
Czechoslovak Mathematical Journal, 61 (136) (2011), 359–369

n-FLAT AND n-FP-INJECTIVE MODULES

Xiaoyan Yang, Zhongkui Liu, Lanzhou

(Received January 1, 2010)

Abstract. In this paper, we study the existence of the n-flat preenvelope and the n-FP-
injective cover. We also characterize n-coherent rings in terms of the n-FP-injective and
n-flat modules.
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1. Introduction

We use R-Mod (resp., Mod-R) to denote the category of all left (resp., right)

R-modules. For any R-module M , pdR M (resp., idR M , fdR M) denotes the pro-

jective (resp., injective, flat) dimension. The character module HomZ(M, Q/Z) is

denoted by M+.

Coherent rings have been characterized in various ways. The deepest result is

the one due to Chase [2] which claims that the ring R is left coherent if and only

if products of flat right R-modules are again flat if and only if products of copies

of R are flat right R-modules. Lee [6] introduced the notions of left n-coherent and

n-coherent rings and characterized them in various ways, using n-flat and n-FP-

injective modules. In this paper we continue the study of n-coherent rings.

A ring R is called left n-coherent (for integers n > 0 or n = ∞) if every finitely

generated submodule of a free left R-module whose projective dimension is 6 n − 1

is finitely presented. Accordingly, all rings are left 1-coherent, and the left coherent

rings are exactly those which are d-coherent (d denotes the left global dimension

of R). In particular, left∞-coherent rings are left coherent. A right R-moduleM will
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be called n-flat if TorR
1 (M, N) = 0 holds for all finitely presented left R-modules N

with pdR N 6 n. A left R-module A is said to be n-FP-injective if Ext1R(N, A) = 0

holds for all finitely presented left R-modules N of projective dimension 6 n.

Given a class C of R-modules, let ⊥C be the class of R-modules F such that

Ext1R(F, C) = 0 for every C ∈ C and let C⊥ be the class of R-modules F such that

Ext1R(C, F ) = 0 for every C ∈ C . A pair of classes of R-modules (F , C ) is called a

cotorsion theory if F⊥ = C and ⊥C = F . A cotorsion theory is said to be complete

if for every R-module M there is an exact sequence 0 → C → F → M → 0 such

that C ∈ C and F ∈ F . A cotorsion theory is said to be perfect if every R-module

has an F -cover and a C -envelope. A cotorsion theory is said to be hereditary if

0 → F ′ → F → F ′′ → 0 is exact with F, F ′′ ∈ F , then F ′ ∈ F .

We recall that given a class of R-modules T , a morphism ϕ : T → M where

T ∈ T is called a T -cover of M if the following conditions hold:

(1) For any linear map ϕ′ : T ′ → M with T ′ ∈ T , there exists a linear map

f : T ′ → T with ϕ′ = ϕf , or equivalently, HomR(T ′, T ) → HomR(T ′, M) → 0

is exact for any T ′ ∈ T .

(2) If f is an endomorphism of T with ϕ = ϕf , then f must be an automorphism.

If (1) holds (and perhaps not (2)), ϕ : T → M is called a T -precover. A T -

envelope and T -preenvelope are defined dually.

2. n-flat and n-fp-injective modules

Let n be a non-negative integer. In what follows, Fn stands for the class of all n-

flat right R-modules andFI n denotes the class of all n-FP-injective left R-modules.

Proposition 2.1. Fn and FI n are closed under pure submodules.

P r o o f. Let B ∈ Fn and let A ⊆ B be a pure submodule. Then 0 → (B/A)+ →

B+ → A+ → 0 is split and B+ is n-FP-injective by [6, Lemma 5], and so A is n-flat

by [6, Lemma 5].

LetM ∈ FI n, let S be a pure submodule ofM and letN be any finitely presented

left R-module with pdR N 6 n. Then we can get an induced exact sequence

0 −→ HomR(N, S) −→ HomR(N, M) −→ HomR(N, M/S) −→ 0,

and so Ext1R(N, S) = 0 since Ext1R(N, M) = 0. It follows that S ∈ FI n. �

Lemma 2.1. The following conditions are equivalent:

(1) M is n-FP-injective if and only if Ext1R(R/I, M) = 0 for any finitely generated

left ideal I with pdR I 6 n − 1;
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(2) N is n-flat if and only if TorR
1 (N, R/I) = 0 for any finitely generated left ideal I

with pdR I 6 n − 1.

P r o o f. (1) “⇒” is trivial.

“⇐” Let L be any finitely presented left R-module with pdR L 6 n. Then there

is an exact sequence 0 → A → Rn → L → 0 for some n > 0 and A ⊆ Rn finitely

generated with pdR A 6 n − 1. Consider the following pullback of A → Rn and

R → Rn:

0

� �

0

��

0 // B

f

� �

// A

��

// Rn−1 // 0

0 / / R

��

// Rn

� �

// Rn−1 // 0

L

� �

L

��

0 0

Then L ∼= R/ Im f and Im f ∼= B is finitely generated with pdR Im f 6 n − 1.

Thus Ext1R(L, M) ∼= Ext1R(R/ Im f, M) = 0, which gives that M is n-FP-injective.

(2) By analogy with the proof of (1). �

Theorem 2.1. Let n be a non-negative integer and R a ring. Then

(1) (Fn, F⊥
n ) is a perfect cotorsion theory;

(2) (⊥FI n, FI n) is a complete cotorsion theory.

P r o o f. (1) Let Card(R) 6 ℵβ and F ∈ Fn. Then we can write F as a

union of a continuous chain (Fα)α<λ of pure submodules of F such that Card(F0) 6

ℵβ and Card(Fα+1/Fα) 6 ℵβ whenever α + 1 < λ. If N is a right R-module

such that Ext1R(F0, N) = 0 and Ext1R(Fα+1/Fα, N) = 0 whenever α + 1 < λ, then

Ext1R(F, N) = 0 by [5, Theorem 7.3.4]. Since Fα is a pure submodule of F for any

α < λ, we have Fα ∈ Fn by Proposition 2.1. On the other hand, Fα is a pure

submodule of Fα+1 whenever α + 1 < λ, hence Fα+1/Fα ∈ Fn by Proposition 2.1.

Let X be a set of representatives of all modules G ∈ Fn with Card(G) 6 ℵβ.

Then F⊥
n = X⊥. So (Fn, F⊥

n ) is a cotorsion theory by [1, Corollary 2.13]. Since

(Fn, F⊥
n ) is cogenerated by the set X , (Fn, F⊥

n ) is a complete cotorsion theory

by [5, Theorem 7.4.1]. Moreover, (Fn, F⊥
n ) is a perfect cotorsion theory by [5,

Theorem 7.2.6] since Fn is closed under direct limits.
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(2) LetX ∈ (⊥FI n)⊥ and letN be finitely presented with pdR N 6 n. ThenN ∈
⊥FI n. So Ext1R(N, X) = 0, which gives that X ∈ FI n and (⊥FI n, FI n) is a

cotorsion theory. By Lemma 2.1,M is n-FP-injective if and only if Ext1R(R/A, M) =

0 for any finitely generated A ⊆ R with pdR A 6 n − 1. Set X = ⊕R/A, where the

sum is over all finitely generated left ideals A of R with pdR A 6 n−1. ThenFI n =

X⊥. So (⊥FI n, FI n) is a complete cotorsion theory by [5, Theorem 7.4.1]. �

3. n-coherent rings

In this section we characterize n-coherent rings in terms of the n-FP-injective

and n-flat modules. We obtain some characterizations of the situation when every

R-module has a monic Fn-preenvelope and an epic Fn-preenvelope.

Theorem 3.1. For a ring R and any n (0 < n 6 ∞), the following conditions are

equivalent:

(1) R is left n-coherent;

(2) every right R-module has an Fn-preenvelope;

(3) any direct limit of n-FP-injective left R-modules is n-FP-injective;

(4) Ext1R(N, lim−→Mi) → lim−→Ext1R(N, Mi) is an isomorphism for any finitely pre-

sented left R-module N with pdR N 6 n and any direct system (Mi)i∈I of left

R-modules;

(5) FI n is a coresolving subcategory;

(6) (⊥FI n, FI n) is a hereditary cotorsion theory.

P r o o f. (1) ⇒ (4) By [3, Lemma 2.9 (2)]; (4) ⇒ (3) and (5) ⇒ (6) are obvious.

(1) ⇒ (2) Let N be any right R-module. Then there is a cardinal number ℵα such

that for any homomorphism f : N → L with L n-flat, there is a pure submodule Q

of L such that Card(Q) 6 ℵα and f(N) ⊆ Q. Note that Q is n-flat by Proposition 2.1

andFn is closed under products by [6, Theorem 5], and so N has anFn-preenvelope

by [5, Proposition 6.2.1].

(2) ⇒ (1) Let (Fi)i∈I be a family of n-flat rightR-modules and let
∏

i∈I

Fi → F be an

Fn-preenvelope. Then there are factorizations
∏

i∈I

Fi → F → Fj , where
∏

i∈I

Fi → Fj

is the canonical projection for each j. This gives rise to a map F →
∏

i∈I

Fi with the

composition
∏

i∈I

Fi → F →
∏

i∈I

Fi being the identity. Hence
∏

i∈I

Fi is isomorphic to a

summand of F , and so
∏

i∈I

Fi is n-flat, which implies that R is left n-coherent.

(3) ⇒ (1) Let K be a finitely generated submodule of a free left R-module F

whose projective dimension is 6 n− 1. Consider the exact sequence 0 → K → F →
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F/K → 0. Then F/K is finitely presented and pdR F/K 6 n. So we have the

following commutative diagram with exact rows:

HomR(F/K, lim−→Mi)

α

��

// HomR(F, lim−→Mi)

β

� �

// HomR(K, lim−→Mi)

γ

��

// 0

lim−→HomR(F/K, Mi) // lim−→HomR(F, Mi) / / lim−→HomR(K, Mi) // 0

Since α and β are isomorphisms, γ is an isomorphism by Five lemma. Thus K is

finitely presented.

(1) ⇒ (5) Let N be a finitely presented left R-module with pdR N 6 n and let

0 → A → B → C → 0 be exact in R-Mod with A, B ∈ FI n. Then

0 = Ext1R(N, B) −→ Ext1R(N, C) −→ Ext2R(N, A) = 0

by [6, Theorem 1], and so C ∈ FI n. Thus FI n is a coresolving subcategory.

(6) ⇒ (1) Let S be a finitely generated submodule of a free left R-module F whose

projective dimension is 6 n − 1. We need to prove that S is finitely presented. Let

M be FP-injective and let 0 → M → E → C → 0 be exact with E injective. Then

M ∈ FI n and C ∈ FI n, and so

Ext1R(S, M) ∼= Ext2R(F/S, M) ∼= Ext1R(F/S, C) = 0.

Thus S is finitely presented, which means that R is left n-coherent. �

Proposition 3.1. The following conditions are equivalent:

(1) R is a left n-coherent ring;

(2) Ext1R(I, N) = 0 for any FP-injective left R-module N and any finitely generated

left ideal I with pdRI 6 n − 1;

(3) Ext2R(R/I, N) = 0 for any FP-injective left R-module N and any finitely gen-

erated left ideal I with pdR I 6 n − 1;

(4) if 0 → N → M → L → 0 is an exact sequence of left R-modules with N FP-

injective and M n-FP-injective, then L is n-FP-injective.

P r o o f. (1) ⇒ (2) is obvious.

(2) ⇒ (3) Let N be an FP-injective left R-module and I a finitely generated left

ideal with pdR I 6 n − 1. Then the exact sequence 0 → I → R → R/I → 0 gives

rise to the exact sequence

0 = Ext1R(I, N) −→ Ext2R(R/I, N) −→ Ext2R(R, N) = 0

by (2). Thus Ext2R(R/I, N) = 0.
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(3) ⇒ (4) Let I be a finitely generated left ideal of R with pdR I 6 n − 1. The

exact sequence 0 → N → M → L → 0 induces the exactness of

0 = Ext1R(R/I, M) −→ Ext1R(R/I, L) −→ Ext2R(R/I, N) = 0

by (3), and hence Ext1R(R/I, L) = 0. That is, L is n-FP-injective by Lemma 2.1.

(4) ⇒ (1) Let I be a finitely generated left ideal with pdR I 6 n − 1. For any

FP-injective left R-module N , there is an exact sequence 0 → N → E → E/N → 0

with E injective. Note that E/N is n-FP-injective by (4). Hence we get the exact

sequence

0 = Ext1R(R/I, E/N) −→ Ext2R(R/I, N) −→ Ext2R(R/I, E) = 0,

and so Ext1R(I, N) ∼= Ext2R(R/I, N) = 0. It follows that I is finitely presented.

Therefore R is left n-coherent. �

Lemma 3.1. Let R be a left n-coherent ring and let |M | = λ for a left R-

module M . Let k be as in El Bashir’s result. Then any map A → M with A n-FP-

injective can be factored through an n-FP-injective left R-module B with |B| < k.

P r o o f. Consider any homomorphismA → M with A n-FP-injective. If |A| < k,

let B = A. So suppose |A| > k. Consider a submodule S ⊆ A maximal with respect

to the two properties that S is pure in A and that S ⊆ Ker(A → M). Let B = A/S.

Then B is n-FP-injective by Theorem 3.1. We wish to argue that |B| < k. Let K be

the kernel of B → M . Then |B/K| 6 |M | = λ. So if |B| > k, there is a nonzero

pure submodule T/S of B contained in K. But then T is pure in A and is contained

in the kernel of A → M . This contradicts the choice of S. �

Theorem 3.2. Let R be a left n-coherent ring. Then every left R-module has an

FI n-cover.

P r o o f. By Lemma 3.1 and [5, Proposition 5.2.2 and Corollary 5.2.7]. �

Proposition 3.2. Let R be left n-coherent. Then the following conditions are

equivalent:

(1) every left R-module has an n-FP-injective cover with the unique mapping prop-

erty (see [4]);

(2) for every left R-modules exact sequence A → B → C → 0 with A and B n-FP-

injective, C is n-FP-injective.
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P r o o f. (1) ⇒ (2) Let A
f

// B
g

// C // 0 be exact in R-Mod with A, B n-FP-

injective and θ : H → C an n-FP-injective cover with the unique mapping property.

Then there exists a map δ : B → H such that g = θδ. Thus θδf = gf = 0 = θ0,

and hence δf = 0, which implies that Ker g = Im f ⊆ Ker δ. Therefore there is

a morphism γ : C → H such that γg = δ, and so θγg = θδ = g, which gives that

θγ = 1C . Thus C is isomorphic to a direct summand ofH , and so C is n-FP-injective.

(2) ⇒ (1) Let M be any left R-module. Then M has an n-FP-injective cover

f : L → M by Theorem 3.2. It is enough to show that for any n-FP-injective

left R-module G and any homomorphism g : G → L such that fg = 0, we have

g = 0. In fact, there is a homomorphism β : L/ Im g → M such that βπ = f , where

π : L → L/ Im g is the natural map. Since L/ Im g is n-FP-injective, there is a map

α : L/ Im g → L such that β = fα, and so fαπ = f . Hence απ is an isomorphism.

Therefore π is monic and g = 0. �

Proposition 3.3. The following conditions are equivalent:

(1) (⊥FI n, FI n) is a hereditary cotorsion theory;

(2) R is left n-coherent and (Fn, F⊥
n ) is a hereditary cotorsion theory;

(3) Ext2R(R/I, M) = 0 for any finitely generated left ideal I with pdR I 6 n − 1

and any n-FP-injective left R-module M ;

(4) R is left n-coherent and TorR
2 (N, R/I) = 0 for any finitely generated left ideal I

with pdR I 6 n − 1 and any n-flat right R-module N .

P r o o f. (1) ⇒ (2) Since (⊥FI n, FI n) is hereditary, R is left n-coherent by

Theorem 3.1. On the other hand, let 0 → A → B → C → 0 be exact with B,

C ∈ Fn. Then 0 → C+ → B+ → A+ → 0 is exact with B+, C+ ∈ FI n by [6,

Theorem 3], and so A+ ∈ FI n by (1), which implies that A ∈ Fn. That is,

(Fn, F⊥
n ) is hereditary.

(2) ⇒ (3) ⇒ (1) By [6, Theorem 1], (4) ⇒ (2). It is easy.

(2) ⇒ (4) Let N ∈ Fn and let 0 → K → P → N → 0 be exact with P projective.

Then K ∈ Fn by (2), and hence TorR
2 (N, R/I) ∼= TorR

1 (K, R/I) = 0 for any finitely

generated left ideal I with pdR I 6 n − 1. �

Proposition 3.4. The following conditions are equivalent for a left n-coherent

ring R:

(1) every n-flat right R-module is flat;

(2) every cotorsion right R-module belongs to F⊥
n ;

(3) every n-FP-injective left R-module is FP-injective;

(4) every finitely presented left R-module belongs to FI
⊥

n .
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P r o o f. (1) ⇔ (2) and (3) ⇔ (4) follow from Theorem 2.1.

(1) ⇒ (3) Let M be any n-FP-injective left R-module. Then M+ is n-flat, and so

M+ is flat by (1). On the other hand, for any finitely presented left R-module N ,

there is an exact sequence

TorR
1 (M+, N) −→ Ext1R(N, M)+ −→ 0

by [3, Lemma 2.7 (1)]. Thus Ext1R(N, M) = 0, and so M is FP-injective.

(3) ⇒ (1) Let M be an n-flat right R-module. Then M+ is n-FP-injective, and

so M+ is FP-injective by (3). Hence M is flat. �

Now we study when every right R-module has a monic Fn-preenvelope and an

epic Fn-preenvelope.

Proposition 3.5. The following conditions are equivalent:

(1) every right R-module has a monic Fn-preenvelope;

(2) R is left n-coherent and every flat left R-module is n-FP-injective;

(3) R is left n-coherent and RR is n-FP-injective;

(4) R is left n-coherent and (FI n, FI
⊥

n ) is a perfect cotorsion theory;

(5) R is left n-coherent and every left R-module has an epic FI n-cover.

P r o o f. (2) ⇒ (3) and (4) ⇒ (5) are obvious.

(1) ⇒ (2) Let M be a flat left R-module. Then M+ is injective and M+ has a

monic Fn-preenvelope ϕ : M+ → F . Set C = Cokerϕ. Then 0 → M+ → F → C →

0 is split, and so C ∈ Fn, which gives that M+ ∈ Fn since R is left n-coherent.

Thus M is n-FP-injective.

(3) ⇒ (4) By analogy with the proof of Theorem 2.1.

(5) ⇒ (1) Let M be any right R-module. Then M has an epic FI n-cover

E → M+ by (5), and so there is a monomorphism M → E+. Thus every right

R-module has a monic Fn-preenvelope by Theorem 3.1. �

Proposition 3.6. The following conditions are equivalent:

(1) every right R-module has an epic Fn-preenvelope;

(2) R is left n-coherent and every submodule of any n-flat right R-module is n-flat;

(3) every quotient module of any n-FP-injective left R-module is n-FP-injective;

(4) every left R-module has a monic FI n-cover.

P r o o f. (1) ⇒ (2) R is left n-coherent by Theorem 3.1. Now suppose that

N is a submodule of an n-flat right R-module L and ι : N → L is the inclusion.
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By (1), N has an epic Fn-preenvelope f : N → F . Then there is a homomorphism

g : F → L such that the following diagram is commutative:

N
f

//

ι

��

F

g
~~

L

So gf = ι is monic, and hence f is monic, which gives that f is an isomorphism and

N ∼= F is n-flat.

(2) ⇒ (3) Let M be any n-FP-injective left R-module and let M → N → 0 be

exact. Then 0 → N+ → M+ is exact and M+ is n-flat, and so N+ is n-flat by (2).

Thus N is n-FP-injective by [6, Theorem 3].

(3) ⇒ (4) By [6, Theorem 2], R is left n-coherent, and hence every leftR-moduleM

has an FI n-precover ϕ : C → M . Note that Im ϕ is n-FP-injective by (3), so

Im ϕ → M is a monic FI n-cover.

(4) ⇒ (1) Let E be an injective left R-module and S ⊆ E a pure submodule. Then

E/S has a monic FI n-cover f : C → E/S. By analogy with the proof (1) ⇒ (2),

f is an isomorphism and E/S is n-FP-injective, and hence R is left n-coherent by [6,

Theorem 2], which means that every right R-module has an Fn-preenvelope by

Theorem 3.1. Let M be any right R-module. Then M+ has a monic FI n-cover

E → M+, and hence M++ → E+ → 0 is exact. Set K = Ker(M++ → E+).

Consider the following pullback of M → M++ and K → M++:

0

� �

0

��

0 // X

� �

// K

��

// M++/M / / 0

0 // M

� �

// M++

��

// M++/M / / 0

E+

� �

E+

��

0 0

Since E+ is n-flat, M has an epic Fn-preenvelope. �
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Proposition 3.7. The following conditions are equivalent:

(1) every left R-module is n-FP-injective;

(2) every cotorsion left R-module is n-FP-injective;

(3) every right R-module is n-flat;

(4) every cotorsion right R-module is n-flat;

(5) every right R-module in F⊥
n is injective;

(6) every left R-module in ⊥FI n is projective;

(7) every nonzero right R-module contains a nonzero n-flat submodule;

(8) (⊥FI n, FI n) is a hereditary cotorsion theory and every left R-module in
⊥FI n is n-FP-injective.

P r o o f. (1) ⇒ (2), (3) ⇒ (4), (3) ⇒ (7) and (1) ⇒ (8) are obvious.

(2) ⇒ (3) Let M be any right R-module. Then M+ is n-FP-injective by (2), and

so M is n-flat.

(4) ⇒ (1) Let M be any left R-module. Then M+ is n-flat by (4), and so M++ is

n-FP-injective. Note that M is a pure submodule of M++. So M is n-FP-injective.

(3) ⇔ (5) and (1) ⇔ (6) follow from Theorem 2.1.

(7) ⇒ (5) Assume that 0 → A → B → C → 0 is any exact sequence. To simplify

the notation, we think of A as a submodule of B. Let M ∈ F⊥
n and let f : A → M

be any homomorphism. By a simple application of Zorn’s Lemma, we can find

g : D → M , where A ⊆ D ⊆ B and g|A = f , such that g cannot be extended to any

submodule of B properly containing D. We claim that D = B. Indeed, if D 6= B,

then B/D 6= 0. By (7), there is a nonzero submodule N/D of B/D such that N/D is

n-flat. Since M ∈ F⊥
n , there exists h : N → M such that h|D = g. It is obvious

that h extends g, thus we get the desired contradiction, and so M is injective.

(8) ⇒ (1) Let M be a left R-module. By Theorem 2.1, there is an exact sequence

0 → K → F → M → 0 with F ∈ ⊥FI n, K ∈ FI n. Then F ∈ FI n, and hence

M ∈ FI n by (8). �
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