n-FLAT AND *n*-FP-INJECTIVE MODULES

XIAOYAN YANG, ZHONGKUI LIU, Lanzhou

(Received January 1, 2010)

Abstract. In this paper, we study the existence of the n-flat preenvelope and the n-FP-injective cover. We also characterize n-coherent rings in terms of the n-FP-injective and n-flat modules.

Keywords: n-flat module, n-FP-injective module, n-coherent ring, cotorsion theory

MSC 2010: 13D07, 13C11

1. INTRODUCTION

We use *R*-Mod (resp., Mod-*R*) to denote the category of all left (resp., right) *R*-modules. For any *R*-module M, $\operatorname{pd}_R M$ (resp., $\operatorname{id}_R M$, $\operatorname{fd}_R M$) denotes the projective (resp., injective, flat) dimension. The character module $\operatorname{Hom}_Z(M, Q/Z)$ is denoted by M^+ .

Coherent rings have been characterized in various ways. The deepest result is the one due to Chase [2] which claims that the ring R is left coherent if and only if products of flat right R-modules are again flat if and only if products of copies of R are flat right R-modules. Lee [6] introduced the notions of left n-coherent and n-coherent rings and characterized them in various ways, using n-flat and n-FPinjective modules. In this paper we continue the study of n-coherent rings.

A ring R is called left n-coherent (for integers n > 0 or $n = \infty$) if every finitely generated submodule of a free left R-module whose projective dimension is $\leq n - 1$ is finitely presented. Accordingly, all rings are left 1-coherent, and the left coherent rings are exactly those which are d-coherent (d denotes the left global dimension of R). In particular, left ∞ -coherent rings are left coherent. A right R-module M will

This research was supported by National Natural Science Foundation of China (10961021, 11001222) and by nwnu-kjcxgc-03-68.

be called *n*-flat if $\operatorname{Tor}_1^R(M, N) = 0$ holds for all finitely presented left *R*-modules *N* with $\operatorname{pd}_R N \leq n$. A left *R*-module *A* is said to be *n*-FP-injective if $\operatorname{Ext}_R^1(N, A) = 0$ holds for all finitely presented left *R*-modules *N* of projective dimension $\leq n$.

Given a class \mathscr{C} of R-modules, let ${}^{\perp}\mathscr{C}$ be the class of R-modules F such that $\operatorname{Ext}^{1}_{R}(F,C) = 0$ for every $C \in \mathscr{C}$ and let \mathscr{C}^{\perp} be the class of R-modules F such that $\operatorname{Ext}^{1}_{R}(C,F) = 0$ for every $C \in \mathscr{C}$. A pair of classes of R-modules $(\mathscr{F},\mathscr{C})$ is called a cotorsion theory if $\mathscr{F}^{\perp} = \mathscr{C}$ and ${}^{\perp}\mathscr{C} = \mathscr{F}$. A cotorsion theory is said to be complete if for every R-module M there is an exact sequence $0 \to C \to F \to M \to 0$ such that $C \in \mathscr{C}$ and $F \in \mathscr{F}$. A cotorsion theory is said to be hereditary if $0 \to F' \to F \to F'' \to 0$ is exact with $F, F'' \in \mathscr{F}$, then $F' \in \mathscr{F}$.

We recall that given a class of *R*-modules \mathscr{T} , a morphism $\varphi \colon T \to M$ where $T \in \mathscr{T}$ is called a \mathscr{T} -cover of *M* if the following conditions hold:

- (1) For any linear map $\varphi' \colon T' \to M$ with $T' \in \mathscr{T}$, there exists a linear map $f \colon T' \to T$ with $\varphi' = \varphi f$, or equivalently, $\operatorname{Hom}_R(T', T) \to \operatorname{Hom}_R(T', M) \to 0$ is exact for any $T' \in \mathscr{T}$.
- (2) If f is an endomorphism of T with $\varphi = \varphi f$, then f must be an automorphism.

If (1) holds (and perhaps not (2)), $\varphi \colon T \to M$ is called a \mathscr{T} -precover. A \mathscr{T} envelope and \mathscr{T} -preenvelope are defined dually.

2. n-flat and n-fp-injective modules

Let n be a non-negative integer. In what follows, \mathscr{F}_n stands for the class of all n-flat right R-modules and \mathscr{FI}_n denotes the class of all n-FP-injective left R-modules.

Proposition 2.1. \mathscr{F}_n and \mathscr{FI}_n are closed under pure submodules.

Proof. Let $B \in \mathscr{F}_n$ and let $A \subseteq B$ be a pure submodule. Then $0 \to (B/A)^+ \to B^+ \to A^+ \to 0$ is split and B^+ is *n*-FP-injective by [6, Lemma 5], and so A is *n*-flat by [6, Lemma 5].

Let $M \in \mathscr{FI}_n$, let S be a pure submodule of M and let N be any finitely presented left R-module with $\operatorname{pd}_R N \leq n$. Then we can get an induced exact sequence

$$0 \longrightarrow \operatorname{Hom}_{R}(N, S) \longrightarrow \operatorname{Hom}_{R}(N, M) \longrightarrow \operatorname{Hom}_{R}(N, M/S) \longrightarrow 0$$

and so $\operatorname{Ext}^1_R(N,S) = 0$ since $\operatorname{Ext}^1_R(N,M) = 0$. It follows that $S \in \mathscr{FI}_n$.

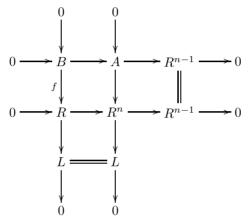
Lemma 2.1. The following conditions are equivalent:

(1) *M* is *n*-FP-injective if and only if $\operatorname{Ext}^{1}_{R}(R/I, M) = 0$ for any finitely generated left ideal *I* with $\operatorname{pd}_{R} I \leq n-1$;

(2) N is n-flat if and only if $\operatorname{Tor}_{1}^{R}(N, R/I) = 0$ for any finitely generated left ideal I with $\operatorname{pd}_{R} I \leq n-1$.

Proof. (1) " \Rightarrow " is trivial.

" \Leftarrow " Let L be any finitely presented left R-module with $pd_R L \leq n$. Then there is an exact sequence $0 \to A \to R^n \to L \to 0$ for some $n \ge 0$ and $A \subseteq R^n$ finitely generated with $\operatorname{pd}_R A \leqslant n-1$. Consider the following pullback of $A \to R^n$ and $R \to R^n$:



Then $L \cong R/\operatorname{Im} f$ and $\operatorname{Im} f \cong B$ is finitely generated with $\operatorname{pd}_R \operatorname{Im} f \leqslant n-1$. Thus $\operatorname{Ext}^1_R(L, M) \cong \operatorname{Ext}^1_R(R/\operatorname{Im} f, M) = 0$, which gives that M is n-FP-injective.

(2) By analogy with the proof of (1).

Theorem 2.1. Let n be a non-negative integer and R a ring. Then

- (1) $(\mathscr{F}_n, \mathscr{F}_n^{\perp})$ is a perfect cotorsion theory;
- (2) $({}^{\perp}\mathscr{FI}_n, \mathscr{FI}_n)$ is a complete cotorsion theory.

Proof. (1) Let $\operatorname{Card}(R) \leq \aleph_{\beta}$ and $F \in \mathscr{F}_n$. Then we can write F as a union of a continuous chain $(F_{\alpha})_{\alpha < \lambda}$ of pure submodules of F such that $Card(F_0) \leq$ \aleph_{β} and $\operatorname{Card}(F_{\alpha+1}/F_{\alpha}) \leq \aleph_{\beta}$ whenever $\alpha + 1 < \lambda$. If N is a right R-module such that $\operatorname{Ext}^{1}_{R}(F_{0}, N) = 0$ and $\operatorname{Ext}^{1}_{R}(F_{\alpha+1}/F_{\alpha}, N) = 0$ whenever $\alpha + 1 < \lambda$, then $\operatorname{Ext}_{R}^{1}(F, N) = 0$ by [5, Theorem 7.3.4]. Since F_{α} is a pure submodule of F for any $\alpha < \lambda$, we have $F_{\alpha} \in \mathscr{F}_n$ by Proposition 2.1. On the other hand, F_{α} is a pure submodule of $F_{\alpha+1}$ whenever $\alpha + 1 < \lambda$, hence $F_{\alpha+1}/F_{\alpha} \in \mathscr{F}_n$ by Proposition 2.1. Let X be a set of representatives of all modules $G \in \mathscr{F}_n$ with $\operatorname{Card}(G) \leq \aleph_{\beta}$. Then $\mathscr{F}_n^{\perp} = X^{\perp}$. So $(\mathscr{F}_n, \mathscr{F}_n^{\perp})$ is a cotorsion theory by [1, Corollary 2.13]. Since $(\mathscr{F}_n, \mathscr{F}_n^{\perp})$ is cogenerated by the set $X, \ (\mathscr{F}_n, \mathscr{F}_n^{\perp})$ is a complete cotorsion theory by [5, Theorem 7.4.1]. Moreover, $(\mathscr{F}_n, \mathscr{F}_n^{\perp})$ is a perfect cotorsion theory by [5, Theorem 7.2.6] since \mathscr{F}_n is closed under direct limits.

(2) Let $X \in ({}^{\perp}\mathscr{FI}_n)^{\perp}$ and let N be finitely presented with $\mathrm{pd}_R N \leq n$. Then $N \in {}^{\perp}\mathscr{FI}_n$. So $\mathrm{Ext}^1_R(N,X) = 0$, which gives that $X \in \mathscr{FI}_n$ and $({}^{\perp}\mathscr{FI}_n, \mathscr{FI}_n)$ is a cotorsion theory. By Lemma 2.1, M is n-FP-injective if and only if $\mathrm{Ext}^1_R(R/A, M) = 0$ for any finitely generated $A \subseteq R$ with $\mathrm{pd}_R A \leq n-1$. Set $X = \oplus R/A$, where the sum is over all finitely generated left ideals A of R with $\mathrm{pd}_R A \leq n-1$. Then $\mathscr{FI}_n = X^{\perp}$. So $({}^{\perp}\mathscr{FI}_n, \mathscr{FI}_n)$ is a complete cotorsion theory by [5, Theorem 7.4.1]. \Box

3. *n*-coherent rings

In this section we characterize *n*-coherent rings in terms of the *n*-FP-injective and *n*-flat modules. We obtain some characterizations of the situation when every *R*-module has a monic \mathscr{F}_n -preenvelope and an epic \mathscr{F}_n -preenvelope.

Theorem 3.1. For a ring R and any $n \ (0 < n \le \infty)$, the following conditions are equivalent:

- (1) R is left *n*-coherent;
- (2) every right *R*-module has an \mathscr{F}_n -preenvelope;
- (3) any direct limit of n-FP-injective left R-modules is n-FP-injective;
- (4) $\operatorname{Ext}_{R}^{1}(N, \varinjlim M_{i}) \to \varinjlim \operatorname{Ext}_{R}^{1}(N, M_{i})$ is an isomorphism for any finitely presented left *R*-module *N* with $\operatorname{pd}_{R} N \leq n$ and any direct system $(M_{i})_{i \in I}$ of left *R*-modules;
- (5) \mathscr{FI}_n is a coresolving subcategory;
- (6) $({}^{\perp}\mathscr{FI}_n, \mathscr{FI}_n)$ is a hereditary cotorsion theory.

Proof. (1) \Rightarrow (4) By [3, Lemma 2.9(2)]; (4) \Rightarrow (3) and (5) \Rightarrow (6) are obvious.

 $(1) \Rightarrow (2)$ Let N be any right R-module. Then there is a cardinal number \aleph_{α} such that for any homomorphism $f: N \to L$ with L n-flat, there is a pure submodule Q of L such that $\operatorname{Card}(Q) \leq \aleph_{\alpha}$ and $f(N) \subseteq Q$. Note that Q is n-flat by Proposition 2.1 and \mathscr{F}_n is closed under products by [6, Theorem 5], and so N has an \mathscr{F}_n -preenvelope by [5, Proposition 6.2.1].

 $\begin{array}{l} (2) \Rightarrow (1) \operatorname{Let} (F_i)_{i \in I} \text{ be a family of } n \text{-flat right } R \text{-modules and let } \prod_{i \in I} F_i \to F \text{ be an} \\ \mathscr{F}_n \text{-preenvelope. Then there are factorizations } \prod_{i \in I} F_i \to F \to F_j, \text{ where } \prod_{i \in I} F_i \to F_j \\ \text{is the canonical projection for each } j. \text{ This gives rise to a map } F \to \prod_{i \in I} F_i \text{ with the} \\ \text{composition } \prod_{i \in I} F_i \to F \to \prod_{i \in I} F_i \text{ being the identity. Hence } \prod_{i \in I} F_i \text{ is isomorphic to a} \\ \text{summand of } F, \text{ and so } \prod_{i \in I} F_i \text{ is } n \text{-flat, which implies that } R \text{ is left } n \text{-coherent.} \end{array}$

(3) \Rightarrow (1) Let K be a finitely generated submodule of a free left R-module F whose projective dimension is $\leq n-1$. Consider the exact sequence $0 \rightarrow K \rightarrow F \rightarrow$

 $F/K \to 0$. Then F/K is finitely presented and $\operatorname{pd}_R F/K \leq n$. So we have the following commutative diagram with exact rows:

$$\begin{array}{c|c} \operatorname{Hom}_{R}(F/K, \varinjlim M_{i}) \longrightarrow \operatorname{Hom}_{R}(F, \varinjlim M_{i}) \longrightarrow \operatorname{Hom}_{R}(K, \varinjlim M_{i}) \longrightarrow 0 \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

Since α and β are isomorphisms, γ is an isomorphism by Five lemma. Thus K is finitely presented.

 $(1) \Rightarrow (5)$ Let N be a finitely presented left R-module with $\mathrm{pd}_R N \leq n$ and let $0 \to A \to B \to C \to 0$ be exact in R-Mod with $A, B \in \mathscr{FI}_n$. Then

$$0 = \operatorname{Ext}^1_R(N, B) \longrightarrow \operatorname{Ext}^1_R(N, C) \longrightarrow \operatorname{Ext}^2_R(N, A) = 0$$

by [6, Theorem 1], and so $C \in \mathscr{FI}_n$. Thus \mathscr{FI}_n is a coresolving subcategory.

 $(6) \Rightarrow (1)$ Let S be a finitely generated submodule of a free left R-module F whose projective dimension is $\leq n-1$. We need to prove that S is finitely presented. Let M be FP-injective and let $0 \to M \to E \to C \to 0$ be exact with E injective. Then $M \in \mathscr{FI}_n$ and $C \in \mathscr{FI}_n$, and so

$$\operatorname{Ext}^1_R(S,M) \cong \operatorname{Ext}^2_R(F/S,M) \cong \operatorname{Ext}^1_R(F/S,C) = 0.$$

Thus S is finitely presented, which means that R is left n-coherent.

Proposition 3.1. The following conditions are equivalent:

- (1) R is a left *n*-coherent ring;
- (2) $\operatorname{Ext}_{R}^{1}(I, N) = 0$ for any FP-injective left R-module N and any finitely generated left ideal I with $pd_{R}I \leq n-1$;
- (3) $\operatorname{Ext}_{R}^{2}(R/I, N) = 0$ for any FP-injective left R-module N and any finitely generated left ideal I with $\operatorname{pd}_{R} I \leq n-1$;
- (4) if $0 \to N \to M \to L \to 0$ is an exact sequence of left *R*-modules with *N* FP-injective and *M n*-FP-injective, then *L* is *n*-FP-injective.

Proof. $(1) \Rightarrow (2)$ is obvious.

 $(2) \Rightarrow (3)$ Let N be an FP-injective left R-module and I a finitely generated left ideal with $\operatorname{pd}_R I \leq n-1$. Then the exact sequence $0 \to I \to R \to R/I \to 0$ gives rise to the exact sequence

$$0 = \operatorname{Ext}^{1}_{R}(I, N) \longrightarrow \operatorname{Ext}^{2}_{R}(R/I, N) \longrightarrow \operatorname{Ext}^{2}_{R}(R, N) = 0$$

by (2). Thus $\text{Ext}_{R}^{2}(R/I, N) = 0.$

363

 $(3) \Rightarrow (4)$ Let I be a finitely generated left ideal of R with $\operatorname{pd}_R I \leq n-1$. The exact sequence $0 \to N \to M \to L \to 0$ induces the exactness of

$$0 = \operatorname{Ext}^{1}_{R}(R/I, M) \longrightarrow \operatorname{Ext}^{1}_{R}(R/I, L) \longrightarrow \operatorname{Ext}^{2}_{R}(R/I, N) = 0$$

by (3), and hence $\operatorname{Ext}_{R}^{1}(R/I, L) = 0$. That is, L is n-FP-injective by Lemma 2.1.

 $(4) \Rightarrow (1)$ Let I be a finitely generated left ideal with $\operatorname{pd}_R I \leq n-1$. For any FP-injective left R-module N, there is an exact sequence $0 \to N \to E \to E/N \to 0$ with E injective. Note that E/N is n-FP-injective by (4). Hence we get the exact sequence

$$0 = \operatorname{Ext}_{R}^{1}(R/I, E/N) \longrightarrow \operatorname{Ext}_{R}^{2}(R/I, N) \longrightarrow \operatorname{Ext}_{R}^{2}(R/I, E) = 0,$$

and so $\operatorname{Ext}^1_R(I,N) \cong \operatorname{Ext}^2_R(R/I,N) = 0$. It follows that I is finitely presented. Therefore R is left *n*-coherent.

Lemma 3.1. Let R be a left n-coherent ring and let $|M| = \lambda$ for a left R-module M. Let k be as in El Bashir's result. Then any map $A \to M$ with A n-FP-injective can be factored through an n-FP-injective left R-module B with |B| < k.

Proof. Consider any homomorphism $A \to M$ with A *n*-FP-injective. If |A| < k, let B = A. So suppose $|A| \ge k$. Consider a submodule $S \subseteq A$ maximal with respect to the two properties that S is pure in A and that $S \subseteq \text{Ker}(A \to M)$. Let B = A/S. Then B is *n*-FP-injective by Theorem 3.1. We wish to argue that |B| < k. Let K be the kernel of $B \to M$. Then $|B/K| \le |M| = \lambda$. So if $|B| \ge k$, there is a nonzero pure submodule T/S of B contained in K. But then T is pure in A and is contained in the kernel of $A \to M$. This contradicts the choice of S.

Theorem 3.2. Let R be a left n-coherent ring. Then every left R-module has an \mathscr{FI}_n -cover.

Proof. By Lemma 3.1 and [5, Proposition 5.2.2 and Corollary 5.2.7]. \Box

Proposition 3.2. Let R be left n-coherent. Then the following conditions are equivalent:

- (1) every left *R*-module has an *n*-FP-injective cover with the unique mapping property (see [4]);
- (2) for every left R-modules exact sequence $A \to B \to C \to 0$ with A and B n-FP-injective, C is n-FP-injective.

Proof. (1) \Rightarrow (2) Let $A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$ be exact in *R*-Mod with *A*, *B n*-FPinjective and $\theta: H \to C$ an *n*-FP-injective cover with the unique mapping property. Then there exists a map $\delta: B \to H$ such that $g = \theta \delta$. Thus $\theta \delta f = gf = 0 = \theta 0$, and hence $\delta f = 0$, which implies that Ker $g = \text{Im } f \subseteq \text{Ker } \delta$. Therefore there is a morphism $\gamma: C \to H$ such that $\gamma g = \delta$, and so $\theta \gamma g = \theta \delta = g$, which gives that $\theta \gamma = 1_C$. Thus *C* is isomorphic to a direct summand of *H*, and so *C* is *n*-FP-injective.

 $(2) \Rightarrow (1)$ Let M be any left R-module. Then M has an n-FP-injective cover $f: L \to M$ by Theorem 3.2. It is enough to show that for any n-FP-injective left R-module G and any homomorphism $g: G \to L$ such that fg = 0, we have g = 0. In fact, there is a homomorphism $\beta: L/\operatorname{Im} g \to M$ such that $\beta\pi = f$, where $\pi: L \to L/\operatorname{Im} g$ is the natural map. Since $L/\operatorname{Im} g$ is n-FP-injective, there is a map $\alpha: L/\operatorname{Im} g \to L$ such that $\beta = f\alpha$, and so $f\alpha\pi = f$. Hence $\alpha\pi$ is an isomorphism. Therefore π is monic and g = 0.

Proposition 3.3. The following conditions are equivalent:

- (1) $({}^{\perp}\mathscr{FI}_n, \mathscr{FI}_n)$ is a hereditary cotorsion theory;
- (2) R is left n-coherent and $(\mathscr{F}_n, \mathscr{F}_n^{\perp})$ is a hereditary cotorsion theory;
- (3) $\operatorname{Ext}_{R}^{2}(R/I, M) = 0$ for any finitely generated left ideal I with $\operatorname{pd}_{R} I \leq n-1$ and any *n*-FP-injective left *R*-module M;
- (4) R is left n-coherent and $\operatorname{Tor}_{2}^{R}(N, R/I) = 0$ for any finitely generated left ideal I with $\operatorname{pd}_{R} I \leq n-1$ and any n-flat right R-module N.

Proof. (1) \Rightarrow (2) Since $({}^{\perp}\mathscr{FI}_n, \mathscr{FI}_n)$ is hereditary, R is left *n*-coherent by Theorem 3.1. On the other hand, let $0 \to A \to B \to C \to 0$ be exact with B, $C \in \mathscr{F}_n$. Then $0 \to C^+ \to B^+ \to A^+ \to 0$ is exact with $B^+, C^+ \in \mathscr{FI}_n$ by [6, Theorem 3], and so $A^+ \in \mathscr{FI}_n$ by (1), which implies that $A \in \mathscr{F}_n$. That is, $(\mathscr{F}_n, \mathscr{F}_n^{\perp})$ is hereditary.

 $(2) \Rightarrow (3) \Rightarrow (1)$ By [6, Theorem 1], $(4) \Rightarrow (2)$. It is easy.

 $\begin{array}{l} (2) \Rightarrow (4) \mbox{ Let } N \in \mathscr{F}_n \mbox{ and let } 0 \to K \to P \to N \to 0 \mbox{ be exact with } P \mbox{ projective.} \\ \mbox{Then } K \in \mathscr{F}_n \mbox{ by } (2), \mbox{ and hence } \mbox{Tor}_2^R(N, R/I) \cong \mbox{Tor}_1^R(K, R/I) = 0 \mbox{ for any finitely} \\ \mbox{generated left ideal } I \mbox{ with } \mbox{pd}_R I \leqslant n-1. \end{array}$

Proposition 3.4. The following conditions are equivalent for a left n-coherent ring R:

(1) every n-flat right R-module is flat;

- (2) every cotorsion right *R*-module belongs to \mathscr{F}_n^{\perp} ;
- (3) every *n*-FP-injective left *R*-module is FP-injective;
- (4) every finitely presented left *R*-module belongs to \mathscr{FI}_n^{\perp} .

Proof. (1) \Leftrightarrow (2) and (3) \Leftrightarrow (4) follow from Theorem 2.1.

 $(1) \Rightarrow (3)$ Let M be any n-FP-injective left R-module. Then M^+ is n-flat, and so M^+ is flat by (1). On the other hand, for any finitely presented left R-module N, there is an exact sequence

$$\operatorname{Tor}_{1}^{R}(M^{+}, N) \longrightarrow \operatorname{Ext}_{R}^{1}(N, M)^{+} \longrightarrow 0$$

by [3, Lemma 2.7(1)]. Thus $\operatorname{Ext}^{1}_{R}(N, M) = 0$, and so M is FP-injective.

(3) \Rightarrow (1) Let *M* be an *n*-flat right *R*-module. Then M^+ is *n*-FP-injective, and so M^+ is FP-injective by (3). Hence *M* is flat.

Now we study when every right *R*-module has a monic \mathscr{F}_n -preenvelope and an epic \mathscr{F}_n -preenvelope.

Proposition 3.5. The following conditions are equivalent:

- (1) every right *R*-module has a monic \mathscr{F}_n -preenvelope;
- (2) R is left *n*-coherent and every flat left R-module is *n*-FP-injective;
- (3) R is left *n*-coherent and $_RR$ is *n*-FP-injective;
- (4) R is left n-coherent and $(\mathscr{FI}_n, \mathscr{FI}_n^{\perp})$ is a perfect cotorsion theory;
- (5) R is left n-coherent and every left R-module has an epic \mathscr{FI}_n -cover.

Proof. $(2) \Rightarrow (3)$ and $(4) \Rightarrow (5)$ are obvious.

 $(1) \Rightarrow (2)$ Let M be a flat left R-module. Then M^+ is injective and M^+ has a monic \mathscr{F}_n -preenvelope $\varphi \colon M^+ \to F$. Set $C = \operatorname{Coker} \varphi$. Then $0 \to M^+ \to F \to C \to 0$ is split, and so $C \in \mathscr{F}_n$, which gives that $M^+ \in \mathscr{F}_n$ since R is left n-coherent. Thus M is n-FP-injective.

 $(3) \Rightarrow (4)$ By analogy with the proof of Theorem 2.1.

 $(5) \Rightarrow (1)$ Let M be any right R-module. Then M has an epic \mathscr{FI}_n -cover $E \to M^+$ by (5), and so there is a monomorphism $M \to E^+$. Thus every right R-module has a monic \mathscr{F}_n -preenvelope by Theorem 3.1.

Proposition 3.6. The following conditions are equivalent:

- (1) every right *R*-module has an epic \mathscr{F}_n -preenvelope;
- (2) R is left n-coherent and every submodule of any n-flat right R-module is n-flat;
- (3) every quotient module of any n-FP-injective left R-module is n-FP-injective;
- (4) every left *R*-module has a monic \mathscr{FI}_n -cover.

Proof. (1) \Rightarrow (2) R is left *n*-coherent by Theorem 3.1. Now suppose that N is a submodule of an *n*-flat right R-module L and $\iota: N \to L$ is the inclusion.

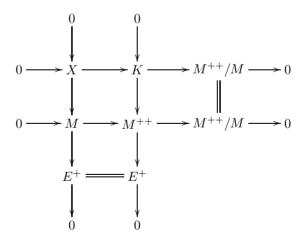
By (1), N has an epic \mathscr{F}_n -preenvelope $f: N \to F$. Then there is a homomorphism $g: F \to L$ such that the following diagram is commutative:

So $gf = \iota$ is monic, and hence f is monic, which gives that f is an isomorphism and $N \cong F$ is n-flat.

(2) \Rightarrow (3) Let M be any *n*-FP-injective left R-module and let $M \to N \to 0$ be exact. Then $0 \to N^+ \to M^+$ is exact and M^+ is *n*-flat, and so N^+ is *n*-flat by (2). Thus N is *n*-FP-injective by [6, Theorem 3].

 $(3) \Rightarrow (4)$ By [6, Theorem 2], R is left *n*-coherent, and hence every left R-module M has an \mathscr{FI}_n -precover $\varphi \colon C \to M$. Note that $\operatorname{Im} \varphi$ is *n*-FP-injective by (3), so $\operatorname{Im} \varphi \to M$ is a monic \mathscr{FI}_n -cover.

 $(4) \Rightarrow (1)$ Let E be an injective left R-module and $S \subseteq E$ a pure submodule. Then E/S has a monic \mathscr{FI}_n -cover $f \colon C \to E/S$. By analogy with the proof $(1) \Rightarrow (2)$, f is an isomorphism and E/S is n-FP-injective, and hence R is left n-coherent by [6, Theorem 2], which means that every right R-module has an \mathscr{F}_n -preenvelope by Theorem 3.1. Let M be any right R-module. Then M^+ has a monic \mathscr{FI}_n -cover $E \to M^+$, and hence $M^{++} \to E^+ \to 0$ is exact. Set $K = \text{Ker}(M^{++} \to E^+)$. Consider the following pullback of $M \to M^{++}$ and $K \to M^{++}$:



Since E^+ is *n*-flat, *M* has an epic \mathscr{F}_n -preenvelope.

Proposition 3.7. The following conditions are equivalent:

- (1) every left R-module is n-FP-injective;
- (2) every cotorsion left R-module is n-FP-injective;
- (3) every right R-module is n-flat;
- (4) every cotorsion right *R*-module is *n*-flat;
- (5) every right *R*-module in \mathscr{F}_n^{\perp} is injective;
- (6) every left *R*-module in ${}^{\perp}\mathscr{FI}_n$ is projective;
- (7) every nonzero right *R*-module contains a nonzero *n*-flat submodule;
- (8) $({}^{\perp}\mathscr{FI}_n, \mathscr{FI}_n)$ is a hereditary cotorsion theory and every left *R*-module in ${}^{\perp}\mathscr{FI}_n$ is *n*-FP-injective.

Proof. $(1) \Rightarrow (2), (3) \Rightarrow (4), (3) \Rightarrow (7)$ and $(1) \Rightarrow (8)$ are obvious.

 $(2) \Rightarrow (3)$ Let M be any right R-module. Then M^+ is n-FP-injective by (2), and so M is n-flat.

 $(4) \Rightarrow (1)$ Let M be any left R-module. Then M^+ is n-flat by (4), and so M^{++} is n-FP-injective. Note that M is a pure submodule of M^{++} . So M is n-FP-injective.

 $(3) \Leftrightarrow (5)$ and $(1) \Leftrightarrow (6)$ follow from Theorem 2.1.

 $(7) \Rightarrow (5)$ Assume that $0 \to A \to B \to C \to 0$ is any exact sequence. To simplify the notation, we think of A as a submodule of B. Let $M \in \mathscr{F}_n^{\perp}$ and let $f: A \to M$ be any homomorphism. By a simple application of Zorn's Lemma, we can find $g: D \to M$, where $A \subseteq D \subseteq B$ and $g|_A = f$, such that g cannot be extended to any submodule of B properly containing D. We claim that D = B. Indeed, if $D \neq B$, then $B/D \neq 0$. By (7), there is a nonzero submodule N/D of B/D such that N/D is n-flat. Since $M \in \mathscr{F}_n^{\perp}$, there exists $h: N \to M$ such that $h|_D = g$. It is obvious that h extends g, thus we get the desired contradiction, and so M is injective.

 $(8) \Rightarrow (1)$ Let M be a left R-module. By Theorem 2.1, there is an exact sequence $0 \to K \to F \to M \to 0$ with $F \in {}^{\perp}\mathscr{FI}_n$, $K \in \mathscr{FI}_n$. Then $F \in \mathscr{FI}_n$, and hence $M \in \mathscr{FI}_n$ by (8).

Acknowledgment. The authors would like to thank the referee for helpful suggestions and corrections.

References

- S. T. Aldrich, E. E. Enochs, J. R. García Rozas, L. Oyonarte: Covers and envelopes in Grothendieck categories: Flat covers of complexes with applications. J. Algebra 243 (2001), 615–630.
- [2] S. U. Chase: Direct products of modules. Trans. Am. Math. Soc. 97 (1961), 457-473.
- [3] J. Chen, N. Ding: On n-coherent rings. Commun. Algebra 24 (1996), 3211-3216.
- [4] N. Ding: On envelopes with the unique mapping property. Commun. Algebra 24 (1996), 1459–1470.

- [5] E. E. Enochs, O. M. G. Jenda: Relative Homological Algebra. de Gruyter Expositions in Mathematics, 30, Walter de Gruyter, Berlin, 2000.
- [6] S. B. Lee: n-coherent rings. Commun. Algebra 30 (2002), 1119–1126.

Authors' address: X. Yang, Z. Liu, Department of Mathematics, Northwest Normal University, China, Lanzhou 730070, e-mail: yangxy@nwnu.edu.cn, liuzk@nwnu.edu.cn.