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Abstract. Let π be a group, and H be a semi-Hopf π-algebra. We first show that the
category HM of left π-modules over H is a monoidal category with a suitably defined
tensor product and each element α in π induces a strict monoidal functor Fα from HM

to itself. Then we introduce the concept of quasitriangular semi-Hopf π-algebra, and show
that a semi-Hopf π-algebra H is quasitriangular if and only if the category HM is a braided
monoidal category and Fα is a strict braided monoidal functor for any α ∈ π. Finally, we
give two examples of Hopf π-algebras and describe the categories of modules over them.
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1. Introduction

The notion of a quasitriangular Hopf algebra was introduced by Drinfel’d [4], when

he studied the Yang-Baxter equation. The category of modules over a quasitriangu-

lar Hopf algebra is a braided monoidal category. Moreover, the braiding structure of

a braided monoidal category can supply solutions to the quantum Yang-Baxter equa-

tion. Recently, Turaev [9] introduced Hopf π-coalgebra, which generalizes the notion

of Hopf algebra. Virelizier also studied algebraic properties of Hopf group-coalgebras

and generalized the main properties of quasitriangular Hopf algebras to the setting of

quasitriangular Hopf π-coalgebras in [10]. Wang introduced the concept of semi-Hopf

group algebra and investigated properties of coquasitriangular Hopf group algebras
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in [11]. Zhu, Chen and Li studied the categories of modules and comodules over

a Hopf group coalgebra in [13] and [14], respectively.

In this paper, we first investigate the category HM of left modules over a semi-

Hopf π-algebra H , where π is a group. We define a tensor product module of two

modules over H , and show that HM is a monoidal category with respect to such

a tensor product, and each element α in π induces a strict monoidal functor Fα from

HM to itself. Then we introduce the concept of quasitriangular semi-Hopf π-algebra,

and show that a semi-Hopf π-algebra H is quasitriangular if and only if the category

HM is a braided monoidal category and Fα is a strict braided monoidal functor

for any α ∈ π. Finally, we give two examples of Hopf π-algebras and discuss the

categories of modules over them.

2. Preliminaries

Throughout the paper, let π be a discrete group (with neutral element 1) and

k be a fixed field. All algebras and coalgebras, π-algebras and Hopf π-algebras

are defined over k. The definitions and properties of an algebra, coalgebra, Hopf

algebra, category and monoidal category can be found in [5]–[7], [12]. We use the

standard Sweedler notation for comultiplication. The tensor product ⊗ = ⊗k is

always assumed to be over k. If U and V are k-spaces, τU,V : U ⊗ V → V ⊗ U will

denote the twist map defined by τU,V (u⊗ v) = v ⊗ u. The following definitions and

notations can be found in [1], [8]–[11].

Definition 2.1. A π-algebra (over k) is a family A = {Aα}α∈π of k-spaces

endowed with a family m = {mα,β : Aα ⊗ Aβ → Aαβ}α,β∈π of k-linear maps (the

multiplication) and a k-linear map u : k → A1 (the unit) such that m is associative

in the sense that for any α, β, γ ∈ π,

mαβ,γ(mα,β ⊗ idAγ
) = mα,βγ(idAα

⊗mβ,γ),

mα,1(idAα
⊗ u) = idAα

= m1,α(u⊗ idAα
).

Note that (A1,m1,1, u) is an algebra in the usual sense.

Definition 2.2. Let A = ({Aα}α∈π,m, u) be a π-algebra. A left π-module

over A is a family M = {Mα}α∈π of k-spaces endowed with a family η = {ηMα,β :

Aα ⊗Mβ → Mαβ}α,β∈π of k-linear maps such that for any α, β, γ ∈ π,

(1) ηMα,βγ(idAα
⊗ ηMβ,γ) = ηMαβ,γ(mα,β ⊗ idMγ

);

(2) ηM1,α(u⊗ idMα
) = idMα

.
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Definition 2.3. Assume that A = ({Aα}α∈π,m, u) is a π-algebra. Let M =

{Mα}α∈π and N = {Nα}α∈π be two left π-modules over A. A left A-π-module map

from M to N is a family f = {fα : Mα → Nα}α∈π of k-linear maps such that

ηNα,β(idAα
⊗ fβ) = fαβη

M
α,β , α, β ∈ π.

Definition 2.4. A semi-Hopf π-algebra is a π-algebra H = ({Hα}α∈π,m, u)

such that:

(1) Each Hα is a k-coalgebra with comultiplication ∆α and counit εα, α ∈ π.

(2) u : k → H1 and mα,β : Hα ⊗Hβ → Hαβ are coalgebra maps, α, β ∈ π.

Furthermore, if there is a family S = {Sα : Hα → Hα−1}α∈π of k-linear maps

(the antipode) such that the following condition (3) is satisfied, then H =

({Hα}α∈π,m, u) is called a Hopf π-algebra.

(3) mα−1,α(Sα ⊗ idHα
)∆α = uεα = mα,α−1(idHα

⊗ Sα)∆α, α ∈ π.

3. Category of modules over a semi-Hopf π-algebra

Throughout this section, assume that H = ({Hα}α∈π,m, u) is a semi-Hopf π-

algebra. Denote by HM the category of all left π-modules over H , whose morphisms

are left H-π-module maps.

Lemma 3.1. Suppose that (M, ηM ) and (N, ηN ) are left π-modules overH . Then

the tensor product M ⊗N = {(M ⊗N)α}α∈π is also a left π-module over H , where

(M ⊗ N)α = Mα ⊗ Nα, the structure maps η
M⊗N = {ηM⊗N

α,β : Hα ⊗ Mβ ⊗ Nβ →

Mαβ ⊗Nαβ}α,β∈π are given by

ηM⊗N
α,β := (ηMα,β ⊗ ηNα,β)(idHα

⊗ τHα,Mβ
⊗ idNβ

)(∆α ⊗ idMβ
⊗ idNβ

).

P r o o f. On the one hand, for any h ∈ Hα, l ∈ Hβ, m ∈ Mγ and n ∈ Nγ , we have

ηM⊗N
α,βγ (idHα

⊗ ηM⊗N
β,γ )(h⊗ l ⊗m⊗ n)

= ηM⊗N
α,βγ

(

∑

h⊗ l1 ·m⊗ l2 · n
)

=
∑

h1 · (l1 ·m)⊗ h2 · (l2 · n)

=
∑

(h1l1) ·m⊗ (h2l2) · n

=
∑

(hl)1 ·m⊗ (hl)2 · n

= ηM⊗N
αβ,γ (hl ⊗m⊗ n)

= ηM⊗N
αβ,γ (mα,β ⊗ id(M⊗N)γ )(h⊗ l ⊗m⊗ n).
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Hence ηM⊗N
α,βγ (idHα

⊗ ηM⊗N
β,γ ) = ηM⊗N

αβ,γ (mα,β ⊗ id(M⊗N)γ ). On the other hand, for

any λ ∈ k, m ∈ Mα and n ∈ Nα, we have

ηM⊗N
1,α (u⊗ id(M⊗N)α)(λ⊗m⊗ n) = ηM⊗N

1,α (λ1H ⊗m⊗ n) = λ(m⊗ n).

Hence ηM⊗N
1,α (u⊗ id(M⊗N)α) = id(M⊗N)α . Thus, M ⊗N = {(M ⊗N)α}α∈π is a left

π-module over H . �

Let M,N,P ∈ HM. Define aM,N,P = {aα}α∈π : (M ⊗ N) ⊗ P → M ⊗ (N ⊗ P )

by aα : (Mα ⊗ Nα) ⊗ Pα → Mα ⊗ (Nα ⊗ Pα), (m ⊗ n) ⊗ p 7→ m ⊗ (n ⊗ p), where

m ∈ Mα, n ∈ Nα, p ∈ Pα. Then we have the following lemma.

Lemma 3.2. The family aM,N,P is a family of left H-π-module natural isomor-

phisms, where M,N,P ∈ HM.

P r o o f. For any α, β ∈ π, h ∈ Hα, m ∈ Mβ, n ∈ Nβ and p ∈ Pβ , we have

η
M⊗(N⊗P )
α,β (idHα

⊗ aβ)(h⊗ ((m⊗ n)⊗ p))

= η
M⊗(N⊗P )
α,β (h⊗ (m⊗ (n⊗ p)))

=
∑

h1 ·m⊗ h2 · (n⊗ p) =
∑

h1 ·m⊗ (h2 · n⊗ h3 · p)

= aαβ

(

∑

(h1 ·m⊗ h2 · n)⊗ h3 · p
)

= aαβ

(

∑

h1 · (m⊗ n)⊗ h2 · p
)

= aαβη
(M⊗N)⊗P

α,β (h⊗ ((m⊗ n)⊗ p)).

This shows that η
M⊗(N⊗P )
α,β (idHα

⊗ aβ) = aαβη
(M⊗N)⊗P

α,β , and so aM,N,P is a left

H-π-module morphism. Consequently, aM,N,P is a left H-π-module isomorphism.

Obviously, it is a family of natural isomorphisms of H-π-modules. �

Lemma 3.3. Let K = {Kα}α∈π with Kα = k. Define ηKα,β : Hα ⊗Kβ → Kαβ by

ηKα,β(h⊗ λ) = h · λ := εα(h)λ. Then K is a left π-module over H .

P r o o f. For any h ∈ Hα, l ∈ Hβ , m ∈ Kγ = k, λ ∈ k, n ∈ Kα = k, we have

ηKα,βγ(idHα
⊗ ηKβ,γ)(h⊗ l ⊗m) = ηKα,βγ(h⊗ εβ(l)m)

= εα(h)(εβ(l)m) = εαβ(hl)m = ηKαβ,γ(hl ⊗m)

= ηKαβ,γ(mα,β ⊗ idKγ
)(h⊗ l ⊗m)

and

ηK1,α(u⊗ idKα
)(λ ⊗ n) = ηK1,α(λ1H ⊗ n) = ε1(λ1H)n = λn.

This shows that ηKα,βγ(idHα
⊗ηKβ,γ) = ηKαβ,γ(mα,β⊗ idKγ

) and ηK1,α(u⊗ idKα
) = idKα

.

Thus, K is a left π-module over H . �
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For any left π-module M over H , we have (K ⊗ M)α = Kα ⊗ Mα = k ⊗ Mα

and (M ⊗ K)α = Mα ⊗ Kα = Mα ⊗ k, α ∈ π. Define lM : K ⊗ M → M and

rM : M ⊗K → M by

(lM )α : k ⊗Mα → Mα, λ⊗m 7→ λm,

(rM )α : Mα ⊗ k → Mα, m⊗ λ 7→ λm.

Then it is easy to see that l = {lM} and r = {rM} are two families of natural

isomorphisms of left H-π-modules.

Summarizing the above discussion, one gets the the following theorem.

Theorem 3.4. (HM,⊗,K, a, l, r) is a monoidal category, where K is the unit

object.

For any α ∈ π, define a functor Fα : HM → HM by

Fα(M)β = Mβα, η
Fα(M)
β,γ = ηMβ,γα, Fα(f)β = fβα,

where M is a left π-module over H and f is an H-π-module map. Obviously,

Fα(K) = K and (Fα(M) ⊗ Fα(N))β = Fα(M)β ⊗ Fα(N)β = Mβα ⊗ Nβα =

(M ⊗ N)βα = Fα(M ⊗ N)β , where M and N are left π-modules over H . Then

by a straightforward verification, one can check the following theorem.

Theorem 3.5. Fα is a strict monoidal functor from (HM,⊗,K, a, l, r) to itself,

where α ∈ π.

4. Quasitriangular semi-Hopf π-algebras

Throughout this section, assume that H = ({Hα}α∈π,m, u) is a semi-Hopf π-

algebra, and that HM is the category of left π-modules over H , which is a monoidal

category as stated in the last section.

Definition 4.1. H is called a quasitriangular semi-Hopf π-algebra, if there exists

an invertible element R ∈ H1 ⊗H1 such that the following conditions are satisfied:

(1) ∆cop
α (h)R = R∆α(h);

(2) (∆1 ⊗ id)(R) = R13R23;

(3) (id⊗∆1)(R) = R13R12,

where α ∈ π, h ∈ Hα, R12 = R ⊗ 1, R23 = 1 ⊗ R, R13 = (τH1,H1
⊗ id)(1 ⊗ R) ∈

H1 ⊗H1 ⊗H1 and ∆cop
α = τHα,Hα

◦∆α. In this case, R is called a quasitriangular

structure of H .
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Remark 4.2. We remark that H1 is a usual quasitriangular bialgebra if H is

quasitriangular, and that H is called an almost cocommutative semi-Hopf π-algebra

if only (1) is satisfied.

Let R =
∑

i

si ⊗ ti. Then the three conditions in Definition 4.1 can be formulated

as follows:

(1)
∑

i

h2si ⊗ h1ti =
∑

i

sih1 ⊗ tih2;

(2)
∑

i

(si)1 ⊗ (si)2 ⊗ ti =
∑

i,j

si ⊗ sj ⊗ titj ;

(3)
∑

i

si ⊗ (ti)1 ⊗ (ti)2 =
∑

i,j

sisj ⊗ tj ⊗ ti,

where α ∈ π, h ∈ Hα and ∆α(h) =
∑

h1 ⊗ h2 as usual.

Lemma 4.3. If H is almost cocommutative, then there exists a left H-π-module

isomorphism M ⊗N ∼= N ⊗M for any left π-modules M and N over H .

P r o o f. Assume that R =
∑

i

si⊗ti ∈ H1⊗H1 is an invertible element satisfying

condition (1) of Definition 4.1. LetM and N be two left π-modules over H . For any

α ∈ π, define (cM,N )α : Mα ⊗Nα → Nα ⊗Mα by

(cM,N )α(m⊗ n) := τMα,Nα
(R · (m⊗ n)) =

∑

i

ti · n⊗ si ·m,

wherem ∈ Mα and n ∈ Nα. Since R is invertible, (cM,N )α is a k-linear isomorphism.

Now for any α, β ∈ π, m ∈ Mβ, n ∈ Nβ and h ∈ Hα, we have

ηN⊗M
α,β (idHα

⊗ (cM,N )β)(h⊗m⊗ n)

= ηN⊗M
α,β

(

∑

i

h⊗ ti · n⊗ si ·m
)

=
∑

i

h1 · (ti · n)⊗ h2 · (si ·m) =
∑

i

(h1ti) · n⊗ (h2si) ·m

=
∑

i

(tih2) · n⊗ (sih1) ·m =
∑

i

ti · (h2 · n)⊗ si · (h1 ·m)

= (cM,N)αβ

(

∑

h1 ·m⊗ h2 · n
)

= (cM,N)αβη
M⊗N
α,β (h⊗m⊗ n).

Hence ηN⊗M
α,β (idHα

⊗ (cM,N )β) = (cM,N )αβη
M⊗N
α,β . This shows that cM,N is a left

H-π-module map, and so

cM,N = {(cM,N )α}α∈π : M ⊗N → N ⊗M

is a left H-π-module isomorphism. �
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Theorem 4.4. Assume that H is quasitriangular with a quasitriangular struc-

ture R. Then the category HM is a braided monoidal category and Fα is a strict

braided monoidal functor for any α ∈ π.

P r o o f. By Theorems 3.4 and 3.5, it follows that HM is a monoidal category

and Fα is a strict monoidal functor for any α ∈ π.

For any M,N ∈ HM, let

cM,N = {(cM,N )α}α∈π : M ⊗N → N ⊗M

be defined as in Lemma 4.3. Then cM,N is a left H-π-module isomorphism. Let

f = {fα}α∈π : M → M ′ and g = {gα}α∈π : N → N ′ be two left H-π-module maps.

Then for any α ∈ π, m ∈ Mα and n ∈ Nα, we have

(gα ⊗ fα)(cM,N )α(m⊗ n) = (gα ⊗ fα)
(

∑

i

ti · n⊗ si ·m
)

=
∑

i

gα(ti · n)⊗ fα(si ·m) =
∑

i

ti · gα(n)⊗ si · fα(m)

= (cM ′,N ′)α(fα(m)⊗ gα(n)) = (cM ′,N ′)α(fα ⊗ gα)(m⊗ n).

Hence (g ⊗ f)cM,N = cM ′,N ′(f ⊗ g), which shows that cM,N is a family of natural

isomorphisms of left H-π-modules.

Now let M,N,P ∈ HM and α ∈ π. Then for any m ∈ Mα, n ∈ Nα and p ∈ Pα,

we have

(cM,N⊗P )α(m⊗ n⊗ p) =
∑

i

ti · (n⊗ p)⊗ si ·m =
∑

i

(ti)1 · n⊗ (ti)2 · p⊗ si ·m

=
∑

i,j

ti · n⊗ tj · p⊗ (sjsi) ·m =
∑

i,j

ti · n⊗ tj · p⊗ sj · (si ·m)

= (idNα
⊗ (cM,P )α)

(

∑

i

ti · n⊗ si ·m⊗ p
)

= (idNα
⊗ (cM,P )α)((cM,N )α ⊗ idPα

)(m⊗ n⊗ p)

and

(cM⊗N,P )α(m⊗ n⊗ p) =
∑

i

ti · p⊗ si · (m⊗ n) =
∑

i

ti · p⊗ (si)1 ·m⊗ (si)2 · n

=
∑

i,j

(tjti) · p⊗ sj ·m⊗ si · n =
∑

i,j

tj · (ti · p)⊗ sj ·m⊗ si · n

= ((cM,P )α ⊗ idNα
)
(

∑

i

m⊗ ti · p⊗ si · n
)

= ((cM,P )α ⊗ idNα
)(idMα

⊗ (cN,P )α)(m⊗ n⊗ p).
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This shows that cM,N⊗P = (idN ⊗ cM,P )(cM,N ⊗ idP ) and cM⊗N,P = (cM,P ⊗

idN )(idM⊗cN,P ). Therefore, HM is a braided monoidal category with the braiding c.

Let α ∈ π. Then for any M,N ∈ HM and β ∈ π, it is obvious that Fα(cM,N)β =

(cM,N )βα = (cFα(M),Fα(N))β . Hence Fα(cM,N ) = cFα(M),Fα(N), and consequently,

Fα is a strict braided monoidal functor for any α ∈ π. �

Theorem 4.5. Suppose that HM is a braided monoidal category, and Fα is

a strict braided monoidal functor for any α ∈ π. Then H is quasitriangular.

P r o o f. Suppose that HM is a braided monoidal category with a braiding c, and

Fα is a strict braided monoidal functor for any α ∈ π. Then cH,H : H⊗H → H⊗H is

a left H-π-module isomorphism, and hence (cH,H)1 : H1⊗H1 → H1⊗H1 is a k-linear

isomorphism. Let R = τH1,H1
((cH,H)1(1 ⊗ 1)) ∈ H1 ⊗H1. Then Lemmas 4.8–4.10

below show that R is a quasitriangular structure of H . �

Throughout the following Lemma 4.6, Corollary 4.7 and Lemmas 4.8–4.10, assume

that HM is a braided monoidal category with a braiding c, Fα is a strict braided

monoidal functor for any α ∈ π, and let R = τH1,H1
((cH,H)1(1 ⊗ 1)) =

∑

i

si ⊗ ti ∈

H1 ⊗ H1 be given as above. In this case, we have (cH,H)1(1 ⊗ 1) = τH1,H1
(R) =

∑

i

ti ⊗ si.

Lemma 4.6. Let M,N ∈ HM. Then we have

(cM,N)α(m⊗ n) = τMα,Nα
(R · (m⊗ n)) =

∑

i

ti · n⊗ si ·m,

where α ∈ π, m ∈ Mα and n ∈ Nα.

P r o o f. Let α ∈ π, m ∈ Mα and n ∈ Nα. Then one can easily check that the

two maps m = {mβ}β∈π : H → Fα(M) and n = {nβ}β∈π : H → Fα(N) defined by

mβ(h) = h ·m and nβ(h) = h · n, β ∈ π, h ∈ Hβ, are left H-π-module maps. In this

case, m1(1) = m and n1(1) = n.

Since cM,N is a family of natural isomorphisms of left H-π-modules, we have

cFα(M),Fα(N)(m ⊗ n) = (n ⊗ m)cH,H . Since Fα is a strict braided monoidal func-

tor, Fα(cM,N ) = cFα(M),Fα(N), and hence (cM,N )α = Fα(cM,N)1 = (cFα(M),Fα(N))1.

Thus, we have

(cM,N )α(m⊗ n) = (cM,N )α(m1 ⊗ n1)(1 ⊗ 1) = (cFα(M),Fα(N))1(m1 ⊗ n1)(1⊗ 1)

= (cFα(H),Fα(H)(m⊗ n))1(1⊗ 1) = ((n⊗m)cH,H)1(1 ⊗ 1)

= (n1 ⊗m1)(cH,H)1(1⊗ 1) = (n1 ⊗m1)
(

∑

i

ti ⊗ si

)

=
∑

i

ti · n⊗ si ·m = τMα,Nα
(R · (m⊗ n)).

�

900



Corollary 4.7. For any α ∈ π and x, y ∈ Hα, we have

(cH,H)α(x⊗ y) = τHα,Hα
(R(x⊗ y)) =

∑

i

tiy ⊗ six.

P r o o f. It follows by putting M = N = H in Lemma 4.6. �

Lemma 4.8. R is an invertible element in H1 ⊗H1.

P r o o f. Since (cH,H)1 : H1 ⊗H1 → H1 ⊗H1 is a k-linear isomorphism, there

exists an element a ∈ H1 ⊗H1 such that (cH,H)1(a) = 1⊗ 1. From Corollary 4.7, it

follows that τH1,H1
(Ra) = 1 ⊗ 1, and so Ra = 1 ⊗ 1. Then (cH,H)1(aR − 1 ⊗ 1) =

τH1,H1
(R(aR − 1 ⊗ 1)) = τH1,H1

(RaR − R) = τH1,H1
(R − R) = 0, which implies

that aR − 1 ⊗ 1 = 0, since (cH,H)1 is a k-linear automorphism of H1 ⊗H1, and so

aR = 1⊗ 1. Thus, R is an invertible element in H1 ⊗H1 with R−1 = a. �

Lemma 4.9. The following equations hold in H1 ⊗H1 ⊗H1:

(1) (id⊗∆1)(R) = R13R12;

(2) (∆1 ⊗ id)(R) = R13R23.

P r o o f. Since c is a braiding and H ∈ HM, we have

cH,H⊗H = (idH ⊗ cH,H)(cH,H ⊗ idH), cH⊗H,H = (cH,H ⊗ idH)(idH ⊗ cH,H),

and hence
(cH,H⊗H)1 = (idH1

⊗ (cH,H)1)((cH,H)1 ⊗ idH1
),

(cH⊗H,H)1 = ((cH,H)1 ⊗ idH1
)(idH1

⊗ (cH,H)1).

By Lemma 4.6 (and Corollary 4.7), we have

(cH,H⊗H)1(1⊗ 1⊗ 1) =
∑

i

ti · (1⊗ 1)⊗ si =
∑

i

∆(ti)⊗ si

and

(idH1
⊗ (cH,H)1)((cH,H)1 ⊗ idH1

)(1 ⊗ 1⊗ 1)

= (idH1
⊗ (cH,H)1)

(

∑

i

ti ⊗ si ⊗ 1
)

=
∑

i,j

ti ⊗ tj ⊗ sjsi.

Hence
∑

i

∆(ti)⊗ si =
∑

i,j

ti ⊗ tj ⊗ sjsi, and so
∑

i

si ⊗∆(ti) =
∑

i,j

sjsi ⊗ ti ⊗ tj . This

shows equation (1). Equation (2) can be proved similarly. �
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Lemma 4.10. Let α ∈ π and h ∈ Hα. Then we have

∆cop
α (h)R = R∆α(h).

P r o o f. Since cH,H is a left H-π-module map, we have

ηH⊗H
α,1 (idHα

⊗ (cH,H)1) = (cH,H)αη
H⊗H
α,1 , ∀α ∈ π.

Let α ∈ π and h ∈ Hα. By Lemma 4.6 or Corollary 4.7, we have

ηH⊗H
α,1 (idHα

⊗ (cH,H)1)(h⊗ 1⊗ 1) = ηH⊗H
α,1

(

h⊗
∑

i

ti ⊗ si

)

=
∑

i

h1ti ⊗ h2si

and

(cH,H)αη
H⊗H
α,1 (h⊗ 1⊗ 1) = (cH,H)α

(

∑

h1 ⊗ h2

)

=
∑

i

tih2 ⊗ sih1.

Hence
∑

i

h1ti ⊗ h2si =
∑

i

tih2 ⊗ sih1, and so
∑

i

h2si ⊗ h1ti =
∑

i

sih1 ⊗ tih2. That

is, ∆cop
α (h)R = R∆α(h). �

Combining Theorems 4.4 and 4.5, one gets the following theorem.

Theorem 4.11. Let H = ({Hα}α∈π,m, u) be a semi-Hopf π-algebra. Then H is

a quasitriangular semi-Hopf π-algebra if and only if the category HM is a braided

monoidal category and Fα is a strict braided monoidal functor for any α ∈ π.

5. Examples

In this section, we will give two examples of Hopf π-algebras, and consider the

category of modules over them.

Let H = ({Hα}α∈π,m, u) be a semi-Hopf π-algebra. Then H1 is a usual bialgebra,

and hence the category H1
M of the left H1-modules is a monoidal category as usual.

Let V ∈ H1
M. For any α, β ∈ π, let Mα = Hα ⊗H1

V and ηMα,β = mα,β ⊗H1
idV :

Hα ⊗ Hβ ⊗H1
V → Hαβ ⊗H1

V . Then it is easy to see that M = {Mα}α∈π is

a left π-module over H with the module structure map η = {ηMα,β}α,β∈π. Denote

M by H ⊗H1
V . Let f : U → V be a left H1-module map. Then idH ⊗H1

f =

{idHα
⊗H1

f : Hα⊗H1
U → Hα⊗H1

V }α∈π is a left H-π-module map. Thus, we have

a functor F from H1
M to HM as follows:

F : H1
M → HM, F (V ) = H ⊗H1

V, F (f) = idH ⊗H1
f,
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where V is an object of H1
M and f is a morphism of H1

M. We have another functor

G from HM to H1
M as follows:

G : HM → H1
M, G(M) = M1, F (f) = f1,

where M = {Mα}α∈π is an object of HM and f = {fα}α∈π is a morphism of HM.

For the unit objectK of the monoidal category HM as stated in the last two sections,

G(K) = K1 = k is exactly the unit object k of the monoidal category H1
M. For any

M,N ∈ HM, G(M ⊗N) = (M ⊗N)1 = M1 ⊗N1 = G(M)⊗G(N). Then one can

easily check that G is a strict monoidal functor from HM to H1
M.

For any H1-module V , let θ(V ) : GF (V ) → V be the canonical H1-module iso-

morphism H1⊗H1
V → V , h⊗v 7→ h ·v. Then one can easily check that θ is a natural

isomorphism from GF to id
H1

M.

Example 5.1. Let π be a cyclic group of order 2 generated by α. Then, π = {1, α}

with α2 = 1. Let H1 be a 2-dimensional k-space with a k-basis {h0, h2}, and Hα a 2-

dimensional k-space with a k-basis {h1, h3}. Define k-linear maps m1,1 : H1⊗H1 →

H1 by m1,1(h0 ⊗ h0) = m1,1(h2 ⊗ h2) = h0 and m1,1(h0 ⊗ h2) = m1,1(h2 ⊗ h0) = h2;

mα,α : Hα⊗Hα → H1 by mα,α(h1⊗h3) = mα,α(h3⊗h1) = h0 and mα,α(h1⊗h1) =

mα,α(h3 ⊗ h3) = h2; m1,α : H1 ⊗Hα → Hα by m1,α(h0 ⊗ h1) = m1,α(h2 ⊗ h3) = h1

and m1,α(h0 ⊗ h3) = m1,α(h2 ⊗ h1) = h3; and mα,1 : Hα ⊗ H1 → Hα by mα,1 =

m1,ατHα,H1
. Define a k-linear map u → H1 by u(λ) = λh0, λ ∈ k. Then one can

check that H = ({H1, Hα},m, u) is a π-algebra with h0 = 1.

Define k-linear maps ∆1 : H1 → H1 ⊗ H1 by ∆(hi) = hi ⊗ hi, and ε1 : H1 → k

by ε1(hi) = 1, i = 0, 2. Then one can see that H1 is a coalgebra. Similarly, Hα is

also a coalgebra with comultiplication and counit given by ∆α : Hα → Hα ⊗ Hα,

∆(hi) = hi ⊗ hi, and εα : Hα → k, εα(hi) = 1, i = 1, 3.

With the above structure, a straightforward verification shows that H is a semi-

Hopf π-algebra. Moreover, H is a Hopf π-algebra with the antipode S = {S1, Sα}

given by
S1 : H1 → H1, h0 7→ h0, h2 7→ h2;

Sα : Hα → Hα, h1 7→ h3, h3 7→ h1.

It is easy to see that R = 1 ⊗ 1 is a (trivial) quasitriangular structure of H . If

Char(k) 6= 2, then H has a nontrivial quasitriangular structure as follows:

R = 1
2 (1⊗ 1 + 1⊗ h2 + h2 ⊗ 1− h2 ⊗ h2).

Now we consider the functors F : H1
M → HM and G : HM → H1

M given as

above. We have already shown that G is a strict monoidal functor. Let (ϕ0)1 :
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K1 = k → F (k)1 = H1 ⊗H1
k, λ 7→ λh0 ⊗H1

1 = 1 ⊗H1
λ be the canonical k-

linear isomorphism, and let (ϕ0)α : Kα = k → F (k)α = Hα ⊗H1
k be the k-linear

map defined by (ϕ0)α(λ) = λh1 ⊗H1
1 = h1 ⊗H1

λ. Then one can easily check

that ϕ0 = {(ϕ0)1, (ϕ0)α} is a left H-π-module isomorphism from K to F (k). Let

V,W ∈ H1
M. Define ϕ2(V,W )1 : (F (V )⊗ F (W ))1 → F (V ⊗W )1 by

ϕ2(V,W )1((h⊗H1
v)⊗ (l ⊗H1

w)) = 1⊗H1
(h · v ⊗ l · w),

h, l ∈ H1, v ∈ V, w ∈ W ;

and ϕ2(V,W )α : (F (V )⊗ F (W ))α → F (V ⊗W )α by

ϕ2(V,W )α((h⊗H1
v)⊗ (l ⊗H1

w)) = h1 ⊗H1
((h3h) · v ⊗ (h3l) · w),

h, l ∈ Hα, v ∈ V, w ∈ W.

Then a straightforward verification shows that ϕ2(V,W ) = {ϕ2(V,W )1, ϕ2(V,W )α}

is a left H-π-module isomorphism from F (V ) ⊗ F (W ) to F (V ⊗ W ). Moreover,

one can easily check that ϕ2(V,W ) is a family of natural isomorphisms of left π-

modules overH indexed by all couples (V,W ) of objects of H1
M. Now by a standard

verification, one can check that (F, ϕ0, ϕ2) is a monoidal functor from H1
M to HM.

We have already seen that there is a natural isomorphism θ : GF → id
H1

M as

given before. It is easy to check that θ is a natural monoidal isomorphism from GF

to id
H1

M.

Let M = {M1,Mα} ∈ HM. Let σ(M)1 : M1 → FG(M)1 = H1 ⊗H1
M1 be the

canonical left H1-module isomorphism, and let σ(M)α : Mα → FG(M)α = Hα ⊗H1

M1 be the k-linear map defined by σ(M)α(m) = h1 ⊗H1
h3 ·m, m ∈ Mα. Then one

can check that σ(M)α is a bijection with the inverse given by (σ(M)α)
−1(h⊗m) =

h · m, where h ∈ Hα and m ∈ M1. Now by a straightforward verification, one

can check that σ(M) = {σ(M)α}α∈π is a left H-π-module map, and so it is an H-

π-module isomorphism. Moreover, σ is a natural isomorphism from id
HM to FG.

Then a standard verification shows that σ is a natural monoidal isomorphism from

id
HM to FG. This shows that HM and H1

M are equivalent monoidal categories.

Finally, since H1 is the group algebra of the cyclic group {1, h2} of order 2, the

category H1
M can be well described. When Char(k) 6= 2, H1 is semisimple. There

are only two simple H1-modules V0 and V1 in this case. V0 and V1 are both one-

dimensional with the actions given by h2 ·v = v for v ∈ V0 and h2 ·v = −v for v ∈ V1.

When Char(k) = 2, there is a unique simple H1-module V0 as given above, and the

regular module H1 is the unique non-simple indecomposable H1-module, which is

projective and uniserial.

In order to give another example, we first give some properties of a semi-Hopf

π-algebra.
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Definition 5.1. Let H = ({Hα}α∈π,m, u) be a semi-Hopf π-algebra. A family

e = {eα}α∈π of nonzero elements with eα ∈ Hα is called a generalized idempotent if

eαeβ = eαβ for all α, β ∈ π. Furthermore,

(1) if e1 = 1, then e is called a strong generalized idempotent;

(2) if ∆α(eα) = eα ⊗ eα for all α ∈ π, then e is called a group-like generalized

idempotent;

(3) if π is abelian and eαh = heα for all α, β ∈ π and h ∈ Hβ , then e is called

a central generalized idempotent.

Remark 5.2. Assume that H = ({Hα}α∈π,m, u) is a semi-Hopf π-algebra and

e = {eα}α∈π is a generalized idempotent in H . Then the set {eα ; α ∈ π} forms

a group, which is isomorphic to π. If e is strong, then eαeα−1 = eα−1eα = e1 = 1 for

all α ∈ π. If e is group-like, then εα(eα) = 1 for all α ∈ π.

Lemma 5.3. Assume that H = ({Hα}α∈π,m, u) is a semi-Hopf π-algebra and

that H has a strong generalized idempotent e = {eα}α∈π. Then HM and H1
M are

equivalent categories.

P r o o f. We use the functors F and G given before. We have already seen that θ

is a natural isomorphism from GF to id
H1

M.

For any M = {Mα}α∈π ∈ HM and α ∈ π, let σ(M)α : Mα → FG(M)α =

Hα ⊗H1
M1 be defined by σ(M)α(m) = eα ⊗H1

(eα−1 · m), m ∈ Mα. Then it is

obvious that σ(M)α is a k-linear map. Let τ(M)α : Hα ⊗H1
M1 → Mα be the k-

linear map defined by τ(M)α(h⊗H1
m) = h ·m, where h ∈ Hα and m ∈ M1. Then

for any α ∈ π, m ∈ Mα, h ∈ Hα and m′ ∈ M1, we have (τ(M)ασ(M)α)(m) =

τ(M)α(eα ⊗H1
(eα−1 · m)) = eα · (eα−1 · m) = (eαeα−1) · m = 1 · m = m and

(σ(M)ατ(M)α)(h ⊗H1
m′) = eα ⊗H1

(eα−1 · (h · m′)) = eα ⊗H1
((eα−1h) · m′) =

eαeα−1h⊗H1
m′ = h⊗H1

m′. This shows that σ(M)α is a k-linear isomorphism with

(σ(M)α)
−1 = τ(M)α, α ∈ π. Now it is easy to see that τ(M) = {τ(M)α}α∈π is a left

H-π-module map, and so it is an isomorphism. It follows that σ(M) = {σ(M)α}α∈π

is a left H-π-module isomorphism from M to FG(M). Then it is easy to check that

σ(M) is a family of natural morphisms indexed by all objects M of HM. Therefore,

σ is a natural isomorphism from id
HM to FG. �

Proposition 5.4. Assume that π is abelian and that H = ({Hα}α∈π,m, u) is

a semi-Hopf π-algebra with a generalized idempotent e = {eα}α∈π. If e is a central,

strong and group-like generalized idempotent, then HM and H1
M are equivalent

monoidal categories.

P r o o f. Suppose that e is a central, strong and group-like generalized idempotent.

We use the notations introduced in the proof of Lemma 5.3.
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Note that the unit object of the monoidal category H1
M is the trivial H1-module

k with the action given by h · 1 = ε1(h), where h ∈ H1. Hence F (k) = H ⊗H1
k =

{Hα ⊗H1
k}α∈π. For any α ∈ π, Hα = (eαeα−1)Hα = eα(eα−1Hα) ⊆ eαH1 ⊆ Hα,

and hence Hα = eαH1. It follows that Hα is a free right H1-module of rank one

with an H1-basis eα, since eα−1eα = 1. Therefore, Hα ⊗H1
k is a one-dimensional

k-vector space with the k-basis eα ⊗H1
1. Thus, there is a k-linear isomorphism

(ϕ0)α : Kα = k → Hα ⊗H1
k, λ 7→ λeα ⊗H1

1 = eα ⊗H1
λ for any α ∈ π. Now

let α, β ∈ π, h ∈ Hα and λ ∈ Kβ = k. Then h · (ϕ0)β(λ) = h · (eβ ⊗H1
λ) =

(eβh) ⊗H1
λ = (eαβeα−1h) ⊗H1

λ = eαβ ⊗H1
(eα−1h) · λ = eαβ ⊗H1

ε1(eα−1h)λ =

eαβ ⊗H1
εα−1(eα−1)εα(h)λ = eαβ ⊗H1

εα(h)λ = (ϕ0)αβ(εα(h)λ) = (ϕ0)αβ(h · λ).

Thus, ϕ0 is a left H-π-module isomorphism from K to F (k).

Let U, V ∈ H1
M and α ∈ π. Define ϕ2(U, V )α : (F (U) ⊗ F (V ))α → F (U ⊗ V )α

by

ϕ2(U, V )α((h⊗H1
x)⊗ (l ⊗H1

v)) = eα ⊗H1
((eα−1h) · x⊗ (eα−1 l) · v),

where h, l ∈ Hα, x ∈ U and v ∈ V . Since Hα is a free right H1-module of rank one

with an H1-basis eα as stated before, it is easy to check that ϕ2(U, V )α is a k-linear

isomorphism. Let h, l ∈ Hα, y ∈ Hβ with α, β ∈ π, x ∈ U and v ∈ V . Then

y · ϕ2(U, V )α((h⊗H1
x)⊗ (l ⊗H1

v))

= yeα ⊗H1
((eα−1h) · x⊗ (eα−1 l) · v)

= eβαeβ−1y ⊗H1
((eα−1h) · x⊗ (eα−1 l) · v)

= eβα ⊗H1
(eβ−1y) · ((eα−1h) · x⊗ (eα−1 l) · v)

=
∑

eβα ⊗H1
(((eβ−1y)1eα−1h) · x⊗ ((eβ−1y)2eα−1 l) · v)

=
∑

eβα ⊗H1
((eβ−1y1eα−1h) · x⊗ (eβ−1y2eα−1 l) · v)

=
∑

eβα ⊗H1
((e(βα)−1y1h) · x⊗ (e(βα)−1y2l) · v)

= ϕ2(U, V )βα

(

∑

(y1h⊗H1
x)⊗ (y2l ⊗H1

v)
)

= ϕ2(U, V )βα(y · ((h⊗H1
x)⊗ (l ⊗H1

v))).

It follows that ϕ2(U, V ) is a left H-π-module isomorphism. A straightforward verifi-

cation shows that ϕ2(U, V ) is a family of natural isomorphisms of left H-π-modules

indexed by all couples (U, V ) of objects of H1
M.

Let U, V,W ∈ H1
M and α ∈ π. For any h, l, s ∈ Hα, x ∈ U , v ∈ V and w ∈ W ,

we have

(ϕ2(U, V ⊗W )α(idF (U)α ⊗ ϕ2(V,W )α)aα)(((h ⊗H1
x) ⊗ (l ⊗H1

v))⊗ (s⊗H1
w))

= (ϕ2(U, V ⊗W )α(idF (U)α ⊗ ϕ2(V,W )α))((h⊗H1
x)⊗ ((l ⊗H1

v)⊗ (s⊗H1
w)))

= ϕ2(U, V ⊗W )α((h⊗H1
x) ⊗ (eα ⊗H1

((eα−1 l) · v ⊗ (eα−1s) · w)))
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= eα ⊗H1
((eα−1h) · x⊗ ((eα−1eα) · ((eα−1 l) · v ⊗ (eα−1s) · w)))

= eα ⊗H1
((eα−1h) · x⊗ ((eα−1 l) · v ⊗ (eα−1s) · w))

and

(F (a)αϕ2(U ⊗ V,W )α(ϕ2(U, V )α ⊗ idF (W )α))(((h ⊗H1
x) ⊗ (l ⊗H1

v))⊗ (s⊗H1
w))

= (F (a)αϕ2(U ⊗ V,W )α)((eα ⊗H1
((eα−1h) · x⊗ (eα−1 l) · v))⊗ (s⊗H1

w))

= F (a)α(eα ⊗H1
((eα−1eα) · ((eα−1h) · x⊗ (eα−1 l) · v)⊗ (eα−1s) · w))

= F (a)α(eα ⊗H1
(((eα−1h) · x⊗ (eα−1 l) · v)⊗ (eα−1s) · w))

= eα ⊗H1
((eα−1h) · x⊗ ((eα−1 l) · v ⊗ (eα−1s) · w)).

Therefore, for any objects U, V,W of H1
M, we have

ϕ2(U, V ⊗W )(idF (U) ⊗ ϕ2(V,W ))aF (U),F (V ),F (W )

= F (aU,V,W )ϕ2(U ⊗ V,W )(ϕ2(U, V )⊗ idF (W )).

For any h ∈ Hα, v ∈ V and λ ∈ Kα = k with α ∈ π, we have

(F (lV )αϕ2(k, V )α((ϕ0)α ⊗ idF (V )α))(λ ⊗ (h⊗H1
v))

= (F (lV )αϕ2(k, V )α)((eα ⊗H1
λ)⊗ (h⊗H1

v))

= F (lV )α(eα ⊗H1
((eα−1eα) · λ⊗ (eα−1h) · v))

= F (lV )α(eα ⊗H1
(λ⊗ (eα−1h) · v))

= eα ⊗H1
(λ(eα−1h) · v)

= eαλeα−1h⊗H1
v

= λ(h⊗H1
v)

= (lF (V ))α(λ ⊗ (h⊗H1
v)).

Hence F (lV )ϕ2(k, V )(ϕ0 ⊗ idF (V )) = lF (V ) for any object V of H1
M. Similarly, one

can show that F (rV )ϕ2(V, k)(idF (V ) ⊗ϕ0) = rF (V ) for any object V of H1
M. Thus,

we have proved that (F, ϕ0, ϕ2) is a monoidal functor.

Note that G is a strict monoidal functor from HM to H1
M as stated before.

Finally, a straightforward verification shows that θ is a natural monoidal isomor-

phism from GF to id
H1

M, and σ is a natural monoidal isomorphism from id
HM to

FG. Hence HM and H1
M are equivalent monoidal categories. �

Example 5.2. Assume that Char(k) 6= 2. Let π be any group. For any α ∈ π, let

Hα be a 4-dimensional vector space with a k-basis {eα, gα, hα, xα}. Define k-linear

maps ∆α : Hα → Hα ⊗Hα and εα : Hα → k by

∆α(eα) = eα ⊗ eα, ∆α(hα) = hα ⊗ gα + eα ⊗ hα,

∆α(gα) = gα ⊗ gα, ∆α(xα) = xα ⊗ eα + gα ⊗ xα,

εα(eα) = εα(gα) = 1, εα(hα) = εα(xα) = 0.
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Then a straightforward verification shows that (Hα,∆α, εα) is a coalgebra over k for

any α ∈ π.

For any α, β ∈ π, define a k-linear map mα,β : Hα ⊗Hα → Hαβ by

eαeβ = eαβ , eαgβ = gαβ , eαhβ = hαβ , eαxβ = xαβ ,

gαeβ = gαβ , gαgβ = eαβ , gαhβ = xαβ , gαxβ = hαβ,

hαeβ = hαβ , hαgβ = −xαβ , hαhβ = 0, hαxβ = 0,

xαeβ = xαβ , xαgβ = −hαβ, xαhβ = 0, xαxβ = 0,

where we denote mα,β(y ⊗ z) by yz for any y ∈ Hα and z ∈ Hβ . Then define a k-

linear map u : k → H1 by u(1) = e1. A tedious but standard verification shows that

H = ({Hα}α∈π,m, u) is a π-algebra with e1 = 1. Moreover, one can check that H is

a semi-Hopf π-algebra.

For any α ∈ π, define a k-linear map Sα : Hα → Hα−1 by Sα(eα) = eα−1 ,

Sα(gα) = gα−1 , Sα(hα) = xα−1 and Sα(xα) = −hα−1 . Then one can check that

H = ({Hα}α∈π,m, u, S) is a Hopf π-algebra.

For any λ ∈ k, let

Rλ = 1
2 (1⊗ 1 + 1⊗ g1 + g1 ⊗ 1− g1 ⊗ g1)

+ 1
2λ(x1 ⊗ x1 − x1 ⊗ h1 + h1 ⊗ x1 + h1 ⊗ h1).

Then one can check that Rλ is a quasitriangular structure of H for any λ ∈ k.

Let e = {eα}α∈π. Then e is a strong group-like generalized idempotent. Now

assume that π is abelian. Then e is central. It follows from Proposition 5.4 that

HM and H1
M are equivalent monoidal categories. Thus, in order to describe the

left π-modules over H , we only need to describe the left H1-modules.

Note that H1 is a usual Hopf algebra, which is generated, as an algebra, by g1

and h1. Algebra H1 is isomorphic, as a Hopf algebra, to Sweedler’s 4-dimensional

Hopf algebra. Hence there are only 4 non-isomorphic finite-dimensional indecompos-

able modules V0, V1, U0 and U1. Modules V0 and V1 are both one-dimensional with

the actions given by g1 ·v = (−1)iv and h1 ·v = 0 for all v ∈ Vi, where i = 0, 1. Mod-

ules U0 and U1 are both 2-dimensional. The matrix representation ̺i : H1 → M2(k)

corresponding to Ui is given by

̺i(g1) =

(

(−1)i 0

0 (−1)i−1

)

, ̺i(h1) =

(

0 0

1 0

)

,

where i = 0, 1. Moreover, U0 and U1 are both projective and uniserial. For details,

one can see [2] and [3].
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