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Abstract. Edge-colourings of graphs have been studied for decades. We study edge-
colourings with respect to hereditary graph properties. For a graph G, a hereditary graph
property P and l > 1 we define χ′

P,l(G) to be the minimum number of colours needed to
properly colour the edges of G, such that any subgraph of G induced by edges coloured by
(at most) l colours is in P . We present a necessary and sufficient condition for the existence
of χ′

P,l(G). We focus on edge-colourings of graphs with respect to the hereditary properties
Ok and Sk, where Ok contains all graphs whose components have order at most k+1, and
Sk contains all graphs of maximum degree at most k. We determine the value of χ

′
Sk,l
(G)

for any graph G, k > 1, l > 1, and we present a number of results on χ′
Ok,l
(G).
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1. Introduction

In this paper we study undirected graphs without loops and multiple edges. We

denote the vertex set of a graph G by V (G) and the edge set by E(G). The order of

a graph G is the number of its vertices and the size of G is the number of edges of G.

We denote the complete graph, the cycle and the path of order n by Kn, Cn and Pn,

respectively. The star of order n + 1 and size n is denoted by Sn. The distance

between two vertices u, v ∈ V (G) (two edges e, f ∈ E(G)) is the number of edges

in a shortest path between u and v (between e and f). The diameter of a graph is

the greatest of the distances between all pairs of vertices in a graph. The degree of

a vertex v ∈ V (G) is the number of edges incident to v. The maximum degree of G,

denoted by ∆, is the largest vertex degree of G.

The work of the second author has been supported by the National Research Foundation
of South Africa; Grant numbers: 91499, 90793.
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The chromatic index (the edge chromatic number) χ′(G) of a graph G is the

smallest number of colours necessary to colour each edge of G, such that no two

edges incident to the same vertex have the same colour. So it is the number of

distinct colours in a minimum proper edge-colouring. The chromatic index has been

studied extensively. It was shown by Vizing [12] in 1964 that the chromatic index of

any graph G is either ∆ or ∆+1. This famous result is known as Vizing’s theorem.

If the chromatic index of a graph G is ∆, then G is said to be of class one, otherwise

G is said to be of class two. In 1977, Erdős and Wilson [5] showed that almost all

graphs are of class one. From the work of König [10] published in 1916 it follows that

all bipartite graphs are of class one, thus trees and even cycles are of class one, but

odd cycles are of class two. It is also well-known that complete graphs of even order

are of class one, while complete graphs of odd order are of class two. The general

problem of deciding which graphs belong to which class remains unsolved.

Generalized edge-colourings that require edges to be coloured properly are

bounded below by the chromatic index. Various generalizations of the concept

of edge-colouring have been studied, one example is the strong edge-colouring, intro-

duced by Fouquet and Jolivet [7], which requires all edges adjacent to a given edge

to receive different colours. The strong edge-colouring led to the introduction of

the k-intersection edge-colouring of a graph by Muthu et al. [11], which is a proper

edge-coloring in which the cardinality of the intersection of the two respective sets of

colours appearing on edges incident to adjacent vertices u and v is at most k. Then

the k-intersection chromatic index of a graph G is the smallest number of colours in

a possible k-intersection edge-colouring of G.

Another research problem which has been studied is a proper acyclic edge-

colouring of a graph, which is a colouring having no bichromatic (two colourable)

cycles. Then the acyclic chromatic index of a graph G is defined to be the minimum

number k such that there is an acyclic edge-colouring of G using k colours. The

acyclic chromatic index has been studied for various classes of graphs. For example,

Basavaraju and Chandran [1] studied complete bipartite graphs, and planar graphs

were considered by Fiedorowicz, Ha luszczak and Narayanan [6], and by Hou, Wang

and Zhang [9]. For more results on generalized edge-colourings of graphs, see the

recent paper of Yang, Chen and Ma [13].

In this paper we study edge-colourings with respect to graph properties. A graph

property is any isomorphism-closed class of graphs. We say that a graph G has the

property P if G ∈ P . A property P is hereditary if, whenever G is in P , and H is

a subgraph of G, then H is also in P . We denote the set of all graphs by I. Let us

mention a few hereditary properties:

O = {G ∈ I : E(G) = ∅},
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Sk = {G ∈ I : the maximum degree of G is at most k},

Ok = {G ∈ I : each component of G has order at most k + 1},

Ik = {G ∈ I : G does not contain Kk+2 as a subgraph}.

One of the first papers dealing with this topic is the work of Ha luszczak and

Vateha [8]. Czap and Mihók [3] considered edge-colourings in which the edges

coloured by the same colour induce a subgraph of some hereditary property P . An-

other research problem on non-proper edge-colourings and hereditary properties is

described and studied in [4].

We introduce the following very general problem. For a hereditary graph prop-

erty P , positive integer l and a graph G we define χ′
P,l(G) to be the minimum number

of colours needed to properly colour the edges of G, such that any subgraph of G

induced by edges coloured by (at most) l colours is in P . In the next sections we

present a number of results on χ′
P,l(G).

2. Preliminary results

Since the colourings which we study are proper, χ′
P,l(G) is bounded below by the

chromatic index χ′(G) of G.

Lemma 2.1. For any hereditary graph property P , positive integer l and graphG,

if χ′
P,l(G) exists, then χ′(G) 6 χ′

P,l(G).

Let us define the set of minimal forbidden subgraphs of P . We use this concept

to prove a necessary and sufficient condition for the existence of χ′
P,l(G).

Definition 2.2. The set of minimal forbidden subgraphs of a hereditary graph

property P is defined as

F(P) = {G ∈ I : G is not in P , but every proper subgraph of G is in P}.

It is known (see [2]) that

F(O) = {K2},

F(Sk) = {Sk+1},

F(Ok) = {Tk+2 ∈ I : Tk+2 is any tree of order k + 2},

F(Ik) = {Kk+2}.

The following lemma which was presented by Borowiecki et al. in [2] is a direct

consequence of the definition of F(P).
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Lemma 2.3. Let P be a hereditary graph property. Then a graph G is in P if

and only if no subgraph of G is in F(P).

Note that if G is not in P , then by Lemma 2.3 there exists (at least one) sub-

graph of G that is in F(P). Therefore there exists a smallest (with respect to size)

subgraph G′ of G, such that G′ is in F(P).

Now we present a necessary and sufficient condition for the existence of χ′
P,l(G).

Lemma 2.4. Let P be any hereditary graph property, let l be any positive integer

and let G be any graph. Let us denote by G′ a subgraph of G of the smallest size m′,

such that G′ is in F(P). Then χ′
P,l(G) exists if and only if l < m′ or G is in P .

P r o o f. Suppose that G is in P . Since P is hereditary, every subgraph of G is

in P . We can colour the edges of G properly using χ′(G) colours. Then χ′
P,l(G)

exists and χ′
P,l(G) = χ′(G).

If G is not in P , then G′ exists and we assume that l < m′. Let m be the number

of edges of G. We colour the edges of G by m different colours (any two edges are

coloured by different colours). Then any subgraph H of G induced by edges coloured

by at most l colours has size at most l, which is smaller than m′. Since the size of H

is less than m′ and G′ is a subgraph of G in F(P), which has the smallest size, H is

not in F(P) and no subgraph of H is in F(P). Therefore by Lemma 2.3, H is in P .

Since for this colouring, any subgraph of G induced by edges coloured by at most l

colours is in G, we have χ′
P,l(G) 6 m, so χ′

P,l(G) exists.

Now assume that χ′
P,l(G) exists. So it is possible to colour the edges of G by

χ′
P,l(G) colours, such that any subgraph of G induced by edges coloured by at most

l colours is in P . Suppose to the contrary that G is not in P and l > m′. Since G′

has size m′ 6 l, edges of G′ can be coloured by at most l colours, which implies that

G′ is in P , contradicting the fact that G′ is in F(P). The proof is complete. �

The first part of the proof of Lemma 2.4 yields the following corollary:

Corollary 2.5. For any hereditary graph property P and l > 1, if G is in P , then

χ′
P,l(G) = χ′(G).

We focus on edge-colourings of graphs with respect to the properties Sk and Ok.

Since F(Sk) = {Sk+1}, F(Ok) = {Tk+2 ∈ I : Tk+2 is any tree of order k + 2} and

the graphs Sk+1 and Tk+2 have size k + 1, for the properties Sk and Ok we have

m′ = k + 1 in Lemma 2.4. Hence we obtain the following corollary:
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Corollary 2.6. For any graph G and l > 1, if P is the property Sk or Ok, then

χ′
P,l(G) exists if and only if G is in P or l 6 k.

In the next two sections we study the value of χ′
Ok,l

(G) for trees, paths and cycles.

By the previous corollary it suffices to consider the case l 6 k; otherwise χ′
Ok,l

(G)

does not exist or if G is in Ok, then by Corollary 2.5 the problem is trivial.

We show that it is not complicated to find the value of χ′
P,l(G) if P is the prop-

erty Sk.

Theorem 2.7. Let k > 1, l > 1 and let G be any graph. If χ′
Sk,l

(G) exists, then

χ′
Sk,l

(G) = χ′(G).

P r o o f. Suppose that χ′
Sk,l

(G) exists. Then by Corollary 2.6, G is in Sk or l 6 k.

If G is in Sk, then by Corollary 2.5 we have χ′
Sk,l

(G) = χ′(G).

Therefore in the rest of this proof we can assume that G is not in Sk and l 6 k.

Since our colouring must be proper, we need at least χ′(G) colours to colour the

edges of G. Therefore χ′
Sk,l

(G) > χ′(G).

Let us colour the edges of G by χ′(G) colours properly. Since all edges incident to

any vertex of G are coloured by different colours, any subgraph H of G induced by

edges coloured by at most l colours contains only vertices of degree at most l. Since

l 6 k, H is in Sk and consequently χ′
Sk,l

(G) = χ′(G). �

It is well-known that the chromatic index of any graph G is either ∆ or ∆ + 1.

Since χ′(G) = ∆ for all bipartite graphs G and χ′(Cn) = ∆ + 1 for the cycles Cn if

n is odd, we obtain the following corollaries:

Corollary 2.8. Let 1 6 l 6 k. Then χ′
Sk,l

(T ) = ∆ for any tree T .

Corollary 2.9. Let 1 6 l 6 k and n > 3. Then

χ′
Sk,l(Cn) =

{

2 if n is even,

3 if n is odd.
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3. Edge-colouring of paths and cycles with respect

to the property Ok

In this section we study the value of χ′
Ok,l

(G) if G is the path Pn, n > 1, or the

cycles Cn, n > 3.

Theorem 3.1. Let 1 6 l 6 k and n > 1. Then

χ′
Ok,l(Pn) =

{

χ′(Pn) if n 6 k + 1,

l + 1 otherwise.

P r o o f. If n 6 k + 1, then the path of length n, Pn, is in Ok, and consequently

by Corollary 2.5, χ′
Ok,l

(Pn) = χ′(Pn).

Suppose that n > k+2 (which is at least 3). We have χ′
Ok,l

(Pn) > l+1; otherwise

if we colour the edges of Pn by at most l colours, the subgraph of Pn induced by

edges coloured by at most l colours is the same graph, Pn, which does not lie in Ok

for n > k+ 2. Let us denote the edges of Pn by e1, e2, . . . , en−1. We colour the edge

ei by the colour cimod(l+1), where i = 1, 2, . . . , n − 1. Then any subgraph, say H ,

of Pn induced by edges coloured by l colours consists of paths containing at most l

edges, since the edges coloured by one of the l+1 colours are not included in H . So

every component of H is a path of order at most l + 1, which is in Ol. Since l 6 k,

we have χ′
Ok,l

(Pn) = l + 1. �

Theorem 3.2. Let 1 6 l 6 k and n > 3.

(1) If n 6 k + 1 or l = 1, then χ′
Ok,l

(Cn) = χ′(Cn).

(2) If n > k + 2 and l > 2, then

(i) χ′
Ok,l

(Cn) = l + 1 if 0 6 r 6 q(k − l),

(ii) l + 1 6 χ′
Ok,l

(Cn) 6 2l − k + 1 + ⌈r/q⌉ otherwise, where n = q(l + 1) + r

and 0 6 r 6 l.

P r o o f. (1) If l = 1, then in any proper colouring, a subgraph of Cn induced by

edges coloured by one colour is a union of K2’s, which is in O1, therefore χ′
Ok,1

(Cn) =

χ′(Cn).

If n 6 k+ 1, then the cycle of order n, Cn is in Ok and by Corollary 2.5, we have

χ′
Ok,l

(Cn) = χ′(Cn).

(2) Let n > k + 2 and l > 2. We have

χ′
Ok,l

(Cn) > l + 1;

otherwise if χ′
Ok,l

(Cn) 6 l, then the subgraph of Cn induced by edges coloured with

(at most) l colours is the same graph Cn, which is not in Ok for n > k + 1.
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We have n = q(l + 1) + r where 0 6 r 6 l. Since l 6 k, we have n > l + 2,

which implies that q > 1. We divide the edges of Cn into q edge disjoint paths

P 1, P 2, . . . , P q (subgraphs of Cn) such that the lengths of any two paths differ by at

most 1, the last vertex of P i is the first vertex of P i+1, i = 1, 2, . . . , q − 1, and the

last vertex of P q is the first vertex of P 1 (if q = 1, we have only one path containing

all the edges of Cn). We distinguish 2 cases:

(i) 0 6 r 6 q(k−l): We have n = q(l+1)+r 6 q(l+1)+q(k−l) = q(k+1). From the

size of the cycle Cn it follows that l + 1 6 |E(P i)| 6 k + 1 for every i = 1, 2, . . . , q.

We colour first l + 1 edges of P i successively by colours cl+1, cl, . . . , c1, and if P i

has more than l + 1 edges, we colour the other edges successively by the colours

c2, c1, c2, c1, . . . (the last edge of P i is coloured either by c1 or by c2). Note that all

edges of Cn are coloured and the colouring is proper.

Consider any subgraph H of Cn induced by edges coloured by at most l colours.

Let cj be the colour which is not used in the colouring of edges of H , 1 6 j 6 l+ 1.

Since the (l+2− j)-th edge of every P i is coloured by cj and l+1 6 |E(P i)| 6 k+1,

it follows that H consists of paths of length at most k (and order at most k + 1).

Therefore H is in Ok, which implies that χ′
Ok,l

(Cn) = l + 1.

(ii) q(k− l) < r 6 l: Let r = q(k− l)+r′. Then r′ > 0. We have n = q(l+1)+r =

q(l+1)+q(k−l)+r′ = q(k+1)+r′. Note that for any i = 1, 2, . . . , q, we have |E(P i)|

is k+1+⌈r′/q⌉ or k+1+⌊r′/q⌋, where at least one path P i has size k+1+⌈r′/q⌉. We

colour the first k− l edges of each P i successively by the colours c2, c1, c2, c1, . . ., and

we colour the other l+1+j edges of P i successively by the colours cl+1+j , cl+j , . . . , c1,

where j = ⌈r′/q⌉ or ⌊r′/q⌋. The number of colours used for this colouring of edges

of Cn is

l + 1 +
⌈r′

q

⌉

= l+ 1 +
⌈r

q
− (k − l)

⌉

= 2l − k + 1 +
⌈r

q

⌉

.

We show that any subgraph H ′ of Cn which is a path of length k + 1 is coloured

by at least l+1 colours. Any two edges coloured by a colour cj , where j 6= 1, j 6= 2,

are at distance at least k in Cn, so there is at most one edge in H ′ coloured by cj .

On the other hand, Cn contains q paths of length k − l + 2 as subgraphs, which are

coloured only by c1 and c2. However, since the length of any P i, 1 6 i 6 q, is at least

k+1, it follows that H ′ (which is of length k+1) cannot contain more than k− l+2

edges coloured by c1 or c2. This means that at least (k + 1) − (k − l + 2) = l − 1

other colours must be used to colour H ′.

Therefore any subgraph H of Cn induced by edges coloured by at most l colours

consists only of paths of length at most k (and order at most k + 1). Hence H is

in Ok, which yields the bound χ′
Ok,l

(Cn) 6 2l−k+1+⌈r/q⌉. The proof is complete.

�
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Now we consider the value of χ′
Ok,l

(Cn) for k = l. All cases which are not solved

completely in the previous theorem are considered and solved in Theorem 3.3.

Theorem 3.3. Let k > 2 and n > k + 2 be such that n = q(k + 1) + r where

1 6 r 6 k. Then

χ′
Ok,k

(Cn) = k + 1+
⌈r

q

⌉

.

P r o o f. From Theorem 3.2, we have χ′
Ok,k

(Cn) 6 k + 1 + ⌈r/q⌉. We prove by

contradiction that χ′
Ok,k

(Cn) = k + 1 + ⌈r/q⌉.

Since χ′
Ok,k

(Cn) is an integer and there is no integer in the half-closed interval of

real numbers [k+1+r/q, k+1+⌈r/q⌉), we can assume that χ′
Ok,k

(Cn) < k+1+r/q.

Since n = q(k+1)+ r, there must be a colour, say c, which is used to colour at least

q + 1 edges of Cn (otherwise, if each of the χ′
Ok,k

(Cn) colours is used to colour at

most q edges of Cn, then the number of edges n 6 qχ′
Ok,k

(Cn) < q(k + 1 + r/q) =

q(k+1)+r). Then there must be 2 edges, say e1, e2, of distance at most k−1 in Cn,

which are coloured by c (otherwise, if there are at least k edges between any two

edges coloured by c, then n > k(q+1)+ q+1 = q(k+1)+(k+1)). This implies that

there exists a connected subgraph H of Cn (H is a path), which consists of k + 1

edges and contains e1 and e2. The edges of H are coloured by at most k colours,

which means that H is not in Ok. A contradiction. �

4. Edge-colouring of trees with respect to the property Ok

First we present two lemmas, which are used to prove Theorem 4.3.

Lemma 4.1. Let 1 6 l 6 k. Then for any tree T of order n such that n 6 k + 1,

χ′
Ok,l

(T ) = ∆.

P r o o f. If n 6 k + 1, then any tree T of order n is in Ok and by Corollary 2.5

we get χ′
Ok,l

(T ) = χ′(T ). �

Lemma 4.2. Let k > 1. Then for any tree T of diameter at most k+1 and order

n such that n > k + 2,

χ′
Ok,k(T ) = n− 1.
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P r o o f. Let n > k+2. Then T is not in Ok. Since the distance between any two

edges in a tree of diameter at most k + 1 is at most k − 1, no two different edges e,

f of T can be coloured by the same colour. Otherwise any connected subgraph H

of T which consists of k+ 1 edges and contains e and f would be of order k+2 and

coloured by at most k colours (H would not be in Ok). Hence χ′
Ok,k

(T ) is equal to

the number of edges of T , which is n− 1. �

In the next two theorems we determine the value of χ′
Ok,l

(T ′) for all complete

∆-trees T ′ when k = l. Let ∆ > 2 and h > 1. A complete ∆-tree of height h is

a tree T ′, which has exactly one central vertex v, all leaves of T ′ are at distance h

from v, and all internal vertices of T ′ have degree ∆.

Theorem 4.3. Let ∆ > 2 and k > 1. Let T ′ be a complete ∆-tree of height at

most ⌈k/2⌉ and order n. Then

χ′
Ok,k

(T ′) =

{

∆ if n 6 k + 1,

n− 1 otherwise.

P r o o f. Since the diameter of T ′ is at most k + 1, by Lemma 4.2 we have

χ′
Ok,k

(T ′) = n − 1 if n > k + 2, and by Lemma 4.1 we obtain χ′
Ok,k

(T ′) = ∆ if

n 6 k + 1. �

Now we study complete ∆-trees T ′ of height at least ⌈k/2⌉+1. We call an edge e

of T ′ a descendent of an edge f of T ′ if and only if the path connecting the central

vertex v and e contains f .

Theorem 4.4. Let ∆ > 2 and k > 1. Let T ′ be a complete ∆-tree of height at

least ⌈k/2⌉+ 1. Then

χ′
Ok,k(T

′) =























∆

k/2−1
∑

i=0

(∆− 1)i + (∆− 1)k/2 if k is even,

∆

(k−1)/2
∑

i=0

(∆− 1)i if k is odd.

P r o o f. Let T ′ be a complete ∆-tree of height h > ⌈k/2⌉+1 with central vertex v.

An edge is in the i-th level, i = 1, 2, . . . , h, if it is incident to the vertices, such that

one of them is at distance i− 1 from v, and the other vertex is at distance i from v.

Note that the number of edges at level at most ⌈k/2⌉ is

∆+∆(∆− 1) + ∆(∆− 1)2 + . . .+∆(∆− 1)⌈k/2⌉−1 = ∆

⌈k/2⌉−1
∑

i=0

(∆− 1)i = a.
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Any two edges e, f of T ′ which are of distance at most k − 1 must be coloured

by different colours. Otherwise any connected subgraph H of T ′ which consists of

k+ 1 edges and contains e and f would be of order k+2 and coloured by at most k

colours (so H would not be in Ok). Since the distance between any two edges of T ′

which are at level at most ⌈k/2⌉ is at most k− 1, they must be coloured by different

colours and we obtain

χ′
Ok,k

(T ′) > a.

So we use a colours to colour the edges in the first ⌈k/2⌉ levels.

For i > ⌈k/2⌉ + 1 an edge f from the (i − ⌈k/2⌉)-th level is the parent edge of

an edge e from the i-th level if e is a descendent of f . Note that there are exactly

(∆ − 1)⌈k/2⌉ edges in the i-th level which are descendents of the same edge (called

their parent edge) from the (i − ⌈k/2⌉)-th level, thus the edges in the i-th level can

be divided into sets of cardinality (∆ − 1)⌈k/2⌉, such that all the edges in one set

have the same parent edge.

For even k, let S1 be any set of (∆ − 1)k/2 edges in the (k/2 + 1)-th level such

that all edges in S1 have the same parent edge (which is in the first level). Since the

distance between any two edges in S1 is at most k− 2 and the distance between any

edge in S1 and an edge which is in a level at most k/2 is smaller than k, we must

use (∆− 1)k/2 new colours to colour the edges in S1. This implies that if k is even,

then

χ′
Ok,k

(T ′) > a+ (∆− 1)k/2.

It remains to show that we can colour the edge set of T ′ by a colours if k is odd,

and by a+ (∆ − 1)k/2 colours if k is even, such that any subgraph H of T induced

by edges coloured by at most k colours consists of components of order at most k+1

(and size k). This means that we must show that any two edges e, f coloured by the

same colour are at distance at least k in T ′ (which means that there must be at least

k edges in the path connecting e and f coloured by k different colours).

We are going to colour the edges in the (⌈k/2⌉+1)-th level, then the edges in the

(⌈k/2⌉+ 2)-th level, and so on, till we colour all h levels. We study the cases when

k is even or odd separately.

(i) k is even: In the (k/2+1)-th level there are ∆ sets of edges such that all edges

in one set have the same parent edge. We can denote these sets by S1, S2, . . . , S∆;

|Si| = (∆−1)k/2, i = 1, 2, . . . ,∆. The same set of (∆−1)k/2 colours which were used

to colour the edges of S1 can be used to colour the edges of any set Si, i = 2, 3, . . . ,∆,

because the distance between any edge in Si and any edge in Sj is k (1 6 i < j 6 k).

We show that we do not need any new colours to colour the rest of E(T ′). Let us

colour the edges in the i-th level for any k/2 + 2 6 i 6 h and assume that all edges
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in the levels up to i − 1 have been coloured, and no edges in the levels greater than

i have been coloured.

Let S be any set of (∆− 1)k/2 edges in the i-th level such that all edges in S have

the same parent edge, say g. Note that among the colored edges any edge which is

at distance at most k/2− 2 from some edge in S is a descendent of g, and except for

descendents of g, the edge g is the only coloured edge which is at distance k/2 − 1

from any edge in S. This implies that among the coloured edges, the number of

edges at distance at most k/2− 1 from the edges in S is

b = 1 + (∆− 1) + (∆− 1)2 + . . .+ (∆− 1)k/2−1.

Except for these edges, the other coloured edges which are at distance at most k− 1

from the edges in S can be reached only via the edge g and therefore their number

is

c = (∆− 1) + (∆− 1)2 + . . .+ (∆− 1)k/2.

Since b + c = a, the number of coloured edges at distance at most k − 1 from

the edges in S is a, and hence at most a colours are used to colour these edges.

Therefore there are (∆−1)k/2 colours among the colours used to colour the previous

levels of T ′ available to colour the edges of S. It follows that the edges of T ′ can be

coloured by a + (∆ − 1)k/2 colours, such that any two edges coloured by the same

colour are at distance at least k.

(ii) k is odd: We can assume that all edges in the levels up to i − 1 have been

coloured and we present a colouring of edges in the i-th level for any (k + 1)/2+1 6

i 6 h.

Let S be any set of (∆− 1)(k+1)/2 edges in the i-th level such that all edges in S

have the same parent edge, say g. Among the coloured edges all edges at distance

at most (k − 1)/2 from the edges in S are descendents of g or the edge g, and their

number is

b = 1 + (∆− 1) + (∆− 1)2 + . . .+ (∆− 1)(k−1)/2.

Except for these edges, the other coloured edges which are at distance at most k− 1

from the edges in S can be reached only via the edge g and their number is

c = (∆− 1) + (∆− 1)2 + . . .+ (∆− 1)(k−1)/2.

The number of coloured edges at distance at most k − 1 from the edges in S is

b + c = a − (∆ − 1)(k+1)/2. Hence (∆ − 1)(k+1)/2 edges of S can be colored by

(∆ − 1)(k+1)/2 colours which have been used to colour previous levels, but none of

these colours is used to colour the edges at distance at most k−1 from edges in S. So

in total a colours suffice to colour the edges of T ′, such that any two edges coloured

by the same colour are at distance at least k. The proof is complete. �
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Finally, we present a corollary of Theorem 4.4, which gives the value of χ′
Ok,k

(T )

for a wider range of trees T .

Corollary 4.5. Let∆ > 2 and k > 1. Let T be any tree which contains a complete

∆-tree T ′ of height ⌈(k + 1)/2⌉ as a subgraph (V (T ′) ⊂ V (T )). Then

χ′
Ok,k(T ) =























∆

k/2−1
∑

i=0

(∆− 1)i + (∆− 1)k/2 if k is even,

∆

(k−1)/2
∑

i=0

(∆− 1)i if k is odd.

P r o o f. Note that n > k + 2, so T is not in Ok. Let T ′ be a subgraph of T such

that T ′ is a complete ∆-tree of height ⌈(k + 1)/2⌉. If k is even, by Theorem 4.4

we have χ′
Ok,k

(T ′) = ∆
k/2−1
∑

i=0

(∆ − 1)i + (∆ − 1)k/2. If k is odd, from the proof of

Theorem 4.4 it follows that we need at least ∆
(k−1)/2
∑

i=0

(∆− 1)i colours (which is the

number of edges of T ′) to colour the edges of T ′.

Since any finite tree T is a subgraph of a complete ∆-tree of height h for some

positive integer h, by Theorem 4.4 we also have

χ′
Ok,k(T ) 6























∆

k/2−1
∑

i=0

(∆− 1)i + (∆− 1)k/2 if k is even,

∆

(k−1)/2
∑

i=0

(∆− 1)i if k is odd.

The result follows. �

5. Open problems

In Section 3 we presented the value of χ′
Ok,l

(G) for 1 6 l 6 k if G is any path, and

we found the value of χ′
Ok,k

(G) for any k > 1 if G is a cycle. We also gave results

on χ′
Ok,l

(Cn). The only open problem in this area is

Problem 5.1. Let 2 6 l < k and n > k + 2. Find the exact value of χ′
Ok,l

(Cn)

for r > q(k − l), where n = q(l + 1) + r and 0 6 r 6 l.

In Section 4 we studied the value of χ′
Ok,l

(T ) for trees T , mostly in the case

when k = l. However, for some classes of trees the problem has not been resolved.

Therefore we state the following open problem:
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Problem 5.2. Find the value of χ′
Ok,k

(T ) for any tree T where k > 1.
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