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1. Introduction

In [1], even and periodic solutions are found for the Duffing equation

(1) x′′(t) + g(x(t)) = p(t),

where g and p are real continuous functions defined on
�
, g is Lipschitz, p is periodic

with minimum period 2π and even, that is, p(−t) = p(t) for t ∈
�
. A typical example

of such an equation is

x′′ + x3 = 0.04 cos t,

which has been studied and many of its even and periodic solutions are observed

numerically. Although there are a number of other studies which are related to even

and periodic solutions (see e.g. [1]–[7]), this number is insignificant when compared

with the large number of studies related to general periodic solutions.

In this paper, we consider a more general even order differential equations of the

form

(2) x(2k)(t) + g(x(t)) = p(t),
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where k is positive integer; g and p are real continuous functions defined on
�
, p is

periodic with minimum positive period T and even.

As mentioned in [1], the study of existence of periodic solutions of (1) is usually

reduced to the one of existence of fixed points of the Poincaré mapping, and in the

case of even and periodic solutions, it is reduced to the one of a simple boundary

value problem in the phase plane. In our case, the concept of boundary value problem

is still useful but since we are dealing with higher order equations, we find the phase

plane analysis difficult. For this reason, we use Mawhin’s continuation theorem and

several sharp inequalities for finding even T -periodic solutions of (2).

For the sake of completeness, we first state Mawhin’s continuation theorem [7] in

the following manner. Let X and Y be two Banach spaces and L : Dom L ⊂ X → Y

is a linear mapping and N : X → Y a continuous mapping. The mapping L will

be called a Fredholm mapping of index zero if dim KerL = codim Im L < +∞,

and Im L is closed in Y . If L is a Fredholm mapping of index zero, there exist

continuous projectors P : X → X and Q : Y → Y such that Im P = KerL and

Im L = KerQ = Im(I − Q). It follows that L|Dom L∩KerP : (I − P )X → Im L

has an inverse which will be denoted by KP . If Ω is an open and bounded subset

of X , the mapping N will be called L-compact on Ω if QN(Ω) is bounded and

KP (I − Q)N(Ω) is compact. Since Im Q is isomorphic to KerL there exists an

isomorphism J : Im Q → KerL.

Theorem A (Mawhin’s continuation theorem [7]). Let L be a Fredholm mapping

of index zero, and let N be L-compact on Ω. Suppose that

(i) for each λ ∈ (0, 1), x ∈ ∂Ω, Lx 6= λNx and

(ii) for each x ∈ ∂Ω ∩ KerL, QNx 6= 0 and deg(JQN, Ω ∩ KerL, 0) 6= 0.

Then the equation Lx = Nx has at least one solution in Ω ∩ Dom L.

2. Existence criteria

We will establish existence criteria based on combinations of the following condi-

tions, where D and r are positive constants:

(a1) sgn(x)g(x) > max
06t6T

|p(t)|, for |x| > D,

(a2) sgn(−x)g(x) > max
06t6T

|p(t)|, for |x| > D,

(b) lim
x→+∞

sup |g(x)/x| 6 r.

Our main result is the following.
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Theorem 1. Suppose either one of the following sets of conditions holds:

(i) (a1) and (b), or,

(ii) (a2) and (b).

Then for r < 23k/T 2k, (2) has an even solution with minimum positive period T .

We only give the proof for the case of (a1) and (b), since the other case can be

treated in a similar manner. Let Y be the Banach space of all real T -periodic and

even continuous functions of the form y = y(t) defined on
�
and endowed with the

usual linear structure as well as the norm ‖y‖0 = max
06t6T

|y(t)|. Let X be the Banach

space of all real T -periodic, even and continuous 2k times continuously differentiable

functions of the form x = x(t) defined on
�
and endowed with the usual linear

structure as well as the norm ‖x‖1 = max{‖x‖0, ‖x
′‖0, . . . , ‖x

(2k−1)‖0}. Define the

mappings L : X → Y and N : X → Y respectively by

(3) Lx(t) = x(2k)(t), t ∈
�
,

and

(4) Nx(t) = −g(x(t)) + p(t), t ∈
�
.

Clearly,

(5) KerL = {x ∈ X : x(t) = c ∈
�
}

and

(6) Im L =

{

y ∈ Y :

∫ T

0

y(t) dt = 0

}

is closed in Y . Thus L is a Fredholm mapping of index zero. Let us define P : X → X

and Q : Y → Y/ ImL respectively by

(7) Px(t) = x(0), t ∈
�
,

for x = x(t) ∈ X and

(8) Qy(t) =
1

T

∫ T

0

y(t) dt, t ∈
�

for y = y(t) ∈ Y . It is easy to see that Im P = KerL and Im L = KerQ = Im(I−Q).

It follows that L|DomL∩KerP : (I−P )X → Im L has an inverse which will be denoted

by KP . Furthermore for any y = y(t) ∈ Im L, if k = 1, it is easy to check that

(9) KP y(t) = −
t

T

∫ T

0

dv

∫ v

0

y(s) ds +

∫ t

0

dv

∫ v

0

y(s) ds,
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while if k > 1, we let y0(t) = y(t), then

y1(t) =
(1

2
−

t

T

)

∫ T

0

dv

∫ v

0

y0(s) ds +

∫ t

0

dv

∫ v

0

y0(s) ds

−
1

T

∫ T

0

dw

∫ w

0

dv

∫ v

0

y0(s) ds,

yi(t) =
(1

2
−

t

T

)

∫ T

0

dv

∫ v

0

yi−1(s) ds +

∫ t

0

dv

∫ v

0

yi−1(s) ds

−
1

T

∫ T

0

dw

∫ w

0

dv

∫ v

0

yi−1(s) ds,

for i = 1, 2, . . . , k − 1, and

(10) yk(t) = −
t

T

∫ T

0

dv

∫ v

0

yk−1(s) ds +

∫ t

0

dv

∫ v

0

yk−1(s) ds.

Indeed, let x(t) ∈ Dom L∩KerP be such that KP y(t) = x(t). Then x(2k)(t) = y(t),

x(2k−1)(t) = x(2k−1)(0) +

∫ t

0

x(2k)(s) ds,

and

(11) x(2k−2)(t) = x(2k−2)(0) + x(2k−1)(0)t +

∫ t

0

dv

∫ v

0

x(2k)(s) ds.

Since x(2k−2)(T ) = x(2k−2)(0), we have x(2k−1)(0)T +
∫ T

0
dv

∫ v

0
x(2k)(s) ds = 0 or

x(2k−1)(0) = −
1

T

∫ T

0

dv

∫ v

0

x(2k)(s) ds.

By (11), we have

(12) x(2k−2)(t) = x(2k−2)(0) −
t

T

∫ T

0

dv

∫ v

0

x(2k)(s) ds +

∫ t

0

dv

∫ v

0

x(2k)(s) ds.

If k = 1, then x(2k−2)(t) = x(t) ∈ DomL ∩ KerP , so x(2k−2)(0) = x(0) = 0.

From (12),

x(2k−2)(t) = −
t

T

∫ T

0

dv

∫ v

0

x(2k)(s) ds +

∫ t

0

dv

∫ v

0

x(2k)(s) ds,
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that is,

KP y(t) = −
t

T

∫ T

0

dv

∫ v

0

y(s) ds +

∫ t

0

dv

∫ v

0

y(s) ds.

If k > 1, since
∫ T

0
x(2k−2)(s) ds = 0, from (12) we have

x(2k−2)(0)T −
T

2

∫ T

0

dv

∫ v

0

x(2k)(s) ds +

∫ T

0

dw

∫ w

0

dv

∫ v

0

x(2k)(s) ds = 0,

or

(13) x(2k−2)(0) =
1

2

∫ T

0

dv

∫ v

0

x(2k)(s) ds −
1

T

∫ T

0

dw

∫ w

0

dv

∫ v

0

x(2k)(s) ds.

From (12) and (13),

x(2k−2)(t) =
1

2

∫ T

0

dv

∫ v

0

x(2k)(s) ds −
1

T

∫ T

0

dw

∫ w

0

dv

∫ v

0

x(2k)(s) ds(14)

−
t

T

∫ T

0

dv

∫ v

0

x(2k)(s) ds +

∫ t

0

dv

∫ v

0

x(2k)(s) ds

=
(1

2
−

t

T

)

∫ T

0

dv

∫ v

0

x(2k)(s) ds +

∫ t

0

dv

∫ v

0

x(2k)(s) ds

−
1

T

∫ T

0

dw

∫ w

0

dv

∫ v

0

x(2k)(s) ds.

Let y0(t) = y(t) = x(2k)(t) and y1(t) = x(2k−2)(t). Then from (14),

y1(t) =
(1

2
−

t

T

)

∫ T

0

dv

∫ v

0

y0(s) ds +

∫ t

0

dv

∫ v

0

y0(s) ds

−
1

T

∫ T

0

dw

∫ w

0

dv

∫ v

0

y0(s) ds,

yi(t) =
(1

2
−

t

T

)

∫ T

0

dv

∫ v

0

yi−1(s) ds +

∫ t

0

dv

∫ v

0

yi−1(s) ds

−
1

T

∫ T

0

dw

∫ w

0

dv

∫ v

0

yi−1(s) ds,

for i = 1, 2, . . . , k − 1, and

yk(t) = yk(0) −
t

T

∫ T

0

dv

∫ v

0

yk−1(s) ds +

∫ t

0

dv

∫ v

0

yk−1(s) ds.

Note that yk(t) = x(t) ∈ Dom L ∩ KerP . Thus yk(0) = x(0) = 0, and

yk(t) = −
t

T

∫ T

0

dv

∫ v

0

yk−1(s) ds +

∫ t

0

dv

∫ v

0

yk−1(s) ds.
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Thus we have KP y(t) = yk(t) ∈ Dom L ∩ KerP .

Let Ω be an open and bounded subset of X . In view of (4), (8) and (9) (or (10)),

we can easily see that QN(Ω) is bounded and KP (I − Q)N(Ω) is compact. Thus

the mapping N is L-compact on Ω. That is, we have the following result.

Lemma 1. Let L, N , P and Q be defined by (3), (4), (7) and (8) respectively.

Then L is a Fredholm mapping of index zero and N is L-compact on Ω, where Ω is

any open and bounded subset of X .

Let

(15) x(2k)(t) + λg(x(t)) = λp(t),

where λ ∈ (0, 1).

Lemma 2. Suppose the condition (a1) is satisfied. Let x(t) be any one solution

of (15) in X . Then there is a ξx ∈ [0, T ] such that

(16) |x(ξx)| < D.

���������
. Let x(t) be any one solution of (15) in X . From (15), we have

(17)

∫ T

0

{g(x(s)) − p(s)} ds = 0.

In view of the integral mean value theorem, we see that there is a ξx ∈ [0, T ] such

that

(18) g(x(ξx)) − p(ξx) = 0.

Thus

(19) |g(x(ξx))| = |p(ξx)| 6 ‖p‖0.

From the condition (a1) and (19) we see that

|x(ξx)| < D.

The proof is complete. �
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Lemma 3. Let C
(n)
T be the set of all real T -periodic continuous n-times contin-

uously differentiable functions which are defined on
�
. Then for any x ∈ C

(n)
T , we

have

(20) sup
06t1, t26T

|x(i)(t1) − x(i)(t2)| 6
1

2

∫ T

0

|x(i+1)(s)| ds, i = 0, 1, . . . , n − 1,

where the constant factor 1/2 is the best possible.
���������

. For any x = x(t) ∈ C
(n)
T and any t1, t2 ∈ [0, T ], without loss of

generality, we may assume that t2 ∈ [t1, t1 + T ]. By the fundamental theorem of

Calculus, we get

(21) x(i)(t2) − x(i)(t1) =

∫ t2

t1

x(i+1)(s) ds,

and

(22) x(i)(t2) − x(i)(t1) = x(i)(t2) − x(i)(t1 + T ) = −

∫ t1+T

t2

x(i+1)(s) ds.

From (21) and (22), we see that

(23) x(i)(t2) − x(i)(t1) =
1

2

{
∫ t2

t1

x(i+1)(s) ds −

∫ t1+T

t2

x(i+1)(s) ds

}

.

It follows that

(24) sup
06t1, t26T

|x(i)(t1) − x(i)(t2)| 6
1

2

∫ t1+T

t1

|x(i+1)(s)| ds =
1

2

∫ T

0

|x(i+1)(s)| ds.

Now we assert that if α is a constant and α < 1
2 , then there is x ∈ C

(n)
T such that

(25) sup
06t1,t26T

|x(i)(t1) − x(i)(t2)| > α

∫ T

0

|x(i+1)(s)| ds.

Indeed, let x(t) =
(

1
2Tπ

)i
sin

(

2πt/T − 1
2 iπ

)

. Then x ∈ C
(n)
T , x

(i)(t) = sin(2πt/T ) and

x(i+1)(t) = (2π/T ) cos(2πt/T ). Furthermore,

α

∫ T

0

|x(i+1)(s)| ds = α
2π

T

∫ T

0

∣

∣

∣
cos

2π

T
t
∣

∣

∣
ds = 4α < 2(26)

= sup
06t1, t26T

|x(i)(t1) − x(i)(t2)|

as required. This shows that the constant 1
2 in (20) is the best possible. The proof

is complete. �
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Lemma 4. Let x ∈ X . Then for j = 1, . . . , k, we have

(27) ‖x(2j−1)‖0 6
1

4

∫ T

0

|x(2j)(s)| ds,

where the constant factor 1
4 is the best possible.

���������
. For any x ∈ X , since x(t) is an even function, we see that x(2j−1)(t) is

an odd function. Thus max
06t6T

x(2j−1)(t) > 0 and

(28) ‖x(2j−1)‖0 = max
06t6T

x(2j−1)(t) = − min
06t6T

x(2j−1)(t).

From Lemma 3 and (28), we see that

‖x(2j−1)‖0 = max
06t6T

x(2j−1)(t)(29)

=
1

2

{

max
06t6T

x(2j−1)(t) − min
06t6T

x(2j−1)(t)
}

6
1

2
sup

06t1, t26T

|x(2j−1)(t1) − x(2j−1)(t2)|

6
1

4

∫ T

0

|x(2j)(s)| ds.

Now we assert that if β is a constant and β < 1
4 , then there is x ∈ X such that

(30) ‖x(2j−1)t‖0 > β

∫ T

0

|x(2j)(s)| ds.

Indeed, let x(t) = cos 2 	
T

t, then

(31) x(2j−1)(t) =
(2π

T

)2j−1

cos
(2π

T
t +

(2j − 1)π

2

)

and

(32) x(2j)(t) =
(2π

T

)2j

cos
(2π

T
t + jπ

)

,

so that

β

∫ T

0

|x(2j)(s)| ds = β
(2π

T

)2j
∫ T

0

∣

∣

∣
cos

(2π

T
t + jπ

)
∣

∣

∣
ds(33)

= 4β
(2π

T

)2j−1

<
(2π

T

)2j−1

= ‖x(2j−1)‖0

as required. This shows that the constant 1
4 in (33) is the best possible. The proof

is complete. �
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Lemma 5. For any x ∈ X and any ξ ∈ [0, T ], we have

‖x(2j−1)‖0 6
T 2(k−j)

23(k−j)+2

∫ T

0

|x(2k)(s)| ds, j = 1, 2, . . . , k,(34)

‖x(2i)‖0 6
T 2(k−i)−1

23(k−i)

∫ T

0

|x(2k)(s)‖ ds, i = 1, 2, . . . , k − 1, k > 2,(35)

and

‖x‖0 6 |x(ξ)| +
T 2k−1

23k

∫ T

0

|x(2k)(s)| ds.(36)

���������
. First, we prove (34). If j = k, then we see from Lemma 4 that

(34) holds. If j = k − 1 where k > 2, then by Lemma 4, we get

(37) ‖x(2j−1)‖0 = ‖x(2(k−1)−1)‖0 6
1

4

∫ T

0

|x(2(k−1))(s)| ds 6
T

4
‖x(2(k−1))‖0.

Since x(2(k−1)−1)(0) = x(2(k−1)−1)(T ), there is ξ1 ∈ [0, T ] such that x(2(k−1))(ξ1) = 0.

It is easy to see from Lemma 3 that

‖x(2(k−1))‖0 = max
06t6T

|x(2(k−1))(t) − x(2(k−1))(ξ1)|(38)

6 sup
06t1, t26T

|x(2(k−1))(t1) − x(2(k−1))(t2)|

6
1

2

∫ T

0

|x(2k−1)(s)| ds.

In view of (37), (38) and Lemma 4, we have

‖x(2j−1)‖0 6
T

23

∫ T

0

|x(2k−1)(s)| ds(39)

6
T 2

23
‖x(2k−1)‖0 6

T 2

25

∫ T

0

|x(2k)(s)| ds

=
T 2(k−j)

23(k−j)+2

∫ T

0

|x(2k)(s)| ds.

Similarly, by induction, we know that (34) holds.

Next, we prove (35). Similar to the derivation of (38), we may obtain

(40) ‖x(2i)‖0 6
1

2

∫ T

0

|x(2i+1)(s)| ds 6
T

2
‖x(2i+1)‖0.
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From (34) and (40), we see that

‖x(2i)‖0 6
T

2
‖x(2i+1)‖0 6

T

2

T 2(k−i−1)

23(k−i−1)+2

∫ T

0

|x(2k)(s)| ds(41)

=
T 2(k−i)−1

23(k−i)

∫ T

0

|x(2k)(s)| ds.

Thus (35) holds.

Finally, we prove (36). For any x ∈ X and any t, ξ ∈ [0, T ], from Lemma 3 we

know that

(42) |x(t)| − |x(ξ)| 6 sup
06t1,t26T

|x(t1) − x(t2)| 6
1

2

∫ T

0

|x′(s)| ds 6
T

2
‖x′‖0.

From (34) and (42), we have

‖x‖0 6 |x(ξ)| +
1

2
T‖x′‖0(43)

6 |x(ξ)| +
1

2
T

T 2(k−1)

23(k−1)+2

∫ T

0

|x(2k)(s)| ds

= |x(ξ)| +
T 2k−1

23k

∫ T

0

|x(2k)(s)| ds.

Thus (36) holds. The proof is complete. �

We now turn to the proof of Theorem 1. We first assert that there exist constants

M0, M1, . . . , M2k−1 such that for any solution x(t) of (15) in X ,

(44) ‖x(i)‖0 6 Mi, i = 0, . . . , 2k − 1.

Indeed, in view of Lemma 2, we can find a ξ ∈ [0, T ] such that

(45) |x(ξ)| 6 D.

From (36) and (45), we see that

(46) ‖x‖0 6 |x(ξ)| +
T 2k−1

23k

∫ T

0

|x(2k)(s)| ds 6 D +
T 2k−1

23k

∫ T

0

|x(2k)(s)| ds.

By the condition (b), given the constant ε = 1
2 (23k/T 2k−r), there is constant A1 > D

such that for |x(t)| > A1,

(47) |g(x(t))| 6 (r + ε)|x(t)|.
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Let

C0 = max
|x|6A1

|g(x)|,(48)

E1 = {t : t ∈ [0, T ], |x(t)| < A1},(49)

and

(50) E2 = {t : t ∈ [0, T ], |x(t)| > A1}.

In view of (15), (46), (47), (48), (49) and (50), we have

∫ T

0

|x(2k)(s)| ds 6

∫ T

0

|g(x(t))| dt +

∫ T

0

|p(t)| dt(51)

6

∫

E1

|g(x(t))| dt +

∫

E2

|g(x(t))| dt +

∫ T

0

|p(t)| dt

6 (r + ε)T‖x‖0 + C0T + T‖P‖0

6 (r + ε)T

{

D +
T 2k−1

23k

∫ T

0

|x(2k)(s)| ds

}

+ C0T + T‖P‖0

6
T 2k

23k
(r + ε)

∫ T

0

|x(2k)(s)| ds + C,

for some positive constant C. Thus

(52)

∫ T

0

|x(2k)(s)| ds 6 σ2,

where σ2 = C/(1 − σ1), σ1 = T 2k2−3k(r + ε). It is easy to see from (46) and (52)

that

(53) ‖x‖0 6 D +
T 2k−1

23k

∫ T

0

|x(2k)(s)| ds 6 M0,

where M0 = D + T 2k−12−3kσ2. By (34) and (52), we know that

(54) ‖x(2j−1)‖0 6
T 2(k−j)

23(k−j)+2

∫ T

0

|x(2k)(s)| ds 6 M2j−1, j = 1, 2, . . . , k,

where

M2j−1 =
T 2(k−j)

23(k−j)+2
σ2.
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In view of (35) and (52),

(55) ‖x(2i)‖0 6
T 2(k−i)−1

23(k−i)

∫ T

0

|x(2k)(s)| ds 6 M2i, i = 1, 2, . . . , k − 1, k > 2

where

M2i =
T 2(k−i)−1

23(k−i)
σ2.

From (53), (54) and (56), we see that (44) holds.

Now choose a positive number D > max
06i62k−1

{Mi} + D and let

Ω = {x ∈ X : ‖x‖1 < D}.

From Lemma 1, we know that L is a Fredholm mapping of index zero and N is

L-compact on Ω. In terms of (44), we see that for any λ ∈ (0, 1) and any x ∈ ∂Ω,

Lx 6= λNx. Since for any x ∈ ∂Ω∩KerL, x = D (> D) or x = −D, in view of (a1),

we have

(56) QNx =
1

T

∫ T

0

(−g(x(t)) + p(t)) ds =
1

T

∫ T

0

(−g(x) + p(t)) ds 6= 0.

In particular, we see that

(57)
1

T

∫ T

0

(−g(−D) + p(t)) ds > 0 and
1

T

∫ T

0

(−g(D) + p(t)) ds < 0.

This shows that deg(JQN, Ω∩KerL, 0) 6= 0. In view of Theorem A, there exists an

even solution x(t) of (2) which is T -periodic.

Next, we will prove that T is the minimum period of x(t). Suppose to the contrary

that there is a positive number T1 < T such that x(t) is T1-periodic. Then from (2),

we see that

(58) x(2k)(t + T1) + g(x(t + T1)) = p(t + T1).

By noting that x(t+T1) = x(t) and x(2k)(t+T1) = x(2k)(t), it is easy to see from (2)

and (58) that for any t ∈
�
,

(59) p(t + T1) = p(t).

But this is contrary to our assumption on p. The proof is complete. �

342



Example. Consider the Duffing equation

(60) x(4)(t) +
(x(t))3

49(1 + (x(t))2)
= cos t.

Since k = 1, g(x) = 1
6x3(1 + x2), p(t) = cos t and T = 2π. Taking D > 0 and r = 1

49 ,

it is easy to see that the conditions (a1) and (b) are satisfied and r = 1
49 < 26/(2π)4.

Thus from Theorem 1 we see that (60) has an even solution which has minimum

period T .
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