ON PRINCIPAL CONNECTION LIKE BUNDLES

Włodzimierz M. Mikulski, Kraków

(Received July 30, 2013)

Abstract. Let \mathcal{PB}_m be the category of all principal fibred bundles with *m*-dimensional bases and their principal bundle homomorphisms covering embeddings. We introduce the concept of the so called (r, m)-systems and describe all gauge bundle functors on \mathcal{PB}_m of order *r* by means of the (r, m)-systems. Next we present several interesting examples of fiber product preserving gauge bundle functors on \mathcal{PB}_m of order *r*. Finally, we introduce the concept of product preserving (r, m)-systems and describe all fiber product preserving gauge bundle functors on \mathcal{PB}_m of order *r* by means of the product preserving (r, m)-systems.

Keywords: principal bundle; principal connection; gauge bundle functor; natural transformation

MSC 2010: 58A05, 58A20, 58A32

INTRODUCTION

Let $\mathcal{M}f$ be the category of all manifolds and maps, $\mathcal{M}f_m$ the category of *m*dimensional manifolds and their embeddings, \mathcal{FM} the category of all fibred manifolds and their fibred maps, \mathcal{FM}_m the category of fibred manifolds with *m*-dimensional bases and fibred maps with embeddings as base maps, $\mathcal{G}r$ the category of all Lie groups and their homomorphisms, \mathcal{PB}_m the category of all principal fiber bundles with *m*-dimensional bases and their principal bundle homomorphisms covering embeddings, \mathcal{VB} the category of vector bundles and their vector bundle maps and \mathcal{VB}_m the category of vector bundles with *m*-dimensional bases and their vector bundle maps covering embeddings.

By Definition 2.1 in [4], a gauge bundle functor on \mathcal{PB}_m is a covariant functor $E: \mathcal{PB}_m \to \mathcal{FM}$ satisfying the following conditions:

(i) Base preservation. For any \mathcal{PB}_m -object $P = (p: P \to M)$ with the base M the induced \mathcal{FM} -object $EP = (\pi_P: EP \to M)$ is a fibred manifold over the

same base M. For any \mathcal{PB}_m -morphism $f: P_1 \to P_2$ covering $\underline{f}: M_1 \to M_2$ the induced \mathcal{FM}_m -map $Ef: EP_1 \to EP_2$ is also over f.

- (ii) Locality property. For any \mathcal{PB}_m -object $p: P \to M$ and any open subset $U \subset M$ the \mathcal{FM} -map $Ei_U: E(P|_U) \to EP$ (induced by the inclusion $i_U: P|_U \to P$) is a diffeomorphism onto $\pi_P^{-1}(U)$.
- (iii) Regularity property. E transforms smoothly parametrized families of \mathcal{PB}_m -morphisms into smoothly parametrized families of \mathcal{FM} -morphisms.

By Definition 2.2 and Lemma 2.3 in [4], a natural transformation $\eta: E \to E^1$ of gauge bundle functors on \mathcal{PB}_m is a family of fibred maps $\eta_P: EP \to E^1P$ covering id_M for any \mathcal{PB}_m -object $P \to M$ such that $E^1f \circ \eta_P = \eta_Q \circ Ef$ for any \mathcal{PB}_m morphism $f: P \to Q$.

By Definition 2.5 in [4], a gauge bundle functor $E: \mathcal{PB}_m \to \mathcal{FM}$ is of order r if the following condition is satisfied:

For any \mathcal{PB}_m -morphisms $f_1, f_2: P \to Q$ between \mathcal{PB}_m -objects $P \to M$ and Qand any $x \in M$, from $j_x^r(f_1) = j_x^r(f_2)$ it follows that $(Ef_1)|_{E_xP} = (Ef_2)|_{E_xP}$.

A gauge bundle functor $E: \mathcal{PB}_m \to \mathcal{FM}$ is fiber product preserving if $(EP_1) \times_M (EP_2) = E(P_1 \times_M P_2)$ for any \mathcal{PB}_m -objects with the same base M (the identification is induced by the *E*-prolongation of the fiber product projections).

Given a \mathcal{PB}_m -object $P \to M$ with the structure Lie group G we have a principal connection bundle $QP := J^1 P/G$ of P (sections of QP are in bijection with principal (right invariant) connections on P). Given a \mathcal{PB}_m -map $f \colon P \to P_1$ covering the embedding $\underline{f} \colon M \to M_1$ with the Lie group homomorphism $\nu_f \colon G \to G_1$, the map $J^1f \colon J^1P \to J^1P_1$ factorizes into the \mathcal{FM} -map $Qf \colon QP \to QP_1$. In this way we obtain a gauge bundle functor $Q \colon \mathcal{PB}_m \to \mathcal{FM}$ of order 1. It is fiber product preserving.

Given a \mathcal{PB}_m -object $P \to M$ we have the *r*-th order principal prolongation $W^rP := P^rM \times_M J^rP$ (see Section 15 in [2]). Any \mathcal{PB}_m -map $f \colon P \to P_1$ covering $\underline{f} \colon M \to M_1$ induces a fibred map $W^rf := P^r\underline{f} \times_{\underline{f}} J^rf \colon P^rM \times_M J^rP \to$ $P^rM_1 \times_{M_1} J^rP_1$. In this way we obtain a gauge bundle functor $W^r \colon \mathcal{PB}_m \to \mathcal{FM}$ of order *r*. The functor W^r is not fiber product preserving.

In the present paper, we describe all gauge bundle functors $\mathcal{PB}_m \to \mathcal{FM}$ of order r by means of the so called (r, m)-systems. Next, we describe fiber product preserving gauge bundle functors $E: \mathcal{PB}_m \to \mathcal{FM}$ of order r by means of the product preserving (r, m)-systems.

All manifolds considered in the paper are assumed to be Hausdorff, finite dimensional, second countable, without boundary and smooth, i.e., of class C^{∞} . Maps between manifolds are assumed to be of class C^{∞} .

1. A characterization of gauge bundle functors on \mathcal{PB}_m of order rby means of (r, m)-systems

Using the results of Section 15 in [2] we see that in fact we have $W^r: \mathcal{PB}_m \to \mathcal{PB}_m$. Indeed, we have a functor $W_m^r: \mathcal{G}r \to \mathcal{G}r$ sending any Lie group G into its r-th order prolongation group $W_m^rG = G_m^r \rtimes T_m^rG$ in dimension m (see Section 15 in [2]) and any Lie group homomorphism $\nu: G \to G_1$ into a Lie group homomorphisms $W_m^r\nu := \operatorname{id}_{G_m^r} \rtimes T_m^r\nu: W_m^rG \to W_m^rG_1$ (that $W_m^r\nu$ is a Lie group homomorphism follows from the formula on prolongation group multiplication from Section 15 in [2]). Now, given a \mathcal{PB}_m -object $P \to M$ with the structure Lie group G, W^rP is again a \mathcal{PB}_m -object with the structure Lie group W_m^rG (see Section 15 in [2]). Moreover, given a \mathcal{PB}_m -object $P \to P_1$ covering $\underline{f}: M \to M_1$ and with the Lie group homomorphism with the Lie group homomorphism $W_m^r\nu_f: W_m^rG \to W_m^rG_1$ (which follows from the formula on the principal prolongation bundle right actions from Section 15 in [2]). The above fact is a particular case of a more general result of [1], too.

Suppose we have a system (F, α) consisting of a regular functor $F: \mathcal{G}r \to \mathcal{M}f$ sending a Lie group G into a manifold FG and a Lie group homomorphism ν : $G \to G_1$ into an induced map $F\nu: FG \to FG_1$, and of a family α of smooth left actions $\alpha_G: W_m^r G \times FG \to FG$ for any Lie group G. The regularity means that F transforms smoothly parametrized families of Lie group homomorphisms into smoothly parametrized families of maps.

Definition 1. A system (F, α) as above is called an (r, m)-system if for any Lie group homomorphism $\nu: G \to G_1$ the map $F\nu: FG \to FG_1$ is $(W_m^rG, W_m^rG_1)$ invariant over $W_m^r\nu: W_m^rG \to W_m^rG_1$, i.e., $F\nu(g \cdot v) = W_m^r\nu(g) \cdot F\nu(v)$ for any $v \in FG$ and any $g \in W_m^rG$.

The system (W_m^r, β) consisting of the functor $W_m^r: \mathcal{G}r \to \mathcal{G}r$ (mentioned above) treated as the functor $W_m^r: \mathcal{G}r \to \mathcal{M}f$ and the collection β of actions $\beta_G: W_m^r G \times W_m^r G \to W_m^r G$ (defined by the prolongation group multiplication) for any Lie group G is an example of an (r, m)-system.

Given an (r, m)-system (F, α) we can construct a gauge bundle functor $E^{(F,\alpha)}$: $\mathcal{PB}_m \to \mathcal{FM}$ of order r as follows.

Example 1. For any \mathcal{PB}_m -object P with the structure Lie group G we put

$$E^{(F,\alpha)}P = W^r P[FG, \alpha_G].$$

For any \mathcal{PB}_m -map $f: P \to P_1$ with the homomorphism $\nu_f: G \to G_1$ we put

$$E^{(F,\alpha)}f = W^r f[F\nu_f]: W^r P[FG,\alpha_G] \to W^r P_1[FG_1,\alpha_{G_1}]$$

If $\mu: (F, \alpha) \to (F^1, \alpha^1)$ is a homomorphism of (r, m)-systems (i.e., $\mu: F \to F^1$ is a functor transformation such that $\mu_G: FG \to F^1G$ is a smooth W_m^rG -invariant map for any Lie group G) we have a natural transformation $\eta^{(\mu)}: E^{(F,\alpha)} \to E^{(F^1,\alpha^1)}$ given by

$$\eta_P^{(\mu)} := W^r(\mathrm{id}_P)[\mu_G] \colon E^{(F,\alpha)}P \to E^{(F^1,\alpha^1)}P$$

for any \mathcal{PB}_m -object $P \to M$ with the structure Lie group G.

Conversely, suppose we have a gauge bundle functor $E: \mathcal{PB}_m \to \mathcal{FM}$ of order r. We construct an (r, m)-system $(F^{(E)}, \alpha^{(E)})$ as follows.

Example 2. We define a functor $F^{(E)}$: $\mathcal{G}r \to \mathcal{M}f$ by

$$F^{(E)}G := E_0(\mathbb{R}^m \times G) \text{ and } F^{(E)}\nu := E_0(\mathrm{id}_{\mathbb{R}^m} \times \nu)$$

for any Lie group G and any Lie group homomorphism $\nu \colon G \to G_1$. For any Lie group G we define an action $\alpha_G^{(E)} \colon W_m^r G \times F^{(E)}G \to F^{(E)}G$ by

$$\alpha_G^{(E)}(g,v) = E_0\varphi(v), \quad g = j_{(0,e)}^r\varphi \in W_m^r G, \quad v \in F^{(E)}G$$

(we identify elements of $W_m^r G$ with r-jets at 0 of (local) principal bundle isomorphisms with id_G as Lie group homomorphisms and covering embeddings preserving 0 as in Section 15 in [2]).

If $\eta: E \to E^1$ is a natural transformation of gauge bundle functors $E, E^1: \mathcal{PB}_m \to \mathcal{FM}$ of order r we have a homomorphism $\mu^{(\eta)}: (F^{(E)}, \alpha^{(E)}) \to (F^{(E^1)}, \alpha^{(E^1)})$ of (r, m)-systems given by

$$\mu_G^{(\eta)} := (\eta_{\mathbb{R}^m \times G})_0 \colon F^{(E)}G \to F^{(E^1)}G.$$

Clearly, the above constructions from Examples 1 and 2 are mutually inverse. In particular, a \mathcal{PB}_m -natural isomorphism $\Theta: E^{(F^{(E)},\alpha^{(E)})} \to E$ can be given by

$$\Theta_P \colon E^{(F^{(E)},\alpha^{(E)})}P \to EP, \ \Theta_P([g,v]) := E\varphi(v), \quad g = j_0^r \varphi \in W^r P, \quad v \in F^{(E)}G$$

for any \mathcal{PB}_m -object $P \to M$ with the structure Lie group G (we identify elements of $W^r P$ with r-jets at 0 of (local) principal bundle isomorphisms $\mathbb{R}^m \times G \to P$ with id_G as the Lie group homomorphisms as in Section 15 in [2]).

In general, categories \mathcal{K}_1 and \mathcal{K}_2 are weak equivalent if there are functors H_1 : $\mathcal{K}_1 \to \mathcal{K}_2$ and H_2 : $\mathcal{K}_2 \to \mathcal{K}_1$ such that $H_2 \circ H_1 \cong \mathrm{id}_{\mathcal{K}_1}$ and $H_1 \circ H_2 \cong \mathrm{id}_{\mathcal{K}_2}$.

Thus we have proved the following theorem.

Theorem 1. The category of gauge bundle functors $E: \mathcal{PB}_m \to \mathcal{FM}$ of order r and their natural transformations is weak equivalent to the category of (r, m)-systems (F, α) and their homomorphisms.

2. The case of fiber product preserving gauge bundle functors on \mathcal{PB}_m of order r

Many important gauge bundle functors on \mathcal{PB}_m are fiber product preserving. We present several examples of such functors.

(a) The functor $J^r: \mathcal{PB}_m \to \mathcal{FM}$ sending any \mathcal{PB}_m -object $P \to M$ into its *r*-jet prolongation bundle $J^r P = \{j_x^r \sigma; \sigma \colon M \to P \text{ is a locally defined section of } P \to M\}$ and any \mathcal{PB}_m -map $f \colon P \to P_1$ covering $\underline{f} \colon M \to M_1$ into $J^r f \colon J^r P \to J^r P_1$ (given by $J^r f(j_x^r \sigma) = j_{\underline{f}(x)}^r (f \circ \sigma \circ \underline{f}^{-1})$) is a fiber product preserving gauge bundle functor of order *r*.

(b) The functor $J_v^r \colon \mathcal{PB}_m \to \mathcal{FM}$ sending any \mathcal{PB}_m -object $P \to M$ into its vertical *r*-jet prolongation bundle $J_v^r P = \{j_x^r \sigma; \sigma \colon M \to P_x\}$ and any \mathcal{PB}_m -map $f \colon P \to P_1$ covering $\underline{f} \colon M \to M_1$ into $J_v^r f \colon J_v^r P \to J_v^r P_1$, given by $J_v^r f(j_x^r \sigma) = j_{\underline{f}(x)}^r (f_x \circ \sigma \circ \underline{f}^{-1})$, is a fiber product preserving gauge bundle functor of order *r*.

(c) Let A be a Weil algebra of order r. The functor $V^A: \mathcal{PB}_m \to \mathcal{FM}$ sending any \mathcal{PB}_m -object $P \to M$ into its A-vertical bundle $V^A P = \bigcup_{x \in M} T^A P_x$ and any \mathcal{PB}_m -map $f: P \to P_1$ into $V^A f = \bigcup_{x \in M} T^A(f_x): V^A P \to V^A P_1$ is a fiber product preserving gauge bundle functor of order r. In particular, if $A = \mathbf{D}$ is the algebra of dual numbers, then $T^A = T$ is the tangent functor and $V^A = V: \mathcal{PB}_m \to \mathcal{FM}$ is the vertical functor.

(d) The above functors are particular cases of product preserving bundle functors $E: \mathcal{FM}_m \to \mathcal{FM}$ applied to \mathcal{PB}_m -objects and \mathcal{PB}_m -maps treated as \mathcal{FM}_m -objects and \mathcal{FM}_m -maps, respectively. The full description of fiber product preserving bundle functors $E: \mathcal{FM}_m \to \mathcal{FM}$ can be found in [3].

(e) Let $E: \mathcal{FM}_m \to \mathcal{FM}$ be a fiber product preserving bundle functor. The right action of the structure Lie group G on an \mathcal{PB}_m -object P (treated as an \mathcal{FM}_m -object) induces (in an obvious way) a right action of G on EP. Thus we have the functor $Q^E: \mathcal{PB}_m \to \mathcal{FM}$ sending any \mathcal{PB}_m -object $P \to M$ into $Q^E P := EP/G$ and any \mathcal{PB}_m -map $f: P \to P_1$ into the quotient $Q^E f: Q^E P \to Q^E P_1$ of $Ef: EP \to EP_1$. The functor $Q^E: \mathcal{PB}_m \to \mathcal{FM}$ is again a fiber product preserving gauge bundle functor. In particular, if $E = J^1$, then $Q^E = Q: \mathcal{PB}_m \to \mathcal{FM}$ is the principal connection bundle functor mentioned in the introduction. Below, we consider the right invariant vertical vector field functor $Q^V \colon \mathcal{PB}_m \to \mathcal{FM}$ (sections of $Q^V P$ are in bijection with right invariant vertical vector fields on P). In fact, $Q^V \colon \mathcal{PB}_m \to \mathcal{VB}$.

(f) Let $G: \mathcal{M}f_m \to \mathcal{VB}$ be a vector bundle functor (for example the *p*-form bundle functor $\wedge^p T^*: \mathcal{M}f_m \to \mathcal{VB}$). Thus we have the functor $\mathcal{K}^G: \mathcal{PB}_m \to \mathcal{FM}$ sending any \mathcal{PB}_m -object $P \to M$ into (vector bundle) $\mathcal{K}^G P := GM \otimes Q^V P$ and any \mathcal{PB}_m map $f: P \to P_1$ covering $\underline{f}: M \to M_1$ into (vector bundle) map $\mathcal{K}^G f := G\underline{f} \otimes Q^V f$: $\mathcal{K}^G P \to \mathcal{K}^G P_1$. The functor $\mathcal{K}^G: \mathcal{PB}_m \to \mathcal{FM}$ is a fiber product preserving gauge bundle functor. In fact, $\mathcal{K}^G: \mathcal{PB}_m \to \mathcal{VB}$. In particular, if $G = \wedge^2 T^*: \mathcal{M}f_m \to \mathcal{VB}$ we obtain the principal connection curvature functor $\mathcal{K}^G = \mathcal{K}: \mathcal{PB}_m \to \mathcal{FM}$ (the curvature tensor of a principal connection on P can be treated as a section of \mathcal{KP}).

(g) Let $E: \mathcal{FM}_m \to \mathcal{FM}$ be a fiber product preserving bundle functor. Thus we have the functor $E': \mathcal{PB}_m \to \mathcal{FM}$ sending any \mathcal{PB}_m -object $P \to M$ with the structure Lie group G into $E'P := E(M \times G)$ and any \mathcal{PB}_m -map $f: P \to P_1$ covering $\underline{f}: M \to M_1$ and with the Lie group homomorphism $\nu_f: G \to G_1$ into $E'f := E(\underline{f} \times \nu_f): E'P \to E'P_1$. The functor $E': \mathcal{PB}_m \to \mathcal{FM}$ is a fiber product preserving gauge bundle functor.

(h) Let $E: \mathcal{VB}_m \to \mathcal{FM}$ be a fiber product preserving gauge bundle functor (a full description of such functors can be found in [5]). Thus we have the functor $E^o: \mathcal{PB}_m \to \mathcal{FM}$ sending any \mathcal{PB}_m -object $P \to M$ with the structure Lie group Gwith the Lie algebra $\mathcal{L}(G)$ into $E^oP := E(M \times \mathcal{L}(G))$ and any \mathcal{PB}_m -map $f: P \to P_1$ covering $\underline{f}: M \to M_1$ with the Lie group homomorphism $\nu_f: G \to G_1$ into $E^of :=$ $(\underline{f} \times \mathcal{L}(\nu_f)): E^oP \to E^oP_1$. The functor $E^o: \mathcal{PB}_m \to \mathcal{FM}$ is a fiber product preserving gauge bundle functor.

Definition 2. An (r, m)-system (F, α) is product preserving if $F: \mathcal{G}r \to \mathcal{M}f$ is product preserving.

It is easily seen that if (F, α) is a product preserving (r, m)-system, then the gauge bundle functor $E^{(F,\alpha)}: \mathcal{PB}_m \to \mathcal{FM}$ of order r (from Example 1) is fiber product preserving. Conversely, if $E: \mathcal{PB}_m \to \mathcal{FM}$ is a fiber product preserving gauge bundle functor of order r, then the (r, m)-system $(F^{(E)}, \alpha^{(E)})$ (from Example 2) is product preserving. Thus we have proved the following fact.

Theorem 2. The category of fiber product preserving gauge bundle functors $E: \mathcal{PB}_m \to \mathcal{FM}$ of order r and their natural transformations is weak equivalent to the category of product preserving (r, m)-systems (F, α) and their homomorphisms.

References

- M. Doupovec, I. Kolář: Iteration of fiber product preserving bundle functors. Monatsh. Math. 134 (2001), 39–50.
- [2] I. Kolář, P. W. Michor, J. Slovák: Natural Operations in Differential Geometry. Springer, Berlin, 1993.
- [3] I. Kolář, W. M. Mikulski: On the fiber product preserving bundle functors. Differ. Geom. Appl. 11 (1999), 105–115.
- [4] W. M. Mikulski: Product preserving gauge bundle functors on all principal bundle homomorphisms. Ann. Pol. Math. 101 (2011), 163–207.
- [5] W. M. Mikulski: On the fiber product preserving gauge bundle functors on vector bundles. Ann. Pol. Math. 82 (2003), 251–264.

Author's address: Włodzimierz M. Mikulski, Institute of Mathematics, Jagiellonian University, Lojasiewicza 6, Kraków, Poland, e-mail: Wlodzimierz.Mikulski@im.uj. edu.pl.