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Abstract. Results on singular products of the distributions x
−p
±
and x

−p for natural p

are derived, when the products are balanced so that their sum exists in the distribution
space. These results follow the pattern of a known distributional product published by
Jan Mikusiński in 1966. The results are obtained in the Colombeau algebra of generalized
functions, which is the most relevant algebraic construction for tackling nonlinear problems
of Schwartz distributions.
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1. Introduction

The Colombeau algebra of generalized functions G , introduced first in [2], has fol-

lowed various constructions of differential algebras aimed at solving certain nonlinear

problems of Schwartz distributions. An important reason for the growing popularity

of the algebra G are its almost optimal properties regarding the long-standing prob-

lem of multiplication of distributions. Indeed, G is an associative differential algebra,

the multiplication is compatible with products of C∞-differentiable functions, and

the linear embedding of the distribution space commutes with partial differentiation.

Moreover, the so-called ‘association’ in G , which is a faithful generalization of the

equality of distributions, makes it possible to obtain results ‘on distributional level’.

In 1966, Jan Mikusiński published in [10] his well-known result:

(1) x−1 · x−1 − � 2δ(x) · δ(x) = x−2, x ∈ � .
Although neither of the products on the left-hand side here exists, their difference still

has a correct meaning in the distribution space D ′( � ). Formulas including balanced
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products of distributions with coinciding singularities can be found in the mathemat-

ical and physical literature. We termed such equations ‘products of Mikusiński type’

in a previous paper [5], where we derived a generalization of (1) in the Colombeau

algebra of tempered generalized functions (see equation (5) below).

Following the pattern of the basic Mikusiński product (1), we prove in this paper

further results on balanced products of the distributions with singular point support

x−p
± , x

−p, and δ(p)(x), p ∈ � 0 and x ∈ � . We evaluate the products as the distribu-
tions are embedded in the Colombeau algebra and prove that each of the products

admits an associated distribution.

2. Notation and definitions

2.1. We start by recalling the fundamentals of Colombeau algebra on the real

line.

If � stands for the natural numbers, denote � 0 = � ∪{0} and δij =

{
1 if i = j,

0 otherwise,
i, j ∈ � . Then we put for arbitrary q ∈ � 0 :

Aq( � ) =

{
ϕ(x) ∈ D( � ) :

∫
� xjϕ(x) dx = δ0j , j = 0, 1, . . . , q

}
.

Set also ϕε = ε−1ϕ(ε−1x) for ϕ ∈ Aq( � ), ε > 0 and ǧ(x) = g(−x).

Note finally that the shorthand notation ∂x = d/dx will be used in the one-

dimensional case too.

Definition 1. Let E [ � ] be the algebra of functions f(ϕ, x) : A0( � ) × � → �
that are infinitely differentiable for each fixed ‘parameter’ ϕ. Then, the generalized

functions of Colombeau are the elements of the quotient algebra

G ≡ G ( � ) = EM[ � ]/I [ � ].

Here EM[ � ] is the subalgebra of ‘moderate’ functions such that for each compact
subset K of � and p ∈ � there is a q ∈ � such that, for each ϕ ∈ Aq( � ),

sup
x∈K

|∂p
xf(ϕε, x)| = O(ε−q), as ε→ 0+.

The ideal I [ � ] of EM[ � ] consists of all functions such that for each compact K ⊂ �
and any p ∈ � there is a q ∈ � such that, for every r > q and ϕ ∈ Ar( � ),

sup
x∈K

|∂p
xf(ϕε, x)| = O(εr−q), as ε→ 0+.
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The algebra G ( � ) contains the distributions on � , canonically embedded as a
� -vector subspace by the map

(2) i : D
′( � ) → G : u 7→ ũ = {ũ(ϕ, x) := (u ∗ ϕ̌)(x) : ϕ ∈ Aq( � )}.

The derivative in G ( � ) is in consistency with this embedding of distributions:

(3) ∂xũ = ∂̃xu, u ∈ D
′( � ).

The equality of generalized functions in G is very strict and a weaker form of

equality in the sense of association is introduced, which plays a fundamental role in

Colombeau theory.

Definition 2. A generalized function f ∈ G ( � ) is said to be ‘associated’ with
(a) another function g ∈ G , denoted f ≈ g, or (b) a distribution u ∈ D ′( � ) (f ≈ u) if

for some representatives f(ϕε, x), g(ϕε, x) and arbitrary ψ(x) ∈ D( � ) there is a q ∈
� 0 such that, for any ϕ(x) ∈ Aq( � ), it holds lim

ε→0+

∫ � [f(ϕε, x)−g(ϕε, x)]ψ(x) dx = 0,

or respectively lim
ε→0+

∫ � f(ϕε, x)ψ(x) dx = 〈u, ψ〉.

These definitions are independent of the representatives chosen, and the associa-

tion is a faithful generalization of the equality of distributions [3]; which implies the

following equivalence relation for the embedding of distributions:

(4) f ≈ ũ⇐⇒ f ≈ u for each f ∈ G ( � ), u ∈ D
′( � ).

Now, by the Colombeau product of two distributions is meant the product of their

embeddings in G ( � ) whenever the result admits an associated distribution.
The following coherence result holds [11, Proposition 10.3]: If the regularized

model product (in the terminology of Kamiński) of two distributions exists, then

their Colombeau product also exists and coincides with the former. Moreover, in the

general setting of Colombeau algebra G ( � m ) [3] (when the parameter functions ϕ

are not defined as tensor products), as well as in the algebra G ( � ) on the real line,
this assertion turns into an equivalence, according to a result by Jelínek [9]; cf. also

the recent study on Colombeau algebra in [1].

Denote now by x̃−p and δ̃(p)(x) the embeddings (2) in G of the distributions x−p

and δ(p)(x), p ∈ � . Then the following balanced distributional product in the
Colombeau algebra was proved in [5], which generalizes the basic Mikusiński for-

mula (1) for arbitrary p, q ∈ � :

(5) x̃−p · x̃−q − � 2 (−1)p+q

(p− 1)! (q − 1)!
δ̃(p−1)(x) · δ̃(q−1)(x) ≈ x−p−q (x ∈ � ).
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2.2. Consider next the definition of the distributions under study.

If a ∈ � and Re a > −1, denote as usual the locally-integrable functions:

xa
+ =

{
xa if x > 0,

0 if x < 0,
xa
− =

{
(−x)a if x < 0,

0 if x > 0;

lnx+ =

{
lnx if x > 0,

0 if x < 0,
lnx− =

{
ln(−x) if x < 0,

0 if x > 0;

ln |x| = lnx+ + lnx−, ln |x| sgnx = lnx+ − lnx−.

The distributions xa
± are defined for any a ∈ Ω := {a ∈ � : a 6= −1,−2, . . .}, by

setting

xa
+ =

1

(a+ 1) . . . (a+ r)
∂r

xx
a+r
+ (x), xa

− =
1

(a+ 1) . . . (a+ r)
(−1)r∂r

xx
a+r
− (x),

where r ∈ � 0 is such that a + r > −1 and the derivatives are in the distributional

sense.

This definition can be extended also to negative integer values of a by a procedure

essentially due to M. Riesz (see [8, § 3.2]). For each ψ(x) ∈ D( � ), a 7→
〈
xa

+, ψ
〉
is

an analytic function of a on the set Ω. The excluded points are simple poles of this

function. For any p ∈ � 0 , the residue at a = −p− 1 is lim
a→−p−1

(a+ p+ 1)
〈
xa

+, ψ
〉

=

ψ(p)(0)/p!. Subtracting the singular part, one gets for any p ∈ � 0 :

lim
a→−p−1

(〈
xa

+, ψ
〉
−

1

p!

ψ(p)(0)

a+ p+ 1

)
= −

1

p!

∫ ∞

0

lnxψ(p+1) dx+
ψ(p)(0)

p!

p∑

k=1

1

k
.

The right-hand side of this equation, which is the principal part of the Laurent

expansion, was proposed by Hörmander in [8] to define the distribution x−p−1
+ , acting

here on the test-function ψ(x). In view of the notation in 2.2, this is equivalent to

the following definition of x−p−1
+ for arbitrary p ∈ � 0 (x ∈ � ):

x−p−1
+ =

(−1)p

p!
∂p+1

x lnx+ +
(−1)pσp

p!
δ(p)(x).

We have introduced here the shorthand notation

(6) σp :=

p∑

k=1

1

k
(p ∈ � 0 ), noting that σ0 = 0.
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Similar arguments lead to the defining equation

(7) x−p−1
− =

−1

p!
∂p+1

x lnx− +
σp

p!
δ(p)(x).

Note that this definition exactly coincides with that of the distributions x−p−1
± ≡

F−p−1(x±, λ) introduced by Gelfand and Shilov, as regularizations of the integrals∫ �
±
xλψ(x) dx taken at the points λ = −p− 1 [7, § 1.4].

One checks that the distributions x−p
± satisfy

(8) ∂xx
−p
+ = −px−p−1

+ +
(−1)p

p!
δ(p)(x), ∂xx

−p
− = px−p−1

− −
1

p!
δ(p)(x).

Now, it follows immediately that

(9) x−p
+ |x7→−x = x−p

− and x−p
+ + (−1)px−p

− = x−p.

Here the distribution x−p is defined, as usual, as the distributional derivative of

order p:

(10) x−p =
(−1)p−1

(p− 1)!
∂p

x ln |x|, and it holds ∂xx
−p = −px−p−1.

For later use we note that the following basic property of the distributions xa
± is

preserved for arbitrary a ∈ � [8, § 3.2]:

(11) x · xa
± = xa+1

± .

Recall finally the definition of the distributions (x± i0)−p−1 for p ∈ � 0 and x ∈ � :

(12) (x ± i0)−p−1 := lim
y→0+

(x ± iy)−p−1 = x−p−1 ∓
(−1)pi �
p!

δ(p)(x).
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3. Preliminary results

We first recall two results on distributional products in the Colombeau algebra that

will be used later in the paper. Let x̃−p, x̃p
+, and δ̃

(p−1)(x) denote the embeddings

in G ( � ) of the distributions x−p, xp
+, and δ

(p−1)(x), p ∈ � . Then the following
‘ordinary’ Colombeau product, given here in dimension one, was obtained in [4]:

(13) x̃p
+ · δ̃(p)(x) ≈ (−1)p p!

2
δ(x) (x ∈ � ).

Further, this balanced Colombeau product was proved in [5]: For arbitrary p, q ∈ � ,

(14)
(−1)q−1

(q − 1)!
x̃−p · δ̃(q−1)(x) +

(−1)p−1

(p− 1)!
x̃−q · δ̃(p−1)(x) ≈

(−1)p+q−1

(p+ q − 1)!
δ(p+q−1)(x).

Next, we prove a general property of balanced products in the Colombeau algebra

that will be needed in the sequel too.

Lemma 1. The derivative of any balanced Colombeau product of distributions
2∑

k=1

(ũk · ṽk) ≈ w(uk , vk, w ∈ D( � )′ ) admits also an associated distribution and

(15)

2∑

k=1

( �
∂xuk · ṽk + ũk ·

�
∂xvk

)
≈ ∂xw.

���������
. For a given ϕ ∈ A0( � ) the representatives ũk(ϕε, x), ṽk(ϕε, x) are

smooth functions of x, for a fixed ε. Therefore, choosing an arbitrary ψ(x) ∈ D( � )
and taking into account equation (3), applied to the representatives of the embed-

dings, we obtain

I :=

∫ ∞

−∞

ψ(x)∂x

( 2∑

k=1

[ũk(ϕε, x)ṽk(ϕε, x)]

)
dx(16)

=

∫ ∞

−∞

ψ(x)

2∑

k=1

[ �
∂xuk(ϕε, x)ṽk(ϕε, x) + ũk(ϕε, x)

�
∂xvk(ϕε, x)

]
dx.

On the other hand, we get on integration by parts:

I =
2∑

k=1

∫ ∞

−∞

ψ(x)∂x[ũk(ϕε, x)ṽk(ϕε, x)
]
dx(17)

=
2∑

k=1

(
ũk(ϕε, x)ṽk(ϕε, x)ψ(x)

∣∣∣
∞

−∞

−

∫ ∞

−∞

ũk(ϕε, x)ṽk(ϕε, x)ψ
′(x) dx

)

= −

∫ ∞

−∞

2∑

k=1

[ũk(ϕε, x)ṽk(ϕε, x)]∂xψ(x) dx.
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From equations (16), (17) and by the assumption of the theorem, it now follows that

lim
ε→0+

I = lim
ε→0+

∫ ∞

−∞

ψ(x)

2∑

k=1

[ �
∂xuk(ϕε, x)ṽk(ϕε, x) + ũk(ϕε, x)

�
∂xvk(ϕε, x)

]
dx

= − lim
ε→0+

∫ ∞

−∞

2∑

k=1

[ũk(ϕε, x)ṽk(ϕε, x)]∂xψ(x) dx

= − 〈w, ∂xψ〉 = 〈∂xw,ψ〉 .

According to Definition 2, this proves the existence of an associated distribution for

the derivative, as well as equation (15). �

4. Main results

We now proceed to particular balanced products of distributions obtained in the

Colombeau algebra G ( � ). With the notation (6), the following assertion holds.

Theorem 1. For each p ∈ � 0 , the embeddings in G ( � ) of the distributions x−p
± ,

xp
±, and δ(x) satisfy:

(−1)p

�
x−p−1
− · x̃p

+ −
�
lnx− · δ̃(x) ≈

σp

2
δ(x),(18)

(−1)p

�
x−p−1

+ · x̃p
− −

�
lnx+ · δ̃(x) ≈

σp

2
δ(x).(19)

���������
. (i) For given ϕ ∈ A0( � ), suppose without lost of generality that

suppϕ(x) ⊆ [−l, l] for some l ∈ � + . Then, the embedding rule (2) and the sub-

stitution u = (y − x)/ε give for the representatives

x̃p
+(ϕε, x) = ε−1

∫ −εl+x

0

ypϕ((y − x)/ε) dy =

∫ l

−x/ε

(εu+ x)pϕ(u) du,(20)

and

δ̃(p)(ϕε, x) =
(−1)p

εp+1
ϕ(p)

(
−
x

ε

)
.(21)

Similarly, equation (7), the rules (2) for embedding and (3) for the Colombeau deriva-

tive, as well as the substitution v = (y − x)/ε yield

(22)

�
x−p−1
− (ϕε, x) =

(−1)p

p!εp+1

∫ −x/ε

−l

ln(−εv − x)ϕ(p+1)(v) dv +
(−1)pσp

p!εp+1
ϕ(p)

(
−
x

ε

)
.
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For a given ψ(x) ∈ D( � ), evaluate now

Fp := (−1)p

∫ ∞

−∞

ψ(x)

�
x−p−1
− (ϕε, x)x̃

p
+(ϕε, x) dx.

Inserting equations (20) and (22), we obtain

Fp =
1

p!εp+1

∫ εl

−εl

dxψ(x)

∫ l

−x/ε

du (εu+ x)pϕ(u)

∫ −x/ε

−l

ln(−εv − x)ϕ(p+1)(v) dv

+
σp

p!εp+1

∫ εl

−εl

dxψ(x)ϕ(p)
(
−
x

ε

)∫ l

−x/ε

(εu+ x)pϕ(u) du =: F ′
p + F ′′

p .

Applying the substitution w = −x/ε, Taylor’s theorem, change of the order of in-

tegration, and finally the substitution w → t = (w − v)/(u− v) we get for the first

term

F ′
p =

1

p!

∫ l

−l

dw ψ(−εw)

∫ l

w

du (u− w)pϕ(u)

∫ w

−l

ln(εw − εv)ϕ(p+1)(v) dv

=
ψ(0)

p!

∫ l

−l

duϕ(u)

∫ u

−l

dv ϕ(p+1)(v)

∫ u

v

(u− w)p ln(εw − εv) dw + o(1)

=
ψ(0)

p!

∫ l

−l

duϕ(u)

∫ u

−l

dv ϕ(p+1)(v)(u− v)p+1

×

[
ln(εu− εv)

∫ 1

0

(1 − t)p dt+

∫ 1

0

(1 − t)p ln t dt

]
+ o(1).

Now, we have

∫ 1

0

(1 − t)p dt =
1

p+ 1
, and

∫ 1

0

(1 − t)p ln t dt = −
σp+1

p+ 1

(cf. [6, § 4.24.3] for the calculation of the second integral). Therefore,

F ′
p =

ψ(0)

(p+ 1)!

∫ l

−l

duϕ(u)

∫ u

−l

ϕ(p+1)(v)(u− v)p+1[ln(εu− εv) − σp+1] dv + o(1).

Further, the substitution v = −x/ε, Taylor theorem, change of the order of inte-

gration, and integration by parts in the variable v (the integrated part being 0)

give

F ′′
p =

σp

p!

∫ l

−l

dv ψ(−εv)ϕ(p)(v)

∫ l

v

(u− v)pϕ(u) du

=
σpψ(0)

p!

∫ l

−l

duϕ(u)

∫ u

−l

(u− v)pϕ(p)(v) dv + o(1)

=
σpψ(0)

(p+ 1)!

∫ l

−l

duϕ(u)

∫ u

−l

(u− v)p+1ϕ(p+1)(v) dv + o(1).
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Note that to obtain the asymptotic evaluations of F ′
p and F

′′
p , we have taken into

account that the second term in each Taylor expansion is multiplied by definite

integrals majorizable by constants. Replacing the obtained expressions into Fp and

integrating by parts, we get

Fp =
ψ(0)

(p+ 1)!
(23)

×

∫ l

−l

duϕ(u)

∫ u

−l

ϕ(p+1)(v)(u− v)p+1
[
ln(εu− εv) −

1

p+ 1

]
dv + o(1)

=
ψ(0)

p!

∫ l

−l

duϕ(u)

∫ u

−l

ϕ(p)(v)(u− v)p ln(εu− εv) dv + o(1).

Denoting further by Ip the second integral in this equation divided by p!, we get on

integration by parts

Ip =
1

(p− 1)!

∫ u

−l

ϕ(p−1)(v)(u− v)p−1 ln(εu− εv) dv+
1

p!

∫ u

−l

dv ϕ(p−1)(v)(u− v)p−1.

Iterating this procedure p times, and taking into account that for each p ∈ �
1

p!

∫ u

−l

ϕ(p)(v)(u− v)p dv =

∫ u

−l

ϕ(v) dv,

we obtain

Ip =

∫ u

−l

ln(εu− εv) dv + σp

∫ u

−l

ϕ(v) dv.

The replacement of Ip in equation (23) now gives

Fp = ψ(0)

∫ l

−l

duϕ(u)

∫ u

−l

ln(εu− εv)ϕ(v) dv

+ σpψ(0)

∫ l

−l

duϕ(u)

∫ u

−l

ϕ(v) dv + o(1).

(ii) On the other hand, equation (21) in the case p = 0, the substitution u = −x/ε,

and Taylor’s theorem yield

G :=

∫ ∞

−∞

ψ(x)
�
ln x−(ϕε, x)δ̃(ϕε, x) dx

=

∫ l

−l

duψ(−εu)ϕ(u)

∫ u

−l

ln(εu− εv)ϕ(v) dv

= ψ(0)

∫ l

−l

duϕ(u)

∫ u

−l

ln(εu− εv)ϕ(v) dv + o(1).
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Therefore,

Fp −G = σpψ(0)

∫ l

−l

duϕ(u)

∫ u

−l

ϕ(v) dv + o(1) =
σpψ(0)

2
+ o(1).

By linearity, this implies

lim
ε→0+

∫ ∞

−∞

ψ(x)
[
(−1)p

�
x−p−1
− (ϕε, x)x̃

p
+(ϕε, x) −

�
lnx−(ϕε, x)δ̃(ϕε, x)

]
dx =

σp

2
〈ψ, δ〉 .

According to Definition 2, this proves equation (18), and (19) is obtained upon the

replacement x 7→ −x. �

The above balanced products of the components x−p
± supported on the correspond-

ing real half-lines can be employed further for obtaining results on singular products

of the distribution x−p.

Theorem 2. For each p ∈ � 0 , the following balanced products hold in G ( � ):
�
x−p−1 · x̃p

+ +
�
ln |x| · δ̃(x) ≈ x−1

+ − σpδ(x),(24)

(−1)p+1
�
x−p−1 · x̃p

− +
�
ln |x| · δ̃(x) ≈ x−1

− − σpδ(x).(25)

���������
. (i) Consider the following chain of identities and associations in G ( � ),

taking into account equations (9) and (18):
�
x−p−1

+ · x̃p
+ =

�
x−p−1

+ ·
(
x̃p − (−1)px̃p

−

)

= − (−1)p

�
x−p−1

+ · x̃p
− +

�
x−p−1

+ · x̃p

≈ −
�
lnx+ · δ̃(x) −

σp

2
δ̃(x) + x̃−1

+ .

Here we have used p times equation (11), as well as the fact that fũ ≈ fu, for

arbitrary f ∈ C∞( � ) and u ∈ D ′( � ) [1, § 8.2]. The equivalence relation (4) now

yields

(26)

�
x−p−1

+ · x̃p
+ +

�
lnx+ · δ̃(x) ≈ x−1

+ −
σp

2
δ(x).

(ii) Employing again equations (9) and (18), as well as the balanced product (26),

we have
�
x−p−1 · x̃p

+ =
( �
x−p−1

+ + (−1)p+1

�
x−p−1
−

)
· x̃p

+

=

�
x−p−1

+ · x̃p
+ − (−1)p

�
x−p−1
− · x̃p

+

≈ −
�
lnx+ · δ̃(x) −

�
lnx− · δ̃(x) + x̃−1

+ − σpδ̃(x)

= −
�
ln |x| · δ̃(x) + x−1

+ − σpδ̃(x).
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Whence, �
x−p−1 · x̃p

+ +
�
ln |x| · δ̃(x) ≈ x̃−1

+ − σpδ̃(x).

In view of the equivalence relation (4), this proves equation (24); the replacement

x 7→ −x proves equation (25). �

A direct consequence of Theorem 2 is the following.

Corollary 1. For each p ∈ � , the embeddings of the distributions x−p−1 and

xp
± satisfy:

�
x−p−1 · x̃p

+ − x̃−1 · H̃ ≈ − σpδ(x),(27)

(−1)p+1
�
x−p−1 · x̃p

− − x̃−1 · ˜̌H ≈ σpδ(x).(28)

Another implication from the result of Theorem 2 is given by this.

Corollary 2. The following balanced products hold for the embeddings in G ( � )
of the distributions (x± i0)−p−1 and xp

+, p ∈ � :

(29)
�

(x± i0)−p−1 · x̃p
+ +

�
ln |x| · δ̃(x) ≈ x−1

+ −
(
σp ±

i �
2

)
δ(x).

���������
. Employing equations (12), (24), and the Colombeau product (13), one

obtains

�
(x± i0)−p−1 · x̃p

+ =
�
x−p−1 · x̃p

+ ∓
(−1)pi �
p!

δ̃(p)(x) · x̃p
+

≈ −
�
ln |x| · δ̃(x) + x̃−1

+ − σpδ̃(x) ∓ i � /2δ̃(x);

which in view of the equivalence relation (4) proves (29). �

Consider further equation (24) in the particular case p = 0:

(30) x̃−1 · H̃ +
�
ln |x| · δ̃(x) ≈ x−1

+ .

This equation will serve as a starting point for another generalization obtained by

the next theorem. Its proof provides examples of balanced distributional products

that are “stable under differentiation”: the differentiation rule (15) leads again to

balanced products (which is not true in general).
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Theorem 3. For each p ∈ � 0 , the embeddings in G ( � ) of the distribu-
tions x−p−1, H , and δ(p)(x) satisfy

�
x−p−1 · H̃ +

(−1)p

p!

�
ln |x| · δ̃(p)(x) ≈ x−p−1

+ ,(31)

(−1)p−1
�
x−p−1 · ˜̌H +

1

p!

�
ln |x| · δ̃(p)(x) ≈ x−p−1

− .(32)

���������
. We shall make use of equation (14) written in the particular case q = 1:

(33) x̃−p · δ̃(x) +
(−1)p−1

(p− 1)!
x̃−1 · δ̃(p−1)(x) ≈

(−1)p

p!
δ(p)(x), p ∈ � .

Apply now the differentiation rule (15) to the balanced product (30). Taking into

account equations (10), as well as relation (3) for the consistency of differentiation

with the embedding of distributions, we obtain

−x̃−2 · H̃ + 2x̃−1 · δ̃(x) +
�
ln |x| · δ̃′(x) ≈ −x−2

+ − δ′(x).

On the strength of equation (33) with p = 1, it follows that

(34) x̃−2 · H̃ −
�
ln |x| · δ̃′(x) ≈ x−2

+ .

Further differentiation of the latter equation according to (15) yields

−2x̃−3 · H̃ + x̃−2 · δ̃(x) − x̃−1 · δ̃′(x) +
�
ln |x| · δ̃′′(x) ≈ −2x−3

+ +
1

2
δ′′(x).

Then equation (33) with p = 2 allows us to replace the balanced product x̃−2 · δ̃(x)−

x̃−1 · δ̃′(x) with the associated distribution 1
2δ

′′(x), which gives

(35) x̃−3 · H̃ +
�
ln |x| · δ̃′′(x) ≈ x−3

+ .

This procedure can be repeated further, so we suppose the following balanced product

holds that coincides with equations (34), (35) when p = 1, 2:

x̃−p · H̃ +
(−1)(p−1)

(p− 1)!

�
ln |x| ·

�
δ(p−1)(x) ≈ x−p

+ .

Differentiation of this product according to (15) yields

�
x−p−1 · H̃ + x̃−p · δ̃(x) +

(−1)p−1

(p− 1)!
x̃−1 · δ̃(p)(x) +

(−1)p

p!

�
ln |x| · δ̃(p)(x)

≈ x−p−1
+ +

(−1)p

p!
δ(p)(x).

Applying then equation (33), we prove by induction equation (31) for arbitrary

p ∈ � 0 . The replacement x 7→ −x in (31) proves equation (32). �
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