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Abstract Adding a physiological representation to a cognitive architecture offers

an attractive approach to modeling the effects of stress on cognition. We introduce

ACT-R/U, an extended version of the ACT-R cognitive architecture that includes an

integrative model of physiology. The extension allows the representation of how

physiology and cognition interact. This substrate was used to represent potential

effects of a startle response and task-based stress during a mental arithmetic (sub-

traction) task. We compare predictions from two models loaded into the new hybrid

architecture to models previously developed within ACT-R. General behavior dif-

fered between models in that the ACT-R/U models had dynamic declarative

memory noise over the course of the task based on varying epinephrine levels. They

attempted more subtractions but were less accurate; this more closely matched

human performance than the previous ACT-R models. Using ACT-R/U allows a

more tractable integration of current physiological and cognitive perspectives on

stress. ACT-R/U also permits further exploration of the interaction between cog-

nition and physiology, and the emergent effects on behavior caused by the

C. L. Dancy (&)

USAISEC-NCRED, 9325 Gunston Road Building 1466, Fort Belvoir, VA 22060, USA

e-mail: c.l.dancy@gmail.com

F. E. Ritter

The College of Information Sciences and Technology, The Pennsylvania State University, 316G IST

Building, University Park, PA 16802, USA

e-mail: frank.ritter@psu.edu

K. A. Berry

Medical Corps, US Army Reserves and The Bioengineering Department, The Pennsylvania State

University, Hershey, PA 17033, USA

e-mail: keith.andrew.berry@us.army.mil

L. C. Klein

Biobehavioral Health Research, 105 Biobehavioral Health Building, University Park, PA 16802,

USA

123

Comput Math Organ Theory (2015) 21:90–114

DOI 10.1007/s10588-014-9178-1



interaction among physiological subsystems. This extension is useful for anyone

exploring how the human mind can occur in and be influenced by the physical

universe.

Keywords ACT-R cognitive architecture � Stress � Physiology � HumMod �
Mental arithmetic � Computational model � Startle response � Epinephrine

1 Introduction

How can we model the effects of stress and other behavioral moderators on

cognition? Adding a physiological representation to cognitive architectures offers

an attractive option for modeling these effects. We present the case for integrating a

physiological simulation with a cognitive architecture. This approach is demon-

strated with ACT-R/U, an extended version of the ACT-R cognitive architecture

(Anderson 2007) that is coupled with HumMod, an integrative simulation of human

physiology (Hester et al. 2011a). This extension allows one to begin modeling how

cognition and physiology can influence each other using models built to run in the

original ACT-R architecture.

We use ACT-R/U to demonstrate lessons one can draw from connecting a

physiological substrate to a cognitive architecture and developing a corresponding

process model. By comparing the predictions made by the model that uses the

physiological substrate in the hybrid architecture to predictions made by the same

models that use the ACT-R cognitive architecture, we demonstrate a benefit of the

inclusion of a physiological substrate to model some aspects of behavior. Though the

extension only begins to model and use a few of the many possible connections

between physiology and cognition, it has the potential to be very useful for anyone

exploring how the human mind and body can occur in the physical universe, and,

consequently, how the human mind and the physical universe may influence each other.

In this paper, we provide a short review of past implementations of cognitive

moderators in computational cognitive and agent architectures. Then, we introduce

ACT-R/U (pronounced act-are-fee), an extended version of the ACT-R architecture

that is connected to a model of human physiology. Variables from the physiological

model that change with stress are used to modulate ACT-R parameters to simulate a

stress response. We demonstrate this physiological modulation of cognition using a

modified version of an existing mental arithmetic model and discuss the results from

this model.

2 Past implementations of cognitive moderators in architectures

We briefly review several existing moderator implementations represented in

cognitive architectures. These existing implementations provide lessons for

modeling the effects of moderators on cognition and behavior and integrating a

physiological system with a cognitive architecture.
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2.1 CoJACK

CoJACK (Ritter et al. 2012) is an extended version of the JACK (Java Agent

Construction Kit) agent architecture that is based on the beliefs, desires, and

intentions (BDI) model (Rao and Georgeff 1995). CoJACK extends JACK with

cognitive limitations and representations of cognitive moderators, including caffeine

and fear. Cognitive limitations are represented in CoJACK, with the architecture

allowing limited access to plans and belief-sets; in addition, models developed

within the architecture can also retrieve incorrect plans or belief-sets.

Under the effect of a moderator, such as caffeine, a set of changes to architectural

parameters are overlaid onto the architecture. With caffeine, there is a dose-

dependent curve of how processing speed changes with caffeine levels. Stress is

represented in the architecture in a similar way.

The work with CoJACK shows that extending an existing architecture with

representations of the effects of physiology is possible and potentially useful.

However, representing moderators as direct changes to cognitive parameters will

lead to intractable conflicts arising from trying to combine multiple moderators

(e.g., from PMFServ’s list; Silverman et al. 2004) and not having an appropriate

way to represent interactions between moderators (e.g., cognitive changes when

fatigued but having recently ingested caffeine). Providing a more explicit

representation of the underlying physiology connected to a cognitive architecture

provides a way to represent the effects of multiple moderators in a unified,

integrated, and tractable system.

2.2 MicroPSI

MicroPSI (Bach 2009) is a hybrid architecture with both symbolic and subsymbolic

(neural network) representations based on the Principle of Synthetic Intelligence

(PSI) theory (Bartl and Dörner 1998). The architecture has an underlying module

that provides representations for emotional components, perceptions, and urges. In

particular, the urges are determined by body parameters and urge generators that in

turn affect an agent’s motivational state.

There are several urges represented in MicroPSI: intactness and energy

(physiological level), competence and reduction of uncertainty (cognitive level),

and affiliation (social level). These urges are important as they bring about a certain

level of autonomy in MicroPSI agents. Thus, problems like perseveration are less

pervasive in MicroPSI models because with time, urges will lead to new

motivations that lead to new tasks. These urges also allow for emergent agent

behavior over time in a complex environment; this is especially true for MicroPSI as

it has learning mechanisms, as well as symbolic and subsymbolic memory

representations.

Though Bach (2009) admits that the mechanisms currently in MicroPSI fail to

represent several of the complexities of human cognition, MicroPSI’s hybrid

memory structure and modulator representation are important architectural distinc-

tions. This architecture provides an important functional middle ground between

representing human-like cognitive abilities and the often downplayed modulators of
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cognition and behavior (e.g., physiology). Perhaps most importantly, MicroPSI

illustrates that cognition might be interrupted by physiological urges, and that this

process is important, underexplored, and pervasive.

2.3 Fatigue in ACT-R

Gunzelmann and colleagues developed an ACT-R model that simulates the effects

of fatigue (arising from sleep-deprivation) and circadian rhythms on human

behavior and cognition; this is accomplished by altering ACT-R module parameters

for utility calculation of procedural rules (Gunzelmann et al. 2009). Two

biomathematical models1 (CNPA and SAFTE) drive parameter change over time

while the ACT-R model is performing the psychomotor vigilance test (PVT).

This fatigue work is an interesting departure from the previously discussed

architectures because of the explicit reliance on an external mathematical model.

The highest and lowest alert values for the models are found off-line (i.e., before the

model is run for the particular task) and linearly tied to corresponding utility

parameters that produce the best and worst performance data. Production rule utility

in the ACT-R model is then directly moderated by the biomathematical model’s

alertness.

Though novel, the ACT-R biomathematical connection presented by Gunzel-

mann et al. (2009) has a few drawbacks, including how well the derived equations

and results may generalize to tasks other than those used by the model (for tasks that

have been modeled see, Gunzelmann et al. 2009, 2012, 2011). As mentioned

previously, the output from the biomathematical models was also found off-line;

this limits flexibility of the model during a task (e.g., performance spikes during

acute changes in alertness; Gunzelmann et al. 2011). This separation between the

running biomathematical model and ACT-R architecture may make it difficult to

generalize the use of this connection in modeling tasks in more dynamic

environments. Nonetheless, this work suggests that there are theories that can be

used to work with physiology and that there are numerous useful applications of

connecting a physiological representation to a cognitive architecture. This work also

suggests that ACT-R can be a useful cognitive architecture to base the combined

architecture upon.

2.4 Summary: Why should we represent the physiological level?

Work in modeling the effects of stress and fatigue on cognition in ACT-R, as well as

the work with the CoJACK architecture, represent applications of overlays (e.g.,

Ritter et al. 2007). In this case, an overlay is a model of how a single moderator

affects cognition realized as a set of changes that are on top of the architecture,

possibly including time-based components and reservoirs. In the end, overlays are

1 Here, by biomathematical models, we mean mathematical models that provide a quantitative

representation of how some biological process affects the state of a cognitive system, in this case, the

model represents alertness (see Gunzelmann et al. 2009, for further discussion).
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probably not the best level for representing the effects of physiology on cognition.2

Though overlays offer particular insights into potential routes of quantitatively

altering behavior of cognitive models, the discussed implementations are often task-

specific, virtually impossible to combine, and will be difficult to generalize in the

future to further moderators and deep physiology.

Though the projects reviewed all work relatively well for their prescribed

functions, a more unified approach should be pursued to represent specific

moderators (e.g., fear or stress) and understand how these moderators affect systems

that modulate cognition and behavior. Adding an account of the physiological level

allows the representation of these modulators and their interactions in a more

tractable and appropriate fashion. A physiological representation also allows a more

realistic and straightforward quantification of experimental representations (e.g.,

quantifying the effects of stress on cognition using existing experimental literature

on peripheral catecholamines and consequent changes to cognition and behavior). It

provides a theoretical way for combining the effects by using intermediate

physiological representations including hormones, autonomic nerves, and receptors.

Adding an underlying physiological substrate to a cognitive architecture could be

used to provide a more unified manner to model these cognitive modulators

quantitatively and qualitatively.

Providing a physiological substrate allows for a more unified (e.g., Newell 1990)

approach to representing cognitive modulators, potentially providing a cognitive

architecture for developing more diverse and interesting computational models.

Having the ability to model human behavior on multiple levels within one system is

useful as expansions and explorations of cognitive architectures (and subsequent

models) continue not only on the physiological level (e.g., Anderson 2007), but also

on the affective (e.g., Marsella et al. 2010) and social levels (e.g., Morgan et al.

2010; Zhao et al. this issue). Developing computational models of human behavior

with a physiological and cognitive perspective (and with a suitable environment)

may potentially provide support for examining theories on the effects of physiology

on cognitive and social behavior, and, conversely, theoretical takes on the effects of

cognitive and social behavior on physiological systems.

3 A model of mental subtraction in ACT-R/U

In the next sections, we review two systems (ACT-R and HumMod) that

computationally represent two traditionally separate levels of inquiry (cognitive

and physiological). We also discuss how we connected these systems and present

this connection as the architecture ACT-R/U. This connection allows the simulation

of physiological modulation of cognitive function and the cognitive affect on

physiology. We demonstrate this capability using a modified version of an existing

model of mental serial subtraction.

2 As implied by Ritter et al. (2007) and explicitly discussed by Ritter et al. (2012).
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3.1 ACT-T

ACT-R (Anderson 2007) is a modular, hybrid cognitive architecture that provides

both symbolic and subsymbolic representations; the inclusion of both is important

because it allows one to alter processes like declarative memory retrieval on both

gross and fine-grained levels. Thus, a model’s ability to retrieve a memory (from the

declarative module) is affected not only by the availability of the declarative chunk

in long-term memory storage, but also the current activation value of the memory.

Figure 1 shows that the declarative module is one of several modules that exist

within the ACT-R architecture. The production system is made up of several

modules.

Modules in ACT-R have been correlated to structures in the brain (Anderson

2007; Anderson et al. 2008). Table 1 notes areas of the brain that have been related

to ACT-R modules. This work allows one to make connections between

representations in ACT-R and functional structures in the central nervous system.

The most important correlations (for the work presented in this paper) are those

between brain regions related to the declarative module (including the retrieval

buffer).

The declarative module and retrieval buffer are associated with activity in the

hippocampus and ventral lateral prefrontal cortex (respectively). These correlations

allow one to hypothesize changes in the declarative module due to changes in

central and peripheral physiology. Thus, one may have specific parameters in ACT-

R that are modulated by representations of hormones or catecholamines; stress may

elicit changes in the locus coeruleus and hypothalamus, i.e., the sympathetic–

adrenal–medullary (SAM) axis and hypothalamic–pituitary–adrenal (HPA) axis

respectively), both of which directly affect areas of the prefrontal cortex and

Fig. 1 A high-level representation of ACT-R and its modules
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hippocampus. While there are several ways one may choose to represent

physiological modulation of declarative parameters (as we discussed earlier), we

suggest a specific physiological model and simulation system that provides gross

anatomical representations of physiology.

3.2 HumMod

HumMod (Hester et al. 2011a) is a simulation system that provides a top-down

integrative computational model of human physiology (see Hester et al. 2011b, for a

discussion on approaches to computational physiology). It is an extension of the

physiological research of Arthur Guyton who originally applied engineering system

analysis to the cardiovascular system under normal and pathologically significant

physiological states. Guyton’s work continues to serve as the basis of contemporary

medical knowledge regarding cardiovascular physiology (Guyton et al. 1972;

Montani and Van Vliet 2009). The physiology model in HumMod is a derivative

of the original Guyton model (Guyton et al. 1972) that includes over 1,500 linear and

non-linear equations and over 6,500 state variables. HumMod provides a user with the

opportunity to simulate physiology under normal and abnormal conditions over

multiple time scales. The model also provides several points of access to the

simulated body through parameters that can change many aspects of the physiological

output including output related to both the endocrine and nervous systems. Table 2

illustrates some of the major systems and example variables.

There are two ways to change the values attached to variables in HumMod—

changing the underlying XML-based model or changing the parameters after the

model has been loaded into the simulator system (e.g., change EpiPump.Switch to

pump epinephrine into the body). An alteration of the base model allows changing

initial variables, derivations, and connections between variables. Changing the

parameters has perhaps less systematic power than a change to the actual model, but

allows one to work within the given model and quickly view the effect of these

changes. The complex connections between state variables can make it difficult to

Table 1 ACT-R modules (bold) and buffers that are correlated with activity in specific regions of the

brain

ACT-R module/buffer Brain region

Procedural Basal ganglia (caudate nucleus)

Visual Fusiform gyrus

Audio Secondary audio cortex

Motor Motor/sensory cortex (hands)

Speech Motor/sensory cortex (face and tongue)

Declarative Medial temporal lobe/hippocampus

Imaginal Posterior parietal cortex

Goal Anterior cingulate cortex

Retrieval (buffer) Ventral lateral prefrontal cortex

Goal (buffer) Dorsal lateral prefrontal cortex
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change values of variables themselves—it is easier to modify parameters designated

by HumMod (e.g., one may choose to use the epinephrine pump parameter or

adrenal nerve parameter instead of directly modifying the epinephrine variables).

Using the parameters allows another simulation (e.g., ACT-R) to be modified by and

to modify the physiology model in a fairly straightforward fashion.

3.3 ACT-R/U: connecting a cognitive architecture to a physiological model

ACT-R/U is an extension of the ACT-R cognitive architecture with the addition of a

physiological substrate (represented using the HumMod physiological simulation

system).3 HumMod and ACT-R are connected using a physio module (Fig. 2) that

allows two-way communication between the two systems. Thus, one can simulate

cognitive effects on physiology (e.g., stress caused by a high cognitive workload

and time pressure) and consequent effects of physiology on cognition. The use of

this simulation system also allows the exploration of possible emergent external

behaviors arising due to non-linear changes in the physiology (e.g., a continuous

gradual change in peripheral epinephrine over time) and interactions among

physiological systems; this computational exploration will become more important

as one begins to develop more robust models of human behavior that run over

longer periods of time and in more extreme environments.

Within the physio module, a physio-substrate buffer is used to request the

module to begin retrieving physiological data from the HumMod simulation. The

use of a buffer here is a convenient way to represent (in software) the set of

connections and for explanation; we do not propose that the body provides a buffer

to the brain—the body and buffer are better viewed as a substrate that the mind is

based upon, is influenced by, and attempts to direct. One can start the HumMod

simulation (using an ACT-R/U model) by putting a chunk of type phys-var into the

physio-substrate buffer. To explicitly request the value of any physiological variable

one must send a request to the phys-substrate buffer with the specific name of the

Table 2 Some of HumMod’s major systems

HumMod system Number of variables Example variables

Body Fluids 214 Blood plasma volume

Circulation 426 Sinoatrial (SA) node rate

Electrolytes 140 Sodium Ion (NA?) pool mass

Hormones 534 Adrenocorticotropic hormone secretion

Metabolism 321 Energy stored (calories)

Nervous system 187 Norepinephrine (NE) pool mass

Organs 2,349 Bladder volume

Respiration 326 Breathing tidal volume

Other systems (lifestyle, heat, etc.) 2,026 Skin temperature

3 A newer version of the architecture has been developed to also include a representation of affect/

emotion (Dancy, 2013). A version with just the physio module was used for this work.
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variable or parameter. Physiological variables in HumMod can be explicitly set to a

certain value by adding a chunk to the efferent buffer.

3.4 A mental arithmetic model

Our example application of ACT-R/U uses a modified version of the ACT-R 6.0

subtraction model developed by Ritter etal. (2009).4 This model completes a mental

serial subtraction task (analogous to the subtraction task in the Trier social stress

test, or TSST). Figure 3 displays a high-level description of the subtraction model

Fig. 2 A high-level schematic of ACT-R/U (top) and the physio module and its buffers (bottom).
Thicker solid lines in the top figure represent current direct connections between the physiological
module and cognitive modules

4 More information on that model and project is located at http://acs.ist.psu.edu/ACT-R_AC/.
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and its relation to ACT-R/U. This model includes a representation of the CNS-PNS

loop, i.e. a production rule affects the central nervous system (CNS) in HumMod

that consequently affects the peripheral nervous system (PNS); the change in the

PNS feeds back to affect the CNS over time. In the model, we represent a

fluctuation of sympathetic nervous system (SNS) activity due to a scheduled

aversive sound (during the task) that causes a form of a startle response.5 The startle

response in turn causes a change in HumMod (the orange boxes in the right half of

Fig. 3) and the affected HumMod variables modify the noise in the declarative

knowledge retrieving process. The epinephrine variable in HumMod is tied to

declarative memory noise in ACT-R (the :ans parameter in the ACT-R software);

epinephrine was chosen due to existing literature indicating its importance in stress

response6 and declarative memory encoding/retrieval (e.g., Cahill and Alkire 2003;

Miyashita and Williams 2006). Peripheral epinephrine levels are known to affect

neural structures (the nucleus of the solitary tract, NTS, and locus coeruleus, LC)

that control neural norepinephrine levels (Miyashita and Williams 2006; Ulrich-Lai

and Herman 2009).

Production rules are added to handle the fast processing of the aversive sound

stimulus. After sensing the loud noise in the aural-location buffer, the model clamps

(sets to 1) the central nervous system autonomic nerve integration variable

(SympsCNS; via the efferent buffer in the physio module) that positively affects the

adrenal nerve variable, thus simulating a feature of SNS activation. We developed

two separate equations to tie the HumMod epinephrine variable to the ACT-R

declarative memory noise (the :ans parameter). We used the model with these two

different equations because we were interested in simulating how the different

equations may result in different task-related and physiological behavior.

In both Eqs. 1 and 2, the ansMultiplier variable was determined by solving for

the equation when declarative memory noise was equal to the value found in the

non-caffeine parameter set found by Ritter et al. (2009), and the (current level)

epinephrine value is equal to the result of HumMod adrenal nerve activity leading to

sympathetic activity (e.g., heart-rate) similar to that found in the original TSST

study (Kirschbaum et al. 1993). A (HumMod) heart-rate of roughly 95 was used to

calibrate the adrenal nerve activity variable. In this model, ansMultiplier was

determined to be 21.4 and ansACT-R-All is 0.7 (from Ritter et al. 2009). These values

were chosen to calibrate the model because they were previously used/found

experimentally (e.g., Ritter et al. 2007, 2009) and this makes it more straightforward

to compare this model to related previous models. Every time physiological variable

values are updated in ACT-R/U (the interval between updating is determined by the

:phys-delay parameter that is 0.25 s by default), the declarative memory noise value

is determined using either Eqs. 1 or 2. Equation 2 is Eq. 1 modified to cause an

inverted u-shaped curve for performance as epinephrine levels increase from

5 The aversive speech sound is presented at the 2 min point in every block.
6 Reviews are available on the underlying physiology of the stress response (e.g., Charmandari et al.

2005; Joëls and Baram, 2009) and the underlying physiology of internal (e.g., Kemeny and Shestyuk

2008) and external (e.g., Öhman 2008) causes and effects of the stress response.
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baseline; this partially follows the Yerkes–Dodson (1908) law for complex

problems. (This u-shaped performance effect is shown in the next section.)

: ans ¼ ansMultiplier � EpiCurrent value � EpiBaselineð Þ
EpiMax

ð1Þ

: ans¼

�2�ansMultiplier � EpiCurrent value�EpiBaselineð Þ
EpiMax

þ : ansACT�R�All 8EpiCurrent value\50:25

2�ansMultiplier � ðEpiCurrent value�EpiBaselineÞ
EpiMax

� : ansACT�R�All 8EpiCurrent value�50:25

8
>><

>>:

ð2Þ

Physiological change in ACT-R/U is accomplished by using a production rule to

send a query to the efferent buffer in the physio module that specifies the name of a

HumMod parameter and a new value for it. Perceiving the sound also results in a

short processing of the specific sound. The startle response does not last long

(cognitively), and the rules that perform the subtraction task continue firing shortly

Fig. 3 A schematic of the interactions in the ACT-R/U process model built to use the ACT-R/U physio
module. Peripheral physiology affects memory noise whether or not the model processes the sound
cognitively. The boxes in the left half of the figure that have a double border represent the process of the
original ACT-R 6.0 model
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after the encounter with the noise. However, the SympsCNS variable is not changed

until a production rule is fired to setup the mental representation of the next

subtraction problem,7 this happens at the beginning of the block and after an

incorrect subtraction answer is given. Thus, epinephrine increases non-linearly until

the model resets the internal subtraction representation. (This is not to imply that

production rules particularly represent the correct theoretical construct for cognitive

change of physiology. It is an artifact of the current implementation and will be

altered in future iterations to better reflect theoretical constraints.)

4 Model results and comparison

To illustrate the potential of the ACT-R/U architecture, we ran a model that used the

components principally affected by the physiological substrate. In this example

model, we focus on the effects of memory noise modulation by varying the

epinephrine levels (based on a startle response) during the modified subtraction task.

We compare model performance, specifically the total number of attempts and

proportion of problems answered correctly, when using either Eqs. 1 or 2 to the

performance of the ACT-R-All model (a model with static parameters set to match

those used in Ritter et al. 2009).

All models completed 4 blocks of 4 min (240 s) of mental serial subtraction.

Blocks 1, 2, 3, and 4 had a starting value of 9,095, 6,233, 8,185, and 5,245 and a

subtraction constant of 7, 13, 7, and 13 (respectively). More details of the task are

available in Ritter et al. (2009). We ran each model 200 times; this number is

acceptable based on criteria described by Ritter et al. (2011).8

4.1 Model physiology

Figure 4 shows average epinephrine levels during the ACT-R/U-Eq. 1 and ACT-R/

U-Eq. 2 runs; Fig. 5 shows average declarative memory noise over the course of the

task (changed according to the epinephrine values). The shaded area above and

below each point represents the standard deviation at that point in time based on 200

runs. The model’s average epinephrine levels displayed a higher maximum average

during block 1 and 3 as compared to block 2 and 4. Overall, block 2 displayed the

lowest average epinephrine levels; other physiological variables modulated by

activity in the sympsCNS HumMod variable followed the same general pattern.

In block 2 of the task, both ACT-R/U models had smaller range of epinephrine

values that resulted in a lower declarative memory noise (as seen in Fig. 5). This

attenuated epinephrine response occurred because when there is an incorrect

answer, the model refocuses on the problem and sets it up as a task; the activation of

the SNS is then stopped. So, in block 2 and 4, where the problems are more difficult,

7 This is a simple approximation to an appraisal mechanism.
8 Our models (Eqs. 1 and 2) had a standard error of the mean (SEM) of 0.708 and 0.920 (respectively).

While these SEMs are higher than that reported as an example in Ritter et al. (2011), our much higher run

cost (*2*real-time) modified our SEM threshold.
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the physiology response to the startle has a lower amplitude. Thus, using this hybrid

architecture allows one to explore how seemingly small effects of interruption

during a task can affect the overall outcome of the task over time and how

complexity and attention of the task can affect reaction to non-integral stimuli. This

allows one to look at the emergent effects physiology may have on cognition and
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behavior over time and how problem difficulty can interact with reactions to outside

stressors.

4.2 Model performance

General descriptive statistics of the models’ performance in ACT-R/U over 200 runs

is presented in Table 3 along with the performance of models run in the ACT-R

architecture; we also include performance data by human subjects from the original

study conducted by Ritter et al. (2009) who appraised the task as threatening and

were more reactive to the task. The ACT-R/U-Eq. 1 average performance was

closest to the human performance during the serial subtraction task.

We compared the models’ task-performance (percentage correct) to see how

models that were identical to those used by Ritter et al. (2009) compared to models

that had similar cognitive components, but were modulated by certain physiological

change. We also compared model output when using the positive linear slope

equation (ACT-R/U-Eq. 1) and the piecewise equation developed to achieve

inverted u-shaped performance during the task. A Mann–Whitney U test was used to

compare the models. The ACT-R/U-Eq. 1 performance (percent correct) was found

to be significantly different (p \ .0001; z = 11.74) than performance of the ACT-R/

U-Eq. 2 model. Performance of the ACT-R-All and ACT-R-Threat models were both

found to be significantly different than both ACT-R/U-Eq. 1 and ACT-R/U-Eq. 2

model performance (p \ .0001; z = -7.99; and z = -19.08); the difference

between output from the ACT-R-All model and the ACT-R-Threat model was not

found to be statistically significant. Histograms, showing the distribution of each

model’s performance, are presented in Fig. 6. The distribution shapes may indicate

that a higher number of runs would yield a more normal distribution (the relatively

high standard deviation of the results found when running the models 200 times also

indicate it may be beneficial to run the model even more times, see Byrne 2013, for

a related discussion).

To see what range of performance the physiology would impose on the model in

the hybrid cognitive architecture, we ran the ACT-R-All model with two sets of

declarative memory noise (:ans) values (see Fig. 7 and the related discussion below

to get an indication of how declarative memory noise affects the performance,

percent correct, of this model).

Figure 7 shows that the model’s accuracy (percentage of problems answered

correctly) partially depends on its ability to retrieve declarative memories as the

declarative memory noise parameter increases, percent correct decreases. Despite

the models’ reliance on declarative memory, a declarative memory noise value of

roughly 0.55 or higher was still needed to have the models’ percent correct

consistently go below 90 %.

Each time the ACT-R/U models in Fig. 6 (Eqs. 1 or 2 ) were run, we recorded the

:ans values used over each � second9 of the task; this gave us two sets of 3,955 :ans

values; Fig. 8 and Fig. 7 display the results from these runs. We then ran the ACT-

9 This time interval was chosen because this is how often physiological values were updated in ACT-RU
(the :phys-delay parameter). Thus, :ans values automatically changed the moment physiology changed.
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R-All model (syllable-rate10 (:syl) = 0.44, base-level constant11 (:blc) = 2.49) with

each of these :ans values held constant; this resulted in two model-sets where
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Fig. 6 Histograms of performance (% correct) for the ACT-R-All (top-left), ACT-R-Threat (top-right),
ACT-R/U-Eq. 1 (bottom-left), and ACT-R/U-Eq. 2 (bottom-right) models; each model was run 200 times
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Fig. 7 The effect of declarative memory noise for the ACT-R-All model on performance (% correct) on
the serial subtraction task

10 The syllable-rate parameter controls the time it takes the model to articulate each syllable in a text

string.
11 Base-level constant is a parameter used during the ACT-R memory retrieval process.
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: ansmodeli ¼: anstimei
and where : anstimes is the average :ans value found at timei

after running the ACT-R/U-Eq. 1 or ACT-R/U-Eq. 2 models. As an example, at

175 s into the task, our ACT-R/U-Eq. 212 model had an average :ans (declarative

memory noise) value of 0.53; consequently model175 in that model-set was run with

an :ans value of 0.53. Each model in the two model sets was then run 200 times.

This process resulted in over 1,582,000 model runs of the ACT-R-All model. These

runs gave us a distribution of mean performance and the noise of those mean values.

There was an inverted u-shaped performance distribution, shown in the bottom

graph in Fig. 8, due to this physiological modulation in the Eq. 2 set of models. The

bottom graph in Fig. 8 shows that as epinephrine values rise, performance improves,

but performance begins to decrease back towards the original baseline performance

after a continued stress response; this is most evident when observing the effect of

memory noise values found during the first block of the task.

In Fig. 8 at t = 125 s (in block 1, shown with a dashed line), the y-value is the

mean of percent of subtraction problems answered correctly for the ACT-R-All

model with an :ans (declarative memory noise) parameter value of 0.1 and 0.53 (top

and bottom, respectively). The area above and below each point (red) represents the

standard deviation at that particular point; thus, we generally see a higher standard

deviation when declarative memory noise (:ans) is higher; a lower mean

performance also accompanies higher declarative memory noise.

The higher mean performance for models using block 2 values for the Eq. 1-

based models (top) was due to epinephrine levels that failed to reach a value as high

as the other models (using values from blocks 1, 3, or 4) before beginning to

decrease towards the baseline. This resulted in noise values that did not have a large

effect on the mean performance of the models.

4.3 Summary

We were able to reuse an existing subtraction model in this new hybrid architecture

and demonstrate a useful way to begin using an extended version of the ACT-R

architecture with a physiological substrate. Though the modifications were

reasonably simple, quantitatively and qualitatively different behavior was obtained

when compared to the original model built to run in ACT-R. We were also able to

use output from the extended models run in ACT-R/U to explore the range of values

output by the original subtraction model with different static declarative memory

noise values.

5 Discussion and conclusions

Here we review and discuss the results reported and potential future directions for

the work. Models built to use the extensions in the ACT-R/U architecture exhibited

task performance that was significantly different than the same models that do not

12 As a reminder, this model has a varying declarative memory noise value due to physiological

modulation.
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use the new physiological substrate and were closer to observed human behavior.

This difference is due to the physiological substrate that continuously affects

cognitive performance. Though ACT-R/U and the subsequent models present a

novel method for simulating effects of a stressor on cognition, there remains room

for improvement in the architecture and model to better encompass the many

dynamics of the interaction between physiology and cognition. We next discuss

results and some of the potential ways one could expand this hybrid architecture.

5.1 Performance results

As expected, the results from the ACT-R/U-Eq. 1 and ACT-R/U-Eq. 2 models

differed significantly; consequently the model-sets constructed from those models’

declarative memory noise values (e.g., Fig. 8) also exhibited a different range of

performance. The pattern performance found using declarative memory values from

the ACT-R/U-Eq. 2 model was more realistic than the ACT-R/U-Eq. 1 model, with

the first models in the model-set beginning the task with a higher noise level (and

lower sympathetic activation) that resulted in a lower initial performance. The

presented stressor causes a brief increase in performance, but over time the stress

causes an adverse effect on performance as physiological variables continue to

change due to the stressor; the effect of stress also does not stop immediately, the
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Fig. 8 The solid line represents mean performance (percent correct) of a single serial subtraction model
while the area around the line represents the standard deviation. Each point in the line represents the
mean performance of a model run with an :ans parameter value (declarative memory noise) as determined
by a list obtained by averaging :ans values used by the ACT-R/U-Eq. 1 (Top) and ACT-R/U-Eq. 2
(bottom) models, i.e. the point at time 125 s represents the mean percent correct of the ACT-R serial
subtraction model run with an :ans value of 0.1 (Top) and an :ans value of 0.53 (Bottom)

Effects of a psychological stressor on cognition 107

123



model-set continues to be affected with the performance range never returning to

the initial range of values. The ACT-R/U models show it is possible to non-linearly

change model performance with a relatively simple modification to an original

ACT-R model and the use of physiological equations provided in the ACT-R/U
system.

The different mean performance among models can be attributed to a varying

:ans value that is directly connected to epinephrine (discussed below). Mean

performance was expected to be significantly different among the models due to a

difference in setting the :ans statically (e.g., once during the model run) versus

dynamically. We believe ACT-R/U-Eq. 2 provides a good prospect for a higher

fidelity model of the effects of stress on serial subtraction (and vice versa). This is

due to the known dynamic interaction between stress systems and physiological

precedents to the cognitive processes embodied in the ACT-R architecture (e.g.,

Anderson 2007; Joëls et al. 2006; Sara 2009).

5.2 Physiological variable results

Perhaps most noteworthy, one can see an obvious feedback between epinephrine

levels and task performance. The lower epinephrine levels in block 2 and 4 are

likely due to the way the ACT-R/U models affect the underlying physiology. The

models stop the initial activation of the autonomic integration nerve variable with a

rule that is applied when the model must restart a subtraction problem; this was

meant to represent a refocusing of attention following an opportunity to restart on a

subtraction problem session. Though this switch is effectively off shortly after the

event, epinephrine levels do not immediately drop, instead they fall over time non-

linearly based on the equations in HumMod.

Although the epinephrine level falls during the second half of the blocks, it does

not reset to the original baseline; it never actually reaches the original baseline

before being raised again the next block. Thus, the model performance in block 4 is

affected by the startle response in block 1.

5.3 Summary of results

There are improvements to be made to this model and the ACT-R/U extension

(some of which are discussed below), however, we believe the current state of the

work represents an opportunity to begin to model not only cognitive processes, but

also underlying physiological processes affecting and being affected by cognition.

The model is affected by both immediate physiological changes and by longer term

physiological changes, thus physiology never resets. The data from this model

illustrates the potential for developing cognitive models with factors that vary

linearly and non-linearly over time and that take account of the effects of

physiological factors on cognition and performance, such as noted in the review.

The data also indicate that models that use the stochastic functions available in

architectures like ACT-R/U need to be reported with an indication of how many

times the model has been run. These data show that models with a stochastic

component need to be run a larger number of times than non-stochastic models to

108 C. L. Dancy et al.

123



get a more stable representation of the descriptive statistics often used to judge them

against human data (see Ritter et al. 2011 for a discussion on this topic). Larger runs

will become even more important as the mechanisms include more variance arising

from physiology, and when distributions, rather than just means, are examined.

Though our stress representation provides a more explicit and realistic

representation of some interactions between physiology and cognition during a

response to a stressor, there are additional representations of stress (both on the

physiological and cognitive levels) that would potentially benefit this and related

models. More globally for ACT-R/U, homeostatic motivations (e.g., Bach 2009)

would also likely lead to higher model fidelity and an increase in autonomy.

One could also begin to model stress on a more social-level and describe the

interaction between stress and social processes. In previous work, Morgan et al.

(2010) looked at processes affecting cognitive and social behavior. The use of ACT-

R/U provides another way to represent how social and other processes affect

cognition and even how this interaction can mediate social network formation (see

Zhao et al., this issue, for an example of how a cognitive architecture can be used to

explore cognitive mediation of network formation).

5.4 Limitations and potential future work in extending the representation

of stress

Though we discussed several different physiological effects of encountering a

stressor, currently ACT-R/U only represents a single aspect of the sympathetic

adrenal medullary (SAM) axis. Only three system parameters/variables are used in

ACT-R/U but other parameters in HumMod could be connected to the cognitive

representations in ACT-R/U (e.g., those controlling adrenocorticotropin hormone

(ACTH), a-amylase, corticotropin releasing factor (CRF), and cortisol) and

countless others likely have secondary or tertiary effects on variables directly

implicated in affecting cognition. We plan on continuing to expand the represen-

tation within the extended architecture by exploring the combined modulation of

architecture (and model) behavior by both the HPA and SAM axes. More recent

articles on the physiological antecedents to perception of a stressor (e.g., Joëls and

Baram 2009) and physiological changes due to a stressor (e.g., Klein et al. 2010)

present potential roadmaps for quantifying physiological modulation in ACT-R/U;

additional representations may require alternative connections in ACT-R/U or even

modification of the underlying physiological model. Particular causes for stressors

also need to be explored in the continuation of this work.

We have developed a particular event-based stressor (disruptive noise), however

it would be useful to develop additional stressors based on factors like cognitive

workload or time pressure. Work on the AMBR project (Gluck and Pew 2005)

particularly with the work on representing cognitive workload in the ACT-R

architecture (e.g. Lebiere et al. 2001), offers useful guidelines for adding cognitive-

based stressors to the architecture. Time pressure may also potentially be

accomplished by leveraging the goal module/buffer along with the temporal

module. Models of cognitive appraisal, which focus on how changes in the agent-
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environment relationship (e.g., Marsella and Gratch 2009), will also prove

particularly useful for exploring known causes of stress like time pressure.

One could also examine stress on a more microgenetic basis. One could then look

at the standard deviation of performance and error types with this new hybrid

architecture. Intra-individual differences in cognition and several physiological

variables (e.g., heart-rate, blood-pressure, etc.) can also be simulated with this type

observation.

5.5 Potential work in homeostatic–appetitive motivations

Homeostatic-appetitive (e.g., energy balance, thirst, and skin temperature) motiva-

tions are fundamental modulators on human cognition and behavior (e.g., Aarts

et al. 2001; Mogg et al. 1998; Wright et al. 2012); ACT-R does not yet provide an

architectural representation for this modulation. ACT-R/U provides a basic

representation for these modifications by using the osmoreceptor, gi-lumen, and

heatskin variables for thirst, hunger, and skin temperature (respectively). The

physiological variables are tied to variables placed into the goal state by the physio

module.

Though this method is admittedly crude, identification of particular physiological

variables to tie to cognitive architecture changes is an important step; the ACT-R

side of the connection will need to be expanded for more meaningful testing of the

representations. It should be mentioned that most models built in ACT-R do not

complete tasks over a time-period that would suitably leverage these motivations to

display more autonomous behavior13; though one may still begin to simulate other

cognitive effects of these motivations (e.g., participating in a psychological

experiment while thirsty; Wright et al. 2012). As previously noted, existing

architectures like MicroPSI offer potential insights into ways one may add

physiological representations to ACT-R by expanding current connections in ACT-

R/U.

5.6 Potential applications

Extending the architecture to include additional aspects of behavior like circadian

rhythms or affect and emotion, may also facilitate the use of the architecture to

develop models that can be used as more realistic agents in tutoring systems (e.g.,

Anderson and Gluck 2001; Fincham et al. 2010), for systems engineering (e.g., Pew

and Mavor 1998), or for the design of interfaces (e.g., Hudlicka and Mcneese 2002)

as traditional ACT-R models have already been used for some of these purposes.

Models that use the new components of ACT-R/U would likely benefit from the

ability to change physiology over time. One could model how the hunger

experienced right before lunch affects cognitive performance and adjust a system to

account for these affects. Furthermore, one could provide a caffeine overlay that

predicts how a caffeinated beverage changes physiology and that changes cognition.

13 See Byrne et al. (2004) and Gunzelmann et al. (2011) for counterexamples.
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The new hybrid architecture makes development of process models that include a

depiction of physiological changes on cognition over time more tractable.

6 Final thoughts

Minds need brains to support them and brains need bodies to support them. As

models of cognition continue to develop, we will need to add a physiological

representation of the substrates that support and implement cognition on multiple

levels. Though it is as of yet unclear the best manner to represent the connections

between the levels of physiology and cognition (one may ask, for example, where

emotions fit into the picture), it is important to continue to develop systems that can

test quantitative predictions made by theoretical models. ACT-R/U is a step in this

direction, and likely will continue to provide insights as the connections and

representations are expanded. It is also important to develop these systems so that

migration of older models to the new architecture is tractable and one can build on

work already done; ACT-R/U allows this because ACT-R 6 models can be run in

ACT-R/U.

Modeling physiological, cognitive, and social effects on human behavior is a

fairly complex task given the large amount of background knowledge needed to

produce accurate process models. However, as physiological sensing devices

continue to become less invasive and increase in resolution, the amount of

physiological data one will be able to collect during a psychological experiment is

likely to lighten the load on anyone wishing to develop a model within an

architecture like ACT-R/U; that is, develop a model within an architecture that

provides representations on both the physiological and the cognitive levels.

The most beneficial level of physiological representation for a computational

system to provide quantitative predictions remains an open question (Hester et al.

2011b) and depends on the function of the computational system. This question has

to be further explored to determine the best levels of representation for a hybrid

computational architecture like ACT-R/U; reviews that explore behavioral effects of

physiological changes on multiple levels (e.g., Joëls and Baram 2009) help make

potential answers to this question more clear. Nonetheless, mechanistic models used

in hybrid architectures like ACT-R/U can be used to represent and resolve

ambiguous theoretical interactions between physiological and cognitive levels. The

architecture could, for example, be used to explain how noisiness in behavior may

be the product of differences in physiological states over time and between people.

Lastly, ACT-R/U can be used to explore implications of physiological and cognitive

interactions on different time-scales, providing new insights into the precedents to

emergent effects found over time.
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