharing. The integration of 
these approaches provides a complex systems approach to modeling organizations in 
a way that could not be accomplished by each method alone.

Given the importance of relationships in an organization’s informal structure and 
in tacit knowledge sharing, social networks are a vital component of understanding 
organizational dynamics and knowledge sharing (e.g., Prietula et al. 1998; Reagans 
and McEvily 2003; Wang and Noe 2010; Parise 2007; Ahuja 2000). While social 
networks are often studied in a static way, the addition of a physical environment 
(i.e., the true spatial location of agents) provided a spatiotemporal component by 
mapping location and changes over time. This is important since geography can 
impact the likelihood that an individual physically interacts with someone else in 
the environment (Crooks and Castle 2012; Tobler 1970). Development of the con-
tact network in our model was directly influenced by the physical movement and 

Fig. 10  The rate of knowledge 
spread by profession. The dotted 
line indicates the median value 
across all agents of the profes-
sion, i.e., the median number 
of agents information has been 
shared with. The shaded area 
represents the minimum and 
maximum values
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interactions of the healthcare works in the hospital. Moreover, certain activities 
within an organization, such as tacit knowledge sharing, depend on in-person con-
tact (Mongkolajala et al. 2012). A physical environment alone, however, would not 
be ideal for dynamic modeling (Crooks and Castle 2012).

Using ABM, dynamic interactions over physical and social spaces were created 
with relative ease allowing us to model agent-to-agent and agent-to-environment 
interactions spatiotemporally (Axtell 2000). Modeling at the individual agent level 
gave us the flexibility to implement rules of behavior and cognitive capabilities that 
can range from simple decision-making heuristics (e.g., cascade or threshold mod-
els of diffusion, see Pires et al. (2017)) to complex computational models of cogni-
tion grounded in psychological theory. The integration of SNA further allowed us to 
account for social context in individual behavior. The development of the cognitive 
framework in turn represented the feedback between activities being performed in 
physical space, interactions occurring in social and physical space, and the agent’s 
internal model. This process was critical in simulating the reinforcing, nonlinear 
nature of this system.

Within the hospital simulation, we found that seeding “prominent” agents with 
knowledge can actually slow knowledge spread if not done strategically. This would 
be analogous to providing information to only the largest department in an organi-
zation rather than distributing knowledge across multiple, even if smaller, depart-
ments. Studies have found that starting the process of knowledge sharing with cer-
tain individuals may be more effective and could inform how organizations can 
better leverage their network structure (Parise 2007). Removing prominent agents, 
however, had little impact on network structures or knowledge spread. This suggests 
that the network in this hospital is resilient to some attrition impacts, and losing 
agents (even prominent ones) will result in little impact to the organization’s cohe-
sion and knowledge flows.

In terms of the relationship between formal roles (i.e., profession) and informa-
tion structures, we found that formal roles are important in the creation of informal 
networks and in knowledge flows. Nurses and physicians for instance, have the high-
est degree centrality. However, the more significant nodes in regards to information 
diffusion may be the outliers with extreme betweenness centrality. These agents are 
able to mitigate communication flows between otherwise disconnected graphs. In 
other subgraphs, counselors, sitters, and therapists may play an interesting role when 
it comes to information flows given the high proportion that have high betweenness 
but low degree centrality. Moreover, we found that therapists have spread knowl-
edge to the most number of agents. Further exploration of the network structures 
surrounding these agents is needed to better understand the role they play. Hierar-
chical clustering found that agents sharing the same profession were often spread 
across many clusters, however, there still maintains a pattern to the clustering that 
follows these formal roles. This suggests that formal structures are important in the 
creation of informal networks and in knowledge flows. However, their importance 
may be less significant than expected given the large variation in centrality measures 
by profession and the spread across many clusters.

As with all modeling endeavors, however, there are some limitations with the cur-
rent model that could play a role in the dynamics of the social networks and knowledge 



95

1 3

Knowledge sharing in a dynamic, multi‑level organization:…

sharing. This is why we have tried to be as transparent as possible by providing the 
detailed ODD+D, the source code, and data to run the model. In future work, we 
may want to introduce uncertainty into the contact networks beyond the small level of 
“noise”. By establishing the rules for how the agent’s activity schedules are created, 
for example, schedules could be modeled dynamically, allowing them to respond to 
changes in the environment and to the behavior of other agents and their interactions. A 
deeper evaluation of the factors that impact the decay and creation of social ties could 
also be performed. We could also refine what we mean by knowledge by concretely 
defining the type of knowledge being modeled and implementing dynamic processes 
for the encoding, recollecting, and degradation of knowledge over time. Even with 
these limitations, however, this model sheds some light into the underlying network 
structures and dynamics of knowledge sharing in a hospital setting.

Effective attrition and leadership policies require the acknowledgement of the exist-
ence of informal structures and an individual’s dual role in explicit and implicit struc-
tures. Interactions within organizations are not limited to the official organizational 
chart. Personnel policies must acknowledge and support employees in both roles to 
increase organizational effectiveness. The impact of attrition on informal structures and 
knowledge sharing may be difficult to anticipate. However, understanding such patterns 
are important. Using the modeling approach here, we can simulate a scenario by which 
specific employees are removed or we can observe outcomes when communication 
strategies are changed, such as starting knowledge with different employees based on 
their unique positions within an organization. We can then observe the impact these 
changes have on network structures, attitudes, and ultimately, knowledge flows within 
the organization.

For managers, understanding the informal structures, such as informal roles and sub-
cultures, that emerge and interact with the formal organizational hierarchy is crucial 
for understanding the underlying dynamics of an organization. By “re-creating” the 
movements and interactions of employees within an organization and applying theory 
to model attitude and network formation, we can simulate and potentially anticipate the 
impact of different resource planning and communication strategies on organizational 
processes and outcomes, such as knowledge sharing.
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