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1. Introduction

Let � and � + be the set of all real numbers and all positive real numbers, respec-

tively. We denote by � n (n > 2) the n-dimensional Euclidean space. A point in � n

is denoted by P = (X, y), X = (x1, x2, . . . , xn−1). The Euclidean distance of two

points P and Q in � n is denoted by |P −Q|. Also |P −O| with the origin O of � n is

simply denoted by |P |. The boundary and the closure of a set S in � n are denoted

by ∂S and S, respectively.

We introduce a system of spherical coordinates (r, Θ), Θ = (θ1, θ2, . . . , θn−1), in � n

which are related to cartesian coordinates (x1, x2, . . . , xn−1, y) by

x1 = r

(n−1
∏

j=1

sin θj

)

(n > 2), y = r cos θ1,

and if n > 3, then

xn+1−k = r

(k−1
∏

j=1

sin θj

)

cos θk (2 6 k 6 n − 1),

where 0 6 r < +∞, − 1
2π 6 θn−1 < 3

2π, and if n > 3, then 0 6 θj 6 π (1 6 j 6 n−2).
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The unit sphere and the upper half unit sphere are denoted by � n−1 and � n−1
+ ,

respectively. For simplicity, a point (1, Θ) on � n−1 and the set {Θ: (1, Θ) ∈ Ω} for
a set Ω, Ω ⊂ � n−1, are often identified with Θ and Ω, respectively. For two sets

Λ ⊂ � + and Ω ⊂ � n−1, the set

{(r, Θ) ∈ � n : r ∈ Λ, (1, Θ) ∈ Ω}

in � n is simply denoted by Λ×Ω. In particular, we denote by Cn(Ω) the set � + ×Ω

in � n with the domain Ω on � n−1 (n > 2). We call it a cone. Then the half-space�
n = {(X, y) ∈ � n : y > 0} is a cone obtained by putting Ω = � n−1

+ .

To extend a result of Beurling [7] for n=2, Armitage and Kuran [4] said that a

sequence {Pm} of points Pm = (Xm, ym) ∈ � n, |Pm| → +∞ (m → +∞) character-
izes the positive harmonic majorization of y, if every positive harmonic function h

in
�

n which majorizes the function y on the set {Pm : m = 1, 2, . . .} majorizes y

everywhere in
�

n, i.e.

inf
P∈ � n

h(P )

y
= inf

m

h(Pm)

ym
(P = (X, y) ∈ � n).

They proved

Theorem A (Beurling [7] for n = 2, Armitage and Kuran [4, Theorem 1] for

n > 2). Let {Pm} be a sequence of points,

Pm = (rm, Θm) ∈ � n, Θm = (θ1,m, θ2,m, . . . , θ(n−1),m)

in
�

n satisfying

(1.1) rm+1 > a rm (m = 1, 2, . . .)

for a certain a > 1. Then the sequence {Pm} characterizes the positive harmonic
majorization of y if and only if

(1.2)

∞
∑

m=1

(cos θ1,m)n = +∞.

Theorem A was also extended by Maz’ya [15] to positive solutions of a second

order elliptic differential equation in an n-dimensional bounded domain with smooth

boundary of class C1,α (0 < α < 1).

Let D be a domain in � n and ∆(D) the Martin boundary of D. The Martin

function at Q ∈ ∆(D) is denoted by KQ(P ) (P ∈ D) (for these definitions see
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e.g. Helms [14, pp. 243–245], Armitage and Gardiner [5, pp. 235–237]). Following

Armitage and Kuran [4], we say that a subset E of D characterizes the positive

harmonic majorization of KQ(P ), if every positive harmonic function h in D which

majorizes KQ(P ) on E majorizes KQ(P ) everywhere in D, i.e.

(1.3) inf
P∈D

h(P )

KQ(P )
= inf

P∈E

h(P )

KQ(P )
.

We set

B(P, r) = {P ′ ∈ � n : |P ′ − P | < r} (r > 0)

and

d(P ) = inf
Q/∈D

|P − Q|

for any P ∈ D. For a subset E of D and a number % (0 < % < 1) we put

(1.4) E% =
⋃

P∈E

B(P, %d(P )).

Dahlberg proved

Theorem B (Dahlberg [10, Theorem 1]). Let D be a Liapunov-Dini domain in

� n and Q ∈ ∂D. If E ⊂ D, then the following conditions on E are equivalent:

(i) E characterizes the positive harmonic majorization of KQ(P );

(ii) for every %, 0 < % < 1
∫

E%

|P − Q|−n dP = +∞;

(iii) for some %, 0 < % < 1
∫

E%

|P − Q|−n dP = +∞.

Since (1.3) is closely related to the notion of minimal thinness of E% in (1.4) (see

Sjögren [18], Ancona [3] and Zhang [21]), which will be also seen in Theorem 2 of

this paper, Aikawa and Essén [2, Corollary 7.4.7] also proved Theorem B in a way

different from Dahlberg’s.

By using a suitable Kelvin transformation which maps
�

n onto a ball, the following

Theorem C follows from Theorem B.
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Theorem C (Dahlberg [10, Theorem 3]). If E ⊂ �
n, then the following conditions

on E are equivalent:

(i) E characterizes the positive harmonic majorization of y;

(ii) for every %, 0 < % < 1

∫

E%

(1 + |P |)−n dP = +∞;

(iii) for some %, 0 < % < 1
∫

E%

(1 + |P |)−n dP = +∞.

All proofs of Theorems A and B are based on the smoothness of the boundary

having no wedges, e.g. a ball. For a domain having rougher boundary, e.g. a Lipschitz

domain, Ancona [3, Theorem 7.4] and Zhang [21, Theorem 3] gave more complicated

results which generalize Theorem A.

In this paper we shall prove that Theorems A and C can be still extended in the

similar form to a result at a corner point of a wedge, i.e. to a result at ∞ of a cone
(Theorem 3). We remark that a half-space is one of cones. To prove this result, we

need a result (Theorem 2) which is a specialized version of that due to Aikawa [1,

Theorem 1]. Since his proof is too complicated we give a simple proof based on an

example of positive harmonic functions (Theorem 1).

For a Lipschitz domain and an NTA domain D, Zhang [21, Corollary 1] and

Aikawa [1, Remark and Theorem 1] gave a necessary and sufficient qualitative condi-

tion for a subset E of D to characterize the positive harmonic majorization of KQ(P )

by connecting it with minimal thinness of E% in (1.4). On the other hand, with re-

spect to the quantitative Theorem B Aikawa said in his paper [1] that since a general

NTA domain may have wedges, Theorem B does not hold for an NTA domain. How-

ever, if we observe in this paper that a cone has a wedge, at the corner point of which

Theorem B still holds, against Aikawa’s opinion we may ask whether Theorem B can

be extended in the similar form to a result for a Lipschitz domain or an NTA domain.

2. Statements of results

Let Ω be a domain on � n−1 (n > 2) with smooth boundary. Consider the Dirichlet

problem

(Λn + τ)f = 0 on Ω,

f = 0 on ∂Ω,
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where Λn is the spherical part of the Laplace operator ∆n:

∆n =
n − 1

r

∂

∂r
+

∂2

∂r2
+ r−2Λn.

We denote the least positive eigenvalue of this boundary value problem by τΩ and

the normalized positive eigenfunction corresponding to τΩ by fΩ(Θ); hence

∫

Ω

f2
Ω(Θ) dσΘ = 1,

where dσΘ is the surface element on � n−1. We denote the solutions of the equation

t2 + (n − 2)t − τΩ = 0

by αΩ, −βΩ (αΩ, βΩ > 0). If Ω = � n−1
+ , then αΩ = 1, βΩ = n − 1 and

fΩ(Θ) = (2ns−1
n )1/2 cos θ1,

where sn is the surface area 2π
n/2{Γ(n/2)}−1 of � n−1.

To simplify our next consideration, we shall assume that if n > 3, then Ω is a

C2,α-domain (0 < α < 1) on � n−1 (see e.g. Gilbarg and Trudinger [12, pp. 88–89] for

the definition of a C2,α-domain). It is known that the Martin boundary of Cn(Ω)

is the set ∂Cn(Ω) ∪ {∞}, each point of which is a minimal Martin boundary point,
and the Martin kernel at ∞ with respect to a reference point chosen suitably is

K∞(P ) = rαΩfΩ(Θ) (P = (r, Θ) ∈ Cn(Ω)) (see e.g. Yoshida [20, pp. 276–277]). In

particular, y is the Martin function at ∞ of � n.

A subset E of a domain D in � n is said to be minimally thin at Q ∈ ∆(D)

(Brelot [8, p. 122], Doob [11, p. 208]), if there exists a point P ∈ D such that

R̂E
KQ(·)(P ) 6= KQ(P ),

where R̂E
KQ(·)(P ) is the regularized reduced function of KQ(P ) relative to E

(Helms [14, p. 134]).

The following results are conical versions of Dahlberg’s results [10, p. 239].

Theorem 1. Let E be a set in Cn(Ω) satisfying E ∩ ∂Cn(Ω) = ∅. If E% with a

positive number % (0 < % < 1) is minimally thin at ∞, then there exists a positive
harmonic function h(P ) on Cn(Ω) such that

inf
P∈Cn(Ω)

h(P )

K∞(P )
< inf

P∈E

h(P )

K∞(P )
.
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Theorem 2. Let E be a subset of Cn(Ω). The following conditions on E are

equivalent:

(i) E characterizes the positive harmonic majorization of K∞(P );

(ii) for any %, 0 < % < 1, E% is not minimally thin at ∞;
(iii) for some %, 0 < % < 1, E% is not minimally thin at ∞.

The following Theorem 3 extends Theorem C.

Theorem 3. Let E be a subset of Cn(Ω). Then the following conditions on E

are equivalent:

(i) E characterizes the positive harmonic majorization of K∞(P );

(ii) for every % (0 < % < 1)

∫

E%

(1 + |P |)−n dP = +∞;

(iii) for some % (0 < % < 1)

∫

E%

(1 + |P |)−n dP = +∞.

A sequence {Pm} of points Pm ∈ D is said to be separated, if there exists a positive

constant c such that

|Pi − Pj | > cd(Pi) (i, j = 1, 2, . . . , i 6= j)

(see e.g. Ancona [3, p. 18], Aikawa and Essén [2, p. 156]).

From Theorem 3 we immediately obtain the following Corollary which extends

Theorem A.

Corollary. Let {Pm}, Pm ∈ Cn(Ω) be a separated sequence satisfying

inf
m

|Pm| > 0.

The sequence {Pm} characterizes the positive harmonic majorization of K∞(P ) if

and only if
∞
∑

m=1

(

d(Pm)

|Pm|

)n

= +∞.
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3. Proofs of theorems and corollary

Let f and g be two positive real valued functions defined on a set S. Then we

shall write f ≈ g, if there exist two constants A1, A2, 0 < A1 6 A2 such that

A1g 6 f 6 A2g everywhere on S. For a subset S in � n , the interior of S and the

diameter of S are denoted by int S and diam S, respectively. For two subsets S1 and

S2 in � n , the distance between S1 and S2 is denoted by dist(S1, S2). A cube Mk

(k = 0,±1,±2, . . .) is of the form

[l12
−k, (l1 + 1)2−k] × . . . × [ln2−k, (ln + 1)2−k]

where l1, . . . , ln are integers. Let % be a number satisfying 0 < % 6 1
2 . A family of the

Whitney cubes of Cn(Ω) with % is the set of cubes having the following properties:

(i)
⋃

i

Wi = Cn(Ω),

(ii) int Wi ∩ int Wj = ∅ (i 6= j),

(iii) [8/(3%)] diamWi 6 dist(Wi, � n \ Cn(Ω)) 6 2([8/(3%)] + 1) diamWi,

where [a] denotes the integer satisfying [a] 6 a < [a] + 1 (Stein [19, p. 167, Theo-

rem 1]).

The following Lemma 1 is fundamental in this paper.

Lemma 1 (I. Miyamoto, M. Yanagishita and H. Yoshida [16, Theorems 2 and

3]). Let a Borel subset E of Cn(Ω) be minimally thin at ∞. Then we have

(3.1)

∫

E

dP

(1 + |P |)n
< +∞.

If E is a union of cubes from a family of the Whitney cubes of Cn(Ω) with % (0 <

% 6 1
2 ), then (3.1) is also sufficient for E to be minimally thin at ∞.

For a set E ⊂ Cn(Ω) and a number % (0 < % 6 1
2 ), define E% and E%/4 as in (1.4).

Lemma 2. Let {Wi}i>1 be a family of the Whitney cubes of Cn(Ω) with %. Let

E be a subset of Cn(Ω). Then there exists a subsequence {Wij
}j>1 of {Wi}i>1 such

that

(i)
⋃

j

Wij
⊂ E%,

(ii) Wij
∩ E%/4 6= ∅ (j = 1, 2, . . .), E%/4 ⊂ ⋃

j

Wij
.

����� �"!
. Let k be an integer. Let c = [8/(3%)] + 1 and set

Ik = {P ∈ Cn(Ω): c
√

n2−k < dist(P, ∂Cn(Ω)) 6 c
√

n2−k+1}.
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Let {Wij
}j>1 be a subsequence of all Whitney cubes from {Wi}i>1 such that

Wij
∩ E%/4 6= ∅ (j = 1, 2, . . .).

Then it is evident that (ii) holds. We shall also show that this {Wij
}j>1 satisfies (i),

i.e. Wij
⊂ E% (j = 1, 2, . . .).

Take any Wij
(j = 1, 2, . . .). Since Wij

∩ E%/4 6= ∅, there exists a point Pj in E

such that

(3.2) B(Pj ,
%

4
d(Pj)) ∩ Wij

6= ∅.

We can easily see that Wij
∈ Mm+1 ∪Mm ∪Mm−1, if there is a point P ∈ Im such

that Wij
∩ B(P, %

4d(P )) 6= ∅. Hence, for an integer k satisfying Wij
∈ Mk, Pj taken

above satisfies Pj ∈ Ik+1 ∪ Ik ∪ Ik−1. So, if Pj ∈ Ik+1, then

%d(Pj) −
%

4
d(Pj) =

3

4
%d(Pj) >

3

4
%
([ 8

3%

]

+ 1
)√

n2−(k+1) >
√

n2−k.

Since the diameter of Wij
is

√
n2−k, we have from (3.2) that Wij

⊂ B(Pj , %d(Pj))

and hence Wij
⊂ E%. If Pj ∈ Ik or Pj ∈ Ik−1, then we similarly have Wij

⊂ E%. �

����� �"!
of Theorem 1. If E is a bounded subset of Cn(Ω), then let h be a

constant function. When E is unbounded, we shall follow Dahlberg [10, p. 240] to

make the required function.

We can assume % 6 1
2 . Let {Pj} be a sequence of points Pj which are the central

points of cubes Wij
in Lemma 2. Then by our assumption on E, {Pj} can not

accumulate to any finite boundary point of Cn(Ω) and hence |Pj | → +∞, because
Pj ∈ E% due to (i) of Lemma 2. Since E% is minimally thin at ∞ and

∫

Wij

dP

(1 + |P |)n
≈

(

d(Pj)

|Pj |

)n

(j = 1, 2, . . .),

Lemma 1 and (i) of Lemma 2 give

(3.3)

∞
∑

j=1

(

d(Pj)

|Pj |

)n

< +∞.

Hence we can take a positive integer J such that d(Pj) 6 1
2 |Pj | for every j > J .

Now, take a point Qj = (tj , Φj) ∈ ∂Cn(Ω) \ {O} satisfying

|Pj − Qj | = d(Pj) (j = J, J + 1, . . .).
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Then we also see |Qj | > 1
2 |Pj | and hence |Qj | → +∞ (j → +∞). We define h1(P )

by

h1(P ) =

∞
∑

j=J

#
Qj

(P )
{d(Pj)}n

|Pj |1−αΩ

,
#

Qj
(P ) =

∂G(P, Qj)

∂nQj

(P ∈ Cn(Ω)),

where G(P1, P2) (P1, P2 ∈ Cn(Ω)) is the Green function of Cn(Ω) and ∂/∂nQ denotes

the differentiation at Q ∈ ∂Cn(Ω) along the inward normal into Cn(Ω). Then h1 is

well-defined and hence is a positive harmonic function on Cn(Ω), because at any

fixed P = (r, Θ) ∈ Cn(Ω) we have

#
Qj

(P ) ≈ rαΩfΩ(Θ)t−βΩ−1
j

∂

∂nΦj

fΩ(Φj)

for every Qj satisfying tj > 2r (see Azarin [6, Lemma 1]).

First, to see

(3.4) inf
P∈E

h1(P )

K∞(P )
> 0,

denote the Poisson kernel of the ball Bj = B(Pj , d(Pj)) by
#

j(P, Q) (P ∈ Bj , Q ∈
∂Bj). Then we have

#
Qj

(P ) >
#

j(P, Qj) (P ∈ Bj ; j = J, J + 1, . . .)

and hence

#
Qj

(Pj) >
#

j(Pj , Qj) = s−1
n {d(Pj)}1−n (j = J, J + 1, . . .).

Since

fΩ(Θ) ≈ d(P ′) (P ′ = (1, Θ), Θ ∈ Ω),

we obtain

(3.5) h1(Pj) >
#

Qj
(Pj)

{d(Pj)}n

|Pj |1−αΩ

> AK∞(Pj) (j = J, J + 1, . . .)

with some positive constant A. Now, take any P ∈ E. Then by (ii) of Lemma 2

there exists a point Pj such that

|P − Pj | <
1

2
diam(Wij

) 6 δd(Pj)
(

δ =
1

2

[ 8

3%

]−1)

.
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From Harnack’s inequalities (see Armitage and Gardiner [5, Theorem 1.4.1]) we have

h1(P ) >
1− δ

(1 + δ)n−1
h1(Pj), K∞(P ) 6

1 + δ

(1 − δ)n−1
K∞(Pj).

These inequalities and (3.5) immediately give (3.4).

Next, for a fixed ray L which is inside Cn(Ω) and starts from O, we shall show

(3.6) lim
|P |→+∞, P∈L

h1(P )

K∞(P )
= 0.

Put

gj(P ) =

#
Qj

(P )

K∞(P )
|Pj |βΩ+1 (P ∈ Cn(Ω); j = J, J + 1, . . .).

Then we have
h1(P )

K∞(P )
=

∞
∑

j=J

gj(P )

(

d(Pj)

|Pj |

)n

.

Since

(3.7)
#

Qj
(P ) ≈ tαΩ−1

j r−βΩfΩ(Θ)
∂

∂nΦj

fΩ(Φj) (P = (r, Θ) ∈ Cn(Ω), r > 2tj)

(see Azarin [6, Lemma 1]), we see that

lim
|P |→+∞, P∈L

gj(P ) = 0

for any fixed j > J . Hence if we can show that

(3.8) |gj(P )| 6 M (P ∈ L ; j = J, J + 1, . . .)

for some constant M independent of j, then we shall have (3.6) from (3.3) and

Lebesgue’s dominated convergence theorem.

Now we shall prove (3.8) by dividing the proof into three cases. If r 6
tj

2 , then we

have #
Qj

(P ) ≈ rαΩ t−βΩ−1
j fΩ(Θ)

∂

∂nΦj

fΩ(Φj)

and hence

|gj(P )| 6 M (P = (r, Θ) ∈ Cn(Ω); j = J, J + 1, . . .).

If r > 2tj , then we have

|gj(P )| 6 M (P = (r, Θ) ∈ Cn(Ω); j = J, J + 1, . . .)
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from (3.7). Finally, put R1 = r/tj , u = tj and Θ1 = Θ in

un−2G((uR1, Θ1), (uR2, Θ2)) = G((R1, Θ1), (R2, Θ2)),

((R1, Θ1), (R2, Θ2) ∈ Cn(Ω)).

When (R2, Θ2) approaches (1, Φj) along the inward normal, we obtain

∂G(P, Qj)

∂nQj

=
1

tn−1
j

∂G

∂nQ′

j

(( r

tj
, Θ

)

, (1, Φj)
)

.

If 1
2 tj 6 r 6 2tj , then

tn−1
j

#
Qj

(P ) 6 M ′ (P = (r, Θ) ∈ L ; j = J, J + 1, . . .)

for some constant M ′ and hence

|gj(P )| 6 M (P ∈ L ; j = J, J + 1, . . .).

Finally, put γ = max
16j<J

K∞(Pj) and h(P ) = h1(P ) + γ for any P ∈ Cn(Ω). Then

we easily see from (3.4) and (3.6) that h(P ) is also a positive harmonic function

on Cn(Ω) required in Theorem 1.����� �"!
of Theorem 2. (i) ⇒ (ii). Let c be a positive constant and put E1 =

{P ∈ E : K∞(P ) > c}. Then E1 is a set satisfying E1 ∩ ∂Cn(Ω) = ∅. Since
E characterizes the harmonic majorization of K∞(P ), E1 also characterizes the

harmonic majorization of K∞(P ). Indeed, otherwise there would exist a positive

harmonic function h(P ) on Cn(Ω) satisfying

a = inf
P∈Cn(Ω)

h(P )

K∞(P )
< inf

P∈E1

h(P )

K∞(P )
= b.

If we put u(P ) = h(P ) + bc (P ∈ Cn(Ω)), then u(P ) > bK∞(P ) for all P ∈ E and

hence

inf
P∈Cn(Ω)

u(P )

K∞(P )
= a < b 6 inf

P∈E

u(P )

K∞(P )
,

which contradicts (i).

If we can show that for any % (0 < % < 1) (E1)% is not minimally thin at ∞, then
for any % (0 < % < 1) E% is not minimally thin at ∞ either, which is (ii).
So, suppose that for some number % (0 < % < 1) (E1)% is minimally thin at ∞.

Then by Theorem 1 there exists a positive harmonic function h(P ) on Cn(Ω) satis-

fying

inf
P∈Cn(Ω)

h(P )

K∞(P )
< inf

P∈E1

h(P )

K∞(P )
,

which contradicts the fact that E1 characterizes the harmonic majorization of

K∞(P ).
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(iii) ⇒ (i). Suppose that E does not characterize the positive harmonic majoriza-

tion of K∞(P ). Then there exists a positive harmonic function h(P ) in Cn(Ω) such

that

a = inf
P∈Cn(Ω)

h(P )

K∞(P )
< inf

P∈E

h(P )

K∞(P )
= b.

If we put v(P ) = h(P ) − aK∞(P ) (P ∈ Cn(Ω)), then v(P ) is a positive harmonic

function on Cn(Ω) satisfying

(3.9) inf
P∈Cn(Ω)

v(P )

K∞(P )
= 0.

Let % be any positive number satisfying 0 < % < 1. For any P ∈ E%, there exists

a point P ′ ∈ E such that |P − P ′| < %d(P ′) and hence

(1 − %

1 + %

)n v(P ′)

K∞(P ′)
6

v(P )

K∞(P )

by Harnack’s inequality. Hence we have

(3.10) inf
P∈E%

v(P )

K∞(P )
>

(1 − %

1 + %

)n

inf
P∈E

v(P )

K∞(P )
=

(1 − %

1 + %

)n

(b − a) > 0.

From (3.9) and (3.10) we obtain

inf
P∈Cn(Ω)

v(P )

K∞(P )
< inf

P∈E%

v(P )

K∞(P )

for the positive superharmonic function v(P ). Hence, from Miyamoto, Yanagishita

and Yoshida [16, Theorem 1] it follows that E% is minimally thin at ∞. This con-
tradicts (iii). �

����� �"!
of Theorem 3. (i) ⇒ (ii). Suppose that

∫

E%

(1 + |P |)−n dP < +∞

for some % (0 < % < 1). We can assume that this % satisfies 0 < % 6 1
2 . Let {Wij

}j>1

be the subsequence of {Wi}i>1 from Lemma 2. Then from (i) of Lemma 2 we also

have ∫

$
j

Wij

dP

(1 + |P |)n
< +∞.

Since
⋃

j

Wij
is a union of cubes from the Whitney cubes of Cn(Ω) with %, we see

from the second part of Lemma 1 that
⋃

j

Wij
is minimally thin at ∞, and hence

from (ii) of Lemma 2 that E%/4 is minimally thin at ∞.
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On the other hand, since E characterizes the positive harmonic majorization

of K∞(P ), it follows from Theorem 2 that E%/4 is not minimally thin at ∞, which
contradicts the conclusion obtained above.

(iii) ⇒ (i). Suppose that E does not characterize the positive harmonic majoriza-

tion of K∞(P ). Then we see from Theorem 2 that for any % (0 < % < 1) E% is

minimally thin at ∞. Lemma 1 gives that for any % (0 < % < 1)

∫

E%

(1 + |P |)−n dP < +∞.

This contradicts (iii). �

����� �"!
of Corollary. It is easy to see that if {Pm} is a separated sequence, then

B(Pi, %d(Pi)) ∩ B(Pj , %d(Pj)) = ∅ (i, j = 1, 2, . . . ; i 6= j)

for a sufficiently small % (0 < % < 1) and hence

∫

E%

(1 + |P |)−n dP ≈
∞
∑

m=1

(

d(Pm)

|Pm|

)n

.

Hence the corollary immediately follows from (iii) of Theorem 3.
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