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Abstract With the development of modern technology(communication, transporta-
tion, etc.), many new social networks have formed and influenced our life. The re-
search of mining these new social networks has been used in many aspects. But com-
pared with traditional networks, these new social networks are usually very large. Due
to the complexity of the latter, few model can be adapted to mine them effectively. In
this paper, we try to mine these new social networks using Wave Propagation process
and mainly discuss two applications of our model, solving Message Broadcasting
problem and Rumor Spreading problem. Our model has the following advantages:
(1) We can simulate the real networks message transmitting process in time since we
include a time factor in our model. (2) Our Message Broadcasting algorithm can mine
the underlying relationship of real networks and represent some clustering properties.
(3) We also provide an algorithm to detect social network and find the rumor makers.
Complexity analysis shows our algorithms are scalable for large social network and
stable analysis proofs our algorithms are stable.

Keywords Social network · Wave propagation · Message broadcasting · Rumor
spreading

1 Introduction

In social network analysis (SNA) (Pinheiro 2011), the social relationships are re-
searched by network theory. Nodes are used to represented individual actors. Con-
nections or links are used to represented relationships between the individuals, such
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as friendship, kinship, organizational position, sexual relationships, etc. Compared
with traditional social network, modern social network has more form, like web-
sites networks, blog networks, citation networks, collaboration networks, product co-
purchasing networks, road networks, e-mail networks, etc. Although SNA has been
studied a lot, mining the underlying relationship of the network is still difficult.

In recent years, social marketing techniques has been used to increase brands or
products awareness (Hartline et al. 2008; Kempe et al. 2003; Domingos and Richard-
son 2001; Leskovec et al. 2007; Richardson and Domingos 2002). Comparing with
traditional marketing techniques, word-of-mouth marketing is becoming more and
more useful in recent year (Brown and Reinegen 1987; Goldenberg et al. 2001;
Mahajan et al. 1999), which also needs to understand the social network more clearly.

In this paper, we try to model the message transmitting process in social network
as wave propagation process. In a social network, each node indicates a candidate
(person, animal, website etc.), and each edge is defined as the relationship between
them. We let the earliest message sources act as the wave sources and model the
message transmitting process as wave propagation process. The wave propagation
process provides our work with the following contributions: (1) As the wave prop-
agation process has time-dependent property, our model can simulate the message
transmitting process step by step. (2) Message broadcasting algorithm can choose
suitable persons to broadcast a message all over the network. (3) For there are many
rumors in the world, we give a rumor transmitting algorithm to find the initial rumor
makers.

The paper is organized as follow. In Sect. 2 we talk about some related work in
mining social networks. In Sect. 3 we discuss the wave propagation on networks
more clearly. Section 4 denotes two kinds of applications of our model, including
message broadcasting problem and rumor transmitting problem. In Sect. 5 we discuss
the complexity and stability of our two algorithms. Section 6 gives the empirical
results of the two. Finally, Sect. 7 gives our conclusion.

2 Related work

In Rogers’s book “Diffusion of Innovations” Rogers (2003), the concept of diffu-
sion in the social network was first proposed. With successive grouping of con-
sumers adopting the new technology, Rogers makes his well-known S curve, as early
adopters adopt an innovation first, then early majority, late majority, and the laggards
adopt it last.

With the rapid development of the Internet industry, the great need of searching
give birth to PageRank algorithm (Brin and Page 1998), which can measure the rela-
tive importance for the element of a hyperlinked set of documents. Though PageRank
has been used successfully, it is something complex.

In some recently studied, heat diffusion process (Ma et al. 2008) has been used in
the study of mining social networks. They use heat diffusion process to simulate the
diffusion of the message and can model the diffusion of messages well. But physi-
cians have proved that the inverse process of heat diffusion process is unstable, it
limits the use of heat diffusion method in mining social networks.
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3 Wave propagation on social networks

3.1 Propagation on undirected social networks

An undirected social network can be described as a graph G = (V ,E), where V

is the vertex set representing persons in the network, and V = {v1, v2, . . . , vn}.
E is the set of edges representing the connections between persons, and E =
{(vi, vj )|an edge from vi to vj exists}.

Here we makes an analogy, the message transmitting process is similar to the
wave propagation process. Then the message sensitivity of each person in the social
network can be viewed as an amplitude function fi(t) associated to each node in the
graph. The value fi(t) describes the amplitude of node vi at time t , which begins
at time zero with the initial distribution of amplitudes given by fi(0). The F(t) =
[f1(t), f2(t), . . . , fn(t)]T denotes the amplitude vector function with all the fi(t) as
its constituents.

By using the analogy above, the message transmitting process can be viewed as an
wave propagation process in some special area, i.e. the network. We build the model
as follow. At time t , each node i receives an amount of amplitude from all its neighbor
j during a time step �t . To simplify the problem, we notice the received amplitude
of node i should be proportional to the time step �t and the amplitude differences
between it and all its neighbors fj (t)−fi(t). Based on this simplification, we assume
the receiving amplitude of node i from node j at time t is c2(fj (t)−fi(t))�t , where
c is the wave velocity and �t is the time step. As the total amount of amplitude
received by node i is from all its neighbors, we can write it as:

∂2fi(x, t)

∂t2
= c2

∑

j :(vi ,vj )∈E

(
fj (t) − fi(t)

)
(1)

where fi(t) is the amplitude of node i at time t , and E is the set of edges.
To find a closed solution of (1), we express it in a matrix form:

∂2F(t)

∂t2
= c2HF(t) (2)

where F(t) = [f1(t), f2(t), . . . , fn(t)]T and H is the discrete form of Laplace-
Beltrami operator:

Hij =
⎧
⎨

⎩

1: (vi, vj ) ∈ E or (vj , vi) ∈ E

−di : i = j

0 : else
(3)

While (2) is a simple form, it is hard to calculate. We here make an approximation
method and derive an iterative form.

For the second derivative of function fi(t), we can make an approximation:

∂2fi(x, t)

∂t2
= fi(t + �t) − 2fi(t) + fi(t − �t)

�t2
+ O

(
�t2) (4)
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Fig. 1 Nodes connections

Substitute (4) into (1) and get:

fi(t + �t) − 2fi(t) + fi(t − �t) = c2�t2
∑

j :(vi ,vj )∈E

(
fj (t) − fi(t)

)
(5)

Using the approximation above, we derive an iterative form:

F(t + �t) = c2�t2HF(t) + 2F(t) − F(t − �t) (6)

where di denotes the degree of node vi .
In order to describe the wave propagation process more clearly, we set an example

here. The graph in the example includes five nodes (see Fig. 1). Initially, suppose
node 1 is the source with amplitude 1, then the vector F(0) = (1,0,0,0,0)T . The
matrix H is:

H =

⎛

⎜⎜⎜⎜⎝

−1 1 0 0 0
1 −4 1 1 1
0 1 −2 0 1
0 1 0 −2 1
0 1 1 1 −3

⎞

⎟⎟⎟⎟⎠

The graph is shown in Fig. 1.
Without loss of generality, we set the wave velocity c = 1, and the time step �t to

be 0.01. Then the amplitude of each node is shown in Fig. 2.
Now we depict Fig. 1 and Fig. 2 in the view of message transmitting process

in social network. Node 1 is the source, i.e. the message publisher, node 2 is the
acquaintance of node 1 and other nodes are all acquaintances of node 2. At first, the
amplitude of node 2 increases quickly and that of node 1 decreases, indicating node 1
sends a message to 2. Then 2 send it to others. The figure shows the trend of message
sensitivity with time among these persons.

3.2 Propagation on directed social networks

In many real social networks, the status between two persons is not equivalent. For
example, in army, lieutenant can command solder, while the opposite is impossible,
i.e. the connection is single-directed. Similar to the analysis at Sect. 3.1, we can adopt
the wave equation to discuss the propagation on directed social networks.

For a directed graph G(V,E), any edge (vi, vj ) presents a single-directed connec-
tion from node vi to node vj . At time t , each node vi can receive amplitude from all
its neighbors who have a connection to it. Supposing this process has three characters:
(1) the receiving should be proportional to the time step �t ; (2) the receiving should
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Fig. 2 Amplitude of all nodes

be proportion to the amplitude of its neighbors; (3) if there’s no neighbor, the receiv-
ing is 0. According to the assumptions, the receiving is c2 ∑

j :(vj ,vi )∈E θjfj (t)�t ,
where θj is the transmitting percentage coefficient of node vj .

For the sending, we also suppose it satisfies the following assumptions: (1) the
sending should be proportional to the time step �t ; (2) the sending should be propor-
tional to the current amplitude of node vi ; (3) each node has the same ability to trans-
mit which denotes θj = 1

dj
. According to the assumptions, the sending is c2fi(t)�t ,

and each of its neighbor receives c2fi(t)�t
di

. Thus we get:

∂2fi(x, t)

∂t2
= c2

(
−βifi(t) +

∑

j :(vj ,vi )∈E

fj (t)�t

dj

)
(7)

where βi is a sign function to judge whether node vi has any out-links: if has, βi = 1,
else βi = 0.

Similar to the analysis of undirected social network in Sect. 3.1, we can derive the
iterative form:

F(t + �t) = c2�t2HF(t) + 2F(t) − F(t − �t) (8)

where H satisfies:

Hij =

⎧
⎪⎨

⎪⎩

1
dj

(vj , vi) ∈ E

−βi i = j

0 else

4 Underlying relationships finding

In every social network, the underlying relationships are usually hidden but impor-
tant. For example, in an e-mail network, there may be some key persons who always
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send e-mails to others. In some aspects, if we can know who these persons are, we can
make use of them to send e-mails and influence other company members more effi-
ciently. Though we have mastered all the connections between each pairs of persons,
we don’t know who the key persons are. To finding these key persons, we must know
all the underlying relationships in the network first, i.e. the underlying influencing
scope of all the persons.

Seeing all the persons as nodes and the connections between each other as edges,
we can build the social network. By associating influencing node sets to each node,
the underlying influencing scope of persons indicates all these sets. Then our task is
to find these sets, and that can be done as follow: (1) set an initial amplitude on node
vi and others 0; (2) simulate the wave propagation process in the network; (3) after
a long time, statistic the number of nodes which vi successfully influences. Where
successfully influence for a node indicates the amplitude of it is higher than a given
adoption threshold γ during the simulation.

4.1 Message broadcasting

The Message Broadcasting problem often comes from real situations. For example,
in a company, an important decision must be broadcasted to all the members as soon
as possible. This thing is usually done as follow: the CEO inform some directors,
and the directors inform their managers, and then the managers inform others. For
the CEO, what he should do is just selecting k well-chosen directors to broadcast his
decision. And how to choose these directors is the problem.

This can be seen as an application of underlying relationship finding. First, we find
the influencing node sets of all the nodes. In this process, we set an adoption threshold
γ . If at some time t , the amplitude of node j is greater than γ , then we called node
j has been successfully influenced. Then we choose k nodes whose influencing node
sets is the biggest, and they’re our “well-chose”. Note that the social network we
study here has finite members, so no boundary condition is necessary. We use greedy
algorithm (Fig. 3) to deal with this problem.

4.2 Rumor spreading

The Rumor Spreading problem is arising more and more attention this decade (Foun-
toulakis and Panagiotou 2010), especially since the tragedy of 9.11. After 9.11, more
and more rumors came up and disturb our normal life, which should be controlled.
When a rumor come up, who made it at first is always important. That is, we want to
know who is the rumor maker.

After modeling the message transmitting process as wave propagation process (see
Sect. 3), this problem can be described as: given current state of amplitude in the
network, we want to know what the initial state is. We can use the inverse process of
wave propagation process to study this problem.

For a undirected graph, according to (6), we can solve the inverse process by:

F(t − �t) = c2�t2HF(t) + 2F(t) − F(t + �t) (9)

Given the current state of amplitude and then this iterative form can solve the
inverse process. Here boundary condition is also unnecessary. But one problem is that
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1: Input
A social network G(V,E); number k; adoption threshold γ

2: Output
k nodes

3: for node i do
4: F(0) = 0 fi(0) = 1;
5: Execute the wave propagation for T time period
6: for node j ! = i do

if |(fj (t))| ≥ γ for any t in T then
Add node j into the influencing node set Si

7: end if
8: end for
9: end for

R = ∅
10: for i = 1 : k do
11: Choose Si to maximize {Si − R ∩ Si}
12: R = R ∪ Si

13: Output node i

14: end for

Fig. 3 Flowchart of Message Broadcasting problem

we don’t know how long the wave has already propagated. In the view of calculation,
we don’t know when to terminate.

To decide the termination criterion, we make a natural assumption that when a
rumor came at first, the number of the persons who knew it is the least. And in the
iterative process, we can do this by adding an source-like threshold σ to judge the
source node. If at some time t the amplitude of a node i is greater than σ , then it may
be a source. Then what we should do is to see when the number of source-like nodes
is least and terminate our iteration.

5 Complexity and stability

Supposing a social network has N nodes and M edges, we discuss the complexity of
each algorithm:

1. Message Broadcasting
For this problem, our algorithm has two part. First, we simulate the wave

propagation process and find the influencing node sets of each node, which costs
O(N2T ), where T is the simulation time. Then we use the greedy algorithm to
choose k nodes. In greedy algorithm, this part just cost linear time O(kN). So the
total complexity is O(N2T + kN).

2. Rumor Spreading
The Rumor Spreading problem needs us to solve the inverse problem of wave

propagation. For each time step, our iterative form costs O(N2) and the ter-
mination criterion judgement costs O(N). In general, the total complexity is
O(N2T + NT ), where T is also the simulation time.
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In our model, we mainly use wave propagation process and its inverse process.
For the wave propagation process, the iterative form (scheme (6)) is always stable.
For its inverse, we use scheme (9) to calculate. In scheme (9), function F defined on
nodes of network is approximated by linear interpolation functions. Consulting the
definition about accuracy of finite volume method, we can also say that scheme (9)
has first order temporal accuracy. Since the length of edges equals 1, so the stable
condition Courant-Friedrichs-Lewy condition (Subramani and Rajagopalan 2003) is
c�t < 1. By setting our simulation time step �t < 1, our iterative form can get a
stable solution.

6 Empirical analysis

Lots of data sets can be used in our model, and here we use an e-mails dataset of a
company. In the empirical analysis, we discuss several paraments first, and then set
them in our algorithm to solve the message broadcasting problem and rumor trans-
mitting problem.

6.1 Data set

Here we use the network of Enron (Leskovec et al. 2009; Klimmt and Yang 2004).
The network has 36692 nodes and 183831 undirected edges. Nodes of the network
are email addresses and if an address i sent at least one email to address j , the graph
contains an undirected edge from i to j . Note that non-Enron email addresses act as
sinks and sources in the network as we only observe their communication with the
Enron email addresses.

6.2 Results of message broadcasting problem

Given Enron network, we have to decide several parameters in our algorithm first. In
our simulation, we let the wave velocity c = 1 and the adoption threshold γ = 0.01
while the initial amplitude of a source node is fs(0) = 1. As we have discussed above,
if at some time step t s node’s amplitude is greater than γ , we think it has been
successfully influenced. Besides, we use �t = 0.01 as the simulation time step and
we use 3 different simulation time T = 0.1,0.2,0.5. The empirical results are shown
in Table 1 and Fig. 4.

Where coverage indicates the number of influenced nodes at time T .
In Table 1 we notice at early time, the message transmits quite slowly, but the

transmiting speed goes up explosively with time. Take 7 nodes for example, when
T = 0.1, it can just cover 6680 nodes (%18.21), while T = 0.5, it goes up to 25298
nodes (%68.94). Fig. 4 shows the coverage size at different time with different num-
ber of source nodes.

6.3 Results of rumor transmitting problem

In our algorithm, current state of all nodes must be given first. We give it by assum-
ing some nodes to be the source (here we choose node 28521 and 28522), and then
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Table 1 Nodes ID and coverage in different time period

T = 0.10 step 1 2 3 4 5 6 7

ID 5038 273 458 1028 195 1139 370

coverage 1384 2751 3901 4671 5388 6046 6680

T = 0.20 step 1 2 3 4 5 6 7

ID 5038 273 458 140 1028 195 1139

coverage 1384 2755 3915 5071 5805 6487 7099

T = 0.50 step 1 2 3 4 5 6 7

ID 195 136 370 140 76 458 273

coverage 17189 19885 21754 23454 24726 25013 25298

Fig. 4 Coverage with nodes number in different time period

simulate the wave propagation process for some time period and let the current state
of amplitude to be the input. As for the source-like threshold σ , we let σ = 0.001. If
at some time step, one node’s amplitude is greater than σ , then it may be a source.
Other parameters like c and �t are the same as in Sect. 6.2. When the number of
source-like nodes is least, we terminate our algorithm.

Our empirical results are shown in Fig. 5. For clarifying, we omit the edges in all
graphs.

Where red nodes indicate the source-like nodes while grey not. The upper left indi-
cates the current state (29901 red nodes), the upper right (18741 red nodes) and lower
left (6017 red nodes) indicate two middle states, and the lower right (2 red nodes) in-
dicates the terminated state. We also plot the tiny structure (red box in terminated
state) in Fig. 6. Using our algorithm, we successfully find the rumor makers(node
28521 and 28522).
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Fig. 5 Empirical results of Rumor Transmitting problem

Fig. 6 Tiny structure of
terminated state

7 Conclusion

In this paper, we try to build a framework of mining social networks using Wave
Propagation models. We mainly discuss two Wave Propagation models and two appli-
cations of our framework, including attempts to solving message broadcasting prob-
lem and rumor spreading problem. The complexity analysis shows our framework is
scalable for large networks, and we can guarantee the stability of our algorithm by
suitable setting some parameters. And the empirical analysis of Enron e-mail dataset
shows that our work is promising.
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