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Abstract Pythagorean fuzzy set, an extension of the intuitionistic fuzzy set which
relax the condition of sum of their membership function to square sum of its
membership functions is less than one. Under these environment and by incorpo-
rating the idea of the confidence levels of each Pythagorean fuzzy number, the
present study investigated a new averaging and geometric operators namely con-
fidence Pythagorean fuzzy weighted and ordered weighted operators along with
their some desired properties. Based on its, a multi criteria decision-making method
has been proposed and illustrated with an example for showing the validity and
effectiveness of it. A computed results are compared with the aid of existing results.

Keywords Pythagorean fuzzy set - MCDM - Confidence levels - Aggregation
operators - Decision making

1 Introduction

MCDM is one of the fast growing research active problem in these days for reaching
a final decision within a reasonable time. But it is not always permissible to give the
preferences in a precise manner due to various constraints and hence their
corresponding results are not ideal in some circumstances. To handle it, an IFS
theory (Atanassov 1986) is one of the successful and widely used by the researchers
for dealing with the vagueness and impreciseness in the data. Under these
environment, the various researchers pay more attention on IFSs for aggregating the
different alternatives using different aggregation operators. In order to aggregate all
the performance of the criteria for alternatives, weighted and ordered weighted
aggregation operators (Yager 1988; Yager and Kacprzyk 1997) play an important
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role during the information fusion process. For instance, Xu and Yager (2006)
presented a geometric aggregation operator while Xu (2007) presented a weighted
averaging operator for aggregating the different intuitionistic fuzzy numbers. Later
on, Wang and Liu (2012) extended these operators by using Einstein norm
operations under IFS environment. Garg (2016d) presented a generalized improved
score function to rank these numbers and applied it to the decision-making
problems. Ye (2009) presented a new accuracy function for interval-valued IFS.
Garg (2016h) proposed some series of interactive aggregations operators for
intuitionistic fuzzy numbers (IFNs). Garg (2016a) presented a generalized
intuitionistic fuzzy interactive geometric interaction operators using Einstein norm
operations for aggregating the different intuitionistic fuzzy information. Xu et al
(2014) had presented the intuitionistic fuzzy FEinstein Choquet integral based
operators for decision making problems. Garg (2016b) presented a generalized
intuitionistic fuzzy aggregation operator under the intuitionistic multiplicative
preference relation instead of intuitionistic fuzzy preference relations. Apart from
these, various authors have investigated the problem of the decision-making under
the different environments (Nancy and Garg 2016a, b; Dalman 2016; Dalman et al.
2016; Yu 2014; Yu and Shi 2015; Kumar and Garg 2016; Ye 2007; Garg et al.
2015) and so on. A comprehensive analysis on MCDM using different approaches
under IFS environment has been summarized in Yu (2015) and Xu and Zhao (2016).

From these above studies, it has been concluded that they are valid under the
restrictions that sum of the grades of memberships is non greater than one.
However, in day-today life, it is not always possible to give their preferences under
this restriction. For instance, if a personal gives a preferences about the alternative
satisfies the criteria is 0.8 while dissatisfies is 0.6. Therefore, it does not satisfies the
IFS condition i.e., 0.8 + 0.6 ﬁ 1. Hence, under such circumstances, it is not possible
for the decision maker to evaluate the performance and hence IFS theory have some
drawbacks. In order to overcome these, Yager and Abbasov (2013) introduced
Pythagorean fuzzy set (PFS) theory which is an extension of IFS theory by relaxing
the conditions of p+ v <1 to > +v?> <1, where p and v represents the degrees of
the membership/satisfication and non-membership/dis-satisfication of an element.
Also, it has been observed that all the intuitionistic fuzzy degrees are a part of the
Pythagorean fuzzy degrees, which indicates that the PES is more powerful to handle
the uncertain problems. After their pioneer work, researchers are actively working
in the field of PFS to enhance it. Yager and Abbasov (2013) showed that the
Pythagorean degrees are the subclasses of the complex numbers. Later on, Zhang
and Xu (2014) presented a technique for finding the best alternative based on its
ideal solution under the Pythagorean fuzzy environment. Yager (2014) developed
various aggregation operators, namely, Pythagorean fuzzy weighted average
(PFWA) operator, Pythagorean fuzzy weighted geometric average (PFWGA)
operator, Pythagorean fuzzy weighted power average (PFWPA) operator and
Pythagorean fuzzy weighted power geometric average (PFWPGA) operator to
aggregate the different Pythagorean fuzzy numbers. Peng and Yang (2015) defined
the some new arithmetical operations and their corresponding properties for PFNs.
Garg (2016g) defined the concepts of correlation and correlation coefficients of
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PFSs. Also, Garg (2016f) presented a novel accuracy function under the interval-
valued pythagorean fuzzy set (IVPFS) for solving the decision-making problems.
Garg (2016c, e), further, presented a generalized averaging aggregation operators
under the Pythagorean fuzzy set environment by utilizing the Einstein norm
operations.

Despite the popularizes of the above work, all the above studies have investigated
without considering the confidence level of the attributes. In other words, all the
researchers have investigated the studies by taking the assumption that decision
makers are taken to be surely familiar with the evaluated objects. But in real-life
situation, this type of conditions are partially fulfill. To overcome this shortcoming,
the decision makers may evaluate the alternative in terms of PFNs and their
corresponding confidence levels for their familiarity with the evaluation. Therefore,
the present study incorporated the idea of the confidence levels into the aggregation
process during the evaluation of the alternative in terms of PFNs. Based on these
evaluations, some series of the averaging and geometric aggregations operators are
proposed namely CPFWA, CPFOWA, CPFWG and CPFOWG along with their
desired properties. Further, a MCDM method based on these operators have been
proposed for solving the problems.

The rest of the manuscript has been summarized as follows. Section 2 describe
the basic concept related to the Pythagorean fuzzy set and their subsequently
operations. In Sect. 3, new series of aggregation operators namely CPFWA,
CPFOWA, CPFWG and CPFOWG along with their properties. Section 4 presented
an algorithm for solving MCDM problems under uncertainties based on the
proposed operators. Section 5 gives a case study on finding the best alternative to
illustrate the applicability and implementation process of the proposed approach.
Finally, the paper ends up with some concluding remarks in Sect. 6.

2 Basic concepts

Definition 1 A Pythagorean fuzzy set (PFS) A is defined as a set of ordered pairs
of membership and non-membership over a universal set X and is given as (Yager
2013)

A= {(x pa(x), va(x)) | x € X}

where p,,v4 : X — [0, 1] represent the degrees of membership and non-member-
ship of the element x € X such that (u, (x))* + (va(x))* < 1. Corresponding to its
membership  functions, the degree of indeterminacy 1is given as
A (x) = \/1 — (ua(x))* = (va(x))*. For convenience, Zhang and Xu (2014) called

(14 (x),va(x)) a PFN denoted by A = (u,, v4) and the score function of A is defined
as follows:

se(A) = () = (va)? (1)
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where sc(A) € [—1, 1], while, an accuracy function of A be defined as follows

ac(A) = (pa)* + (va)* )
where ac(A) € [0, 1].
Based on these functions, a prioritized comparison method for any two PFNs
A and B is defined as follows.
Definition 2 Let A and B be any two PFNG.

1. If sc(A) <sc(B), then A < B;
2. If sc(A) > sc(B), then A > B;
3. If sc(A) = sc(B),
(i) If ac(A) <ac(B), then A < B.
(ii)) If ac(A) > ac(B), then A > B.
(iii)  If ac(A) = ac(B), then A ~B.

Definition 3 Basic operations: For three PENs o = (g, v), oy = (i, v1) and o =
(Up,v2) and a real positive number A, Yager (2013); Yager and Abbasov (2013)
defined the basic operations under the algebraic norm operations and are defined as
follows.

- o Doy = <\/‘u%—|—‘u% —,u%,u%,vlvz>.
- oy Rum= <u1u2, VYV — v%v%>.

—zm_<1—u—mﬂw>

- M:<m71—u—ﬂﬂ>

Based on these operations, an averaging and geometric aggregation operators
namely as PFWA and PFWG respectively have been proposed for a collection of
PFNs o;(1 <j<n) as follows (Yager 2014).

n

n
PEWA(. ... %) —< t-TJa- u%)“*qu;”/> G)
j

Jj=1

and PFWG (o, a2, . . ., 0tp) < Hﬂ;"f, 1— H(1 _ vjz)wf> (4)

j:] j:l
T . . . .
where @ = (w1, m,...,0,)" is the associated normalized weight vector.

Theorem 1 Consider three PFNs o. = (i, v4), %1 = (i1, v1) and oy = (U, v2) and
areal 2> 0 then az = o, oy = Jo, o5 = oy D oy and g = o ® oy are all PFNs.
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Proof Since o = (u,v) be a PEN which means that y2 + v2 < 1. Therefore, 1 —
v2> 12 >0 and hence (1 — v2)* > (42)* > 0. Thus, we have

((ua)1>2 + < 1—(1— (vg¢)2)1>2 <1.

Furthermore,
N2 2
(@) + (Vi-0-027) =0
iff u, =v, =0
and

((uz)i>2 + ( 1—(1— (va)z)*>2 -

i (1) + ()" = 1.
Thus, a3 = o* is PFN. Similarly, we can prove that a4, o5 and o are PFNs. [

Theorem 2 Let /, Ay, A >0, then

) w@om=0doy

(i) o1 Q@ =0 @
(111) l'(d]@dz)zi'dl@/{'dz
iv) (1 ®@w) = ocf ® oc§

) l]'O(EB/lQ'OC:(;L]+/12)~OC
(Vl) “il ® a/lg — OC;”1+)"2

Theorem 3 Let oy = (i, v1) and oy = (U, v2) be two PFNs then

i) o Aos = (o Vo)
()  of Vas = (n Aw)
(i) of Do§ = (o ® )"
(iv) oS @as= (o ®op)
) (ocl V O(z) D (O(l A O(g) =0 Doy
i) (V) ® (g Aop) =0 @

Proof The proof is trivial. O

3 Pythagorean fuzzy information aggregation operations
with confidence levels

In the existing literature, all the researchers have investigated the studies by taking
the assumption that decision makers are taken to be surely familiar with the
evaluated objects. But in real-life situation, this type of conditions are partially
fulfill. To overcome this shortcoming, in this section, we are presenting a series of
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an averaging and geometric aggregation operators with different confidence levels
for their familiarity with the evaluation.

3.1 Averaging operator

Definition 4 Let Q be a collection of PFNs oy, a, .. ., o, and #; be the confidence

levels of PEN o; such that 0 <#; <1. Assume that o = (@, my, .. .,wn)T be the
weight vector of these PFNs such that w; € [0,1] and }7 ;=1 and let
CPFWA : Q" — Q. If

CPFWA(<M171’]1>, <O€27 772>7 ceey <O€n7 17n>) = w1 (’71“1) D 602(1’[2062) D...0D wn(’/’na’l)

then CPFWA is called confidence Pythagorean fuzzy weighted averaging operator.

Theorem 4  Let o; = (1;,v;), j = 1,2,...,n be ‘n’ PFNs and n; be its confidence
levels then the aggregated value by CPFWA operator is also PFN and

CPFWA(<“17’71>a <OC27772>7 tey <ana ’7n>) = @;1:1601(’7]“/)

= (1= T 0 - I )

=1

where w; is the weight vector associate with o; such that w; € [0,1] and

Y o= 1.

Proof This result has been proved by using induction on n.
For n = 2, we have

CPFWA ({01, 1), (2, 12)) = @1(1101) © w2(n,%2)

According to Theorem 1, we can see that both #,«; and 5,0, are PFNs, and the
value of w;(17,01) @ wa(n,02) is PFN. So, we have

10 =< 1-(1 —H%)"',V7'> = <a17b1>
= w(n01) :< 1—(1- a%)w‘,b‘{“> = < 1—(1- u%)"lw‘,vq“w'>

and
m@=<1—a—@W%§:mw@

= ontie) =( 1= (- ) = (/1= (- @

Thus,
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CPFWA(<“1"1|>» <0¢2,712>) = o1(1,01) © 02(11,%)

<\/1 17,(1)1 + 1 (1 ‘u%)nzwz o (1 _ (1 o ‘u%)n,wl)(l . (1 _ ‘u%)’?z‘“z) V117|<z)1v22012>
- W L= (1= @) (1 - u)>

which is true.
Assume Eq. (5) holds for n =k, i.e.,

k k
CPEWAN1, ) o) i) = (1 1o~ ey I )

j=1
Now, by using the operational laws as PFNs for n = k + 1 we have,

CPFWA(<OC1)7]1>’ <O(2?172>a SR <°‘k+17’7k+1>) =
CPFWA(<961”/’]>7 <a27'/]2>7 DY) <05k>’71<>) D wk+1(’1k+lak+1)

k k
'7‘1) 1 0j 2 \Mks1 Okt M1 Okl
=( =TI TT e (= =i

j=1 j=1

k+1 k+1
. 17;00;
~(y[1-TIa -y 10

j=1 j=1

i.e., when n = k + 1, Eq. (§) also holds.
Hence, Eq. (5) holds for any n.
Next, in order to show CPFWA is PFN.
As o = (u;,v;) for all j is PEN, thus 0 <;,v; <1 and ,u2 + v2 < 1. Therefore,

0<1—p <1 which implies that 0<T[ (I —w)" < < 1 and hence
og\/l —H (1 —2)" < Tand 0< [ V7 <1.
Again,
((-To=sre) + (1) ===
=1 =1 =1 j=1
& 2nja), Zr,jwj
<1- H + H =
=
Hence, CPFWA operator is PFN and therefore proof is completed. O
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Remark 1 1f all n; = 1 then the CPFWA reduces to PFWA operator (Yager 2014)

n n
PFWA(0y, 00, .. ., 0) = < =T - ), Hv_;"f>
j=1

J=1

Example 1 Let o; = ((0.5,0.7),0.7), op = ((0.8,0.4),0.8) and o3 = ((0.3,0.6),

0.85) be three PFNs with confidence levels and o = (0.25,0.40,0.35)" be their

corresponding weight vectors then
n

TT (1 =) =(1-0.5%)"7% x (1-0.8%) " x (1-0.3%) " = 0.6668

j=1
n

H(Vj))]]wj :(0.7)0.7><0A25 % (0.4)0.8><0A40 % (0.6)0A85><0A35 =0.6019

j=1
Thus, by Eq. (5), we get

CPFWA(<O(17 ’71>7 <OC2,172> <063,1’]3 < 1— H 11,(1)] H w,>

:<O.5773,0.6019>

For a collections of PFNs, the proposed aggregation operator CPFWA satisfies
the following properties.

Property 1 (Idempotency)  If o = oo = ((#g, Vo), Mo) for all j, i.e., w; = g, v; =
vo and n; = 1 then

CPFWA(<a17 771>7 <“27 ’72>7 RS <°‘n7’1n>> = Nop%o

Proof Since o; = o9 = ((pg, Vo), 1o) for all j and > w; = 1, so by Theorem 4,
=1

n

CPFWA(<a17 7/1>7 <O(2, ’72>7 T <fxm ’1n>) = < 1 - H(l - #(2])'10(0[> vaowj>
=1

J=1

00 Z’o”j
:<\/1 - >

—(Si— =@

=Ho%

Hence proof is complete. U
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Property 2 (Boundedness) Let o~ = <m_in{17juj},max{77jvj}> and ot =
J J
(max{np;}, min{n;y;}) then

< CPFWA(<O‘1a 771>7 <O(2, ’72>’ H) <ana ”n>) < ot (6)

Proof As mjin{,uj} << mjax{uj} for j=1,2,...,n this implies, 1—

(mjax{,uj})2 <1—w <1 - (mjin{uj})2 then for all j, we have

H (1- (max{,u} )" < H e < H (1- mln{u]}) 2y

j=1 j=1

Z’b“’r n Z'h“’f
= (1= (max{y})°) 7 <H )" < (1= (min{g;})*) 7

=(1-— max{,u} )< H I < (1= (mln{,u D)

n

=1 = (1= (min{py )" < 1= [[(1= 2" < 1= (1 = (max{y}))"

j=1

:'\/1 = (1= (min{y})*)" <\ |1 - f[(l — )" < \/1 = (1= (max{g;})")"

j=1

n

i.e.,mjin{njvj} <, |1- H(l — ) < mJaX{njﬂj}-

=1
Furthermore, mln{v]} <y; < max{vj} for all j=1,2,...,n this implies that
(mln{v e <( )i < (max{v W% and hence (mln{vj})”/ < TTs ()™
< (max )7, e min{) < TL ()7 < max ().

Let o= CPFWA((ocl,m), (02, M3)s s {0y M) = (M, Va). Then, we have
min{n;u;} <, < max{n;;} and min{n;v;} <v, < max{n;v;}. So by definition of
J j J J

score function, we have

selo) = 12 =2 < (max{iuy})” = (minfny})* = se(a”)

sel0) = 1 =3 > (min{ouy})” — (max{y})” = se(o)

In that direction, three cases are considered.
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Case 1:  If sc(a) <sc(ot) and sc(o) > sc(a) then it follows from Definition 2
that

o <CPFWA(<O(1;’71>7 <O(27772>a RS <O(11717n)) <O(+

Case 2:  If sc(a) =sc(a’) ie., 2 —v:= (mjax{nj,uj})2 - (mjin{njvj})z, then
by above inequalities, we have u, = mjax{nj,uj} and v, = rrljjn{nj\{j}.
Thus
ac(2) = 15 + v = (max{nsg})* + (min{v;})*
then it follows from Definition 2 that

CPFWA(<O(1”71>7 <O£2, ’72>7 ce <(xn7’7n>) =o"

Case 3:  If sc(a) = sc(a”) ie., p2—v2i= (mjn{n]-u]»})z - (max{nivj})z, then
i i

we get i, = min{n;x;} and v, = max{n;v;}. Thus
j J

ac(o) = 5 +v; = (min{us})* + (max{n;v;})”
then it follows from Definition 2 that

CPFWA(<“1;’7]>7 <O(21 '12>a ey <an7’1n>) =o

Hence, Eq. (8) holds. O

Property 3 (Monotonicity)  If o; and f8; be two different collections of PFNs such
that o; < f; for all j then

CPFWA(<O(1”71>’ <0527’72>a RS <an7nn>) < CPFWA(<ﬁl”71>7 <1827’72>’ SRS <ﬁn7nn>)

Proof Proof of this property is similar to that of above, so we omit here. U
3.2 Ordered weighted averaging operator

Definition 5 Let Q be a family of PFNs o, n; be its confidence levels such that
0<n;<1. A confidence Pythagorean fuzzy ordered weighted averaging
(CPFOWA) operator is a mapping Q" — Q:

CPFOWA({ou1,11), (92, M2), - -+ (0, 1)) = @1 (1) %5(1)) © @2 (m501)%(1))

D .. ® on(Ns(1)%(1))

where (6(1),6(2),...,6(n)) is a permutation of (1,2,...,n) such that os;_) > o)
for any j.
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Theorem 5 Let o = (w;,v;) be n’ PFNs and 1; be its confidence levels then the
aggregated value by CPFOWA operator is also PFN and given by

CPFOWA({o1, 1), (02,12) 5 -« -5 (0ns M) —<\j 1-— ﬁ(l _ ”(ng))’bwuja ﬁ("ég))wmm> (7)

j=1 j=1
Proof Proof of this Theorem is similar to that of Theorem 4, so we omit here. []

Example 2 Let oy ={(0.3,0.9),0.75), o = ((0.5,0.8),0.80), o3 =
((0.8,0.4),0.7) and o4 =((0.7,0.5),0.90) be four PFNs and o=
(0.2,0.3,0.1,0.4)T be their corresponding weight vectors. Then score values of
each PFN is sc(y) =0.32—-0.92 = —-0.72, sc(op) = 0.5 — 0.8 = —0.39,
sc(az) = 0.82 — 0.4 = 0.48 and sc(ay) = 0.7 — 0.5 = 0.24. Thus
o3 >0y > op > oy and therefore oy = 03, o5) = o4, %53) = o and o4y = .
Now, we have

4
H 1 _ '“0(/ m(, O _ (1 _ 0.82)0.7><0.2 y (1 _ 0.72)049><0.3 « (1 B 0'52)0.8><0.1

~ « (1 _ 0.32)075on4
= 0.6865
li[ (v5))"0 = 04)07><02 (0.5)0.9><0,3 % (0.8)0.8><041 y (0.9)0.75><0.4
j=1
= 0.6943

So, by Eq. (7), we get

4 4
CPFOWA(<O“ ’ ;71)7 <062, 772>v <“3a ’73>> <CX4, ]74>) = <\j 1- H(l - 'u%(/'))%mwj? H(V(S(f))n';(/){J)j>
J=1 j=1

=(0.5599,0.6943)

CPFOWA operator follows the same properties as that of CPFWA operator
which have been stated, without proof, as follows for the collections of PFNs o;,

G=1,2,...,n).
Property 4

(i)  (Idempotency) If o = o9 = ((tto Vo), M) for all j, i.e., w; = wy, v; = vo and
1j = Mo then

CPFOWA(<“M’71>7 <O€2, ’72>7 s <OCn7 ’7n>) = Mo%
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(i) (Boundedness)  Let o = (min{ny}, max{nyv;}) and o =
J J
(max{np;}, min{n;y;}) then
o < CPFOWA«O“? 111>7 <O€2, ’72>7 EEE) <O(n, ’/’n>) < ot (8)

(iii) ~ (Monotonicity) For collections of two different PFNs o; = (i, ,vy,) and
B; = (,uﬂ/, vg,) which satisfies the relation o; < ; for all j = 1,2,.. ., n i.e.,
if py, < tg, and vy, > vg, for all j, then

CPFOWA(<OC[,}1|>, <“27 '72>7 Tt (%»’7;,)) < CPFOWA((ﬁMﬁ% <ﬁ27 7’2)’ ) <ﬂm ’/In>)

3.3 Geometric operator

In this section, a confidence Pythagorean fuzzy information aggregation from the
geometric mean has been presented over the families of the PFNs denoted by Q and
their corresponding aggregation operator.

Definition 6 Let o; = (1;,v;) be ‘n’ PFNs and #; be its confidence levels. A

confidence Pythagorean fuzzy weighted geometric (CPFWG) operator is a mapping
Q" — Q such that

CPFWG (21,5, o) = R, () = () © () @ ... ® (&)™ (9)

where (w;, Wy, .. ., a)n)T be the normalized weight vector of o;.

Theorem 6 Let o = <,uj, \{,-> be a collection of ‘n’ PFNs and n; be its confidence
levels such that 0<n; <1 for j=1,2,...,n then aggregated value by CPFWG
operator is also PFN and

CPFWG(<117’71>7 (O(z./ ’72>7 L) <OC,,, ﬂn)) = ®/"l:1(a_;b)wj =

(10)

n
where w; is the weight vector associate with «; such that w; € [0,1] and > w; = 1.
=1
Proof For n =2, we have

CPFWG(<O“7171>7 <“23 ’72>) = (OCT)(UI X (agz)wz

According to Theorem 1, we can see that both aY‘ and otgz are PFNs, and the value of
()" @ (222)** is PFN. So,
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558 H. Garg
o = (1 /1= (=) ) = )
= ) = ar /1= = o) = (e i= =)
and
o = (1= (=) ) = )
= ) = (/1= =)™ ) = (e 1= =)
Then
CPFWG((o1, 1), (22, 12)) = (o)™ @ (032)™
= (e U (T A (1 (- () )

- <uu Y1 == )

which is true for n = 2.
Assume Eq. (10) holds for n =k, i.e.,

k k
CPFWG({o1, 1), (2, 12), - - - (0, 1)) <H P r=TJa —v})"f“’-f>

j=1
Now forn =k + 1,

CPFWG({o1,11), (02, M2), -+ -5 (Ot 15 Mi1)) =
CPFWG(<O€1, ’1]>7 <O(2, ’12>7 cee <ak7’7k>) ® ((lef:ll)whrl

k k
o 1;0; 2\ 11;0; M1 Dk+1 "I Wi+1
_< :uj/ , l_Il(l_Vj)//> <k+l \/1 1—V k+1 +>
j "

=1 Jj=1
s B k1

<H Vh(j 1 7H(1 V})njwj>
=1 j=1

i.e. Eq. (10) holds for n = k + 1.
Hence, Eq. (10) holds for any n.
Next, in order to show CPFWG is an PFN.

As o; = (g;,v;) for all j is an PFN, thus 0 <y;,v; <1 and ,u]? +vj2§ 1.

0<TIL,(1—=v)"” <1 and hence 0< \/1 =TI =y} <1
j=1 ‘
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0< H #;]]wj <1.
j=1
Again,

2
< 1 - H(l — vj?)ﬂm)j) + (Hﬂjﬂ;wj)z i H quj T H 21109

Jj=1 Jj=1 Jj=1

< 1— HMZVij, + H Zr,jw, _

Hence, CPFWG is PEN. O

Remark 2 1f all n; = 1 then the CPFWG reduces to PEWG operator (Yager 2014)

PFWG(fxlyOCZ,..., <H’u] , I_H(I—ij)wj>

=1

Example 3 Let oy =((0.4,0.7),0.7), o, =((0.7,0.5),0.8) and o3=
((0.8,0.4),0.7) be three PFNs and » = (0.4,0.3,0.3)" be its associated weight
vectors then by utilizing CPFWG operator, we have

i

(1) = (0.4°7)%% x (0.7°%)? x (0.8°7)* = 0.6777

~.
Il
-

w
—~
—_

AV OV _ 210.7x0.4 _ 2,10.8x0.3 _ 2,0.7x0.3 __
— )" = (1-0.7%) x (1—0.5%) x (1 —0.42) =0.7451

~.
Il

Thus, CPFWG (01,00, 3) = (0.6777,v/1 — 0.7451) = (0.6777,0.5048).

Property 5 Let o; and f; be collections of two different PFNs and 0 <n; <1 be its

confidence levels of them, » = (w1, wy, . . ., wn)T be a weight vectors of PFNs such

that w; € [0,1] and )" w; = 1; then
j=

(1) (dempotency) If a; = a9 = ((Uo, Vo), o) for all j then
CPFWG(<“D'71>7 <OC2’172>? te <OCVH 77n>) = ugo

(i)  (Boundedness) Let o~ = (min{u} max{v'}) and o = (max{u},
j i i
mjn{v?’ }) then
i

o0 <CPFWG({ot1,11y), (02, 12) - - oy (ot 11,)) <00
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(iii)  (Monotonicity) If o; < f; for all j then

CPFWG(<°”7’7|>7 <“27 ’72>a ) (“m '7n>) < CPFWG(<[317'71>7 <ﬂ2> '72>7 e </gn7 ’7;1))

3.4 Ordered weighted geometric operator

Definition 7 Suppose Q be a family of PFNs o; = (y;,v;) and 1; be the confidence
levels such that 0 <n; <1 forj=1,2,...,n and CPFOWG : Q" — Q, if

CPEOWG((21,), (02, 1s), -« (o 1)) =(5) @ (43) @ ... @ (al)

where 0 is a permutation of (1,2,3,...,n) such that as;_;) > o) for any j. Then
CPFOWG is called confidence pythagorean fuzzy ordered weighted geometric
operator.

Theorem 7  The aggregate value by CPFOWG operator for PFNs o; = (1, v;) is
again PFN and given by

CPFOWG(<a1, n1>7 (02,12)5 s (s 1)) =@ (258

u N (11)
:< T TCksg) ™0, \J 1=1Ja- Vg(i))mw>
j=1 j=1
where 1); is confidence levels of and wj is the normalized weight vector of ;.
Proof Proof of this theorem is similar to that of Theorem 6. O

Example 4 Consider the data given in Example 3 then by score function sc, we
have sc(og) = 0.4%> — 0.7 = —0.33, sc(up) = 0.7 — 0.5 = 0.24 and
sc(az) = 0.8 — 0.4% = 0.48. Thus sc(o3) > sc(on) > sc(oy) we have oz > o > o.
So a1y = 3, %52) = %2 and a3y = o1. Therefore,

3
H )@ = (0.8°7)% x (0.7°%)% x (0.4°7)** = 0.7114

3

H (1= V30 = (1= 04%)"7 % 5 (1= 0.52)"%0% 5 (1 - 0.7%)*7% = 0.7716

Thus, CPFOWG (a1, ay, a3) = (0.7114,0.4779).

As similar to CPFWG operator, CPFOWG operators follows the same properties
as given in Property 5.
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4 Group decision making approach under confidence levels

Consider a decision-making problem with a collection of m different alternatives
A={A,A,,.. ,A,} and n criteria C = {C,C,,...,C,} whose weight vector is
o= (w,w,,...,0,) satisfying w; € [0,1] and 27:1 w; = 1. Assume that there
are k set of decision makers denoted by D = {D, D, ..., D;}, whose weight vector
isé=(&,8,. .., &)" satisfying ¢, >0,g=1,2,...,kand Z];:I ¢, = 1 which are
evaluating each alternative A; w.r.t. the criteria C; in terms of PFNs. Then following
are the steps utilize for finding the best alternative under the set of feasible ones.

Step 1:  Collect the information related to each alternative A; under the
different criteria C; from each decision maker and are summarized in
the form of PFNs D7 = (uf,v{),., for i =1,2,...,m;j=1,2,....n
andg=1,2,...,k as

((hoviDsmty)  (haovi)omta) oo (s vin)snl)

. ((13,,v3),m51)  ((152,v9)5m52) - ((Bans Van) M3,
Dmxn =

(s Vi) s ) (s Vi) s ) <+ (B Vinun) 5 M)

where 7 ],(O<nq <1) be the confidence levels provided by the
decision makers that they are familiar with the topic.

Step 2:  Different types of criteria are normalized by using the following
transformation.

o j€B

ry = { A (12)
OLij; jecC

where of; is the complement of «;; and B, C represent the benefit and

cost type criteria respectively.

Step 3:  Aggregate all the individuals pythagorean fuzzy decision matrix DY
into the collective pythagorean decision matrix by utilizing the
CPFWA operator

k
o = CPFWA(r}, 15, ..., rf) —< 1—H{1 AR H(vg)"3€a>

q=1

or the CPFWG operator

_CPFWG( Tijs U’ . lJ <H ’717514, I_H{l }11,,04>

q=1

=~
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Step 4:  Aggregate the pythagorean fuzzy numbers o;; (as obtained from Step 3)
by using PFWA operator:

n
o = PFWA (o1, oin, - . -y Oin) :< I—H{l (147) ‘“’,H(vij)”f>

or the PFWG operator

o = PFWG(oi, %, - - -, in) = <H(M,j)wf, 1— H{l (vij) ‘“f>

j=1

Step 5:  Rank all the alternative based on the score function.

5 Illustrative example

Considering a decision-making problem with customers’ choice to buy a four
wheeler vehicle from five different types say A = {A;,A;,A3,A4,As}. In order to
make this process, six factors C = {Cy, Cy, ..., Cs} are considered which stands for
“the consumption petrol”, “the safety factor”, “the degree of comfort”, “the
design”, “the mileage”, and “the price”. The weight vector corresponding to these
six criteria C;(j=1,2,...,6) is o= (0.15,0.25,0.14,0.16,0.20,0.10)T. Then
following are the analysis conducted for finding the best alternative among the
feasible ones by using CPFWA and CPFWG operators.

5.1 By CPFWA operator

Step 1:  Three decision makers, D?(q = 1,2,3), whose weight vector is

¢=1(0.35,0.35,0.30)", have rating these alternatives A;(i =
1,2,3,4,5) w.r.t. the criteria C; in terms of PFNs a; = ((1}, v), i)
fori=1,2,...,5;j=1,2,...,6, and their corresponding summary are
listed in Tables 1, 2 and 3 respectively.

Step 2:  Since all the attributes is of same type, so there is no need to
normalization.

Step 3.:  Utilize CPFWA operator as given in Eq. (5) to aggregate these three
individual preference decision making matrix into the collective
Pythagorean decision matrix D = (0;j)s,. The results corresponding
to it has been summarized in Table 4.

Step 4:  Aggregate all these different rating by using PFW A operator to get the
overall value of the alternative A;, (i = 1,2,3,4,5) as
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o = (0.5891,0.3469) : a, = (0.5527,0.3205) ; a3 = (0.6692,0.2518)
oy = (0.5669,0.3804) : a5 = (0.6267,0.3636)

Step 5 Score values corresponding to them are sc(oy) = 0.2267,
sc(ap) = 0.2028, sc(az) = 0.3844, sc(ayq) = 0.1766 and
sc(as) = 0.2605. Since sc(oz) > sc(os) > sc(oy) > sc(o) > sc(oa)
thus we have A3 = As > A; = A, = A4. Hence A; is the best
alternative.

5.2 By CPFWG operator

Based on CPFWG operator, the main steps are as follows.

Step 3:  Utilize CPFWG operator as given in Eq. (10) to aggregate all
preferences of the decision maker DY(g = 1,2,3) into the single one
decision matrix D = (a;;)5,., and their result is summarized in Table 5.

Step 4:  Based on the Table 5 and by utilizing PFWG operator, the overall
preference value of i th alternative is computed as

oy = (0.6183,0.3289); o, = (0.5958,0.3247); a3 = (0.6944,0.2507)
oy = (0.5705,0.3501); o5 = (0.6369,0.3525)

Step 5:  Finally, score value of o; are sc(oy) = 0.2741, sc(op) = 0.2496,
sc(az) = 0.4194, sc(oy) = 0.2029 and sc(os) = 0.2814 thus we have
Az = As = A; = Ay = A4. Hence Aj is the best alternative.

On the other hand, if we conduct the analysis based on the different studies as
proposed by the various authors (Xu and Yager 2006; Xu 2007; Wang and Liu
2012; Ye 2009; Yager and Abbasov 2013; Garg 2016e, f) by considering that all the
decision makers are taken to be surely familiar (i7; = 1, for all j) with the evaluated
objects then their subsequently results are summarized in Table 6. From this
comparison table, it has been concluded that the best alternative obtained by the
proposed approach coincides with these existing studies. Therefore, the considered
approach can be taken as an alternative way to solve these types of problem in a
more profitable way. Furthermore, it has also been observed that the nature of the
relative score values follows the same trend (increasing or decreasing) and hence
proposed approach is conservative in nature.

According to the above comparison analysis, the proposed method for addressing
the decision-making problems has the following merits with respect to the existing
ones.

(i)  As discussed above, the classical, fuzzy and intuitionistic fuzzy sets all are
the special cases of the Pythagorean fuzzy set. Since, so far, authors have
used the IFS which is characterized by the degree of the membership and
non-membership of a particular element such that their sum is less than or
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(i)

(iii)

equal to one. However, in most of the day-today-life problem this condition
may not be satisfied when an expert gave their preferences towards the
elements. For handling this, PFS is one of the generalized theory which can
handle not only incomplete information but also the indeterminate
information and inconsistent information, which exist commonly in real
situations. Therefore, the existing studies are more suitable than the
existing ones for solving the real-life and engineering design problems.
Also, it has observed from the Table 6 that the results computed by the
various existing approaches are under the environment without considering
the confidence levels of the attributes during the evaluation. In other words,
all these approaches have analyzed their theories with the assumption that
decision maker are taken to be 100% confidence with the evaluated objects.
But in real-life situation, these types of conditions are partially fulfilled.
The existing operators for IFS are a special case of the proposed operators.
Furthermore, some of the existing operators for PFS are also a special case
of the proposed operators. Therefore, it has been concluded that the
proposed aggregation operators are more generalized and suitable to solve
the real-life problems more accurately than the existing ones.

6 Conclusion

The objective of this work is to present some series of new averaging and geometric
aggregation operator by considering the degree of the confidence levels of each
decision makers’ during evaluation. Traditionally, it has been assumed that the all

Table 6 Comparative analysis

Method Score values Order of alternatives
Ay Ay Az Ay As
Xu and Yager 0.1638 0.1484 0.3452 0.0778 0.1768 Az = As = A; = Ay = Ay
(2006)
Xu (2007) 0.4043 0.3591 0.5353 0.3349 03871 Az = As = A; = Ay = Ay
Wang and Liu 0.3602 0.3226 0.5090 0.2787 0.3487 Az = As = A; = Ay = Ay
(2012)
Ye (2009) 0.3636 0.3218 0.3690 0.3110 04392 As - A3 >~ A = Ay - Ay
Yager and 0.4067 0.3518 0.5020 0.3727 04331 Az - As > A=Ay - A
Abbasov (2013)
Garg (2016e) 0.3385 0.2853 0.4637 0.2755 0.3489 Az > As = A >~ Ay > Ay
Garg (2016f) —0.2860 —0.3973 —0.1549 —0.3374 —02226 A3 >As>A; >As > A
CPFWA 0.2267 0.2028 0.3844 0.1766 0.2605 Az > As > A=Ay > Ay
CPFOWA 0.3131 0.1713 0.4375 0.3429 0.1883 Az > A4 = A = As = A
CPFWG 0.2741 0.2496 0.4194 0.2029 0.2814 Az - As = A; = Ay - Ay
CPFOWG 0.3540 0.2450 0.4766 0.3588 0.2987 A3 >=As > A = As = Ay
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the decision maker give their preferences of the different alternative at the same
level of confidence. But this shortcoming has been ruled out in the present
manuscript by considering the confidence level factor (1) of the decision maker.
Based on it, new aggregation operators namely CPFWA, CPFOWA, CPFWG and
CPFOWG are proposed under PES environment. The desirable properties corre-
sponding to each operator has also been discussed. Furthermore, it has been
observed that when 1 = 1 for all the preferences then the proposed aggregation
operators reduces to the existing PFWA and PFWG operators. A comparative study
with some existing operators has been presented which shows that the proposed
operators provides an alternative ways to solve MCDM problem in a more effective
manner. In future work, we may extend the proposed function to the different
applications and to solve various uncertain programming problems.
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