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Abstract Diffusions of new products and technologies through social networks can
be formalized as spreading of infectious diseases. However, while epidemiological
models describe infection in terms of transmissibility, we propose a diffusion model
that explicitly includes consumer decision-making affected by social influences and
word-of-mouth processes. In our agent-based model consumers’ probability of adop-
tion depends on the external marketing effort and on the internal influence that each
consumer perceives in his/her personal networks. Maintaining a given marketing ef-
fort and assuming its effect on the probability of adoption as linear, we can study how
social processes affect diffusion dynamics and how the speed of the diffusion depends
on the network structure and on consumer heterogeneity. First, we show that the speed
of diffusion changes with the degree of randomness in the network. In markets with
high social influence and in which consumers have a sufficiently large local network,
the speed is low in regular networks, it increases in small-world networks and, contrar-
ily to what epidemic models suggest, it becomes very low again in random networks.
Second, we show that heterogeneity helps the diffusion. Ceteris paribus and varying
the degree of heterogeneity in the population of agents simulation results show that the

S. A. Delre (�) . W. Jager
Faculty of Management and Organization, Department of Marketing, University of Groningen,
P.O. Box 800, 9700 AV Groningen, The Netherlands
e-mail: s.a.delre@rug.nl

W. Jager
e-mail: w.jager@rug.nl

M. A. Janssen
School of Human Evolution and Social Change & Department of Computer Science and Engineering,
Arizona State University, Box 872402, Tempe, AZ 85287-2402
e-mail: Marco.Janssen@asu.edu

Springer



186 S. A. Delre, W. Jager et al.

more heterogeneous the population, the faster the speed of the diffusion. These results
can contribute to the development of marketing strategies for the launch and the dis-
semination of new products and technologies, especially in turbulent and fashionable
markets.

Keywords Innovation diffusion . Threshold models . Word-of-mouth . Social
networks . Heterogeneous markets

1 Introduction

Technological innovation drives the progress of societies. Any time a new technology,
a new device, a new product appears into a society, its members have the chance to
become aware of the innovation and to use it. In western societies people encounter
new inventions and technologies on an almost daily basis. When these are consumed
on an individual (or household) basis, single consumers (or households) can decide
whether to adopt or not. The study of diffusion patterns of new products into society,
from their launch to their successful adoption or failure to spread, closely involves
managers and marketers whose interests are in disseminating new products into the
society.

Recently marketers’ attention has focused on the explosion of new fashions
(Gladwell, 2000) and on the buzz that accompanies these explosions (Rosen, 2000).
Especially in highly social susceptible contexts like clothes markets, many innovations
emerge from minor events that are strongly related with the dynamics of local networks
of friends. Then the new innovative fashion trend is adopted by some early adopters
which are easily influenced by new trends and once the critical mass is reached,
the diffusion and the number of adoptions get at their peaks. Almost all potential
consumers decide to adopt and also laggards and skeptical consumers may decide
to conform adopting the new product (Rogers, 1995). Throughout all this process,
the social influence of other consumers’ behaviors constantly affects the individual
adoption. For example, somebody’s decision of buying a cell phone partly depends
on the number of friends and acquaintances already having one. If just a few of them
have a cell phone, and she has no strong preference for using a cell phone, she would
probably not feel an urgent need to buy one as well. However, if most of them use a
cell phone, the social influence they have on her would become strong, and she may
decide to buy one, despite her preference is not strong. Here we present an agent-based
model that formalizes the consumer decision-making including the social influence
as part of her utility. This agent-based model allows us to analyze how social influ-
ence is exerted into personal networks and how it shapes the macro diffusion of the
innovation.1

Most studies on innovation diffusion modeling are rooted in the work of Bass
(1969). The Bass model formalizes the aggregate level of penetration of a new product

1 The code of the agent-based model is written in C and it is available from the contact author.
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emphasizing two processes of communication: (1) external influence via advertising
and mass media, and (2) internal influence via word-of-mouth. The decision of a
consumer is described as the probability to adopt the new product during time and
it is assumed to depend linearly on these two forces. The first force is not related to
previous adopters and it represents the external influence of mass media; the other force
is related to the number of previous adopters and it represents the internal influence
of word-of mouth:

f (T )

(1 − F(T ))
= p + q F(T ) (1)

f (T )/(1 − F(T )) is the hazard function defining the probability of a consumer to
adopt at time t , p reflects the mass media influence and q reflects the influence due
to word-of mouth. This basic Bass model fits very well to real data of durable goods,
and many other variations of the model have appeared in order to explain differ-
ent aspects of the diffusion (for overviews see Mahajan and Muller, 1979; Mahajan,
Muller, and Wind, 2000). The model is able to represent a cumulative S curve of
adopters and the fast growth is generated by the social interaction between early and
late adopters (Rogers, 1995). However, the Bass model assumes all consumers to
be homogeneous. It does not specify at the micro level how the consumer decision-
making changes during time and how consumers communicate and influence each
other. One of the rare examples of micro-level models of diffusion process in a tra-
ditional economic framework is the work of Chatterjee and Eliashberg (1990). This
study presents an analytical model of innovation diffusion based on an individual
decision-making that determines the adoption of agents one by one. The decision of
adopting depends on the characteristics of the consumers, namely the perception of the
innovation, the personal preference and the perceived reliability of information. The
model introduces heterogeneity in the individual parameters of the population of po-
tential consumers and these specific parameters are tested by a pilot study conducted
in an experimental laboratory setting. Chatterjee and Eliashberg’s model generated
much interest on the impact of heterogeneity on diffusion models (Bemmaor and Lee,
2002) and it represents a complete framework that links individual decision-making
and aggregate dynamics of innovation diffusion processes. However, the analytical
tractability of the model obliges to limited analysis of aggregated variables and of
consumers characteristics. This holds both for the estimation of the parameters at
the aggregate level and for the estimation of individual parameters in the laboratory
experiments. Our agent-based model can easily include heterogeneity in the popula-
tion of consumers and it allows us to study how it affects the shapes of the diffusion
curves.

Besides the work in line with the Bass model, much research on innovation diffu-
sion has focused on computational models that investigate the patterns of innovation
diffusion through social networks (Abrahamson and Rosenkopf, 1997; Goldenberg
et al., 2000; Weisbuch and Stauffer, 2000). These models are based on the similarities
between viral marketing dynamics and the diffusion of diseases (Moore and Newman,
2000; Newman, 2002; Dodds and Watts, 2005). These models include a network with
nodes and links, and a virus infecting the nodes traveling through the links. The nodes
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are consumers, links are the relations that consumers have among themselves and
consumers are infected when they decide to adopt the innovation. Epidemic models
explicitly define adoption rules and they are able to explain aggregate dynamics in
terms of individual transmissibility. From a behavioral point of view, these models
are extremely interesting because they permit to derive macro dynamics from micro
hypothesis on individual decision making. However, in order to accept these models
in social contexts, they need to be integrated with more realistic social processes like,
as mentioned above, social influence and imitation. We propose a diffusion model
that explicitly includes consumer decision-making affected by social influences and
word-of-mouth processes. In fact the agents of our simulation model decide accord-
ing to both their individual preference and the experienced social influence from other
agents’ behavior. This model allows us to study diffusion patterns in time for differ-
ent markets. In particular, we focus our analysis on (very) turbulent and fashionable
markets where consumers highly affect each others’ behaviors. Examples are clothes
markets, markets of electronic devices (e.g., cell phones, mp3 players) and entertain-
ment industry (music, movies). Our model shows how in these markets the social
structures and the heterogeneity of the consumers significantly determine the shape
and speed of the diffusion.

The paper is structured as follows: in Section 2 we review epidemic models; in
Section 3 we comment on threshold models in social science and how they are used in
modeling herding behaviors; in Section 4 we present our agent-based model; Section 5
reports results of simulations and finally in Section 6 we report comments and con-
clusions.

2 Epidemics in social networks

A new product that invades a society is like a contagious epidemic that spreads in
a population of humans or like a virus that is transmitted in a computers’ network
(Dodds and Watts, 2005). Thus, epidemic models can be very useful also in social
and marketing contexts because they propose models that explain aggregate diffusion
dynamics in terms of individual characteristics.

Most of the epidemic models are divided into two families: SIS (Susceptible, In-
fected, Susceptible) and SIR (Susceptible, Infected, Removed). The former assumes
that nodes are initially susceptible and they become infected with probability ν if they
are directly linked with one or more infected nodes. Then the infected node recovers
and becomes susceptible again with probability δ. When δ = 0, infected nodes cannot
recover and the SIS model is converted into a SI (Susceptible, Infected) model. In the
latter the same dynamics are assumed but once the node is infected, it just dies with
probability γ and it never recovers. For social and marketing purposes, we will focus
mostly on SIS and SI models because these are more relevant in social and marketing
contexts: once somebody adopts a product she is not removed form the market; on the
contrary, her decision of adopting affects other consumers.

In a SIS model, at the beginning of the spreading process, the diffusion of the
disease involves only a few nodes of the network. These nodes infect each one of
their direct neighbors with probability ν. It has been found in random graphs that
if λ = ν/δ overcomes a given threshold λc, then the diffusion speeds up, the rate
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of diffusion increases in time infecting the majority of the network. Finally the rate
of diffusion decreases only when almost all the population has been infected. If the
rate of infection λ cannot overcome λc, then the diffusion dies out and the major-
ity of the network is not involved in the process of diffusion (Anderson and May,
1992). The structure of the network (number of nodes, distribution of the links, clus-
tering coefficients) determines the speed and the degree of diffusion. Watts (2002)
showed that diffusion in random graphs does not depend on the amount of initially
infected nodes but on the connectivity of the network. In highly connected random
graphs, the disease spreads easily because when a node is infected, it is likely that
among its neighbors, there is someone that decides to adopt as well and the diffu-
sion continues spreading. At each time step there is always some new node that is
infected. Then, the diffusion process depends on the critical mass as described in
classical innovation diffusion marketing models (Rogers, 1962; Mahajan and Muller,
1979): if the early adopters (the nodes that are infected at the beginning of the diffu-
sion) reach the critical mass, the diffusion will finally succeed in reaching the whole
population.

However, social and artificial networks often have global structures that are not
random, but display stylized characteristics like power law distribution of the links,
high clustering coefficients and short paths between any couple of nodes (Barabasi
and Albert, 1999; Watts and Strogaz, 1998). Both analytically and with computer sim-
ulations, Pastor-Sartorras and Vespignani (2002) showed that in scale-free networks
λ approaches 0. With a multi-agent based model Delre, Jager and Janssen (2004)
found a similar result for diffusion of innovations in a population of social susceptible
consumers: innovations are more likely to spread and be adopted by more consumers
when consumers are linked in a scale-free network than in a regular lattice.

Also the small-world network structure has been extensively investigated. Newman
and Watts (1999) and Moore and Newman (2000) investigated epidemic dynamics in
the small-world area and they describe how the percolation threshold depends on the
number of shortcuts.2 They found similar results when they vary the transmissibility
of the disease (the probability that a disease is passed from an infected to a healthy
and susceptible node). These studies show that diffusion dynamics in the small-world
networks are the same of those in the random networks if the degree of randomness
is big enough and the percolation threshold is reached. This result is relevant espe-
cially for diffusion of infectious diseases because it focuses on the transmissibility of
diseases.

However, from an economic and consumer behavior point of view, there are two
issues that appear to be problematic. The first is about the assumption of infectious
contacts. It is not always convenient to assume that all nodes are equally susceptible
during the time of the diffusion. People, in particular consumers, decide to adopt a
new product partly according to how much they are exposed to the product. Consumer

2 A percolation threshold is the minimum probability for which an infinite regular lattice percolates (i.e.
in a bi-dimensional regular lattice, cells are activated in such a way that a cluster reaches the borders of
the lattice) (Stauffer, 1985). For this probability, the cluster scales extensively with the total number of the
cells. Newman and Watts (1999) and Moore and Newman (2000) adopt the concept of percolation threshold
to the small-world network graph. Here the percolation threshold is the minimum probability for which a
giant component first form.
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adoption partly depends on what other consumers do (Granovetter and Soong, 1986).
When an innovation has vastly spread into a market, also those that were initially
sceptical about the innovation may decide to adopt. Nowadays there is a strong social
pressure to adopt a cell phone because almost all the people have one. The second
problem concerns the results of random networks: for social scientists it is difficult
to accept the idea that random networks are as efficient as small-world network in
spreading fads and fashions. Having a high clustered group of friends is a crucial fac-
tor in determining the adoption of the group. Usually, if the network is highly clustered
and a fashion emerges in a cluster, the social influence towards the non-adopters is
very strong and it is very likely that the fashion involves the entire cluster. Contrarily,
if all friends of a consumer belong to completely different groups (like relationships
in a random graph), the consumer would not fell a strong social pressure to adopt.
Moreover, because in the small-world networks clusters are connected through short-
cuts, it can be hypothesised that a cluster that has already adopted affects connected
clusters that have not adopted yet. Both problems derive from an oversimplification
of the metaphor between disease spreading and innovation diffusion. While epidemic
models can assume a unique virus to spread into the network, social scientists have
to distinguish at least between two different processes: diffusion of the information
about the product through friends’ connections and social influence that takes place
in local groups and in personal networks.

Although some studies have reported the high performances of small-world net-
works in diffusion of knowledge (e.g. Cowan and Jonard, 2004) and consumption
(e.g. Janssen and Jager, 2003), to our knowledge there is not an economic model that
formalizes the emergence and the diffusion of innovations in the small-world networks
in terms of local interactions. Here we present an agent-based model that simulates
the emergence of innovations in social networks. We conduct an extensive sensitive
analysis of the model parameters and we draw the area of parameter space for which
small-world network are more efficient in spreading the diffusion into the population
of consumers.

3 Threshold models in social networks

Threshold models have a relevant tradition in social science, especially in modelling
collective behaviors (Granovetter, 1978; Macy, 1991). They formalize situations in
which there is a population of individuals that decide either to be involved or not in a
group behavior. The focus of these models is on the social influence that adopters exert
on those that have not adopted yet. Each individual has a personal threshold and if the
size of the group is bigger than her personal threshold, then she will decide to adopt
the behavior of the group. Threshold models formalize a positive feedback into the
dynamics of the population: the more individuals are involved into the group behavior,
the more others will feel the social pressure to adhere to the group behavior. If the
group behavior is able to involve enough individuals, its diffusion will easily take off
because of this positive feedback. Otherwise it likely dies out. Similar distributions of
personal thresholds can derive very different results at the aggregate level (Shelling,
1978). Threshold models can be used to formalize many social phenomena, including
innovation, rumours and disease spreading (Rogers, 1995). However threshold models
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are usually extremely demanding with regard to the amount of information computed
by individuals. When deciding what to do, individuals have a complete knowledge
about what all others are doing. Granovetter (1978) suggests that “Social structure is
one reason why the simple form of threshold models may not provide an adequate
account of events. (. . . ) The simple model makes an implicit assumption of complete
connectedness which is often inappropriate: that each individual is responsive to the
behavior of all the others, regardless of the size or special or temporal dispersion of
aggregation” (p. 1431).

Interesting variation of threshold models have been proposed to solve this limitation
focusing on the study on the local effects in the personal networks of each individual
(Valente, 1996). Here also it is assumed that individuals have to face a binary decision:
either to adopt the innovation or not. Valente draws a distinction between external
influence of the social system and internal influence of the personal network. While
external influence affects individuals through mass media and cosmopolitan links,
internal influence affects individuals through the personal network and according to
the level of exposure. Personal exposure to the innovation is defined as the proportion
of adopters in an individual’s personal network at a given time. Like in other threshold
models, individuals decide to adopt when a personal threshold is surpassed but, despite
classical threshold models, it is also possible to distinguish whether the threshold is
reached because of external or internal influence.

We also include a threshold mechanism in our innovation diffusion model in order
to focus on social influence effects. When deciding whether to adopt or not, our
consumers are affected by other adopters of their local networks if and only if the
exposure in their personal network is higher than a given personal threshold. In our
model we use a parameter in order to vary the horizon of the local network and we
show that adoption dynamics vary considerably according the definition of the local
network. More precisely, we find that epidemic models (Newman, 2002; Newman
and Watts, 1999; Dodds and Watts, 2005) can be used to predict the dissemination
of products into a society of consumers when the local networks is relatively small
(consumers observing only their friends) but they fail when the local network becomes
a bit bigger (consumers observing also friends of friends).

4 The model

In our innovation diffusion model, agents are connected in a unique network. The nodes
of the network are the consumers and each link between two nodes represents a relation
of friendship between two consumers. Such network can vary from completely regular
(r = 0) to completely random (r = 1) (Watts and Strogatz, 1998). On one hand, when
the network is completely regular, agents are completely clustered and any information
takes long time in order to travel from a node to another distant node. On the other
hand, when the network is completely random, agents are not clustered at all and any
information is spread to all other nodes within a very short time. However, in between
these limits there is an area (the so called small world area) where the network is both
still very clustered and information spreads very fast to all the clusters of the network.
Our model studies how the penetration of the product in the population of consumers
is affected by the structure of this network.
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The decision to adopt the innovation depends on an internal word-of mouth process.
Agents are involved in the word-of-mouth process if and only if they receive a message
from some neighbor that has already adopted. This means that at each time step, each
agent looks at its neighbors and it decides to adopt if and only if at least one of
its neighbors has already adopted. If none of the neighbors has adopted yet, then it
does not adopt either. When agent i is involved into the word-of-mouth process, the
probability of agent i to adopt is:

ai, j = P(Ui, j ≥ Ui,MIN) (2)

where

Ui j = β j · xi + (1 − β j ) · yi (3)

yi =
{

q j ≥ pi ⇒ 1

otherwise ⇒ 0
(4)

xi =
{

Ai ≥ hi ⇒ 1

otherwise ⇒ 0
(5)

Ui, j is the utility agent i has if it adopts innovation j and Ui,MIN specifies i’s
minimum utility requirement. The utility has two components that are threshold func-
tions: individual preference yi and local social influence xi of i’s personal network;
β j weights these two components and it represents how strong the social influence
effect is in the market of product j . Markets with high β j are fashionable markets
(e.g., clothes, electronic devices) whereas markets with low β j are more stable (e.g.,
groceries). Concerning the individual part, pi is the individual preference of agent
i and q j is the quality of the innovation j . Concerning the social influence part, hi

is a personal threshold which determines the individual agent’s susceptibility to its
neighbors’ behavior and Ai is the fraction of adopters in the Lth order set of alters of
agent i (personal network). Agents included in i’s personal network are called alters.
Direct friends are first alters (L = 1), friends of friends are second alters (L = 2) and
so on. If the fraction of adopters in i’s personal network is higher than hi then the agent
does feel social influence, otherwise it does not. The rationale of this formalization
is the classical threshold mechanism of collective action: a consumer does not feel
social pressure if just a few people around her behave in a particular way but once
these people reach a certain number then she suddenly decide to change her mind
and she behaves differently (Granovetter, 1978). Finally, diffusion is introduced in
the population by external marketing effort e1 that is assumed to be given and linear
along the dynamics of the diffusion. During all the diffusion, any non-adopter agent
is convinced to adopt with probability e1. Once an agent has adopted, other agents
connected to it through their personal network become also aware of the innovation
and they are involved in the word-of-mouth process evaluating their utility according
to (3).
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In order to compare different speeds under different conditions, we report the
variations in the ρ indicator defined as

ρ = 1

T
·
∑T

t=0 D(t)∑T
t=0 f (t)

(6)

where T indicates the total cycles of the simulations, D(t) is the cumulative function
of adopters at time t, and f(t) is the number of adopters at time t (Arenas et al., 2000).
The ρ indicator allows us to compare different diffusions that reach the same number
of adopters. In this model if the external marketing effort e1 is positive, a complete
diffusion always occurs. Then, because the external marketing effort e1 is also constant
during all the diffusion process, the speed of the diffusion is also a good indicator of
how strong the word-of-mouth process is in the market.

In our analysis (Section 5.3) we investigate how the speed of the diffusion changes
when consumers have very similar or very different personal thresholds. Then we use
a beta distribution in order to vary heterogeneity respect to the threshold hi of agents
in the population3:

f (x) = xa−1 ∗ (1 − x)b−1

(a−1)!∗(b−1)!
(a+b+1)!

(7)

with mean μ = a
a+b and variance σ 2 = a∗b

(a+b)2∗(a+b+1) .
Notice that the beta distribution allows us to model the heterogeneity of the agent

population from the homogeneous case (very high value for a and b) for which all
agents have the approximately the same threshold until the uniform distribution (a =
b = 1) for which thresholds can vary randomly around the mean value.

5 Results

We implement our model as an agent-based model. Here we present simulation results
for a population of one thousand agents and where on average each agent has 4
neighbors. Each set of simulations contains twenty runs. Here we report the average
of the runs and when it is relevant the standard deviation of the runs.

5.1 Effects of social influence in different network structures

We begin investigating a very social susceptible society (β j = 1, hi = 0.3) represent-
ing a fashionable market where agents have a large personal network ( L = 2). Letting
the external marketing effort being low and constant (e1 = 0.001) we observe changes
in ρ. In Fig. 1, each point represents the speed of diffusion in a network with a different
degree of randomness (r ).

3 The beta distribution (http://mathworld.wolfram.com/BetaDistribution.html) is defined between 0 and 1
and it allows specifying the degree of heterogeneity of random drawings (Garcia-Diaz and Witteloostuijn,
2005).
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Fig. 1 The speed of diffusion ρ (after 250 time steps) varying the degree of randomness in the network

When the network is completely clustered (r = 0.0001), a group of innovators that
start the diffusion can influence only local neighbors. Such influence is strong because
the more clustered the group of adopters, the higher its influence on non-adopters
neighbors (high exposure). Thus, the diffusion can travel along the network but it is
slow: it cannot be spread in another distant region of the network. Consequently if
some agents decide to not adopt the innovation, the word-of-mouth process dies and
the only way to set the diffusion process again is by external influence. Then the time
needed to convince all agents of the network to adopt is relatively large. The process
changes when adding a little randomness into the network. Then shortcuts allow the
innovation to emigrate in different parts of the network; diffusions can succeed easily
and they spread very fast. Agents can see the spreading of diffusion in other clusters
and they can import the fashion in their own cluster. At the same time, social influence
is still very strong because the network is highly clustered. We observe the maximum
values of ρ for this small-world area. Finally, when the randomness becomes very
high, social influence is dimmed. In random network, agents are not clustered, the
portion of adopters in their neighborhood is very low (low exposure). Consequently
there is no social influence that presses them to adopt. During the initial part of the
diffusion, innovators may decide to adopt only because of external influence. Because
the external influence is low, then the critical mass is reached very late and, only then,
the rest of the population will be suddenly convinced to adopt.

The parameter L plays an important role in this result. In Fig. 2 shows how the
speed of diffusion varies in clustered, small-world and random networks if we vary
L. When L is equal to 1, agents have a very small personal network because they are
affected only by first alters’ behavior and when L is equal to 2, agents have a large
personal network because they are affected both by first alters and by second alters’
behavior (see the social component of the utility function, i.e., Eq. (5). When L is in
between 1 and 2, then agents are affected by first alters’ behavior plus a proportion of
second alters’ behavior as indicated in the decimals. (For example, when L is equal to
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Fig. 2 The speed of diffusion ρ (after 250 time steps) in different networks varying the horizon of agents’
personal network

1.2, agents include in their personal network all first alters plus 20% of their second
alters.)4

It is not trivial to foresee what happens to the speed of the diffusion when vary-
ing personal networks because there exists a trade-off between social influence and
availability of information. On one hand, when personal network of agent i is small
(for example L = 1), just a few adopters in i’s personal network may represent a
high percentage and i’s personal threshold can easily be reached. Then the innovation
diffusion easily sets up and it can spread into the group. However in this case agent
i is affected only by those adopters that are very close and it may ignore clusters of
adopters that are just 2 steps far. On the other hand, when i’s personal network is large
(for example L = 2), i is affected by more friends’ behaviors and just a few adopters
into its group may not be sufficient to reach its personal threshold. However, having
a larger social network allows i to perceive the social influence of other clusters of
adopters. Figure 2 shows what happens enlarging the personal network parameter (L).
For the values of our simulation runs, the trade-off is quite balanced in clustered net-
works like the regular one (r = 0.0001) and the small-world network (r = 0.1). But
the situation changes in random networks (r = 1.0). Here, the absence of clusters does
not permit the social influence to take place at all. Then, enlarging agents’ personal
network highly increases the time of the diffusion. Compared to the situation in which
agents have a small personal network, the critical mass is reached later and it takes
more time for the innovation to penetrate into the population.

4 It is important to mention that varying the personal network does not directly affect the word-of mouth
process. What L does is to move the borders of personal networks when evaluating the social influence
(Eq. (5)). For example, when L = 2, an agent can observe a friend’s friend behavior and include it in the
computation of its utility, but it cannot receive from it information about the innovation. In this way we can
study the effect of L on the speed of diffusion without varying the altering the word-of mouth process.
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Fig. 3 The speed of diffusion ρ (after 250 time steps) varying β j

5.2 Different markets

In the following set of simulations we control the robustness of our previous results
investigating other values for the parameters β j and hi . When we decrease (increase)
the value of β j , we simulate more (less) individualistic markets because agents decide
more (less) according to their personal preferences. When we decrease (increase) the
value of hi , we simulate a more (less) turbulent market because agents are more (less)
reactive to what other agents do in their personal networks. To investigate different
kinds of market, from very individualistic (β j ≈ 0) to very social susceptible (β j ≈ 1),
we let L = 2.0, hi = 0.3 and we set pi = [0, 1] and q j = 0.5 assuming that agents
have equal probability for positive or negative individual preference towards the inno-
vation.5 In Fig. 3 we show results for different markets.6 Here it can be seen that the
effects of network structures decrease when markets are more individualistic. Decreas-
ing the value of β j , the value of ρ depends less on the topology of the social network
and, more importantly, when β j = 0.4 we see that diffusion in random networks is as
fast as in small-world networks. This confirms the idea that epidemic models are suit-
able for individualistic markets but fail in markets with high social influence. In these
fashionable markets diffusions are basically driven by social influence and having a
clustered network is fundamental in order to spread the innovation fast.

Figure 4 shows diffusion dynamics in different turbulent markets. For these simu-
lation runs, we set β j = 1.0 and let the other parameters’ values as before. However,

5 For an analysis of different personal preferences on hits and flops of innovations, see Delre, Jager and
Janssen, 2004.
6 For these runs at the end of the simulations the fraction of adopters in the population, f , (average among
the 20 runs) varied depending on the value of β j . For β j = 1.0, 0.998 < f < 1.0; for β j = 0.8, 0.903 <

f < 0.917, for β j = 0.6, 0.782 < f < 0.837; for β j = 0.4, 0.674 < f < 0.746.
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Fig. 4 The speed of diffusion ρ (after 400 time steps) varying hi

especially in less turbulent markets, complete diffusions occurred after more than 300
time steps. Thus we collected values of ρ after 400 time steps for each simulation run.7

Obviously, the speed of the diffusion is lower when personal thresholds are higher.
More interestingly, it can be noted that when agents have high personal thresholds, the
small-world networks is not the fastest in spreading the diffusion anymore. The only
thing that counts here is how clustered the agents are: the more clustered they are, the
more social influence adopters exert on non-adopters, the sooner the high personal
threshold can be reached and the faster the diffusion disseminates.

5.3 Heterogeneous populations of consumers

In the last set of simulations, we include heterogeneity in the populations. With the
same parameter values as before (L = 2, β j = 1.0, r = 0.1) we observe a very high
difference in the value of ρ between the homogeneous case and the uniform distri-
bution case (hi = 0.3 → ρ = 0.792 and hi = [0, 0.6] → ρ = 0.892 after 250 time
steps). Then we draw the value of hi from beta distributions (Eq. (7)) and we vary the
values of a and b in order to maintain the average <hi> fixed and to obtain different
variance in the population representing, in this way, different degrees of heterogene-
ity. In Fig. 5, we show three sets of simulations for three different turbulent markets
(< hi >= 0.2; < hi >= 0.3, < hi >= 0.4). For each market we distribute agent’s
personal thresholds changing the variance into the population. In all three cases we
find that more heterogeneity always causes a faster diffusion speed. When the pop-
ulations become more heterogeneous there are more agents with lower and higher

7 Notice that the ρ indicator is a mean of the speeds of the diffusion at each time step and varying the
number of steps causes variations in ρ. However, as long as we compare simulation runs with the same
time steps, differences among different simulation runs are not altered.
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personal thresholds. Those that have a lower personal threshold are influenced sooner
to adopt and they anticipate the ignition of the diffusion. Figure 6 shows five S curves
of diffusion for different degrees of heterogeneity in the population of agents (homoge-
neous population, hi = 0.3; a = 3, b = 7, σ 2 = 0.138; a = 6, b = 14, σ 2 = 0.1; a =
15, b = 35, σ 2 = 0.064; uniform distribution, hi = [0, 0.6]). It is clear how the time
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needed to complete the diffusion is much smaller as the population becomes more
heterogeneous.

6 Conclusions and discussion

Epidemic models propose a new interesting methodology in order to study diffu-
sion dynamics in biological, artificial and social networks (Dodds and Watts, 2005).
The high relevance of these models stays in their generality which permits them to
give insights and be applicable in many different fields and in the clear connection
between micro specifications of individual characteristics and aggregate macro dy-
namics. There exists a population of nodes which are connected through links into a
global network. The nodes are in a given state and diffusion dynamics are modeled
as a penetration of a new state into the network: it can be a virus that flows because
of infection and it can be a product that penetrated because of word-of-mouth. Epi-
demic models assume some individual characteristics like transmissibility (usually
homogeneously into the population) and, either analytically or via computer simu-
lations, they derive diffusion dynamics. However social contexts may need different
assumptions about human behavior and decision making. In this paper we propose
a new model in order to formalize innovation diffusions. Our model still belongs
to the epidemic framework but it includes two strictly social concepts: (1) social
influence in personal networks and (2) heterogeneity in decision-making. Simula-
tion results show that in high social susceptible contexts the speed of the diffusion
depends on how clustered groups are. Surprisingly, in high clustered networks inno-
vations diffuse faster than in random networks. This is due to the fact that in clustered
groups, individuals are exposed to more social influence and they may decide to
adopt sooner. Especially in random networks, the dimension of personal networks
also affects the diffusion: the bigger personal networks are, the slower the diffu-
sion. Social influence explains this result. The bigger i’s personal network, the higher
the number of adopters that are necessary in order to exert social influence on i .
Then it takes longer for the diffusion to be set up. Finally we find that heterogene-
ity in consumer population helps the speed of the diffusion. In more heterogeneous
population the critical mass is reached sooner than in homogeneous ones because
there are more individuals that adopt at the beginning and they ignite the diffusion
sooner.

The success of epidemic models in social studies depends on how adaptable these
models are and how they are translated in social contexts that can include relevant
behavioral and social aspects. Especially in contexts where the decisions are intercon-
nected and interdependent it is necessary to reproduce more realistic decision-making
rules. In fashionable markets, promotion and marketing strategies have to take these
aspects into consideration. Because the success of the diffusion depends on the internal
dynamics of groups of consumers, it is crucial to identify the right consumers (tar-
geting those consumers that occupy strategic positions in the social networks) at the
right time (finding the most efficient periods for promotion), in the right way (start-
ing the diffusion with clustered, cohesive, visible groups that can influence others’
behavior).
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