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Abstract
In the current information era, we rely on cyber techniques and principles to protect 
the confidentiality, integrity, and availability of everything from personally identi-
fiable information and intellectual property, to government and industry informa-
tion systems. Despite persistent efforts to protect this sensitive information, secu-
rity breaches continue to occur at alarming rates, the most common of them being 
insider threats. Over the past decade, insider threat detection has attracted a consid-
erable amount of attention from researchers in both academia and industry. In this 
paper, we develop a novel insider threat detection method based on survival analysis 
techniques. Specifically, we use the Cox proportional hazards model to provide more 
accurate prediction of insider threat events. Our model utilizes different groups of 
variables such as activity, logon data, and psychometric tests. The proposed frame-
work has the ability to address the challenge of predicting insider threat instances as 
well as the approximate time of occurrence. This study enables us to perform proac-
tive interventions in a prioritized manner where limited resources are available. The 
criticality of this issue in the insider threat problem is twofold: not only correctly 
classifying whether a person is going to become a threat is important, but also the 
time when this is going to happen. We evaluate our method on the CERT Insider 
Threat Test Dataset and show that the proposed Cox-based framework can predict 
insider threat events and timing with high accuracy and precision.

Keywords Insider threat · Survival analysis · Kaplan–Meier curve · Cox 
proportional hazards model

 * Elie Alhajjar 
 elie.alhajjar@westpoint.edu

 Taylor Bradley 
 taylor.bradley@westpoint.edu

1 United States Military Academy, West Point, USA

http://orcid.org/0000-0002-7500-1214
http://crossmark.crossref.org/dialog/?doi=10.1007/s10588-021-09341-0&domain=pdf


336 E. Alhajjar, T. Bradley 

1 3

1 Introduction

In today’s digital age, it is essential for individuals, industries, and government 
agencies to protect themselves against cyber threats. As such, cybersecurity has 
become an essential practice in almost every organization around the world. In 
order to protect organizations’ information, intellectual property and security, 
measures must be taken to ensure their data is secure. However, due to the vast 
growth and perpetually changing nature of technology, this task gets more diffi-
cult with each passing day.

Insider threats are malicious events from people within the organization, which 
usually involve intentional fraud, the theft of confidential or commercially valu-
able information, or the sabotage of computer systems. The subtle and dynamic 
nature of insider threats makes detection extremely difficult. The 2018 U.S. State 
of Cybercrime Survey indicates that 25% of the cyberattacks are committed by 
insiders, and 30% of respondents indicate incidents caused by insider attacks are 
more costly or damaging than outsider attacks (U.S. State of Cybercrime 2018).

Insider threats are one of the most challenging threats in cyberspace, usually 
causing significant loss to organizations. While the problem of insider threat detec-
tion has been studied for a long time in both the security and data mining com-
munities, it remains difficult to accurately capture the behavior difference between 
insiders and normal users due to various challenges related to the characteristics of 
underlying data, such as high-dimensionality, complexity, heterogeneity, sparsity, 
lack of labeled insider threats, and the subtle and adaptive nature of insider threats.

According to the latest technical report (Costa et al. 2016) from the CERT Coor-
dination Center, a malicious insider is defined as “a current or former employee, 
contractor, or business partner who has or had authorized access to an organization’s 
network, system, or data, and has intentionally exceeded or intentionally used that 
access in a manner that negatively affected the confidentiality, integrity, or availabil-
ity of the organization’s information or information systems”.

While cyber attacks can be attributed to anything from phishing attacks to ran-
somware, malware, and denial of service, insiders by far pose the greatest threat 
to organizations’ assets and information. Compared to the external attacks whose 
footprints are difficult to hide, the attacks from insiders are hard to detect because 
malicious insiders already have the authorized power to access the internal infor-
mation systems. In general, there are three types of insiders: (i) traitors who mis-
use their privileges to commit malicious activities, (ii) masqueraders who con-
duct illegal actions on behalf of legitimate employees of an institute, and (iii) 
unintentional perpetrators who innocently make mistakes (Liu 2018b). Based on 
the malicious activities conducted by the insiders, the insider threats can also be 
categorized into three types: (i) IT sabotage which directly uses IT to make harm 
to an institute, (ii) theft of intellectual property which steals information from the 
institute, and (iii) fraud which indicates unauthorized modification, addition, or 
deletion of data (Homoliak 2019).

Given the high number of insider incidents, insider threat detection has become 
a central, yet very challenging, task. The complexity of such task stems from 
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many perspectives: first, insiders perform unauthorized actions by the use of their 
trusted access, which renders external network security devices, like firewalls and 
anti-viruses, useless. Second, the diversity of insider attack scenarios hinders the 
possibility of one-solution-fits-all approaches: insider attacks can take the form of 
a disgruntled employee planting a logic bomb to disrupt systems, stealing intel-
lectual property, acquiring financial information, etc. Third, most insider threat 
activities are performed during working hours, which makes them hard to detect 
since they are spread out among normal routine behavior (Yuan et al. 2018).

In response to this growing problem, the US National Insider Threat Policy, writ-
ten in response to Executive Order 13587, “Structural Reforms to Improve the Secu-
rity of Classified Networks and the Responsible Sharing and Safeguarding of Clas-
sified Information” (Obama 2011), sets expectations and identifies best practices for 
deterring, detecting, and mitigating insider threats. It calls for program establish-
ment, training of program personnel, monitoring of user and network activity, and 
employee training and awareness. The more recent Insider Threat Guide and matu-
rity framework (Belk and Hix 2018) from the National Insider Threat Task Force 
(NITTF) continues this trend.

Insider threat research constitutes one of the facets of the new and emerging 
field of social cybersecurity (Carley 2020). Social cybersecurity is a computational 
social science with a large foot in the area of applied research. It uses computational 
social science techniques to identify, counter, and measure (or assess) the impact of 
communication objectives. The methods and findings in this area are critical, and 
advance industry-accepted practices for communication, journalism and marketing 
research.

Although existing approaches demonstrate good performance on insider threat 
detection, the traditional shallow machine learning models are unable to make full 
use of the user behavior data due to their high-dimensionality, complexity, hetero-
geneity, and sparsity. On the other hand, deep learning as a representation learning 
algorithm is able to learn multiple levels of hidden representations from the com-
plicated data based on its deep structure. Hence, it can be used as a powerful tool to 
analyze the user behavior in an organization to identify the potential malicious activ-
ities from insiders. In this paper, we take a different approach to tackle the insider 
threat detection problem, namely we introduce a novel method to identify potential 
insider threat events using survival analysis techniques.

The analysis of insider incidents include all related aspects and behaviors of a 
malicious insider before, during, and after conducting an incident. Efforts in this 
realm focused on behavioral frameworks, formalization frameworks, psychologi-
cal and social theory, criminology theories, simulation research, system dynamics, 
game theory, and many other fields. The aim of this paper is not to survey the vast 
amount of existing literature, the interested reader is referred to the recent survey 
(Homoliak 2019) and the pointers therein. To the best of our knowledge, survival 
analysis techniques were not used in the context of insider threat and the current 
paper aims at initiating that direction of research.

Survival analysis is a subfield of statistics where the goal is to analyze and 
model data for which the outcome is the time until an event of interest occurs. 
One of the main challenges in this context is the presence of instances whose 
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event outcomes become unobservable after a certain time point or are not expe-
rienced during the monitoring period. This so-called censoring can be handled 
most effectively using survival analysis techniques.

The rest of the paper is organized as follows. After this brief introduction, we 
give an overview of the field of survival analysis. We set the notations and defini-
tions that will be used throughout the paper. In Sect. 3, we review the most rel-
evant and up to date literature that deals with insider threat detection, as well as 
survival analysis applications. Section 4 describes the methodology used to ana-
lyze the CERT dataset. We explain the intuition as well as the technical details of 
our chosen survival methods. In Sect. 5, we show the performance of our method 
and discuss our findings. Finally, Sect. 6 concludes the work and offers directions 
for future research.

2  Survival analysis

In this section, we introduce the definitions and terminologies used in the remain-
der of the paper. We adopt a simplistic approach for the sake of exposition, the 
reader interested in the technical details is referred to the books (Klein and Zhang 
2005; Miller 2011).

Survival analysis is defined as a collection of statistical methods which con-
tains the time of a particular event of interest as the outcome variable to be esti-
mated. It is useful whenever we are interested not only in the frequency of occur-
rence of a particular type of event, but also in estimating the time for such an 
event occurrence. During the study of a survival analysis problem, it is possi-
ble that the events of interest are not observed for some instances. This may be 
because of either the limited observation time window, or missing traces caused 
by other events – a concept known as censoring. In general, censoring is catego-
rized into three groups: (i) right-censoring, where the observed survival time is 
less than or equal to the true survival time, (ii) left-censoring, where the observed 
survival time is greater than or equal to the true survival time, and (iii) interval 
censoring, where we only know that the event occurs during a given time interval. 
Note that the true event occurrence time is unknown in all three cases. We will 
restrict our study to right-censored data for the remainder of the paper and we 
will refer to it as censored for brevity.

Broadly speaking, survival analysis methods can be classified into two main 
categories: statistical methods and machine learning based methods. Statistical 
methods share a common goal with machine learning methods in that both are 
expected to make predictions of the survival time and estimate the survival prob-
ability at the estimated survival time. However, the former focus more on charac-
terizing both the distributions of the event times and the statistical properties of 
the parameter estimation by estimating the survival curves, while the latter focus 
primarily on the prediction of event occurrence at a given time by combining 
the power of traditional survival analysis methods with various machine learning 
techniques (Wang et al. 2019).
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2.1  Survival functions

In survival analysis, a data point consists of a triple (Xi, yi, �i) where Xi is the 
feature vector, yi is the observed time—it is equal to the survival time Ti for an 
uncensored instance, the censored time Ci for a censored instance, and �i is an 
indicator function, i.e., �i = 0 for a censored instance and �i = 1 otherwise. Fig-
ure 1 illustrates the concept of censored data. It contains six observed instances 
over a 12-month period. Note that the fourth and sixth subjects are the only ones 
that experience the “event”, while the others are considered censored either due 
to withdrawal from the experiment or because no event occured during the study 
time.

Next we define the three main functions used in survival analysis: the survival 
function, the cumulative death distribution function, and the death density func-
tion. Figure  2 depicts the relationships between these three functions. The sur-
vival function is the probability that the time to the event of interest is not ear-
lier than a specified time t: S(t) = Pr(T ≥ t) . As a function, S(t) monotonically 
decreases with t with S(0) = 1 . This means that at the beginning of the observa-
tion, none of the events of interest has already occurred. The cumulative death 
distribution function is the probability that the event of interest occurs earlier 
than t, i.e., F(t) = 1 − S(t) . The death density function f(t) is the derivative of F(t) 
in the continuous case and the rate of change of F(t) in the discrete case.

Another commonly used function in survival analysis is the hazard function, 
also known as the instantaneous death rate. It measures the likelihood of the event 
occurring at time t given that no event has occurred before time t, and can be 
written as h(t) = f (t)

S(t)
 . As a function, h(t) is non-negative and can have a variety of 

shapes (not necessarily monotone).

Fig. 1  Censored vs. uncensored data (Wang et al. 2019)
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2.2  The Kaplan–Meier curve

Among the functions discussed in the previous section, the survival function is 
the most widely used one in survival analysis. To better represent this function, the 
Kaplan–Meier curve is used to estimate the survival function based on the actual length 
of observed time.

In mathematical terms, let T1 < T2 < ⋯ < Tk be a set of distinct ordered event times 
observed for N instances where k ≤ N (there are N − k censored times in this case). For 
each i = 1, 2,… , k , we denote by di the number of observed events in time Ti and by 
ri the number of instances whose event time or censored time is greater than or equal 
to Ti . The two terms are related via the recursion: ri = ri−1 − di−1 − ci−1 , where ci−1 
denotes the number of censored instances during the time period between Ti−1 and Ti . 
With this setting, the conditional probability of surviving beyond time Ti is defined as:

Based on the conditional property in Eq. (1), the survival function can be estimated 
by

2.3  The Cox proportional hazards model

The Cox proportional hazards model is the most commonly used model in sur-
vival analysis due to the fact that it does not require knowledge of the underlying 

(1)p(Ti) =
ri − di

ri
= 1 −

di

ri
.

(2)�S(t) =
∏

Ti<t

p(Ti) =
∏

Ti<t

(

1 −
di

ri

)

.

Fig. 2  Commonly used survival functions (Wang et al. 2019)
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distribution. The baseline hazard function in this model can be an arbitrary non-neg-
ative function, but the baseline hazard functions of different individuals are assumed 
to be the same. The Cox model provides a useful and easy way to interpret informa-
tion regarding the relationship of the hazard function to predictors.

For each data point (Xi, yi, �i) , the hazard function h(t) in the Cox model follows 
the proportional hazards assumption given by

where the baseline hazard function h0(t) can be an arbitrary non-negative function, 
Xi is the feature vector, � is the corresponding coefficient vector, and �.Xi is the vec-
tor scalar product. From Eq. (3), we can deduce that the survival function can be 
computed as

where S0(t) is the baseline survival function given by S0(t) = e− ∫ t

0
h0(x)dx.

Parameters of the Cox regression model are estimated by maximizing the partial 
likelihood. Based on the Cox regression formula, a partial likelihood can be con-
structed as

By setting the derivative of Eq. (5) with respect to � equal to zero, we can estimate 
the coefficients and hence the baseline hazard function. Simply stated, the parameter 
estimates represent the increase in the expected logarithm of the relative hazard for 
each one unit increase in the feature, holding other features constant:

3  Related work

In this section, we survey briefly some of the relevant literature on two fronts, 
namely on the insider threat detection problem and on a handful of survival analysis 
applications. For more details, the reader is encouraged to consult the survey papers 
(Homoliak 2019; Mohammed Nasser 2020; Wang et al. 2019; Yuan and Wu 2021) 
and the references therein.

3.1  Insider threat detection

The problem of insider threat detection is usually framed as an anomaly detection 
task. In general, the purpose of anomaly detection is to find patterns in data that do 
not conform to the expected behavior. The key problem in this field is the difficulty to 

(3)h(t) = h0(t)e
�.Xi ,

(4)S(t) = S0(t)e
�.Xi ,

(5)L(�) =
�

�i=1

e�.Xi

∑

tj≥ti
e�.Xj

.

(6)ln
(

h(t)

h0(t)

)

= �.Xi = �1.Xi1 + �2.Xi2 +⋯
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model a user’s normal behavior, as explained in the comprehensive survey (Chandola 
et al. 2009). In the same realm, the authors in Rashid et al. (2016) make use of Hidden 
Markov Models to learn what constitutes normal behavior, and then use them to detect 
significant deviations from that behavior.

Several studies have proposed the use of deep feedforward neural networks for 
insider threat detection. The paper Liu et al. (2018a) uses deep autoencoder to detect 
potential insider threats. A deep autoencoder consists of an encoder and a decoder, 
where the encoder encodes the input data to hidden representations while the decoder 
aims to reconstruct the input data based on the hidden representations. The objective 
of the deep autoencoder is to make the reconstructed input close to the original input. 
Because the majority of activities in an organization are benign, the input with insider 
threats should have relatively high reconstruction errors.

Recurrent neural networks (RNN) are mainly used for modeling sequential data, 
which maintain a hidden state with a self-loop connection to encode the information 
from a sequence. The user activities on a computer can be naturally modeled as sequen-
tial data. As a result, many RNN-based approaches have been proposed to model user 
activities for insider threat detection. The basic idea is to train an RNN model to predict 
a user’s next activity or period of activities. The paper Tuor et al. (2017) proposes a 
stacked LSTM structure to capture the user’s activities in a day and adopts negative log-
likelihoods of such activities as the anomalous scores to identify malicious sessions.

Convolutional Neural Networks (CNN) have achieved great success in computer 
vision. A typical CNN structure consists of a convolutional layer, followed by a pooling 
layer, and a fully connected layer for prediction. A recent study on insider threat detec-
tion proposes a CNN-based user authentication method by analyzing mouse bio-behav-
ioral characteristics (Hu et al. 2019). The proposed approach represents the user mouse 
behaviors on a computer as an image. If an ID theft attack occurs, the user’s mouse 
behaviors will be inconsistent with the legal user. Hence, a CNN model is applied on 
images generated based on the mouse behavior to identify potential insider threats.

Graph convolutional networks (GCN), able to model the relationships between 
nodes in a graph, have gained increasing popularity for graph analysis. They use graph 
convolutional layer to extract node information. The paper Jiang et al. (2019) adopts a 
GCN model to detect insiders. Since users in an organization often make connections 
to each other via email or operation on the same devices, it is natural to use a graph 
structure to capture the inter-dependencies among users. Besides taking the adjacency 
matrix of structural information as input, GCN also incorporates the rich profile infor-
mation about the users as the feature vectors of nodes. After applying the convolutional 
layers for information propagation based on the graph structure, GCN adopts the cross-
entropy as the objective function to predict malicious nodes (users) in a graph.

3.2  Survival analysis applications

Survival analysis aims to model data where the outcome is the time until the occur-
rence of an event of interest. It was originally used in health data analysis and has 
since been employed in many applications, such as predicting student dropout time 
(Ameri 2016).



343

1 3

Survival analysis for insider threat  

Over the past few years, a number of advanced machine learning methods have been 
developed to deal with and make predictions based on censored data. Ensemble learn-
ing methods (bagging, boosting, etc.) generate a committee of classifiers and then pre-
dict the class labels for new data points as they arrive by taking a weighted vote among 
the prediction results from all these classifiers (Dietterich 2000). It is often possible to 
construct good ensembles and obtain a better approximation of the unknown function 
by varying the initial points, especially in the presence of insufficient data. Such ensem-
ble models have been successfully adapted to survival analysis whose time complexity 
mainly follows that of the base-learners (survival trees, random survival forests, etc.).

Active learning based on data containing censored observations allows the opin-
ions of an expert in the domain to be incorporated into the models. Active learning 
mechanisms allow the survival model to select a subset of subjects by learning from 
a limited set of labeled subjects first, and then querying the expert to confirm a label 
for the survival status before considering including new data in the training set. The 
feedback from the expert is particularly useful for improving the model in real-world 
application domains. The goal of active learning for survival analysis problems is 
to build a survival regression model by utilizing the censored instances completely, 
without deleting or modifying the instances (Vinzamuri et al. 2014).

Collecting labeled information for survival problems is very time consuming, 
as it is necessary to wait for the event to occur in a sufficient number of training 
instances to build robust models. A naive solution for this insufficient data problem 
is to merely integrate the data from related tasks into a consolidated form and build 
prediction models on this integrated dataset. However, such approaches often do not 
perform well because the target task becomes overwhelmed by auxiliary data with 
different distributions. In such scenarios, knowledge transfer between related tasks 
usually produces much better results. The authors in Li et al. (2016b) propose the 
use of a regularized Cox model to improve the prediction performance of the Cox 
model in the target domain through knowledge transfer from the source domain in 
the context of survival models built on multiple high-dimensional datasets.

In Li et al. (2016a), the authors reformulated the survival time prediction problem 
as a multitask learning problem. In survival data, the outcome labeling matrix is 
necessarily incomplete since the event label of each censored instance is unavailable 
after its corresponding censoring time. This means that it is not possible to han-
dle censored information using the standard multitask learning methods. To address 
this problem, the Multitask Learning Model for Survival Analysis (MTLSA) trans-
lates the original event labels into an indicator matrix to capture the dependency 
between the outcomes at various time points by using a shared representation across 
the related tasks in the transformation, which will reduce the prediction error for 
each task.

4  Methodology

In this section,we give a technical description of the features in the datasets used in 
our experiments. We then explain the details of the techniques employed for survival 
analysis. This leads to the layout of our computational setting.
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4.1  Dataset description

There is no comprehensive real world dataset publicly available for insider threat 
detection, unfortunately. In this study, we adopt the synthetic CMU CERT Insider 
Threat Test Dataset (Glasser and Lindauer 2013) to create our own variation, 
modified to suit the need of our experiments. The CERT division of Software 
Engineering Institute at Carnegie Mellon University maintains a database of 
more than 1000 real case studies of insider threat and has generated a collection 
of synthetic insider threat datasets using scenarios containing traitor instances 
and masquerader activities.

The dataset captures 17 months of activity logs of 1000 users with 70 insiders 
in a simulated organization, resulting in roughly 33 million log lines. It is divided 
into five activity categories: logon, device, http, email, and file. Each of these 
subsets of data contain recorded information relating to employees in the organi-
zation. More precisely, the logon file records the logon and logoff operations of 
all employees, the device file records the usage of a thumb drive (connect or dis-
connect), the http file records all the web browsing operations (visit, download, or 
upload), the email file records all the email operations (send or receive), and the 
file file records activities involving a removable media device (open, write, copy 
or delete).

In addition to the employees’ activity data on computers, the CERT dataset 
also includes the psychometric score for each employee, known as “Big Five 
personality traits”. These traits are Openness, Conscientiousness, Extraversion, 
Agreeableness and Neuroticism (OCEAN) and are defined as follows. Openness 
measures the level of creativity and desire for knowledge and new experiences. 
Conscientiousness measures the level of care in someone’s life and work. Extra-
version measures the level of sociability. Agreeableness measures the level of 
helpfulness and tendency to compromise toward other people. Neuroticism meas-
ures emotional reactions to good/bad news.

In this paper, we specifically focus on the device and logon data subsets. These 
specific areas are chosen due to their relevance in historic insider threat instances. 
For example, a recent survey (Maddie 2020) conducted by Tessian revealed that 
45% of employees download, save, and exfiltrate work-related documents before 
leaving or after being dismissed from a job (see Fig. 3). The preprocessing steps 
of the data consisted of separating the two columns that represent the device and 
logon attributes, crossing any incomplete rows for accuracy, and running the sur-
vival analysis rubrics in Python. All computations were performed on a personal 
laptop (64 GB RAM Core i7) over several periods of time, a couple of days each.

4.2  Survival analysis techniques

In order to generate the Kaplan–Meier curves, we first divide the study time into 
intervals t0 < t1 < … < tm , where t0 and tm are the starting and the ending times, 
respectively. We then define di as the number of malicious system events at time 
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ti and ni as the number of non-malicious users left at time ti , for i = 0, 1,… ,m . 
Based on Eqs. (1–2), we can iteratively estimate the survival function as follows

On the other hand, the Cox proportional hazards model requires a priori the iden-
tification of the risk factors associated with the prediction of the outcome. To this 
end, we extract seven variables in the datasets in question and we define them as 
follows. The first variable is the time of action, represented as hours since midnight 
(i.e., 2 : 30 am = 2.5). The next five variables are the respective scores in the big five 
traits explained in the previous section (OCEAN). The last variable is the activity 
binary status of the user; in the device file 0 = disconnect, 1 = connect, and in the 
logon file 0 = logoff, 1 = logon. Finally, each data point is labeled malicious (1) if 
it is an insider and benign (0) otherwise. Table 1 records a snippet of the logon file.

(7)S(t0) = 1 S(ti+1) = S(ti) ∗

(

1 −
di

ni

)

Fig. 3  Employees’ actions before leaving a job, sorted by industry (Maddie 2020)



346 E. Alhajjar, T. Bradley 

1 3

5  Results and discussion

The resulting Kaplan–Meier curves are recorded in Fig. 4 for the device dataset 
and in Fig. 5 for the logon dataset. From these curves, we can estimate the prob-
ability that an employee “survives” past 300 days, for example, by locating 300 
days on the x-axis and reading up and over to the y-axis. Moreover, at the end of 
the study period, the proportion of employees surviving is 99.35% based on the 
logon data and 99.5% based on the device data.

The results of the Cox proportional hazards model shed light on the effects 
of the characteristics of each system event on the overall likelihood of insider 
threats. Tables 2 and 3 show the parameter estimates corresponding to the vari-
ables of the model in the logon and device datasets, respectively (CI stands for 
confidence interval). For interpretability, we compute the hazard ratios by expo-
nentiating the parameter estimates. If the hazard ratio is less than 1, then the 
predictor is protective (i.e., associated with improved survival) and if the haz-
ard ratio is greater than 1, then the predictor is associated with increased risk 
(or decreased survival). For example, in the logon dataset, there is a 7% increase 
in the expected hazard relative to a one unit increase in neuroticism, holding all 
other factors constant, while there is a 4% decrease in the expected hazard rela-
tive to a one unit increase in agreeableness.

Table 1  Example logon data 
points

ID Time O C E A N Activity

JKS2444 7.378 48 16 19 34 30 1 0
CBA1023 7.528 20 42 23 21 28 1 0
GNT0221 7.558 43 19 21 24 27 1 0

Fig. 4  The Kaplan–Meier curve for the device dataset
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Fig. 5  The Kaplan–Meier curve for the logon dataset

Table 2  Parameter estimates for the logon dataset

Risk factor Parameter estimate 95% CI Hazard rate 95% CI

Time 0.28 [0.19,0.36] 1.32 [1.21,1.44]
Openness − 0.03 [− 0.07,0.00] 0.97 [0.93,1.00]
Conscientiousness 0.03 [0.00,0.07] 1.03 [1.00,1.07]
Extraversion − 0.01 [− 0.04,0.03] 0.99 [0.96,1.03]
Agreeableness 0.06 [0.02,0.10] 0.96 [1.02,1.11]
Neuroticism − 0.04 [− 0.12,0.03] 1.07 [0.89,1.03]
Activity 0.34 [− 0.83,1.50] 1.40 [0.44,4.48]

Table 3  Parameter estimates for the device dataset

Risk factor Parameter estimate 95% CI Hazard rate 95% CI

Time 0.08 [− 0.13, 0.29] 1.08 [0.88, 1.33]
Openness − 0.16 [− 0.26, − 0.07] 0.85 [0.77, 0.94]
Conscientiousness 0.02 [− 0.04, 0.08] 1.02 [0.96, 1.09]
Extraversion − 0.04 [− 0.11, 0.04] 0.96 [0.90, 1.04]
Agreeableness − 0.04 [− 0.11, 0.04] 0.96 [0.90, 1.04]
Neuroticism 0.07 [− 0.10, 0.23] 1.07 [0.91, 1.26]
Activity 0.02 [− 1.37, 1.40] 1.02 [0.25, 5.07]
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In order to analyze the relationship between the predictors and the risk of insider 
threat, we take a closer look at the hazard ratios in Tables 3 and 4. We summarize 
the findings below: 

1. Openness, extraversion, and agreeableness are negatively correlated with the rela-
tive hazard. This can be explained by the fact that employees who are creative, 
social, and helpful to others are less likely to pose an insider threat.

2. Conscientiousness and neuroticism are positively correlated with the relative 
hazard. One way to justify this is that nosy employees and those with a high 
emotional spectrum have more tendency to become insiders within their organi-
zations.

3. In an obvious sense, it is no surprise that the level of activity performed by an 
employee (logon/logoff, inserting a flash drive, etc. ) has the potential of increas-
ing the risk of insider threat.

4. In both datasets, there is a positive association between the time of activity and 
the relative hazard of insider events. This is indicative that it is highly probable 
that malicious events will take place later in the day, even after working hours.

Despite the small amount of insider events and the consequent skewed nature of the 
CERT dataset, the results above are able to capture the intricate relations between 
insider threat risk and different attributes of an employee. Similar findings were pre-
viously achieved using machine learning techniques in general, and deep learning 
in particular Lu and Wong (2019). The advantages of our methods here lie in the 
natural extension of survival analysis to the insider threat domain, which to date 
remained surprisingly unexplored, and in the accurate pinpointing of the specific 
attributes that correlate (positively or negatively) with the risk of insider threat 
incidents.

6  Conclusion

The insider threat problem is one the most challenging security threats and the main 
concern of organizations of all sizes and in all industries. Hence, understanding and 
gaining insights into insider threat detection is an important research direction that 
remains underexplored. In this paper, we introduce a survival analysis based frame-
work for the problem of estimating high risk employees in an organization based on 
their personality traits, as well as the time and the type of activities they perform 
on their computers. We use the CERT Insider Threat Dataset to validate the cor-
relations between the predicting factors and the relative risk of insider threats. Our 
results show a negative association between openness, extraversion, and agreeable-
ness and the relative hazard, while the remaining factors (conscientiousness, neu-
roticism, time, and activity) exhibit a positive correlation with the potential risk 
induced. To the best of our knowledge, our work is the first to deploy survival analy-
sis techniques in the study of the insider threat problem.
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There remain a lot of challenges in this field of study, we mention a couple 
of them herein. First, the major issue in insider threat detection research is the 
lack of real data for assessing the dynamics of the threat as well as the possi-
ble defense solutions. Most work to date relies on a handful of synthetic datasets 
that are often criticized for not correctly modeling real environments. Second, 
more factors need to be taken into consideration when evaluating an employee’s 
activity within an organization. For example, current datasets should be enriched 
by adding additional predictors like previous history, promotion tracker, perfor-
mance reviews, etc. while being cautious in quantifying them. Third, even with 
full blown datasets, the community still faces the difficulty of drawing a clear line 
between what is legitimate behavior and what is malicious behavior. This raises 
unnecessary false alarms in handling anomaly detection cases and makes detec-
tion of insider activity even harder. Fourth, the ability of capturing logs for the 
activities is an advantage that may provide insight into employee actions. Despite 
this advantage, the analysis of activity logs continues to be difficult for analysts 
because of the sheer volume of activities that employees produce every day. The 
high dimensionality of the monitored activities results in the massive needs for 
data to be processed and creates an extra hurdle to be overcome. Last but not 
least, the complexity of detecting insider threats is increasing due to the failure of 
current defense systems, the diversity of possible insider attacks, and the ability 
of employees to work from anywhere and be connected to any network outside 
their organization’s servers.

As technological advances provide better tools to detect and prevent insider 
threat attacks, they also introduce new threats. They not only make it easier for 
adversaries to engage trusted human actors in a network but also introduce new, 
nonhuman trusted agents such as mobile devices, internet-connected devices, and 
artificial intelligence (AI). Indeed, many researchers have recently called for the 
definition and treatment of insider threat to be expanded to include technology 
that acts as trusted agents within networks (Cybersecurity 2019). More precisely, 
technology has resulted in an increase in external adversary use of unwitting 
insiders to gain a digital foothold in an organization. The crux of the argument is 
that a continued human-centric approach that focuses solely on malicious actors 
is myopic and dangerous; the insider is the trusted actor on a network, whether 
that actor is human, an embedded device, the software, the network, or the AI, 
and its risk should be considered regardless of whether the action is volitional or 
non-volitional and whether the motive is malicious or non-malicious.

Finally, we hope the survival analysis techniques used in this study could be 
transfered to other pressing issues where early prediction is essential such as 
network traffic anomalies, sex offender registries, organized crime, etc. Survival 
analysis techniques provide a relatively simple and effective way to predict the 
occurrence of specific events of interest at future time points. Due to the wide-
spread availability of survival data from various domains, combined with the 
recent developments in various machine learning methods, there is an increasing 
demand for methods that can help understand and improve the way survival data 
might be handled and interpreted.
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