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Abstract. In this paper, we study the existence of the n-flat preenvelope and the n-FP-
injective cover. We also characterize n-coherent rings in terms of the n-FP-injective and
n-flat modules.
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1. INTRODUCTION

We use R-Mod (resp., Mod-R) to denote the category of all left (resp., right)
R-modules. For any R-module M, pdz M (resp., idg M, fdg M) denotes the pro-
jective (resp., injective, flat) dimension. The character module Homz(M,Q/Z) is
denoted by M.

Coherent rings have been characterized in various ways. The deepest result is
the one due to Chase [2] which claims that the ring R is left coherent if and only
if products of flat right R-modules are again flat if and only if products of copies
of R are flat right R-modules. Lee [6] introduced the notions of left n-coherent and
n-coherent rings and characterized them in various ways, using n-flat and n-FP-
injective modules. In this paper we continue the study of n-coherent rings.

A ring R is called left n-coherent (for integers n > 0 or n = co) if every finitely
generated submodule of a free left R-module whose projective dimension is < n — 1
is finitely presented. Accordingly, all rings are left 1-coherent, and the left coherent
rings are exactly those which are d-coherent (d denotes the left global dimension
of R). In particular, left co-coherent rings are left coherent. A right R-module M will
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be called n-flat if Torf(M, N) = 0 holds for all finitely presented left R-modules N
with pdp N < n. A left R-module A is said to be n-FP-injective if Extk (N, A) = 0
holds for all finitely presented left R-modules N of projective dimension < n.
Given a class ¢ of R-modules, let % be the class of R-modules F such that
Extk(F,C) = 0 for every C € € and let € be the class of R-modules F such that
ExtR(C, F) = 0 for every C' € €. A pair of classes of R-modules (%, %) is called a
cotorsion theory if #+ = € and +¢ = .#. A cotorsion theory is said to be complete
if for every R-module M there is an exact sequence 0 — C — F' — M — 0 such
that C € € and F € #. A cotorsion theory is said to be perfect if every R-module
has an .#-cover and a %-envelope. A cotorsion theory is said to be hereditary if
0—F — F— F"’"—0is exact with F, " € %, then F' € #.
We recall that given a class of R-modules .7, a morphism ¢: T — M where
T € 7 is called a . -cover of M if the following conditions hold:
(1) For any linear map ¢': T/ — M with 7" € .7, there exists a linear map
f: T — T with ¢ = ¢f, or equivalently, Homg(7",T) — Hompg(T',M) — 0
is exact for any 7" € 7.
(2) If f is an endomorphism of 7" with ¢ = ¢ f, then f must be an automorphism.
If (1) holds (and perhaps not (2)), ¢: T — M is called a J-precover. A J-
envelope and .7 -preenvelope are defined dually.

2. N-FLAT AND n-FP-INJECTIVE MODULES

Let n be a non-negative integer. In what follows, .%,, stands for the class of all n-
flat right R-modules and .%.#,, denotes the class of all n-FP-injective left R-modules.

Proposition 2.1. .%,, and .¥.¢,, are closed under pure submodules.

Proof. Let B € .%, and let A C B be a pure submodule. Then 0 — (B/A)t —
BT — AT — 0 is split and BT is n-FP-injective by [6, Lemma 5], and so A is n-flat
by [6, Lemma 5].

Let M € % .7, let S be a pure submodule of M and let N be any finitely presented
left R-module with pdp N < n. Then we can get an induced exact sequence

0 — Hompg(N,S) — Hompg(N, M) — Hompg(N,M/S) — 0,
and so Exth(N, S) = 0 since Exth(N, M) = 0. It follows that S € .Z.7,,. O

Lemma 2.1. The following conditions are equivalent:
(1) M is n-FP-injective if and only if Extk(R/I, M) = 0 for any finitely generated
left ideal I with pdp I <n—1;
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(2) N is n-flat if and only if Tor[(N, R/I) = 0 for any finitely generated left ideal I
with pdp I <n — 1.

Proof. (1) =7 is trivial.

“<” Let L be any finitely presented left R-module with pdp L < n. Then there
is an exact sequence 0 — A — R"™ — L — 0 for some n > 0 and A C R" finitely
generated with pdp A < n — 1. Consider the following pullback of A — R"™ and
R — R™

0 0
0 B A Rt 0
f
0 R R Rt 0
L pr— L
0 0

Then L = R/Im f and Im f = B is finitely generated with pdpIm f < n — 1.
Thus Ext}%(L, M) = Extp(R/Im f, M) = 0, which gives that M is n-FP-injective.
(2) By analogy with the proof of (1). O

Theorem 2.1. Let n be a non-negative integer and R a ring. Then
(1) (Fn, F1) is a perfect cotorsion theory;
(2) (+FS,,F.7,) is a complete cotorsion theory.

Proof. (1) Let Card(R) < Ng and F € %#,. Then we can write F' as a
union of a continuous chain (F, )< of pure submodules of F' such that Card(Fp) <
Rg and Card(Fuo41/Fa) < Ng whenever @« +1 < A. If N is a right R-module
such that Exth(Fy, N) = 0 and Exty(Fay1/Fa, N) = 0 whenever o + 1 < )\, then
Extk(F,N) = 0 by [5, Theorem 7.3.4]. Since F, is a pure submodule of F' for any
a < A, we have F, € %, by Proposition 2.1. On the other hand, F, is a pure
submodule of F, 11 whenever o + 1 < A, hence F,1/F, € %, by Proposition 2.1.
Let X be a set of representatives of all modules G € %, with Card(G) < Ng.
Then Z;- = X1. So (Z,, Z;) is a cotorsion theory by [1, Corollary 2.13]. Since
(Fn, F ) is cogenerated by the set X, (F,, # ) is a complete cotorsion theory
by [5, Theorem 7.4.1]. Moreover, (.%,,.%;-) is a perfect cotorsion theory by [5,
Theorem 7.2.6] since .%#,, is closed under direct limits.

—-
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(2) Let X € (+.#.#,,)* and let N be finitely presented with pdg N < n. Then N €
LF.F,. So Exti(N,X) = 0, which gives that X € .#.#,, and (*.#.4,,.7.7,) is a
cotorsion theory. By Lemma 2.1, M is n-FP-injective if and only if Ext)(R/A, M) =
0 for any finitely generated A C R with pdy A < n —1. Set X = @R/A, where the
sum is over all finitely generated left ideals A of R with pdy A < n—1. Then #.9,, =
Xt So (+#.7,,%.7,) is a complete cotorsion theory by [5, Theorem 7.4.1]. [

3. n-COHERENT RINGS

In this section we characterize n-coherent rings in terms of the n-FP-injective
and n-flat modules. We obtain some characterizations of the situation when every
R-module has a monic .%,-preenvelope and an epic .%,-preenvelope.

Theorem 3.1. For a ring R and any n (0 < n < 00), the following conditions are
equivalent:
(1) R is left n-coherent;
(2) every right R-module has an .%,-preenvelope;

(3) any direct limit of n-FP-injective left R-modules is n-FP-injective;

(4) Ext}%(N,hL)nMi) — &nExt}a(N, M;) is an isomorphism for any finitely pre-
sented left R-module N with pdy N < n and any direct system (M;);c of left
R-modules;

(5) Z.#,, is a coresolving subcategory;

(6) (*F.S,,FF,) is a hereditary cotorsion theory.

Proof. (1)= (4) By [3, Lemma 2.9 (2)]; (4) = (3) and (5) = (6) are obvious.

(1) = (2) Let N be any right R-module. Then there is a cardinal number X, such
that for any homomorphism f: N — L with L n-flat, there is a pure submodule Q
of L such that Card(Q) < R, and f(IN) C Q. Note that @ is n-flat by Proposition 2.1
and .%, is closed under products by [6, Theorem 5], and so N has an .%,-preenvelope
by [5, Proposition 6.2.1].

(2) = (1) Let (F});es be a family of n-flat right R-modules and let [[ F; — F be an

i€l
Fn-preenvelope. Then there are factorizations [[ F; — F — Fj, where [[ F; — F;
icl el
is the canonical projection for each j. This gives rise to a map F — [ F; with the
il
composition [[ F; — F — [] F; being the identity. Hence [] F; is isomorphic to a
il il il
summand of F', and so [] F; is n-flat, which implies that R is left n-coherent.
i€l

(3) = (1) Let K be a finitely generated submodule of a free left R-module F

whose projective dimension is < n — 1. Consider the exact sequence 0 — K — F —
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F/K — 0. Then F/K is finitely presented and pdg F/K < n. So we have the
following commutative diagram with exact rows:

HomR(F/K,hL)nMi) —_— HomR(F,liL)nMi) —_— HomR(K,hL)nMi) ——0

| | |

li_r)nHomR(F/K, M;) —— hL)nHomR(F7 M;) —— liquoran(K7 M;) ——=0

Since o and [ are isomorphisms, 7 is an isomorphism by Five lemma. Thus K is
finitely presented.

(1) = (5) Let N be a finitely presented left R-module with pdy N < n and let
0 —-A— B— C — 0 be exact in R-Mod with A, B € .%.7,,. Then

0 = Extp(N, B) — Exth(N,C) — Ext%(N,A) =0

by [6, Theorem 1], and so C € #.7,,. Thus .%.7,, is a coresolving subcategory.

(6) = (1) Let S be a finitely generated submodule of a free left R-module F' whose
projective dimension is < n — 1. We need to prove that S is finitely presented. Let
M be FP-injective and let 0 - M — F — C — 0 be exact with E injective. Then
Me %7, and C € F7,, and so

Exth(S, M) = Ext%(F/S, M) = Exty(F/S,C) = 0.
Thus S is finitely presented, which means that R is left n-coherent. O

Proposition 3.1. The following conditions are equivalent:

(1) R is a left n-coherent ring;

(2) Exty(I, N) = 0 for any FP-injective left R-module N and any finitely generated
left ideal I with pdrl <n —1;

(3) Extk(R/I,N) = 0 for any FP-injective left R-module N and any finitely gen-
erated left ideal I with pdpl < n —1;

(4) if0 = N - M — L — 0 is an exact sequence of left R-modules with N FP-
injective and M n-FP-injective, then L is n-FP-injective.

Proof. (1)= (2) is obvious.

(2) = (3) Let N be an FP-injective left R-module and I a finitely generated left
ideal with pdp I < m — 1. Then the exact sequence 0 — I — R — R/I — 0 gives
rise to the exact sequence

0 = Extp(I, N) — Ext}(R/I, N) — Ext%(R,N) =0
by (2). Thus Ext%(R/I, N) = 0.
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(3) = (4) Let I be a finitely generated left ideal of R with pdp I < n —1. The
exact sequence 0 - N — M — L — 0 induces the exactness of

0 = Exth(R/I, M) — Extk(R/I,L) — Ext%(R/I,N) =0

by (3), and hence Ext}%(R/I, L) =0. That is, L is n-FP-injective by Lemma 2.1.

(4) = (1) Let I be a finitely generated left ideal with pdy I < n — 1. For any
FP-injective left R-module N, there is an exact sequence 0 = N — E — E/N — 0
with F injective. Note that E/N is n-FP-injective by (4). Hence we get the exact
sequence

0 = Extp(R/I, E/N) — Exts(R/I, N) — Ext%(R/I, E) = 0,

and so Exth(I,N) = Ext%(R/I,N) = 0. Tt follows that I is finitely presented.
Therefore R is left n-coherent. O

Lemma 3.1. Let R be a left n-coherent ring and let |M| = X for a left R-
module M. Let k be as in El Bashir’s result. Then any map A — M with A n-FP-
injective can be factored through an n-FP-injective left R-module B with |B| < k.

Proof. Consider any homomorphism A — M with A n-FP-injective. If |A| < k,
let B = A. So suppose |A| > k. Consider a submodule S C A maximal with respect
to the two properties that S is pure in A and that S C Ker(A — M). Let B= A/S.
Then B is n-FP-injective by Theorem 3.1. We wish to argue that |B| < k. Let K be
the kernel of B — M. Then |B/K| < |[M| = A. So if |B| > k, there is a nonzero
pure submodule T'/S of B contained in K. But then T is pure in A and is contained
in the kernel of A — M. This contradicts the choice of S. O

Theorem 3.2. Let R be a left n-coherent ring. Then every left R-module has an
F 7, -cover.

Proof. By Lemma 3.1 and [5, Proposition 5.2.2 and Corollary 5.2.7]. O

Proposition 3.2. Let R be left n-coherent. Then the following conditions are
equivalent:
(1) every left R-module has an n-FP-injective cover with the unique mapping prop-
erty (see [4]);
(2) for every left R-modules exact sequence A — B — C — 0 with A and B n-FP-
injective, C' is n-FP-injective.
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Proof. (1)=(2)Let A4 2 B -2 ¢ —= (0 be exact in R-Mod with A, B n-FP-
injective and #: H — C an n-FP-injective cover with the unique mapping property.
Then there exists a map §: B — H such that ¢ = 6. Thus 06f = gf = 0 = 60,
and hence §f = 0, which implies that Kerg = Im f C Kerd. Therefore there is
a morphism v: C — H such that yg = J, and so 0vg = 66 = g, which gives that
0~y = 1¢. Thus C' is isomorphic to a direct summand of H, and so C'is n-FP-injective.

(2) = (1) Let M be any left R-module. Then M has an n-FP-injective cover
f: L — M by Theorem 3.2. It is enough to show that for any n-FP-injective
left R-module G and any homomorphism ¢g: G — L such that fg = 0, we have
g = 0. In fact, there is a homomorphism 5: L/Img — M such that Sr = f, where
m: L — L/Img is the natural map. Since L/Im g is n-FP-injective, there is a map
a: L/Img — L such that 8 = fa, and so far = f. Hence ar is an isomorphism.
Therefore 7 is monic and g = 0. O

Proposition 3.3. The following conditions are equivalent:
(1) (+F.4,,F.7,) is a hereditary cotorsion theory;
(2) R is left n-coherent and (%, Z,-) is a hereditary cotorsion theory;
(3) Ext%(R/I, M) = 0 for any finitely generated left ideal I with pdyl < n — 1
and any n-FP-injective left R-module M;
(4) R is left n-coherent and Tory (N, R/I) = 0 for any finitely generated left ideal I
with pdp I <n — 1 and any n-flat right R-module N.

Proof. (1) = (2) Since (*.#.4,,.7.7,) is hereditary, R is left n-coherent by
Theorem 3.1. On the other hand, let 0 - A — B — C — 0 be exact with B,
C e %, Then 0 - CT — BT — AT — 0 is exact with B*,CT € #.7, by [6,
Theorem 3], and so AT € Z.#, by (1), which implies that A € .%,. That is,
(Fn, Fi-) is hereditary.

(2) = (3) = (1) By [6, Theorem 1], (4) = (2). It is easy.

(2) = (4) Let N € %, and let 0 = K — P — N — 0 be exact with P projective.
Then K € .%, by (2), and hence Tory (N, R/I) = Torf (K, R/I) = 0 for any finitely
generated left ideal I with pdp I <n — 1. O

Proposition 3.4. The following conditions are equivalent for a left n-coherent
ring R:
(1) every n-flat right R-module is flat;
(2) every cotorsion right R-module belongs to Z;-;
(3) every n-FP-injective left R-module is FP-injective;
(4)

every finitely presented left R-module belongs to % .9 TLL .
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Proof. (1)<« (2) and (3) < (4) follow from Theorem 2.1.

(1) = (3) Let M be any n-FP-injective left R-module. Then M is n-flat, and so
M™ is flat by (1). On the other hand, for any finitely presented left R-module N,
there is an exact sequence

Torf(M*, N) — Exth(N,M)T — 0

by [3, Lemma 2.7 (1)]. Thus Ext}%(N, M) =0, and so M is FP-injective.
(3) = (1) Let M be an n-flat right R-module. Then M ™ is n-FP-injective, and
so M is FP-injective by (3). Hence M is flat. O

Now we study when every right R-module has a monic .%,-preenvelope and an
epic Z,-preenvelope.

Proposition 3.5. The following conditions are equivalent:
1
2

(1) every right R-module has a monic .%#,-preenvelope;
(2)
(3) R is left n-coherent and rR is n-FP-injective;
(4)
()

R is left n-coherent and every flat left R-module is n-FP-injective;

4) R is left n-coherent and (¥ .9 ,,, F .9 ,J;) is a perfect cotorsion theory;

5) R is left n-coherent and every left R-module has an epic % .% ,-cover.

Proof. (2)= (3) and (4) = (5) are obvious.

(1) = (2) Let M be a flat left R-module. Then M is injective and M ™ has a
monic .%,-preenvelope ¢: MT — F. Set C = Cokerp. Then 0 - M* — F — C —
0 is split, and so C' € .%,,, which gives that M+ € .%, since R is left n-coherent.
Thus M is n-FP-injective.

(3) = (4) By analogy with the proof of Theorem 2.1.

(5) = (1) Let M be any right R-module. Then M has an epic .#.7,-cover
E — MT™ by (5), and so there is a monomorphism M — E*. Thus every right
R-module has a monic .%,-preenvelope by Theorem 3.1. 0

Proposition 3.6. The following conditions are equivalent:
1) every right R-module has an epic %, -preenvelope;
2

) R is left n-coherent and every submodule of any n-flat right R-module is n-flat;
3) every quotient module of any n-FP-injective left R-module is n-FP-injective;
)

(
(
(
(4

every left R-module has a monic .% .% ,-cover.

Proof. (1) = (2) R is left n-coherent by Theorem 3.1. Now suppose that
N is a submodule of an n-flat right R-module L and ¢t: N — L is the inclusion.
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By (1), N has an epic .%,-preenvelope f: N — F. Then there is a homomorphism
g: F' — L such that the following diagram is commutative:

f

ﬁF

N .
g
p
L

So gf = ¢ is monic, and hence f is monic, which gives that f is an isomorphism and
N = F is n-flat.

(2) = (3) Let M be any n-FP-injective left R-module and let M — N — 0 be
exact. Then 0 — Nt — M™ is exact and M is n-flat, and so N* is n-flat by (2).
Thus N is n-FP-injective by [6, Theorem 3].

(3) = (4) By [6, Theorem 2], R is left n-coherent, and hence every left R-module M
has an .., -precover ¢: C — M. Note that Im ¢ is n-FP-injective by (3), so
Imy — M is a monic % .¥ ,-cover.

(4) = (1) Let E be an injective left R-module and S C E a pure submodule. Then
E/S has a monic .#.# ,-cover f: C' — E/S. By analogy with the proof (1) = (2),
f is an isomorphism and F/S is n-FP-injective, and hence R is left n-coherent by [6,
Theorem 2], which means that every right R-module has an .%,-preenvelope by
Theorem 3.1. Let M be any right R-module. Then M has a monic .%.#,-cover
E — MT™, and hence M*t+t — Et — 0 is exact. Set K = Ker(M*™t — ET).
Consider the following pullback of M — M™ and K — M™:

0 0
0 X K Mt /M ——=0
0 M M+t Mt /M ——0
E* E*
0 0
Since ET is n-flat, M has an epic .%,-preenvelope. ([
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Proposition 3.7. The following conditions are equivalent:

every left R-module is n-FP-injective;

every cotorsion left R-module is n-FP-injective;

every right R-module is n-flat;

every cotorsion right R-module is n-flat;

every right R-module in .Z;- is injective;

every left R-module in +.% %, is projective;

every nonzero right R-module contains a nonzero n-flat submodule;
(*FS,,F.7,) is a hereditary cotorsion theory and every left R-module in
+.Z .7, is n-FP-injective.

Proof. (1)=(2), (3)= (4), (3) = (7) and (1) = (8) are obvious.

(2) = (3) Let M be any right R-module. Then M is n-FP-injective by (2), and
so M is n-flat.

(4) = (1) Let M be any left R-module. Then M is n-flat by (4), and so M7 is
n-FP-injective. Note that M is a pure submodule of M++. So M is n-FP-injective.

(3) © (5) and (1) < (6) follow from Theorem 2.1.

(7) = (5) Assume that 0 - A — B — C' — 0 is any exact sequence. To simplify
the notation, we think of A as a submodule of B. Let M € .%#;- and let f: A — M
be any homomorphism. By a simple application of Zorn’s Lemma, we can find
g: D — M, where A C D C B and g|a = f, such that g cannot be extended to any
submodule of B properly containing D. We claim that D = B. Indeed, if D # B,
then B/D # 0. By (7), there is a nonzero submodule N/D of B/D such that N/D is
n-flat. Since M € Z.-, there exists h: N — M such that h|p = g. It is obvious
that h extends g, thus we get the desired contradiction, and so M is injective.

(8) = (1) Let M be a left R-module. By Theorem 2.1, there is an exact sequence
0-K—>F—M—0with Fe * %7, Ke F.7,. Then F € F#.7,, and hence
M e #.7, by (8). d
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