Cluster Computing
https://doi.org/10.1007/s10586-024-04673-3

=

Check for
updates

PSO-ACO-based bi-phase lightweight intrusion detection system
combined with GA optimized ensemble classifiers

Arpita Srivastava' - Ditipriya Sinha’

Received: 16 April 2024 /Revised: 28 June 2024/ Accepted: 6 July 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract

Features within the dataset carry a significant role; however, resource utilization, prediction-time, and model weight are
increased by utilizing high-dimensional data in intrusion-detection paradigm. This paper aims to design a novel lightweight
intrusion detection system in two phases utilizing a swarm intelligence-based technique. In 1st-phase, essential features are
selected using particle swarm optimization algorithm by considering imbalanced dataset. Ant colony optimization algo-
rithm is utilized in 2nd-phase for extracting information-rich and uncorrelated features. Additionally, genetic algorithm is
employed for fine-tuning each detection model. Proposed model’s performance is evaluated on different base and ensemble
classifiers, and it is observed that xgboost achieves best accuracy with 90.38%, 92.63%, and 97.87% on NSL-KDD,
UNSW-NB15, and CSE-CIC-IDS2018 datasets, respectively. The proposed model also outperforms other traditional
dimensionality reduction and state-of-the-art approaches with statistical validation. This paper also analyses objective
function of each metaheuristic algorithm used in this paper, applying convergence graphs, box, and swarm plots.

Keywords Cyber-security - Particle swarm optimization (PSO) - Ant colony optimization (ACO) - Genetic algorithm

(GA) - Lightweight intrusion detection system - Feature optimization

1 Introduction

In the modern era, the Internet plays a vital role in con-
necting individuals worldwide. With the vast growth of the
Internet, the chance of cyber-attacks increases and harms
individuals at the organization and personal levels. Cyber-
attackers exhibit high proficiency in exploiting vulnera-
bilities and causing harm to individuals. This harm covers a
wide range of consequences, which include data breaches,
online harassment, financial losses, intellectual property
theft, cyberbullying, and disruptions to essential services
like healthcare. Additional resources are being utilized and
assigned to defend against these cyber-attacks or abnormal
behavior in the network [1]. For this reason, cyber-security
is gaining popularity and is necessary to protect

DX Arpita Srivastava
arpitas.ph21.cs@nitp.ac.in

Ditipriya Sinha
ditipriyasinha87 @ gmail.com

Department of Computer Science & Engineering, National
Institute of Technology Patna, Patna Bihar, India

Published online: 06 August 2024

organizations and individuals from cyber-attacks. Various
network security measures have been proposed to mitigate
these cyber-attacks, including firewalls, antivirus software,
and malware programs, which serve as an initial line of
defense [2]. Still, these security measures cannot properly
protect organizations and individuals, especially from the
contemporary cyber-attacks on the network [1].

An intrusion detection system is a security system that
monitors, analyses the network traffic, and compares it
with predefined patterns. If the match (or mismatch) hap-
pens between the observed traffic and predefined patterns,
an alert signal is generated (based on the matching or
mismatching criteria) and sent to the network administrator
to take appropriate action. Based on the detection methods,
two types of intrusion detection systems have been devel-
oped: signature-based intrusion detection systems (SIDS)
and anomaly-based intrusion detection systems (AIDS).
SIDS compares and analyses the observed network traffic
with the pre-defined signature of the malicious behavior
stored in the database and triggers an alarm signal when
malicious traffic is detected in the network. It depends on
the signature of the attack traffic behavior and fails for a

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-024-04673-3&domain=pdf
https://doi.org/10.1007/s10586-024-04673-3

Cluster Computing

new type of attack or zero-day attacks. On the other hand,
AIDS overcomes the issues of SIDS by creating a baseline
model that depends on the behavior of normal network
traffic. If the observed network traffic deviates from the
usual baseline behavior of the model, an alarm is generated
and sent to the network administrator. It is generally useful
in detecting novel categories of attacks or zero-day attacks.

In this paper, an Intrusion detection system model is
designed using an intelligence approach. Most of the tra-
ditional intrusion detection system datasets are highly
imbalanced and contain many features that significantly
degrade the attack detection performance of the system [3].
The learning models with these many features take a long
time, resulting in worse classification results [4]. Moreover,
the model’s weight is one of the most crucial factors
influencing the accuracy and efficiency of any intelligent
model [5]. It depends upon the number of features present
in the data, which is fed as an input to the model. Efficient
resource (or power) consumption is a significant concern
for the networks of the IoT, where numerous devices are
interconnected to each other [6]. Due to the constraints of
limited resources, it is necessary to utilize efficiently the
available resources. To mitigate the aforementioned
resource constraint problems, there is a significant neces-
sity for designing of lightweight intrusion detection system
that can detect anomalies with high accuracy by utilizing
resources efficiently [7]. Most of the traditional IDS
designs do not consider the weight of the IDS model and
are heavily weighted in nature [8]. It is important to note
that the model’s weight is minimized by extracting the
most appropriate features from the network data, which
enhances the attack detection accuracy and reduces the
detection model’s prediction time and false alarm rate
(FAR).

2 Research gap

State-of-the-arts commonly employ unsupervised tech-
niques for selecting a substantial number of features in IDS
design, which reduces the attack detection rate. Many
studies [4, 9-15] also overlook the imbalanced nature of
datasets when selecting relevant features by using accuracy
and error rate in the fitness function. Furthermore, the
existing models [10, 16-18], are evaluated by applying
only one classifier, which may lead to biased performance.
On the other hand, several works proposed by
[4, 9-11, 14, 15, 19-23] neglect addressing the hyperpa-
rameter tuning of the detection models. As a result, the
attack detection rate of the model is very low. Additionally,
fine-tuning some existing detection models such as
[5, 6, 18, 24, 25], often rely on grid or exhaustive search

@ Springer

and random search techniques which have high computa-
tional cost and lack of interpretability.

In some state-of-the-art, it is revealed that the utilization
of an exhaustive search for feature selection, which
examines all possible feature combinations and selects the
best result, is an extremely naive method with very high
time complexity. Most of them are NP-hard problems due
to the high computational cost and processing time.
Metaheuristic algorithms solve NP-hard problems and
complicated optimization issues. Rather than obtaining
exact solutions, these algorithms (which are suboptimal)
find appropriate solutions in a reasonable amount of time
[4]. Traditional intrusion detection systems (IDS) are
designed using fuzzy algorithms, genetic algorithms,
swarm intelligence algorithms, data mining, machine
learning, and deep learning models. Most of them overlook
the significance of the weight of the IDS model, which
leads to computationally intensive and resource-heavy
models.

The aforesaid problems motivate to design a Light-
weight Intrusion Detection System, applying swarm intel-
ligence-based techniques and genetic algorithms with
machine intelligence approaches. The primary objectives
of the proposed model are as follows: (i) Saving attack
detection time with attack detection accuracy, (ii) Com-
pressing data features, (iii) Reducing the curse of dimen-
sionality by utilizing the combination of PSO and ACO for
feature selection. It is a powerful and efficient swarm
intelligent approach to addressing high-dimensional data
and improving the performance of various intelligence
models, and (iv) This paper employs the genetic algorithm
for optimizing the hyperparameter of the detection model
using the weighted fl-score as the fitness function. This
approach identifies the optimal hyperparameters and eval-
uates the model using multi-class classification.

Figure 1 outlines the proposed model’s block diagram,
which is divided into four major modules: data prepro-
cessing, Bi-Phase feature optimization, Hyperparameter
tuning, and Classification.

2.1 The key contributions of the proposed
approach

The main contributions of this paper are outlined as
follows:

(i) Bi-phase swarm intelligence-based feature opti-
mization: An improved Bi-Phase swarm intelli-
gence-based feature optimization technique is
proposed to reduce the number of features in the
data with the objective of designing a lightweight
IDS.

Cluster Computing

Data Preprocessing

v
™\
Phase1: PSO Based Feature Selection

Y
Phase2:

_ Bi-Phase Feature Optimization
ACO Based Feature Selection by | With Multi-Objectives
considering Correlation Metric ‘

ACO Based Feature Selection by
considering Information Gain Metric

\ 4
GA Based Hyperparameter Tuning

.

Base Detection Model

| Detection of Attacks

(~ and Normal Traffic
Ensemble Detection Model

\ 4
Classification Performance Evaluation

Fig. 1 Block diagram of proposed model

(ii) GA-based optimization of detection models: To
fine-tune various detection models (used in this
paper), a nature-influenced genetic algorithm is
applied to provide each model with the optimal
hyperparameter values.

(iii) Classification module: In classifying different
malicious and normal traffic, two categories of
detection models are applied to assess the effec-
tiveness of the proposed lightweight IDS. Base
detection models (such as DT, KNN, SVM,
logistic regression, DNN, and CNN) are utilized
in the category-1 classification, while ensemble
detection models (such as RF, xgboost, lightgbm,
catboost, majority, and mean voting) are used in
the category-2 classifications.

2.2 Paper structure

The rest of the paper is organized as follows: Sect. 3
analyses the related works, followed by the research
objective of this paper in Sect. 4. After that, Sect. 5
broadly discusses the proposed methodology, followed by
Sect. 6, which outlines the experimental results and dis-
cussion. Last but not least, Sect. 7 concludes the paper by
discussing the limitations and future direction of the work.

3 Related works

This section analyses the state-of-the-art works in the field
of intrusion detection systems. The paper mainly focuses
on designing a lightweight IDS model with fewer features
and aims for accurate classification among several mali-
cious and normal network traffic. Therefore, only those

state-of-the-art works are considered that emphasize the
feature optimization of the data for lightweight IDS design.
Additionally, this paper considers hyperparameter opti-
mization of the detection models for accurate classification
performance. In the existing works, feature optimization is
performed utilizing various metaheuristic and non-meta-
heuristic algorithms. Especially for feature optimization,
the related works in this paper are divided into two sub-
sections: non-metaheuristic feature optimization algorithm-
based and metaheuristic feature optimization algorithm-
based. This paper surveys one separate subsection for the
hyperparameter optimization of detection models. Related
work is structured into a total of three main subsections
according to the feature optimization approaches and
hyperparameter-tuning techniques such as non-meta-
heuristic feature optimization algorithms-based, meta-
heuristic feature optimization algorithms-based, and
hyperparameter tuning of detection model-based. This
section concludes by demonstrating the superiority of the
proposed model compared to the existing state-of-the-art.

3.1 Non-metaheuristic feature optimization
algorithm-based

Several traditional methods are used to reduce the data’s
dimensionality, including filter, wrapper, embedded, and
feature extraction techniques like PCA, ICA, LDA, t-SNE,
and autoencoder. This subsection describes selecting
information-rich features from the data in the IDS para-
digm without utilizing metaheuristic algorithms.

Chebrolu et al. [26] have built a lightweight IDS that can
efficiently and effectively detect intrusions in the classifi-
cation process. Irrelevant and redundant features are
eliminated from the data by implementing markov blanket
and decision tree models. Following this, bayesian net-
works and CART algorithms and an ensemble of bayesian
networks and CART algorithms are employed in con-
structing a lightweight IDS model. The bayesian network
utilized here requires either an O(n?) CI test in special or an
O(n*) CI test in general cases where n denotes the number
of domain variables. The outcomes of the model with
reduced features are 19.70s and 10.10s average training
and testing time, respectively, with only 88.84% average
accuracy. Li et al. [27] have used a wrapper-based feature
selection approach to build lightweight IDS. Modified
linear SVM and modified random mutation hill-climbing
(RMHC) approaches are used in the proposed wrapper-
based feature selection method. Decision tree algorithm is
utilized for the classification where nodes of the decision
tree contain linear SVMs. Best feature subsets are selected
separately for each attack category in the KDD CUP 1999
dataset. Two methods are compared in terms of processing

@ Springer

Cluster Computing

time in such a way that RHMC takes 1.5 h to process U2R
attacks, whereas modified RHMC processes it in under 1 h.
Mukherjee & Sharma [20] have proposed a vitality-based
feature selection method on the NSL-KDD [28] dataset,
and out of a total of 41 features, 24 best features are
selected. The process of the models is that pre-defined
accuracy, average TPR, and RMSE values are considered
threshold values. Each feature in the original data is
removed, and the performance is checked to see whether it
increases, decreases, or remains constant. Here, a sequen-
tial search is performed, and the same steps are repeated for
each feature (41 times). The importance of each feature is
examined at a time based on the pre-defined threshold
value. Thus, both time and space complexities of the pro-
posed method take O(n). The accuracy obtained by the
proposed method is 97.78%, and the time taken to build the
model is 9.42. In this case, the primary limitation is the low
true positive rate (TPR) value for the U2R attack class, as
well as the lack of addressing hyperparameter tuning.
Additionally, the model is evaluated on only one traditional
dataset and within a very complex framework. The high
complexity of the proposed framework results in high
resource utilization.

Li et al. [29] have proposed a three-phase model that
includes data preprocessing, feature selection, and anomaly
detection. L2 regularization is employed in the prepro-
cessing phase, and feature selection is performed using the
random forest with affinity propagation clustering algo-
rithm for the feature grouping. Auto-encoder is used at the
anomaly detection phase, where average RMSE is utilized
to measure the error rate of multiple auto-encoders. Despite
the affinity propagation technique being advantageous in
classifying massive amounts of data, it is very difficult with
an O(n*logn) complexity (in terms of time as well as space)
where n is the number of instances in data. The detection
time and recall rate achieved by the AE-IDS model are
2493.83s (which is very high) and 61.90%, respectively, on
the brute force—web dataset. Kunhare et al. [30] have
designed the IDS model, where features are selected by
combining the wrapper method with the filter. Random
forest algorithm is utilized for calculating the importance
of each feature in the data. It is observed that the random
forest algorithm reduces the number of features from 41 to
10, and the performance of the model is best utilizing the
PSO-based classification algorithm. Based on the experi-
mental results, it is found that the proposed framework has
a 99.26% detection rate, 99.32% efficiency, and low
computing complexity. The main limitation here is that the
data imbalance problem is not considered, and hyperpa-
rameter optimization of the model is not explored. Gu &
Lu [19] have carried out naive bayes-based feature
embedding in the initial step of the proposed model to

@ Springer

transform the data. Subsequently, the transformed train
data is used to train the SVM model, and finally, trained
models are used to detect intrusions using new test data
samples. An optimal accuracy achieved by the detection
model is 93.75%, 98.92%, 99.35%, and 98.58% on UNSW-
NB15, CICIDS2017, NSL-KDD, and Kyoto 2006 + data-
sets, respectively. However, the detection performance is
evaluated here utilizing binary classification, which con-
siders only three metrics. Moreover, the model’s hyper-
parameter tuning has not been explored. Rao et al. [17]
have proposed the two-stage hybrid IDS model. In the first
stage, an unsupervised sparse auto-encoder is employed for
the extraction of the features, and in the second stage, the
deep neural network is utilized to classify different attacks.
Auto-encoder is utilized in the first stage of the proposed
model for the feature extraction, and classification among
different attacks is performed using the deep neural net-
work model. In the classification stage, only one deep
neural network model is used. Here, the paper does not deal
with the hyperparameter optimization of the deep neural
network model. The optimal performance in terms of
efficiency is achieved with ten features for the KDD-
CUP99 and NSL-KDD datasets and 11 features for the
UNSW-NBI15 dataset. The accuracy and detection rate of
the proposed model are 99.03% and 99.48%, respectively,
on the KDD-CUP99 dataset. However, here, a standard
technique for hyperparameter tuning is not discussed, and
detection performance is evaluated on one detection model,
which leads to biased results. Kunhare et al. [31] have
explored the effectiveness of port scanning methods for
obtaining the IP addresses of networked hosts that are
vulnerable to attack. The attacker’s initial step to launch a
targeted cyber-attack is employing the port scanning
technique. The snort IDS tool is also analyzed, including its
architecture, installation process, file configuration, and
detection approach. Furthermore, real-time network traffic
implementation of the different variants of DoS attacks is
demonstrated.

Li et al. [16] have introduced a Hierarchical and
Dynamic Feature Extraction Framework (HDFEF) for
designing network intrusion detection systems (NIDS).
This approach considers multiple network flow packets to
comprehensively define network activity. Here, the optimal
performance is best achieved by combining HDFEF with
the LSTM with focal loss instead of cross-entropy loss. The
experiment is performed up to 40 epochs, which achieves
an accuracy of 99.75%, and the time for one epoch taken
by the model is 145.17s. Zhao et al. [21] have proposed a
three-phase framework that includes data pre-processing,
dimensionality reduction, and weighted stacking of clas-
sifiers with the aim of improving accuracy and efficiency.
For dimensionality reduction, correlation-based feature
selection with the deferential evolution algorithm (CFS-

Cluster Computing

DE) approach is utilized, and classification is performed
based on weights given to the base classifiers. The twenty
best features are selected by the proposed CFS-DE model,
which achieves an accuracy rate of 87.34% and 168.93s on
the KDDTest + dataset. Here, the model increases the
computation time cost because of the extra overhead of the
base model’s weight calculation. Gupta et al. [32] have
used an ensemble model for the detection of brain tumors
and classification of the cancer stage, which is either
pituitary, meningioma, or glioma cancer. The proposed
model is majorly divided into three modules: data prepro-
cessing, tumor detection, and classification. Preprocessing
of the data is performed, which includes increasing the
contrast of the MRI images, followed by image augmen-
tation with the help of CycleGAN. For the detection of the
brain tumor in the second module, modified inception
ResNetV2 is employed, which gives a binary output of
either yes or no. If the tumor is detected, then the tumor
stage is classified in the third module. It is achieved by
combining modified Inception ResNetV2 and random for-
est algorithms, which yield either of the three categories,
including pituitary, meningioma, and glioma cancer, with
an accuracy of 98%. Azimjonov & Kim [5] have developed
a lightweight IDS capable of detecting various cyber-at-
tacks while addressing the challenges posed by limited
computational resources and high-dimensional data within
the IoT environment. The number of features is reduced by
utilizing four feature selection methods: importance coef-
ficient, backward sequential, forward sequential, and cor-
relation coefficient with ridge regressor model. A
stochastic gradient descent-based classifier is used for the
classification. Here, the worst-case time complexity of the
method is O(n*) with a 92.69% accuracy rate on average,
where the data contain the ‘n’ number of features. The run
time of the model with a reduced feature set utilizing the
backward sequential algorithm is 2.5 ms on the N-BaloT-
2021 dataset. The backward sequential algorithm takes the
worst time (7.21 h) to select the appropriate features on the
N-BaloT-2021 dataset. Here, exactly the six best features
are selected by the method. Here, the main limitation is that
grid-search-based hyperparameter optimization is per-
formed, which increases the complexity of the model as a
result, takes high resource utilization. Additionally, only
traditional feature selection methods are explored. Dhanya
& Chitra [33] have designed a framework for the IoMT
environment to reduce resource utilization with compre-
hensive time. Auto-encoder is used to decode the features
while the xgboost classifier detects the malware. The
hyperparameters of the auto-encoder are tuned using the
random search, and the hyperparameters of the xgboost
classifier are tuned using the genetic algorithm. The
adaptive mutation used in the genetic algorithm enhances

the search space, hence making it complex in terms of
space. Here, cohen’s kappa metric is employed for statis-
tical validation of the model, and it achieves an accuracy of
98.66%, while cohen’s kappa is 96.37%.

3.2 Metaheuristics feature optimization
algorithm-based

This subsection discusses several metaheuristic methods
for feature selection within the data, including GA, tabu
search, MFO, and RSA. It selects the crucial and infor-
mation-rich features from the data in the IDS paradigm by
applying metaheuristic algorithms.

Khammassi & Krichen [9] have proposed a genetic
algorithm combined with a logistic algorithm-based
wrapper approach for the feature selection. The model is
divided into three stages: preprocessing, feature selection,
and classification. The optimal subset of features is
obtained from the feature selection stage, where the GA-
LR-based approach is applied. The complexity of the
proposed genetic algorithm depends upon the fitness
function here. The aim is to maximize the fitness function
within the genetic algorithm, which is a combination of
accuracy (directly proportional to fitness function) and the
number of features in the subset (inversely proportional to
fitness function). The number of features and accuracy pair
in this work is as follows: (18, 99.90%) and (20, 81.42%)
on the KDD99 and UNSW-NBI15 datasets respectively.
Vijayanand et al. [10] have proposed a method that uses a
genetic algorithm for the feature selection, and multiple
support vector machines are used to detect multiple attacks
and build IDS for wireless mess networks. Multiple SVM
classifiers are arranged linearly, and each classifier is
dedicated to each attack and normal class in the input
dataset. Performance achieved in this paper is 95.7%
accuracy, with 1.90% FPR, 0.5486s average training time,
and 0.0023s average testing time on the WMN dataset. The
time complexity of the proposed method is O(L*S), where
L represents the length of the candidate solution, and S
denotes the size of the population in the genetic algorithm.
Mohammadi et al. [14] have designed an IDS model that
combines filter and wrapper-based methods for feature
grouping and feature selection. In the data pre-processing
phase, transformation, discretization, and normalization-
based techniques have been applied. A filter method-based
linear correlation coefficient is used for feature grouping
and is called FGLCC. Additionally, the authors have
combined the cuttlefish algorithm (CFA) to improve the
performance of the model. Here, the fitness function is a
combination of detection rate and false positive rate. The
main aim of this paper is to enhance the fitness score of the
candidate solution as much as possible. To classify
between intrusive activity and normal flow, decision tree

@ Springer

Cluster Computing

classification algorithm is employed here. The efficiency of
the proposed FGLCC-CFA with the ten best features in
terms of detection rate, accuracy rate, FPR, fitness, model
building, and testing time are as follows: 95.23%, 95.03%,
1.65%, 95.46%, 83.28s, and 43.50s respectively on KDD
CUP99 dataset. Nguyen & Kim [22] have used the genetic
algorithm along with KNN and the fuzzy c-means clus-
tering algorithm for the optimal feature subset selection
and feature improvement, respectively. After selecting the
optimal feature subset, the optimal model is selected
employing GA-CNN along with fivefold cross-validation.
Only the training dataset is used in these two aforemen-
tioned steps. After that, the model is validated using a
validation set, and deep features are extracted by the CNN
model. Finally, classification models such as KNN, RF,
BG, and BS, along with fivefold cross-validation, are uti-
lized to evaluate the performance of the proposed NIDS.
Here, the model achieves an accuracy of 98.2%, FPR of
0.5%, and TPR of 95.4% with the 33 best features on the
KDDTest-21 dataset. The main limitation is that the data
imbalanced issue is not addressed, has a very high com-
putational time, and is evaluated on only one dataset.
Khammassi & Krichen [13] have used the combination
of NSGA2 and logistic regression classifier for the feature
selection in network intrusion detection. Two schemes are
utilized to test the proposed feature selection approach,
which includes multinomial logistic regression corre-
sponding to multiple classes and binary logistic regression,
which corresponds to each attack class separately in the
dataset. Three different decision tree algorithms, such as
the C4.5 decision tree, naive bayes tree, and random forest,
are applied to test the performance of the model. The main
limitation of this work is that the proposed multi-objective
function includes accuracy, which is not a better metric for
evaluating the candidate feature subsets in case of an
imbalanced dataset. The value of the weighted mean CPU
time of the proposed NSGA2-BLR is approx. 20000s while
NSGA2-MLR takes nearly 200000s on the CIC-IDS2017
dataset. Performance of the model in terms of accuracy,
detection rate, FAR, and the number of features on the
UNSW-NB15 dataset is as follows: 94.90%, 55.73%, 0.72,
and 8 to 17 respectively, for the binary class, while 66%,
64.90%, 3.85%, and 11 respectively for multi-class. Nazir
& Khan [11] have applied the tabu search algorithm to
select an optimal subset of features, and the random forest
is used to evaluate the performance of the model. In the
fitness (cost) function of the tabu search, a combination of
multiple objective functions have been used such as error
rate, false positive rate, and number of features in the
candidate solution. The main aim is to minimize the fitness
function for each candidate solution as much as it can be.
Here, the feature space is decreased by greater than 60%
because tabu search is not hampered by the complexity of

@ Springer

the search space, and the time complexity is decreased by
up to 40% with a random forest classifier. The proposed
method achieves 83.12% accuracy and 3.70% FPR, with 16
optimal features, resulting in a 12.18% cost for the UNSW-
NB15 dataset. Halim et al. [15] have designed an IDS that
performs feature selection by applying the genetic algo-
rithm for the designing of IDS. The fitness function in the
genetic algorithm uses the combination of the correlation
metric and accuracy. The correlation metric employs the
different combinations of feature sets in the original dataset
for the specific candidate feature subset. Moreover, accu-
racy is not an appropriate metric for evaluating the can-
didate feature set in an imbalanced dataset, and features are
selected in an unsupervised manner. The roulette wheel
selection function is applied for the selection of the parent
solution in the genetic algorithm. After applying the
genetic algorithm, the number of features is reduced up to
10. Different machine learning classification algorithms,
such as xgboost, SVM, and KNN, are used to detect
intrusive and normal traffic. Time and space complexities
of the proposed algorithm are O(g(p * c)) and O (p * c?),
respectively, where g, p, and c¢ represent the number of
generations, population size, and length of chromosome
within the genetic algorithm. The average accuracy of the
model is reported as 98.11%. Ogundokun et al. [34] have
applied the PSO algorithm to select the feature and design
an IDS model. Subsequently, decision tree and KNN
algorithms are utilized to evaluate the feature subset dis-
tilled by applying the PSO algorithm. This paper does not
consider the imbalanced nature of the dataset. Furthermore,
the objective function in the proposed PSO algorithm is not
discussed, which is a crucial phase for selecting candidate
feature subsets. The model achieves an accuracy rate of
98.6%, a detection rate of 89.6%, and an FPR of 1.1%. The
time and space complexities of the model have not been
discussed.

Aksu & Aydin [4] have used machine learning tech-
niques to secure CAN Buses. A modified genetic algorithm
is utilized to select the ‘m’ optimal feature according to the
k-fold cross-validation. Furthermore, five different classi-
fication algorithms are employed as candidate classifiers:
decision tree, SVM, KNN, logistic regression, and linear
discriminant analysis classifier. The overall run time
complexity of the proposed model in the worst case is
O(n’). Here, the hyperparameter of the detection model is
not addressed for better accuracy and detection rate. The
main limitation is a complex structure with high compu-
tational time. Chohra et al. [35] have used the PSO algo-
rithm for feature optimization in the anomaly detection
domain. The fitness function employs the ensemble of
different machine learning and deep learning classifiers
where weighted fl-scores of the ensemble model are

Cluster Computing

selected as the objective function. Subsequently, the
selected features are used to filter out original datasets, and
a deep learning-based autoencoder model is used for the
anomaly detection task. Autoencoder uses the following
hyperparameter settings: dropout rate of 0.5 and L2 regu-
larization, categorical cross-entropy, and mean squared
error loss functions, which are utilized in the anomaly
detection phase. Here, the time complexity of the proposed
method is O(k*n*m*log(m)), where n, m, and k represent
the number of features, number of samples, and number of
trees, respectively. The model is not hampered by space
complexity due to the utilization of 128 GB RAM, and it
reports an 89.523% accuracy and (28 min + 38s) training
time on the UNSW-NB15 dataset. Here, the fine-tuning of
only two and three hyperparameters is considered for
random forest and xgboost, respectively. Additionally,
features are not selected based on the correlation between
feature-feature and class-feature pairs. Alazab et al. [36]
have designed a network-based IDS (called CossimMFO)
by utilizing the swarm optimization algorithm combined
with the machine learning algorithm for classification. A
modified moth-flame optimizer (MFO) algorithm (a
wrapper method) is proposed for selecting the best feature
subsets, and a decision tree algorithm is applied for the
classification task. Only four of the best features are
selected in the NSL-KDD and UNSW-NB15 datasets, and
five features are selected in the KDD-CUP99 dataset. The
model achieves an accuracy rate and TPR of 97.8% and
99.6%, respectively. Dahou et al. [37] have designed an
IDS for IoT security by utilizing deep learning and meta-
heuristic algorithms. CNN is utilized to extract the relevant
features from the IoT data, followed by an enhanced reptile
search algorithm (RSA) to select the information-rich
features. The fitness function of the RSA uses a combina-
tion of error rate and ratio of selected features. The error
rate is computed by utilizing the KNN-based classification
algorithm. The main limitation of the paper is that the
convergence rate of the proposed RSA algorithm is very
low. The time complexity of the model is O(n * (t *
d + 1)), where n, t, and d indicate the number of candidate
solutions, max. number of iterations and the dimension of
each candidate solution, respectively. The model achieves
a 92.04% accuracy rate for multi-classification on the
KDD99 dataset.

Kunhare et al. [38] have proposed a model that is sep-
arated into four major modules, including data pre_pro-
cessing, feature_selection, classification, and finally,
optimization. For selecting the best subset of features from
the NSL-KDD data (which originally contains 41 features),

here genetic algorithm is applied (which reduces the
number of features to 20). These reduced features are uti-
lized to filter the dataset with only these feature sets. The
filtered dataset is used in the classification module, which
employs the hybrid method combining supervised and
unsupervised classifiers such as decision trees and logistic
regression. In the last module, several metaheuristic algo-
rithms, including GWO, PSO, MVO, and BAT, are applied
for optimization. It is observed that the GWO algorithm
gives the best accuracy (99.44%), FPR (0.60%), and
detection rate (99.36%). Here, the time complexity of the
proposed GWO-based algorithm is O(n*logn). Chowdhury
et al. [23] have built a network intrusion detection system
to identify malicious traffic using the information-rich
feature subset. Various combinations of the PSO algorithm,
GA algorithm, and threshold correlation (TC) have been
explored. PSO and GA algorithms are used to remove the
redundant features, and threshold correlation is used to
remove the correlated features by setting a certain thresh-
old value. In phase 2 of the classification model, different
ensemble models have been employed that best perform at
phase 1, including majority voting, mean voting, and cat-
boost. The performance of the model is 73.23% accuracy
and 187.125s run time with the SVM classifier and 98.39%
accuracy and 5.862s run time with the xgboost classifier for
binary and multiclass classification, respectively. Kumar
et al. [12] have used the grasshopper optimization-based
algorithm to extract the most essential and relevant features
from the datasets. Deep residual convolutional neural
networks are applied to design an IDS for classification,
which further optimizes utilizing the gazelle optimization-
based algorithm. The aim is to minimize the fitness func-
tion for each candidate solution as much as possible. The
time complexity of the model is O(Maximum_Iteration * m
* (m*d)), where m represents the number of candidate
solutions utilized, and d denotes the size of the problem.
Here, the model achieves the following results: 99.17%
accuracy, 0.87% FAR, 99.08% detection rate, 47s pro-
cessing time, and 23.01s testing time. Here, the error rate in
the fitness function is utilized, which is a very common
approach.

3.3 Hyperparameter tuning of detection model-
based

Several studies use traditional methods for optimizing the
hyperparameter values, such as grid search, random search,
and bayesian optimization methods, and some use meta-
heuristic methods like the firefly algorithm. This subsection

@ Springer

Cluster Computing

outlines the selection of the optimal hyperparameters of the
models in the IDS paradigm.

Wazirali [18] has proposed a method that is majorly
separated into four phases: data pre-processing, feature
selection, classification, and model validation. This paper
mainly addresses the zero-day attack problem to reduce
model building and model testing time. In this paper, the
optimized hyperparameters are as follows: number of
neighbors, distance function and weight, and data stan-
dardization. The main drawback of this paper is that the
model is evaluated only on a single classifier, such as
KNN. Furthermore, the hyperparameter of the model is
optimized using the exhaustive search technique, which is a
computationally extremely inefficient approach (takes
exponential time O(n¥)), where n and k are no. of hyper-
parameter values and no. of hyperparameters respectively.
The accuracy and fl-score of the presented framework are
98.49% and 98.43%, respectively. Kunang et al. [24] have
separated the proposed architecture into three modules: a
data preprocessing module, a deep learning module with
hyperparameter optimization, and an attack detection
module. Furthermore, hyperparameter optimization is used
in the second module to determine the best model. The
deep autoencoder is used as the model in the second
module for feature extraction, which includes the encoding,
decoding, and bottleneck layers. Achieved values of the
accuracy rate, training, and run time of the proposed
framework are 83.33%, 382.48s, and 0.968s, respectively,
with multiclass classification on the NSL-KDD dataset.
Batchu & Seetha [25] have used machine learning models
to detect DDoS attacks. During data preparation and pre-
processing, the data undergo five phases: exploratory
analysis, sample balancing with techniques like SMOTE
and Tomek, imputing missing/infinite/zero values with
median values, feature normalization using a standard
scaler, and label encoding for categorical features. Feature
selection is performed using a combination of two tradi-
tional feature selection techniques, filter and embedded-
based, and the model’s hyperparameters are optimized by
utilizing the grid search technique. The main drawback of
the paper is that grid search-based hyperparameter tuning
increases the time complexity of the model exponentially
(O(n*)). Here, a gradient boosting algorithm is utilized,
which takes O(n * f * Hyees), Where f and ny,,.s are a number
of features and a number of trees respectively. The per-
formance of the proposed model in terms of accuracy and
run time is 99.97% and 40.78s, respectively.

Jovanovic et al. [39] have designed a network intrusion
detection system (called XGBoost-TSFA) using the
improved firefly and xgboost algorithms. The six different
hyperparameters of the xgboost algorithm (including eta,
max_depth, gamma, colsamplel_bytree, min_child_weight,

@ Springer

and subsample) are optimized using the improved firefly
algorithm, which enhances the detection capabilities of the
IDS. Evaluation of the proposed framework is performed
on the UNSW-NBI15 dataset. The experiments are per-
formed using a population size of ten with fifteen itera-
tions, and the model is evaluated by applying binary and
multi-class classification with 97.49% and 86.96% accu-
racies, respectively. To enhance the detection abilities,
reducing the false positives and false negatives ratio [40]
have proposed a NIDS, which uses the xgboost algorithm
to identify malicious traffic. To improve the performance,
the hyperparameters of the xgboost algorithm are opti-
mized using the modified sine—cosine metaheuristic algo-
rithm. The performance of the proposed model is evaluated
utilizing the NSL-KDD dataset and compared with another
metaheuristic algorithm based on optimized xgboost and
without optimized xgboost algorithm. Kalita et al. [41]
have used a drift detection technique to measure the
magnitude of the drift in the dynamic or non-stationary
environment. Only the hyperparameters of the SVM clas-
sifier (C & 7) are discussed, and based on the magnitude of
drift, one of three mechanisms is selected. The first
mechanism is the introduction of the base optimization
algorithm, i.e., the moth flame optimization algorithm
(MFO), and random initialization of the algorithm is con-
sidered here. In the second mechanism, lightweight-MFO
is introduced, which uses the knowledge base for the ini-
tialization of the algorithm. In the third mechanism, the
knowledge base search space is utilized to achieve the
optimal value of the SVM hyperparameters. The execution
time at the 10th time instance with and without drift
detection module are 17,473.99s and 28,321.6s, respec-
tively, and the average accuracy obtained by the model is
97.5%.

Savanovi et al. [42] have developed an IDS model for
the security of IoT devices for healthcare 4.0. Here, the
machine learning classification algorithm is utilized along
with the metaheuristic algorithms. The modified firefly
algorithm is utilized to optimize the xgboost model’s
hyperparameters. To select the best feature within the
dataset, the KNN algorithm is applied with the value of
K = 5. As a result, out of 50 features, ten best features are
selected. The proposed model is compared with the other
eight metaheuristic algorithms such as FA [43], GA [44],
PSO [45], ABC [46], ChOA [47], COLSHADE [48], and
SASS [49]. The SHAP plot is utilized to analyze the
selected features, and statistical validation of the observed
results is performed using the p-values at significance
levels 0.1 and 0.05. The accuracy and fl-score of the
proposed framework are 99.69% and 99.69%, respectively.
Six hyperparameters of only xgboost based detection
model are tuned. Saheed & Misra [50] have designed an
intrusion detection system for IoT security, which

Cluster Computing

considers the average probability of a voting classifier. The
dimensionality of the dataset is reduced with the hybrid
approach utilizing information gain for feature selection
and PCA for feature extraction. The voting classifier uses
four machine and deep learning-based base classifiers such
as random forest, KNN, decision tree, and multilayer per-
ceptron. The hyperparameters of these base classifiers are
optimized using the gray wolf optimizer. The class
imbalance issues present in the IoT datasets (such as
UNSW-NB15 and BoT-IoT) are handled with the help of
SMOTE. The performance attained by the framework in
terms of accuracy, detection rate, and FAR is 99.87%,
99.89%, and 1.20%, respectively. Azimjonov & Kim [6]
have presented a framework with two main contributions
based on implementation and methodology. In the imple-
mentation, the dataset preparation portion has been dis-
cussed, such as balancing imbalanced data, removing
duplicate records, transforming categorical data into
numerical data, dealing with missing values, and splitting
the data into train and test sets. Four feature selection
techniques have been applied in the methodology: forward
sequential, backward sequential, importance coefficient,
and correlation coefficient with linear SVM classifier.
Moreover, the hyperparameters of the ridge regressor and
LSVM classifier have been tuned utilizing the grid search-
based hyperparameter tuning approach. However, the grid
search-based hyperparameter tuning approach is inefficient
in terms of computational cost and high-dimensional data.
Grid search explores all combinations of the search space,
and hence, it takes exponential time (e.g. O(r*)). Although
the model’s accuracy is 94.64%, it takes an extremely long
training time of 5394.409 ms. Table 1 summarizes the
state-of-the-art work by discussing the five major compo-
nents such as (i) Objective, (ii)) Method, (iii) Result, (iv)
Advantages, and (v) Limitations.

4 Research objective

This paper proposes a lightweight intrusion detection sys-
tem to address the aforementioned challenges. The pro-
posed model uses the swarm intelligence-based technique
to select the most crucial features from the network traffic
dataset. There are three main advantages of using swarm
intelligence-based feature optimization techniques, which
are as follows: (i) Capability to adjust to the dynamic

environment, (ii) Resilience to individual failures, and (iii)
Capability to effectively explore a broad solution space.
Since the IDS datasets are imbalanced and contain many
features, they extensively obstruct the accuracy of attack
detection [3]. To account for the imbalanced nature of the
dataset, the PSO-based feature selection algorithm incor-
porates the geometric mean of ensemble models into its
fitness function. The metric “geometric mean” is said to be
superior to accuracy in dealing with the imbalanced nature
of the dataset [51]. Here, feature selection is performed
using a supervised approach, which prioritizes the target
class when determining the optimal feature subset by
introducing the correlation metric and information gain
metric into the fitness function in the ACO-based feature
selection approach. On the other hand, this paper considers
the hyperparameter tuning of the different detection models
using the nature-influenced genetic algorithm-based tech-
nique, which gives optimized results even in complex and
high-dimensional data scenarios. The genetic algorithm-
based fine-tuning technique determines the best hyperpa-
rameter settings for each detection model after every
generation. This search process continues iteratively till an
optimized result can be achieved. Moreover, the potency of
the proposed lightweight Intrusion Detection System is
examined on twelve different detection models, each on
three different datasets. A detailed description of the pro-
posed methodology of this paper is given in the following
section.

5 Proposed methodology

The Proposed Light-Weight IDS model is mainly devel-
oped employing four major modules, which are given as
follows: (i) Dataset Description & Data Preprocessing, (ii)
Bi-Phase Swarm Intelligence-based Feature Optimization
(Phasel: PSO-based feature selection, and Phase2: ACO-
based feature selection), (iii) Hyperparameter Tuning (ge-
netic algorithm-based hyperparameter tuning), and (iv)
Classification (by applying either Base or Ensemble
detection models). Figure 2 depicts the overall flow of the
proposed model. Algorithm 1 summarizes the complete
step-by-step development of the Light-Weight IDS model
employing all four major modules discussed above. Table 2
illustrates the abbreviations and their description used in
the algorithm.

@ Springer

Cluster Computing

Table 1 A concise summary of state-of-the-art works

Paper Objective Method Result Advantages Limitations
Chebrolu Designing a Bayesian Networks, The proposed model e Multiclass e Real-time
et al. [26] lightweight IDS CART algorithm, an achieves accuracy for classification on the implementation is not
model ensemble of bayesian Normal, Probe, DoS, KDD Cup 99 dataset explored
networks and CART U2R, and R2L attacks e Only one dataset is
algorithm 100%, 100%, 100%, used
84%, and 99.47%
respectively
Li et al. [27] Developing Linear SVM, Random Performance is evaluated e Features are selected e Wrapper based

lightweight IDS

Mukherjee & Designing
Sharmas effective and

[20] efficient NIDS
Khammassi Building NIDS
& Krichen with reduced
[9] features
Vijayanand Developing
et al. [10] wireless mesh
network IDS
Mohammadi ~ Aiming to design
et al. [14] an IDS with
reduced features
and high
accuracy

Mutation Hill
Climbing, wrapper-
based feature selection
technique, Decision
Tree

Naive Bayes;
Correlation-Based,
Information-Based,
and Gain Ratio-based
feature selection

Wrapper based with GA,
Logistic regression,
Decision Tree

genetic algorithm, SVM

Filter & wrapper
methods, linear
correlation coefficient
& cuttlefish algorithm,
Decision Tree

on the KDD CUP99
dataset; 18 and 8 s is
the time consumed on
all features and
selected features,
respectively

The proposed FVBRM
model achieves
97.78% accuracy, and
the time taken to build
the model is 9.42

Approximately 99.8%
and 81.2% accuracies
are reported against
KDD99 and UNSW-
NBI15 datasets
respectively; 18 and 20
features are selected in
KDD99 and UNSW-
NB15 datasets,
respectively

83.54% and 95.56%
accuracies are achieved
on the WMN dataset
512-bit and 1024-bit,
respectively

95.03% accuracy is
achieved on the KDD
Cup 99 dataset

for each attack class
separately

e Multiclass
classification is
performed,

e The ROC curve for
each attack class is
evaluated

e A simple approach is
applied

e Out of 41 features, 24
optimal features are
selected

e Three decision tree
algorithms (C4.5, RF,
NBTree) are used,

o Multi-class
classification is
performed

o Multi-class
classification is
performed

e Performance is
evaluated on multiple
datasets

e Accuracy rate,
detection rate, and
false positive rate are
improved for the
proposed FGLCC-CFA
model

e Proposed model
(FGLCC-CFA)
performs better with
less number of features
(10) compared to
FGLCC

feature selection
technique is
computationally
inefficient,

Only one dataset is
used

One traditional
dataset is used

Hyperparameter
tuning is not
addressed

Low TPR value for
U2R attack class

Complex framework

Hyperparameter
tuning of the
classification model
is not addressed,

Weka software is
used in the
classification phase

Only the SVM
classification
algorithm is used for
evaluating the model,

Hyperparameter
tuning is not
addressed

Performance is
evaluated only on the
KDD-Cup 99 dataset,

e Not consider the
imbalance nature of
data

e Fine tuning of the
classifier is not
performed

@ Springer

Cluster Computing

Table 1 (continued)

Paper

Objective

Method

Result

Advantages

Limitations

Kunhare
et al. [30]

Li et al.,
2020 [29]

Nguyen &
Kim [22]

Khammassi
& Krichen
[13]

(Wazirali,
2020) [18]

Rao et al.
[17]

Designing IDS
with reduced
features

Building AE-IDS
to improve
accuracy and
decrease training
time

Designing NIDS
with reduced
features

Designing of
NIDS, which
reduces
computational
time

Designing an IDS
for detecting
Zero-day attacks
with reduced
data
dimensionality

A hybrid model is
proposed for the
intrusion
detection

RF, PSO, KNN, SVM,
LR, DT, Naive bayes

Auto-Encoder, Affinity
Propagation, Random
Forest, Gaussian
Mixture Model,
K-Means, RMSE, L2
Regularization

CNN, GA, Fuzzy
c-means clustering,
Bagging classifier,
KNN, and RF

C4.5 DT, Random forest,

Naive bayes tree,
Logistic regression

Semi-supervised

approach, PCA, KNN,

fivefold cross-
validation, one hot
encoding, standard
scalar

Sparse auto-encoder,
DNN

99.32% efficiency and
99.26% attack
detection rate are
observed on the NSL-
KDD dataset

Recall rates are 2.99%,
11.32%, 17.22%, and
23.37% for DoS
attacks-Hulk, SQL
Injection, Brute Force
—XSS, and Infiltration
datasets, respectively

98.2%, 0.5%, and 95.4%
accuracy, FPR, and
TPR, respectively are
achieved on the NSL-
KDD dataset

98.99%, 66.00%, and
95.16% accuracies are
achieved on NSL-
KDD, UNSW-NBI15,
and CIC-IDS2017
datasets, respectively

98.87% accuracy is
achieved by the
proposed model on the
NSL-KDD dataset

99.98% accuracy and
99.99% detection rate
are obtained on the
UNSW-NBI15 dataset

e High attack detection
performance

e Ten best features are
selected

e Computationally
efficient

e The CSE-CIC-IDS
2018 dataset is used in
the overall experiment,

e Binary classification is
performed

e Feature construction
with three-layered
architecture

e Validation method

o Multi-class
classification is
performed

e Both multi-class and
binary classification
are performed

e Evaluated on three
benchmark datasets

e Employing multiple
objectives to select
appropriate features

e Optimal values of
number of neighbors
(k), distance function,
distance weight, data
standardization,

¢ Dimensionality of data
reduced from 42 to 2

e The L1-regularization
technique is utilized to
create an optimized
model,

e KDDCup99, NSL-
KDD, and UNSW-
NBI15 datasets are used

e Hyperparameter
optimization of the
classifiers is not
discussed

Data imbalanced
issue is not
considered

Performance is
evaluated on only one
dataset,

Recall rate is very
low, detection time is
high

Only one dataset is
used

Data imbalanced
issue is not addressed

High time complexity

Hyperparameter
tuning of the
classification models
is not addressed

The proposed multi-
objective function
does not consider the
imbalanced nature of
the dataset

Only the KNN
classification
algorithm is used,

Exhaustive search-
based
hyperparameter
tuning is performed,
which is
computationally very
expensive

No standard
technique is
considered for the
hyperparameter
tuning of the
classification model;

e Only one
classification model
is utilized

@ Springer

Cluster Computing

Table 1 (continued)

Paper Objective Method Result Advantages Limitations
Nazir & Designing NIDS Tabu Search, Random 83.12%, and 3.7% ® 16 best features are e Only one dataset is
Khan [11] with the aim of Forest accuracy and FPR, selected used for evaluating
reducing respectively are the performance,
features, error achieved e The imbalanced
rate, FPR dataset problem is not
addressed,

e Hyperparameter
tuning of the
classifier is not
addressed

Halim et al. Designing IDS GA, Xgboost, SVM, Performance of the e Multi-class e Ensembing approach
[15] with a reduced KNN proposed approach is classification is is not utilized
feature set 98.94%, 98.90%, and performed o Unsupervised feature
utilizing an 96.48% on CIRA-CIC- 4 Efficiency of the selection is
unsupervised DOHBrw-2020, Bot- proposed model is performed
fmanner };};SZ?: g?i?gg?ls eyaluated on three e The fitness function
» TSP ¥ different datasets uses accuracy, that is
e Performance with the not a suitable metric
reduced feature set for imbalanced data
increases e Hyperparameter
tuning of different
classifiers is not
discussed
Gu & Lu Building IDS Naive bayes, SVM 93.75%, 98.92%, e Performance of the e Binary classification
[19] model using 99.35%, and 98.58% proposed model is is performed,
SVM and Naive accuracies are achieved eval'u.ated on four e Only three metrics
bayes on UNSW-NBI15, traditional datasets (accuracy, detection
CICIDS2017, NSL- rate, and FAR) are
KDD, and Kyoto considered,
2006 + datasets,
respectively * Hyperparameter
tuning of the model
has not been carried
out
Batchu & Designing a model Logistic regression, 99.97% accuracy is e High accuracy is e Filter + Embedded

Seetha [25] to detect DDoS
attacks with

reduced features

Ogundokun Designing NIDS
et al. [34] for detecting
network
anomalies

utilizing the
semi-supervised
technique

KNN, DT, SVM,
Gradient boost, Grid
search-based
hyperparameter tuning,
SMOTE + Tomek,
standard scaler, label
encoding

PSO + DT, and
PSO + KNN

achieved by the
gradient boost model
on the CICDD0S2019
dataset

Detection accuracy for
PSO + KNN is 96.2%
and for PSO + DT is
89.6%

obtained,

e Very less computation
time (40.78 s),

e Removal of
unnecessary features
results in 80 number of
new features

e PSO + KNN gives
better performance
than PSO 4 DT

based feature
selection technique is
chosen, which falls
under traditional
feature selection
technique,

Grid search-based
hyperparameter
optimization takes a
very long time to find
optimal
hyperparameters

Only one dataset is
used for evaluating
the proposed model

e Binary classification
is performed

Performance is
evaluated on only one
dataset (i.e. KDD-
CUP 99),

e Performance is not

evaluated on any
deep learning model

@ Springer

Cluster Computing

Table 1 (continued)

Paper Objective

Method

Result

Advantages

Limitations

Kunang et al.
[24]

Designing NIDS
with optimized
hyperparameters
to classify the
attacks

Lietal. [16] Designing network
IDS with
hierarchical and
dynamic feature
extraction
structure

(HDFEF)

Zhao et al.
[21]

Designing IDS
with low
dimensionality
and weighted
classifiers

Chohra et al. Designing of

[35] network anomaly
detection model
with a reduced
number of
features

Aksu & Designing IDS for

Aydin [4] the CAN buses’

security
Chowdhury Bi-phase NIDS is
et al. [23] designed with

reduced features

One-hot encoding, min—
max scaling, Deep
auto-encoder, Deep
neural network,
Stacked auto-encoder,
and auto-encoder, grid
and random search for
hyperparameter tuning

CNN, RNN, LSTM, and
GRU

One-hot-encoding, min—
max scaler, CFS-DE,
Random forest,
Xgboost, KNN, and
Logistic regression

Autoencoder, PSO
algorithm, Random
forest, Xgboost, CNN,
NN, Catboost,
LightGBM

Modified genetic
algorithm, SVM, DT,
KNN, and Linear
discriminant analysis

PSO, GA, Threshold
correlation algorithm,
voting classifier, MLP,
KNN, DT, RF, and
CatBoost

83.33% overall accuracy
is achieved on NSL-
KDD testing data

F1-scores achieved by
HDFEF are 99.84%,
99.24%, and 98.49%
for CIC-IDS2017,
UNSW-NB15, and
CSE-CIC-IDS2018
datasets, respectively

87.44% and 99.87%
accuracies are achieved
on NSL-KDD and
CSE-CIC-IDS2018
datasets, respectively

92.09%, 92.90%, and
97.30% f1-scores are
achieved on NSL-
KDD, UNSW-NB15,
and IoT-Zeek datasets
respectively

98%, 96.5%, and 99.3%
accuracies are reported
against HCRL-car
hacking, UNSW-
NB15, and CIC-
IDS2017 datasets
respectively

Phasel and Phase2 have
achieved detection
accuracies of 99.82%
and 99.41%
respectively

e Multiclass
classification is
performed on two
datasets such as NSL-
KDD and CSE-CIC-
IDS2018

e Three datasets are used
such as CSE-CIC-
IDS2018, CIC-
IDS2017, and UNSW-
NBI15

e Weights of the base
classifier are calculated
depending on their
classification
performance

e Performance is
evaluated on three
datasets

e The AUC value for the
Zeek oversampled
dataset is 0.990

e Best performance is
achieved on 5, 7, and 9
subsets of features,

e Both multi-class and
binary classification is
performed

e Combinations of
different algorithms are
used for feature
selection

¢ Evaluation is
performed in two
phases

e Real-time
implementation is
performed

e Hyperparameters are
optimized using the
automatic method,
which merges two
approaches, such as
grid and random
search,

e Hyperparameter
optimization using
these techniques
takes a comparatively
very long time

o Statistical features
from multiple
network flow traffic
are not taken

Performance is
assessed using only a
limited number of
classification models

Complexity is
increased

Hyperparameter
tuning of the
classifiers is not
addressed

Fine-tuning of only
two and three
hyperparameters is
considered for
random forest and
xgboost classification
models, respectively

Correlation-based
feature selection is
not explored

Hyperparameter
tuning of the
classifiers is not
addressed

o Fitness function used
in the PSO and GA is
not discussed

¢ Fine-tuning of
different classifiers is
not explored

@ Springer

Cluster Computing

Table 1 (continued)

Paper

Objective

Method

Result

Advantages

Limitations

Kalita et al.
[41]

Savanovi
et al. [42]

Kumar et al.
[12]

Azimjonov

& Kim [6]

Dhanya &
Chitra [33]

Designing an IDS
model for the
non-stationary
domain

Designing IDS for
IoT devices for
Healthcare 4.0

Designing NIDS to
improve the
security of the
network

Designing an
accurate and
lightweight IDS
for IoT networks

Building an
intelligent
system that
reduces resource
utilization and
time in the IToMT
environment

SVM, Moth flame

optimization
algorithm, drift
detection technique

Modified Firefly

algorithm, Xgboost,
KNN, SHAP

residual CNN, Gazelle
optimization

algorithm, Grasshopper
optimization algorithm

Ridge regressor, Linear

SVM, Forward
sequential, Backward
sequential, Correlation
coefficients,
Importance coefficient

Auto-encoder, Xgboost,

genetic algorithm,
Hyperparameter tuning
using random search

97.5% average accuracy

is achieved on the
NSL-KDD dataset;

Overall reduction in

computation time

99.17% accuracy is

obtained on the ICU
dataset

One-hot-encoding, Deep 99.56%, 99.06%, and

99.12% accuracies are
achieved on CIC-
IDS2017, UNSW-
NB15, and
Cicddos2019 datasets,
respectively

95.66%, 99.48%, and

99.81% maximum
accuracies are achieved
on KDD-CUP-1999,
BotloT-2018, and
N-BaloT-2021

datasets, respectively

98.98% and 98.69% of

accuracies are reported
against datasetl
(Wustl, 2020) [66] and
dataset2 (Shahane,
2021) [67] respectively

e The optimal
hyperparameter values
of the SVM classifier,
such as C and y are
obtained

¢ Binary and multi-class-
classification

e SHAP analysis
o Statistical validation

e 10 best features are
selected

e Multi-class
classification,

e Optimizing the
hyperparameters of the
DRCNN

o The feature sets are
reduced up to 6
features out of 40, 15,
and 115 features for
KDD-Cup-1999,
BotloT-2018, and
N-BaloT-2021
datasets, respectively

e Results are evaluated
on two datasets,
e Hyperparameter tuning

of the models is
addressed

e Only
hyperparameters of
the SVM classifier
are optimized,

Hyperparameter
optimization of the
other classifiers, such
as KNN, ANN, DT,
RF, etc., are not
explored,
Performance is

evaluated on only one
dataset

Only the xgboost
model is analyzed for
hyperparameter
tuning

Few hyperparameters
(six only) are
considered for
analysis

Error rate is used in
the fitness function,
which is a very
common approach

Grid search is used
for the
hyperparameter
tuning of the ridge
regressor;

LSVM is an
inefficient approach
in terms of
computational cost
and for a large
number of
hyperparameters

Optimal
hyperparameter
values of only the
Xgboost classifier are
given

@ Springer

Cluster Computing

Table 1 (continued)

Paper Objective Method Result Advantages Limitations
Azimjonov Designing a Stochastic gradient The best accuracy o Six best features are o Traditional feature
& Kim [5] lightweight descent classifier, achieved by the IDS selected selection approach is
Intrusion feature optimization model is 96.61%, o Duplicate records are utilized
detection sy.stem using importance 94.76%, and 98.42% dropped e Grid search-based
for IoT devices coefﬁcn;nf, 1})ackws.rd %n tIhfiF 1(2]31)8-1993, « Three datasets are used hyperparameter
sequential, Torwar otloT- » an such as KDD-CUP- tuning increases the
zzcrl;leizgglr; 2ggfﬁcient gzl-ggii)sT-rzegzelectivel 1999, BotloT-2018, computa?ional
: ’ » Tesp Y N-BaloT-2021 complexity
grid search for .
hyperparameter tuning * R eal-time .
implementation of
the data or

implementation of
the realistic data is
not explored

DATASET __
(TRAIN+TEST)

DATA PREPROCESSING
Filling Missing Label Elimination of “I_V_FS'HS::::".JZ[: '";
Values Encoding Outlier

PHASE2: ACO-BASED FEATURE SELECTION

LuT
e e No. of Ants
06 |03 04 b
07 | 02 02 3 |az[a;| - |2,
0s 03 L
0.7 0.1
or NO
&
=
=] 2
=

1f all Ants visit
3[s]8[13]20 3

Best Feature Subset

< Optimal Subset of Features

Select
An Ant

If Required
Subset Size

Feature Subset Size Probability Calculation

Clean Train
ta

Clean Test
ta

1[2]3]-Is PPy e unvisited

J | S———
PHASE1: PSO-BASED FEATURE SELECTION

Pgﬁugﬁ! of P.LFEI 153 Particle P n
ojofoft|[1|=»|t1|O]1|[1]1

a,_Feature_Path

Unvisited_Features

| Fitness Score Computation based on G_Mean
= Models

<«[2[5]7]¢]19]

[1Te]1220]21]

Y
of Ensemble |

Update Personal Best 1l
1]1|0]1]0 1]0]1|0|1

Reached ?

YES [Fitne:

Lres

Optimal Solution [0 [1 o] 1]0]

ss Score Computation based on Mutual
Information OR Correlation Metric

L i

Subset of Features

sainjea Jo Josqns buisn ejeq Bumies) Bunoajeg

b

GA-BASED HYPERPARAMETER TUNING

Parents

[Filtered Train Data Filtered Test Data

| |
1)

sainjea Jo Josqns Buisn eyeq Bunysay Bunoojog

CLASSIFICATION

$ Training of Base & Ensemble Models

LTeslinu of Base & Ensemble Models

4% A4 \ 4
Initial e — Parent Process L¢. | | Train Data Test Data ‘
mmmm on Weighted F1-Score J Roulette Ll l’_‘n "zzbn"u Hag Moz P t i
; Wheel "
b ! saecton | PPaPaPed 8 i
2 Termination NO, Function . §
SIET s Pl | |5 D e vocers
ves Hay Hzz Hs3 Hsy @
<—Optimal Hyperparameter Set L»
fisptnal Hypsrperametec SEL__ IR Farbtsafiasbiad v
s "sz'sz"sJFn " Catboost
= - Add Child Solutions - . 5 | Fapzfis] J L
2 Bl <STSePopuiation | 5 ,—M
a ¥ .
§ ok | | B

Fig. 2 Overall Working of Proposed Model

@ Springer

Cluster Computing

Table 2 Algorithm Parameters

Table 3 Description of datasets used in this paper

Parameter Description Dataset NSL- UNSW- CSE-CIC-
KDD NBI15 IDS2018
Fp A subset of features after applying PSO
Fa An optimal subset of features after applying ACO ~ No. of Features (except 42 44 79
Mg Base Model target cla.ss.)
Mg Ensemble Model No. of Training Samples 1,25,973 1,75,341 1,59,784
No. of Testing Samples 22,543 82,332 39,946
Hg Best_Hyperparameters
Py Classification Report for Base Model
Pe Classification Report for Ensemble Model
Algorithm 1 Proposed model
Input: Original Dataset (Do Train, Do Test)
Output: Lightweight IDS (LIDS) Model

1 procedure LIGHT-WEIGHT INTRUSION DETECTION MODEL

2 begin

3 I)C Trains DC Test < Data Preprocessing (DO Trains I)O Test)

4 Fp < Phaselfor Feature Selection (D¢ rain)

5 DF Trains DF Test <—Fi1tering(DC Trains DC Tests FP)

6 F < Phase2 for Feature Selection (D Train)

7 Drrain, Drest < Filtering(D train, Dr Test» Fa)

8 Hp < Hyperparameter Tuning(Dryin, Dres, Mp Or Mg)

9 Py or Pg « Classification (Dryin, D1esty H, Mp 01 M)

10 LIDSggst < Best Performing Model either My or Mg (based on Py or Pg values)

11 return LIDSggst

12 end

13 end procedure

5.1 Dataset description & data preprocessing

The first module of the proposed framework discusses the
dataset and the preprocessing steps applied in this paper.

5.1.1 Dataset description

Three most popular Intrusion detection system traditional
datasets (such as NSL-KDD [28], UNSW-NB15 [52], and
CSE-CIC-IDS2018 [53]) are utilized in this paper. The
NSL-KDD [28] dataset is an enhanced form of the KDD
Cup’99 dataset [54]. A detailed description of the CSE-
CIC-IDS2018 dataset is present at (https://www.unb.ca/cic/
datasets/ids-2018.html) [55]. All these datasets are imbal-
anced. Here, complete training and testing sets of NSL-
KDD and UNSW-NBI15 are used. Since the CSE-CIC-
IDS2018 dataset contains many records, only the samples
belonging to a subset of Wednesday traffic are randomly
selected in this paper. Table 3 shows a brief description of
the datasets used in this paper.

@ Springer

5.1.2 Data preprocessing

Data preprocessing is required for cleaning the dataset as
the first step of the proposed framework since the dataset
contains null or redundant values, outliers, and categorical
values. Here, the data preprocessing process is divided into
3 steps, which include (i) Filling Missing Values, (ii) Label
Encoding, and (iii) Outlier Removal. The sequential flow
of data preprocessing steps used in this paper is described
as follows:

(i) Filling Missing Values: Some of the entries
contain “Null” values, which give no information
about the detection of attack. Therefore, in this
paper, a particular row’s ‘null’ values are filled
with a top value of that column.

(i) Label Encoding: In the datasets used in this paper,
some of the features contain categorical values
that need to be converted into numerical values.
For this reason, the label encoding technique is
applied here. By doing label encoding, the values

https://www.unb.ca/cic/datasets/ids-2018.html
https://www.unb.ca/cic/datasets/ids-2018.html

Cluster Computing

of categorical features can be converted into their
corresponding numerical values.

(iii)) Outlier Removal: Outlier removal is the process of
normalizing or scaling the features in the data to a
specific range. In this paper, min—max scaling is
applied, and its formula is given in Eq. (1) as
follows:

x.scaled = (x — x.min)

(1)

(x.max — x.min)

Where x is the specific feature’s original value, x.min is
the minimum value of that specific feature, x.max is the
maximum value of that specific feature, and x.scaled is the
specific feature’s scaled value within the range [0,1].

5.2 Bi-phase swarm intelligence-based feature
optimization

To make data with the most efficient utilization for building
the model, appropriate and scrupulous selection of the fea-
tures in the data is one of the important parts that is being
addressed in this module. In the context of machine learning
or deep learning, the model’s weight is highly dependent on
the number of features in the data. The weight of the model is
highly dependent on the number of features used in training
the model. If the data contains high dimensions, the model
weight becomes high. Many numbers of redundant and non-
informative features in the training data make the model
heavyweight. Therefore, the number of features plays a
crucial role in designing a lightweight IDS model.

This module is divided into two phases; hence, it is called
Bi-Phase Swarm Intelligence-based Feature Optimization.
The term swarm intelligence [56] is used because it is
influenced by how a group of simple agents works together to
solve complicated or intricate problems in social organisms.
These fields come under the nature-inspired metaheuristic
class of algorithms. A modified version of two algorithms,
particle swarm optimization, and ant colony optimization, is
applied to the proposed approach. The reason behind intro-
ducing two-phase feature optimization is to build the model
as light as possible, which can save time and reduce over-
fitting and overall cost.

However, the field of optimization has seen the emer-
gence of several advanced algorithms such as the reptile
search algorithm (RSA) [57], red fox optimization algo-
rithm (RFO) [58], salp swarm algorithm (SSA) [59], but-
terfly optimization algorithm (BOA) [60], and many others.
Despite these advancements, the hybrid use of PSO and
ACO remains prevalent. The no free lunch (NFL) theorem
[61] asserts that no single optimization algorithm outper-
forms all others across all possible problems. Its problem-
specific nature implies that an algorithm effective for one

type of problem may not work well for another. Conse-
quently, there is no universally superior heuristic for all
optimization tasks. This underscores the importance of
carefully selecting and tuning optimization algorithms
based on the unique characteristics of each problem rather
than a generalized approach.

Considering the “no free lunch” (NFL) theorem, com-
bining different algorithms or utilizing hybrid approaches
can offer a way forward by harnessing the unique strengths
of multiple algorithms. For instance, combining PSO and
ACO for feature selection tasks offers several advantages
over algorithms like RSA, RFO, SSA, and BOA due to
their complementary strengths. RSA may suffer from
slower convergence and lack of fine-tuning mechanisms,
RFO may not possess a robust dual mechanism for bal-
ancing exploration and exploitation across diverse prob-
lems, and on the other hand, SSA may struggle with
exploitation and fine-tuning, and BOA may lack the precise
search refinement offered by the combination of PSO’s
global search and ACO’s local search capabilities. PSO
offers fast convergence and effective global search, while
ACO provides robust exploration and fine-tuning through
pheromone trails. PSO excels in quick global search and
convergence, while ACO excels in refining the search
locally through pheromone-based learning. The combina-
tion of these two methods improves exploration and
exploitation processes, preserves diversity, as well as
adjusts the search process dynamically. This leads to a
more resilient and efficient method for feature selection
tasks. The following sections, 5.2.1 and 5.2.2, describe in
detail the phases of the proposed feature selection process.

5.2.1 Phase1: particle swarm optimization based feature
selection

Since the dataset used in this paper is imbalanced, g_mean
is considered a more acceptable metric than accuracy for
the imbalanced dataset [51]. The main goal of this phase is
to extract the most crucial features from the intrusion
detection system data based on the imbalanced nature of
the dataset. It reduces the complexity and false alarm rate,
enhances the attack detection accuracy and interpretability,
and yields a more efficient model. Several machine and
deep learning-based intelligent detection models are used
in ensemble learning techniques. The machine learning
models applied in the ensemble technique are decision tree,
random forest, xgboost, k-nearest neighbor, support vector
machine, lightgbm, and catboost. The deep learning models
of ensemble technique are dense neural networks and
1-dimensional convolutional neural networks. The geo-
metric mean is employed in the fitness function, which
preserves the imbalanced property of the dataset and gives
the best attack detection performance.

@ Springer

Cluster Computing

Algorithm 2 Phasel for feature selection

Input: Clean Train Dataset (D¢ Train)
Output: Subset of features (Fp)

procedure PSO-BASED FEATURE SELECTION

1

2 Begin

3 cle1,c2«1

4 rl, 12 < random (0,1)

5 w < 0.2

6 swarm_size < 10

7 p< no. of Iterations

8 swarm < random(particles, swarm_size)
9 velocity < random(swarm_size)

10 for i in range(swarm_size) do

11 fitness_particle; < Compute_fitness(particle;, D¢ Train)

12 global_fitness « fitness_particle;

13 global best « particle;

14 personal_best; « particle;

15 if (fitness_particle; > global_fitness) then

16 global fitness « fitness_particle;

17 global_best < particle;

18 end if

19 end for

20 for i in range (p) do

21 for particle, in swarm do

22 velocity particlei; (V1) < Compute_velocity(cl, c2, rl, 12, w, global best, personal besty,
particley, velocity particley)

23 particle,.; < Update_position(velocity particle., particley)

24 fitness_particle, < Compute_fitness(particley, D¢ i)

25 if (fitness_particle, > global fitness) then

26 global fitness < fitness particley

27 global_best « particley

28 personal_best, < particley

29 end if

30 end for

31 end for

32 Subset of features (Fp) < global best

33 return Subset of features (Fp)

34 End

35 end procedure

Figure 3 shows the flowchart, and Algorithm 2 outlines
the steps involved in the proposed phase 1 feature selec-
tion. Mainly six steps are involved in the construction of
this algorithm which is given as follows: (i) Initialize
Particle and Velocity Position, (i1) Evaluation of Fitness
Function, (iii) Update Personal and Global Best Position,
(iv) Compute Velocity and Update Particle Position,
(v) Termination Condition. BEach step of the proposed
phase 1 feature selection algorithm is described in detail as
follows:

(1) Initialize particle and velocity position(i) Initialize

particle and velocity position

@ Springer

Nitialization of the particle position and velocity is the
first step in the particle swarm optimization algorithm. A
particle position within a swarm represents one of the
acceptable solutions. The size of a particle and its corre-
sponding velocity position are randomly initialized. Parti-
cle position vectors are allocated with binary values
denoting the inclusion or exclusion of the feaures within
that feature subset. The presence of 1’s in the particle
position denotes that the corresponding feature is included
in the feature subset and 0’s denotes the absence of the
feature in the subset. The size of a particle is equivalent to
the number of 1’s present in that particle position vector.

Cluster Computing

INPUT : Clean Train Data
Iterationi =0

L 2

I Randomly Initialize Swarm of Particles]

Randomly Initialize Velocity of Particles

| Current Swarm of Particles |

Current Velocity of Particles

| Select the best one among all Personal Best

Increment Iterationi=i+ 1

L 2

l Compute velocity of particles |

L 2

l Update position of particles |

L 2

l New Particles Position |

v

Fitness s<:ore computation of each particle

YES

; I Select Global Best as Optimal Solution }‘
OUTPUT : Subset of Features

Fig. 3 Flowchart of Phase 1 Feature Selection

I1I1I0I1|--'|1I S1F1F2F3F4F5 == [ED) F11F125;)3F14l:)5 . F1n
|1|°|°|°|-~|1| s2 ructure of a Particle
s3 t:> F1 F2 F3 F4 F5 .. Fn
DI : [ilofol+[*[-]0]
- Sm Structure of a Velocity
[t [o]1]o]..]o] Dataset
@) (b)

Fig. 4 In proposed framework a Arrangement of particles in a swarm, b Randomly initializing positions of a particle and a velocity

The maximum size of the particle is limited to the number
of features available in the dataset. Figure 4a depicts the
arrangement of particles in a swarm and Fig. 4b represents
the structure of a particle position and velocity vector
where, S1, S2, S3, ..., Sm denote the set of samples and F1,
F2, F3, Fn denote the set of features in the dataset.

(ii) Evaluation of fitness_function

Fitness function computation is a prominent step in the
PSO algorithm. It produces the scores, and based on that
score, the significance of a particular particle (candidate
solution) is determined. This is the novelty of this paper
because, here, the fitness function is computed by taking
the G_mean of the ensemble model (described in Function
1). An ensemble model is employed, which combines
multiple machine learning (in this case, 7) and deep
learning models (in this case, 2) with a weight parameter
(y) given to each model (M) depending upon their impor-
tance. Common hyperparameter values given to both DNN

and CNN models are as follows: ‘Adam’ as an optimizer,
‘categorical cross-entropy’ in the loss function, ‘relu’ &
‘softmax’ in the activation function, batch size = 32, and
no. of epochs = 25. For the DNN model, the dropout rate is
determined to be 0.2, and for the CNN model, kernel size
and pool size are equal to 3 and 2, respectively. Equa-
tion (2) explains the fitness function used in the proposed
phase 1 of the feature selection module.
7
Fitness_Function = Z (y * GMean(M;))

i=1
2

+ Z (Y * GMean (M])) (2)
j=1
where, M; € {DT,RF,Xgboost, Lightgbm, Catboost,SV
M,KNN}.M; € {DNN,CNN}
Several extensive experiments are performed by varying
the value of y from 0.1 to 1, and it is observed that y = 1
offers optimal results in this paper. Thus, equal weights (y)

@ Springer

Cluster Computing

are given to all the models, equal to 1, determined by the
trial-and-error method.

The following Eq. (3) shows the formula for computing
the geometric mean between specificity and sensitivity.
Equations (4) and (5) provide the formula for computing
specificity and sensitivity, respectively. Definitions of True
Positives, False Negatives, True Negatives, and False
Positives are given in Sect. 6.2 of this paper.

Gyean = \/(Specificity + Sensitivity) 3)
where,

True Negati
Specificity = rue Negatives @

True Negatives + False Positives

True Positives

Sensitivity = (5)

True Positives + False Negatives
(iii) Update personal and global best position

After computing the fitness score of each particle in the

Function 1 Compute_fitness(particle,, D¢ 1y,)

the previous personal best position is considered the cur-
rent one. The global best position is determined by the
highest fitness score among all the personal best positions
of the particles within a swarm. At the end of the iterations,
the global best position is considered the best feature subset
provided by this phase of the proposed model.

(iv) Compute velocity and update particle position

The velocity vector of the particle (described in Func-
tion 2) is computed using the following Eq. (6), and the
position of the particle is updated (shown in Function 3)
using the following Eq. (7).
VI =WV oy (P, — P) + Gt —P) (6)

P = P i Q

where W is the inertia weight, r|, and r, are the random
numbers in the range [0,1], and they are randomly chosen,
C, and C, are the learning factors termed as cognitive

Input: particlex, Dc Train

Output: fitness_scorex
procedure FITNESS FUNCTION
Begin

DC?Train))
return fitness_scorex

6 End
7 end procedure

1

2

3 Mwme « [DT, RF, Xgboost, Lightgbm, Catboost, SVM, KNN], MpL « [DNN, CNN], y « 1

4 fitness_scorex & X1 ¥ * Gyean (Myy,; (particlex, D¢ rrain)) + Z?=1 Y * Guean (MDL]- (particley,

swarm, the personal best position of each particle is
updated based on fitness function. If a particle’s fitness
score performs better than its previous fitness score, change
the current personal best position of that particular particle
to the position with a large fitness score value; otherwise,

behavior and social behavior coefficients, respectively. P!
and V! denote the position and velocity vector of the it
particle, respectively, at time t. P;,l denotes the personal
best position of i™ particle at time t, and g5, is the global
best position (optimal feature subset) within the swarm at

Table 4 Parameter settings of

. Parameters
the Phase 1 Feature Selection

Values

Number of Iterations
cl

c2

w

r

Swarm_size

Seed

58 (NSL-KDD), 95 (UNSW-NB15), 79 (CIC-IDS2018)
1

1

0.2

1

10

42

@ Springer

Cluster Computing

Function 2 Compute_velocity(cl, c2, r1, 12, w, global_best, personal_best,, particle,, velocity_particle,)

Input: cl, c2, r1, r2, w, global best, personal besty, particley, velocity particlex

Output: velocity particlek

1 procedure COMPUTE VELOCITY

2 Begin

3 velocity particlex+1 < w * velocity particlex +cl * rl * (personal besty - particley) +¢c2 * 12 *
(global best - particlex)

4 return velocity particlei+

5 End

6 end procedure

time t. In this paper, several extensive experiments are
performed on all three datasets to determine the best values
of each parameter in phase 1 PSO-based feature selection.
The optimal values of each parameter are provided in
Table 4, which are determined by the trial-and-error
method. Only those values are selected, which gives an
optimal result in terms of fitness score at every iteration.
The experiments are conducted by varying the swarm size
from 10 to 50; it is observed that the swarm size is equal to
10, providing the optimal result for all the datasets.

Function 3 Update_position(velocity_particley, ;, particley)

Input: velocity particlew:1, particlex

Output: particley:

procedure PARTICLE POSITION UPDATE
Begin
particlex+1 « particlex + velocity particley
return particlei
End

end procedure

AN A W -

(V) Termination condition

There are two ways to terminate the execution of the
algorithm: (a) By defining a fixed number of iterations and
(b) By constantly observing the progress of the graph
between the best fitness score for each iteration and the
number of iterations. In the second case, the execution of
the algorithm will be terminated if the fitness score of the
global best position (feature subset) of each iteration
becomes stable. In this paper, a rigorous number of
experiments are conducted to select the appropriate value
for the number of iterations per dataset. Therefore, the
number of iterations varies depending on the type of
dataset. Figure 9a demonstrates the convergence graph

between the best fitness score per iteration and the number
of iterations in the algorithm. Table 4 indicates the number
of iterations for each dataset as the convergence condition
of the algorithm. After this phase, the number of features is
reduced to 25, 29, and 48 for the NSL-KDD, UNSW-
NB15, and CIC-IDS2018 datasets, respectively.

5.2.2 Phase2: ant colony optimization based feature
selection

In this phase, the most informative features are selected
based on the mutual information value and correlation
value between feature-feature pairs and class-feature pairs.
It is achieved by considering mutual information and cor-
relation metrics in the fitness function of the ant colony
optimization algorithm. Therefore, the feature subset
obtained after this phase contains uncorrelated and infor-
mation-rich features. By removing irrelevant features, this
phase ensures computational efficiency, while the less
dimensionality of the data ensures the lightweight of the
model. Figure 5 shows the flowchart, and Algorithm 3
outlines the overall steps involved in the proposed phase 2
feature selection.

To determine the optimal values of each parameter in
the ACO-based feature selection in phase 2, various com-
prehensive experiments are performed on each dataset
considered in this paper. The optimal values of each
parameter are provided in Table 5 by the trial-and-error
method. Only those values are selected, which offers an
optimal result in terms of the fitness function at each iter-
ation and considering multi-class classification. The fitness
function is observed to stop increasing its values after 50,
60, and 50 iterations for NSL-KDD, UNSW-NB15, and
CIC-IDS2018 datasets, respectively demonstrated in
Fig. 9a. The number of ants is initialized with the number

@ Springer

Cluster Computing

Algorithm 3 Phase 2 for feature selection

Input: Filtered_Train_Data(Dr 1rin), €vaporation_rate, No. of Iterations, No. of Ants, No. of features in

feature subset, alpha, beta
Output: Optimal subset of features (F,)

1 procedure ACO-BASED FEATURE SELECTION

2 Begin

3 Initialize, n < len(Df rin.column) — 1, evaporation_rate (p) <= 0.1, m < No. of Iterations, a < No.
of Ants, s < No. of features in feature subset, alpha (@)« 1, beta (B) « 1,a < n

4 Pheromone LUT ¢« Initialize Pheromone LUT(n)

5 Heuristic LUT « Heuristic LUT(n, Xgboost(), D¢ Train)

6 for i in range(m) do

7 Initialize, score < [|, F1_Score < [], feature subset list « []

8 for ia in range (a) do

9 feature subset ia < antBuildSubset(ia, n, s, alpha, beta)

10 score_ia « fitness_score (feature subset ia, D i)

11 f1_score_ia « fl_score(feature_subset_ia, Xgboost(), D Train)

12 feature subset list.append(feature_subset ia)

13 score.append(score_ia)

14 F1_Score.append(fl_score ia)

15 end for

16 index < max(score).index

17 Best_features « feature subset list[index]

18 Pheromone LUT <« Update Pheromone(n, p, Q, feature subset list, F1_Score,

Pheromone LUT)

19 end for

20 return Best features

21 End

22 end procedure

of features obtained from the PSO-based feature selection
phase corresponding to each dataset (discussed in
Sect. 5.2.1). Moreover, the number of features in the subset
is determined on the basis of the feature importance, which
is obtained by the importance plot using Xgboost for each
datasets.

The primary step of the ant colony optimization algo-
rithm applied in this paper can be analyzed using the fol-
lowing points: (i) Initialization of Look-up-table (LUT), (i)
Heuristic Function, (iii) Probability Function, (iv) Fitness
Function, (v) Pheromone Update Rule. Each step involved
in the construction of this phase is described as follows:

(i) Initialization of look-up-table (LUT)

Initialization of the look-up table (LUT) is the first step
in the ant colony optimization algorithm. LUT is a matrix
in the form of either lower or upper triangular. The reason
behind using only half (either upper or lower) part of the
matrix is that it contains symmetric values on both sides of
LUT. It is a matrix of dimension (n*n) where only one-half
part of the matrix is utilized. It implies that only (n * (n —
1))/2 entries contain unique values in the LUT. Therefore,
only those entries in the LUT are filled with values. Here,
‘n’ represents the number of features obtained after the first

@ Springer

phase of the feature selection module in the proposed
model. It includes mainly two pieces of information asso-
ciated with feature-feature pairs, i.e., (a) Pheromone value
and (b) Heuristic value. Figure 6 shows an example of the
LUT employed in this paper where both the values are
combined in a single table. Functions 4 and 5 explain the
initializing of the pheromone LUT and heuristic LUT,
respectively.

Function 4 Initialize_Pheromone_LUT(n)

Input: n
Output: pheromone matrix
procedure INITIALIZATION OF PHEROMONE
Begin
value « 0.8
pheromone matrix « full((n,n), value)
return pheromone matrix
End
end procedure

NN N AW -

Cluster Computing

Function 5 Heuristic_LUT(n, Xgboost(), Dg Tain)

Input: n, Xgboost(), Dr Train
Output: heuristic_matrix

1 procedure COMPUTE HEURISTIC LUT

2 Begin

3 heuristic_matrix < zeros((n,n))

4 for i in range(n) do

5 for j in range(n) do

6 if 1<=j):

7 heuristic_value « Heuristic_value(i, j, DF Train, Xgboost())
8 heuristic_matrix [i, j] < heuristic_value

9 heuristic_matrix [j, i] < heuristic value
10 end if

11 end for

12 end for

13 return heuristic_matrix

14 End

15 end procedure

Pheromone LUT is first initialized with a constant value
(here, it is equal to 0.8) and is updated after each iteration,
as indicated in Algorithm 3. Furthermore, heuristic LUT is
initialized with the heuristic value (described in Function
6) corresponding to each entry in LUT, which is computed
by applying the proposed heuristic function (shown in
Eq. 8). Heuristic value depends upon ‘true positive rate’
and ‘cosine similarity’ corresponding to different feature-

@ INPUT : Filtered Train Data
: Subs*et Size = s
I Initialize Pheromone in Pheromone_LUT I

¥

I Initialize Heuristic Function in Heuristic_LUT J

¥

I Initialize, Iteration t = 0 l
&

feature pairs in the LUT. Therefore, entries in heuristic
LUT will remain constant throughout the execution of
Algorithm 3. In Fig. 6, the upper section represents the
heuristic value, whereas the bottom section denotes the
pheromone value of each row in the LUT. For instance, the
entries corresponding to feature ‘1’ and feature 2’ are 0.55
and 0.73, respectively, which indicate the heuristic and the
pheromone values respectively.

*
[Iterationt=1t+ 1 l

/Nnitialize, number of Ants = Number of Features
: Place each Ant on a feature randomly

¥

I Initialize, Ant k = 0

L

Jpd Pheromone l

4

Save the Current best
feature subset

satisfy termination

*NO

Can =
YES OUTPUT : Optimal Subset of :
—— Features i

condition ?

I Antk=k+1

Select best fitness function feature

|
|
[initiatize, Subsetsize -0 |
]

+ subset
YES
Le NO Ant k == No. of Ants
?
[Subset size, s1=s1+1 *
: v Fi F
: I Calculate pf, for j € unvisited features I YES+
: v NO
: s1==s
: I Sel next f b d on probability I

L Add selected feature in Ant[k] feature path

'——)l Delete selected feature from unvisited feature list J

Fig. 5 Flowchart of Phase 2 Feature Selection

@ Springer

Cluster Computing

Table 5 Parameter settings of

. Parameters
Phase 2 Feature Selection

Values

Number of Ants

Number of Iterations

Alpha (o)

Beta (B)

Evaporation_rate (p)
Number of Features in subset
Constant (Q)

Initial Pheromone

Seed

25 (NSL-KDD), 29 (UNSW-NB15), 48 (CIC-IDS2018)
50 (NSL-KDD), 60 (UNSW-NB15), 50 (CIC-IDS2018)
1

1

0.1

15 (NSL-KDD), 20 (UNSW-NB15), 20 (CIC-IDS2018)
1

0.8

42

(i1) Heuristic function

A novel heuristic function is utilized to evaluate the
heuristic values in the heuristic LUT. Function 6 represents
the overall step-by-step procedure for evaluating the
heuristic value for different feature-feature pairs in the
LUT. The heuristic value corresponding to feature ‘A’ and
feature ‘B’ (1,4p) is computed using the following Eq. (8).
It is measured by simply dividing the ‘True Positive Rate’
by the ‘Cosine_Similarity’ between feature-feature pairs.

- Weighted _TPR ()
4B = Cosine_Similarity(A, B)

TPR for a specific class ‘i’ can be assessed using the
given Eq. (9), while the weighted TPR can be measured
using the corresponding Eq. (10). For measuring the value
of Weighted_TPR, several classification algorithms (such
as DT, RF, Xgboost, and KNN) are analyzed, and it is
observed that the ‘Xgboost’ classifier offers the optimal
performance.

TPR; True Positive;

= 9
True Positive; + False Negative; ©)
Sois (S;* TPRy)
S

where ‘C’ and ‘S’ are the total number of classes and the
total number of samples, respectively, in the data.S; rep-
resents the number of instances of a particular class ‘1’
present in the data. The Cosine_Similarity between two
features, ‘A’ and ‘B’, is determined using the following
Eq. (11). The actual meaning of True Positive and False

Negative are provided in Sect. 6.2.

Weighted _TPR = (10)

S (Ai* By)
-)

(11)

Cosine_Similarity(A,B) =

@ Springer

where A; & B; are the specific instances of feature vectors
‘A’ and ‘B’, respectively.

Function 6 Heuristic_value(column_i, column_j, Dg Tyain, Xgboost())

Input: column_i, column_j, DF_Taia, Xgboost()
Output: Heuristic_value
1 | procedure COMPUTE HEURISTIC VALUE
2 Begin
3 weight_tpr tpr(column_i, column_j, DF_Tais, Xgboost()
4 cosine_similarity cosine_similarity(column_i, column_j, Df_Trzis)
5 Heuristic_value ()
6 return Heunistic_value
7
8

end
end procedure

(iii) Probability function

Initially, the number of ants is equivalent to the number
of features in the subset obtained after phase 1 feature
selection. Each ant is standing at every feature provided
that no two ant stands at the same feature. Now each ant
explores their path by visiting the other features (nodes)
with the aim of achieving the best feature subset. This is
attained by choosing the routes with the highest probability
value. Equation (12) signifies the function for assessing
probability values related to each feature in the unvisited
feature list, which helps the ants select the next feature
appropriately in their path. Function 7 explains the sys-
tematic approach to calculate the probability values
between two given features and it gives the best feature
subset selected by specific ant ‘k’.

TzB * ”ﬁB (12)
@ B
> m Tap * Map

where P, is the probability of selecting the next feature as
‘B’ by ant ‘k’ if the ant ‘k’ is standing at feature ‘A’. /1, p/
is the heuristic value between feature ‘A’ and feature ‘B’
present in the heuristic LUT. /t4p/ is the pheromone value
between feature ‘A’ and feature ‘B’ present in the pher-
omone LUT. ‘m’ is the total number of unvisited features.
The parameter ‘o’ adjusts the impact of /t4p/, while the
parameter ‘B’ governs the effect of ‘n,p/.

Pf&B:

Cluster Computing

Function 7 antBuildSubset(ia, n, s, alpha, beta)

Input: ia, n, s, alpha, beta
Output: feature subset ia

1 procedure

2 begin

3 initialize, unvisited features « [0,1,2,3,...,(n-1)], s1 « 1

4 indexes « where(inld(unvisited features, ants[ia].feature path))[0]
5 ua < unvisited features[indexes]

6 unvisited features < unvisited_features.delete(ua)

7 while (s1 <=s) do

8 values < [0] * len(unvisited features) , prob_value « [0] * len(unvisited features)
9 for index ufin range(len(unvisited features)) do

10 uf « unvisited features[index_uf]

11 eta < heuristic_matrix[ua, uf]

12 tau « pheromone matrix[ua, uf]

13 values [index_uf] « (tau**alpha) * (eta**beta)

14 end for

15 total_sum < sum(values)

16 for index ufin range(len(unvisited features)) do

17 | prob_value[index uf] < values[index uf]/total sum
18 end for

19 max_index « argmax(prob_value)

20 next features < unvisited features|max index]

21 if(sl==s-1)do

22 feature subset < ants[ia].feature path

23 feature subset < feature_subset.append(next_features)
24 end if

25 ants[ia].feature path.append(next_ features)

26 unvisited features.delete(next features)

27 sl «sl+1

28 ua « next_features

29 end while

30 return feature subset

31 end

32 end procedure

(iv) Fitness function

In the ant colony optimization-based feature selection
algorithm, the fitness function plays a very crucial role in
precisely determining the best feature subset. Therefore,
setting the fitness function appropriately is a primary key in
the ant colony optimization-based feature selection algo-
rithm. During this phase, two different fitness functions are
utilized to analyze various combinations in subset selec-
tion. The aim is to identify the most crucial features subset
for designing of a light-weighted IDS model. Description
of both these fitness functions, along with the algorithmic
details, are provided in the following subsections (a) and

(b):

a. Mutual information-based

It selects the most crucial features based on the mutual
information theory concept. It observes the mutual infor-
mation between the feature subset selected by a specific ant
and its corresponding target class feature. It calculates the
entropy related to the subset and conditional entropy rela-
ted to the subset given class feature. Functions 8.a and 8.al
explain the systematic way to execute the mutual infor-
mation as a fitness function in the proposed model. Equa-
tion (13) shows the mutual information (I(F,C)) by
selecting a subset of features (F) and the class label (C).

@ Springer

Cluster Computing

Function 8.a. fitness_score (feature_subset_ia, Dg Tyain)

Input: feature_subset_ia, Df Trin
Output: score ia

1 procedure MUTUAL INFORMATION BASED

2 begin

3 columns « DF trin.shape[1]

4 X ¢ DF Train[: , feature_subset_ia], Y < Dr Train[columns:]
5 features « X.shape[1]

6 Mutual Information « []

7 for feature in range (features) do

8 Xp e« X[:, feature]

9 mutual_info « Mutual Information(Xs, Y)
10 Mutual_Information.append(mutual_info)
11 score_ia < sum(Mutual Information)

12 end for

13 return score_ia

14 end

15 end procedure

Function 8.al. Mutual_Information(Xf, Y)

Input: X, Y

Output: mutual info

procedure MUTUAL INFORMATION
begin
H_F « Entropy(Xs)
H F C « Conditional Entropy(Xy, Y)
mutual_info <« (H F-H F C)
return mutual_info
end

end procedure

[~ R Y R N R S

I(F,C) = H(F) — H(F|C) (13)

Entropy ‘H’ of feature subset ‘F’ is estimated using the
following Eq. (14).

H(F) ==Y _P(f;) xlog,(P(fy)) (14)

fi€F

Entropy ‘H’ for feature subset ‘F’ after analyzing class
‘C’ can be measured using the following Eq. (15).

H(F|C) = = Plex) x)_(P(filcx) * log,P(f;lex))

cxeC ficF
(15)

where F and C represent the feature subset and target class,
respectively. I(F,C), H(F), and H(F|C) describe the
mutual information between F and C, the entropy of F, and
the conditional entropy of F provided C, respec-
tively.P(f;|ck) presents probability of a feature having a
value f; and target class being ¢, while P(f;), and P(cx)
represent the probability of a feature having a value f; and
the probability of target class being c; respectively.

@ Springer

b. Correlation-based

The second type of fitness function used here is the
correlation-based. Equation (16) determines the potential
of a particular feature subset ‘F’ selected by the ant colony
optimization-based feature selection algorithm. This func-
tion selects features based on the feature-feature correlation
and the class-feature correlation. Therefore, this fitness
function gives importance to both correlation values. It is
important to observe that for selecting the best feature
subset, the correlation between the class-feature pair should
be as high as possible, and the correlation between the
feature-feature pair should be as low as possible. Function
8.b, along with functions 8.bl and 8.b2, explains this fit-
ness function.

§ *TFep
V(s + 5% (s — I)rgy)

where ‘s’ is the number of features in the feature subset
selected by a particular ant and r. indicates the correlation
between categorical and numerical features. It is measured
using kendall’s rank correlation coefficients, and its aver-
age value is taken here. The systematic procedure for
computing the value of 7 is outlined in function 8.bl. ry
is the pearson correlation coefficient between two numer-
ical features, and it is computed between two features ‘A’
and feature ‘B’ using the following Eq. (17) and its average
value are taken. Where ‘S’ represents the total number of
samples while A; and B; indicate the feature value of the
i'™ sample of features ‘A’ and ‘B’, respectively. The step-
by-step process for computing the average value of 7 is
provided in function 8.b2.

Fitness Function —

(16)

Function 8.b. fitness_score (feature_subset_ia, Dg Train)

Input: feature subset ia, Df trin

Output: score_ia

procedure CORRELATION BASED

begin

columns « D Train.shape[1]

X « Dr Train[: ,feature_subset ia], Y ¢ Df trin[columns :]
r_cf « compute_rcf(X,Y)

r_ff « compute rff(X)

s « len(feature_subset_ia)

score_ia &« (s *1cr) /(Vs+s* (s —1) *155)
return score_ia

end

end procedure

o 0TI UN AW =

—
4

S(Shiam) - (Sha) « (2, 8)
\/{S Ziszl Ai2 - (Eiszz Ai)z} * {S Ziszz Biz - (Ziszz Bi)q
(17)

TAB

Cluster Computing

Function 8.b1. compute_rcf(X,Y)

Input: XY

Output: r_cf

1 procedure

2 begin

3 r cfe[]

4 for i in range(X.shape[1]) do
5 tau < kendalltau (X[: , 1], Y)
6 r_cf.append(tau)

7 end for

8 return mean(r_cf)

9 end

10 end procedure

(v) Pheromone update rule

Pheromone updation (summarized in Function 9) is the
last step in the ant colony optimization-based feature
selection algorithm, and its value is updated in the pher-
omone LUT. It has been studied that ants secrete a kind of
chemical (called pheromone) in the path where they walk.
In searching for the best feature subset, they secrete a
chemical to help other ants follow the suitable route
attracted by the amount of chemicals in the route. If the
concentration of pheromones in a route is higher, the
probability of an ant selecting the route with the highest
pheromone concentration increases. Hence, the pheromone
LUT is updated appropriately corresponding to the feature-
feature pair.

Function 8.b2. compute_rff(X)

Input: X

Output: r_ff

1 procedure

2 begin

3 r ffe[]

4 for i in range(X.shape[1]) do

5 for j in range(i+1, X.shape[1]) do
6 tau « pearsonr (X[: , i], X[:, j])
7 r_ff.append(tau)

8 end for

9 end for

10 return mean(r_ff)

11 end

12 end procedure

The pheromone value is decremented for all feature—
feature pairs. Moreover, Eqgs. (18) and (19) describe the
formula for updating the values in the pheromone LUT.

|No.ofAnts|
T§}+1> _ (1 - P) % Tg) + Z sum_delta[k] (18)
k=1

0
(1 — F1_Score(ant[k] feature_path)) x 100

(19)
(t+1)

where 7;; " represents the amount of pheromones between
feature (i) and feature (j) pair at the (t + 1)™ iteration. p is
the evaporation rate, and by the trial-and-error method, its
value is determined as 0.1, and Q is a constant number
(here, it is 1). To find the F1-Score value, various machine
learning models, such as KNN, DT, RF, and xgboost, are
applied. It is observed that xgboost performs better than
others.

sum_deltalk] =

5.3 GA-based hyperparameter tuning

The best set of hyperparameters improves the detection
models’ performance. For this reason, this paper introduces
a genetic algorithm-based hyperparameter tuning module
for retrieving the best set of hyperparameters per detection
model. Genetic algorithms (GAs) offer a powerful and
flexible approach to optimizing hyperparameters in
machine learning models. They excel in global search
capability, adaptability, parallelism, robustness to noise,
and a balanced exploration—exploitation trade-off. These
attributes make GAs highly effective for navigating com-
plex and high-dimensional hyperparameter spaces, often
surpassing other optimization methods such as grid search,
random search, and bayesian optimization. Compared to
grid search, GAs efficiently explore the search space
without an exhaustive search. They can leverage historical
information to guide the search more effectively than
random search. In contrast to bayesian optimization, GAs
are less computationally intensive per iteration and are
better equipped to handle larger search spaces. GAs also
excel in handling mixed types of hyperparameters and
maintaining diversity in the population, thereby reducing
the risk of premature convergence. Algorithm 4 outlines
the proposed GA-based hyperparameter tuning module. As
shown in Algorithm 4, this module is executed using
training and testing datasets.

Table 6 shows the parameter settings for executing the
genetic algorithm in the search for the best hyperparameter
values. To determine the optimal values of each parameter
in the GA-based hyperparameter optimization in the third
module, this paper performs several rigorous experiments
by varying the population size, selection rate, and mutation

@ Springer

Cluster Computing

s ki 6 Wi)
061]0.30]0.86]0.56]0.32 0.4a],
0.67]0.27]0.870.22]0.26 0.28

Heuristic——5]0.55[0.43[0.74|0.49 0.35|,

Value 0.73]0.37]0.62]0.17 0.18

0.28|0.50[0.82 0.28 |,
Pheromone —— 310 12[0.210.61 0.27

Value 062034 034y
0.46[0.17 0.76

0.75 0.60 |4
0.94 0.52

: |
77

832|‘“’1)

Fig. 6 Look-Up Table

rate on each dataset. The optimal values of each parameter
are given in Table 6 by the trial-and-error method. Only
those values that offer an optimal result in terms of the
fitness function at each iteration are selected by focusing on
multi-class classification. The fitness function gives maxi-
mum values at 128, 64, and 64 generations for NSL-KDD,
UNSW-NBI15, and CIC-IDS2018 datasets, respectively as
depicted in Fig. 9b, the convergence graph between fitness
score and no. of iterations (or generations).

(1) Initialization of population

Initialization of the population is the first step in
implementing the GA-based hyperparameter tuning mod-
ule. Each detection model is executed separately in the
search of the best hyperparameters. So, this module is

Table 6 Parameter settings of GA algorithm in this work

Parameters Values
No. of 128 (NSL-KDD), 64 (UNSW-NB15), 64 (CIC-
Generations IDS2018)

Population Size 50
Selection Rate 0.5
Mutation Rate 0.5
Seed 42

executed as many times as the number of detection models
provided as input to this module. Hyperparameters and
their approximate ranges are pre-specified in this module,
as the populations are initialized based on the hyperpa-
rameters’ ranges. Figure 7 describes the structure of a
population, chromosome, and gene for xgboost classifier in
the proposed genetic algorithm. For instance, executing
this module for the xgboost classifier, the genes in the
chromosome are ‘max_depth’, ‘booster’, ‘n_estimators’,
‘min_child_weight’, ‘gamma’, and ‘subsample’.

(ii) Fitness score computation

Each candidate chromosome is evaluated using the fit-
ness function. Since multi-class (multiple attacks and
normal class) classification is being performed here, the
weighted F1-Score of the detection model is utilized for the
fitness score computation of the chromosomes. The for-
mula for computing the f1-score, precision, and recall for a

Function 9 Update_Pheromone(n, p, Q, feature_subset_list, F1_Score, Pheromone_LUT)

Input: n, p, Q, feature_subset list, F1 _Score, Pheromone LUT

Output: Pheromone matrix

1 procedure UPDATE PHEROMONE LUT

2 begin

3 for i in range(n) do

4 for j in range(n) do

5 | Pheromone matrix [i][j] « (1- p) * Pheromone matrix [i][j]

6 end for

7 end for

8 num_ants < len(feature subset list)

9 for f1_score, feature_subset in (F1_Score, feature subset list) do

10 for i in range (len(feature subset) - 1) do

11 current_feature « feature subset[i]

12 next feature « feature subset[i+1]

13 Pheromone matrix[current feature][next feature] «
Pheromone matrix[current feature][next feature] + (Q/(1 — f1_score))

14 end for

15 end for

16 return Pheromone matrix

17 end

18 end procedure

@ Springer

Cluster Computing

Population

Hyy Hyz Hyg Hyg Hyg Hyg

Chrorrlosome

s| min_child_weig |

-
Haq Hpp Hps Hpg Hpg st——>| max_depth I b 1

Hgq Hsz Hss Hsg Hss Hse
. Gene

Hyx1 Hyxz Hxs Hxg Hxs Hxe

Fig. 7 Structure of a population, chromosome, and gene

min_child_weight
gamma
subsample

n_estimators

booster

max_depth

[8 [gbtreefss] 4 [.35].25]

[3 |obtreefoss| 4 [.05].25|

A 4 y y v
[8 [obtree]ess| 3 [.12].34]
%—H_}

Mutation
acl ‘%

[7 [gblinearf97] 3 |15].34]

[7 | dart [osg| 4 |.35].25]
%’,—)—\r__J

Crossover
Operation ; |7 I s |258| 3 |_12|_34| Operation

~

Fig. 8 Single point crossover and random resetting mutation operations in the proposed GA-based hyperparameter optimization

particular class ‘i’ are specified in Egs. (20-22), respec-
tively. The formula for computing the weighted f1-score is
provided in Eq. (23).

2 x Precision; * Recall;

20
Precision; + Recall; (20)

F1 — Score; =

True Positive;

21
True Positive; + FalsePositive; (21)

Precision; =

Algorithm 4 Hyperparameter Tuning.

True Positive;
Recall; = — - 22
eed True Positive; + Fals eNegative; 22)
<, |S;|F1 — Score;
WeightedF1 — Score = izt IS corei (23)

N

where N and |c| represent the total no. of instances and
total no. of classes, respectively, while |S,-| denotes the total

no. of instances of the ‘i"™ class in the dataset.

InplIt: DTraina DTcst: MB or ME
Output: Best Hyperparameters(Hg)

1 procedure GA-BASED HYPERPARAMETER TUNING

2 begin

3 n’ < no. of gen, size < pop_size, s’ < selection_rate, m’ < mutation_rate, best_hyperparameters <
[]

4 hyperparameters_range < Define hyperparameters_range(Mg or Mg)

5 population « initialize hyperparameters(size, hyperparameters_range, Mg or Mg)

6 for i in range(n’) do

7 scores, pop_after fit « fitness_score (population, Drpain, Dres, Mp of ME)

8 pop_after sel < selection(pop_after fit, s’, size)

9 pop_after cross < crossover(pop_after sel, s’, size)

10 population < mutation(pop_after cross, m’, hyperparameters_range)

11 best_hyperparameters.append(pop_after fit[0])

12 end for

13 return best_hyperparameters

14 end

15 end procedure

@ Springer

Cluster Computing

Fitness Score

PSO_NSL_KDD
—— PSO_UNSW_NB15
—e— PSO_CSE_CIC_IDS2018
—+— ACO_NSL_KDD

—— ACO_UNSW_NB15
—— ACO_CSE_CIC_IDS2018

o 5 10 15 20 25 30 35) as

Number of Iterations

(@

Fitness Score

vawvf”w’\ﬂ/\\ P

55 60 65 70 75 80 85 20 95 100 105

—— GANSLKDD —— GAUNSW_NB15S —— GA_CSE_CIC_IDS2018

0 5 10 15 20 25 30 35 40 45 50 55

75 80 85 90 95 100 105 110 115 120 125

Number of Iterations

Fig. 9 Convergence graph between fitness score and number of iterations for a PSO, and ACO algorithms, b GA

(iii) Parent selection

Parent chromosomes are selected using the roulette
wheel selection function [62]. The parent selection rate is
determined as 0.5 by trial and error. This means that 50%
of chromosomes from the old population are selected as in
the new population, and the remaining 50% of new child
chromosomes are built through the reproduction process
described below.

(iv) Reproduction operation

Reproduction operation is performed to generate new
child chromosomes to balance the number of chromosomes
in the population. This phase contains two operations:
crossover and mutation. Figure 8 describes the overall
reproduction operation used in this paper for the xgboost
classifier.

a. Crossover: In this phase, single-point crossover [63]
operation is applied, as shown in Fig. 8. From the two
parent chromosomes, two new child chromosomes are
created. The overall steps involved in the crossover
operation are given as follows:

a Initially, two chromosomes are selected from the
population as the parent chromosomes for the cross-
over operation

b The first half part of the first parent chromosome and
the second half part of the second parent chromosomes
are merged to make the first child chromosome

¢ Similarly, the first half part of the second parent
chromosome and the second half part of the first

@ Springer

chromosome are merged to make the second child
chromosome

b. Mutation: In this phase, a random resetting mutation

operation is applied to make the variation in the
population. This operation is performed on each
chromosome in the population. Here, the mutation rate
is determined as 0.5 by trial and error method. This
means that 50% of genes in each chromosome in the
population have changed their values to new random
values from their pre-defined ranges. Figure 8 depicts
the mutation operation where, out of 6 genes in the
chromosome, randomly, 3 genes (‘yellow’ in color
after mutation operation) changed their values to a new
value from the appropriate pre-defined ranges for these
genes.

(V) Termination condition

The termination condition is decided based on the fitness
score value in this phase. If the fitness function stops
enhancing its values, this is the termination condition for
the genetic algorithm-based hyperparameter tuning. The
trial-and-error method demonstrates that each detection
model takes different generations to stop increasing their
values (some detection model takes 64, and some take
128). Therefore, the maximum number of generations is
fixed for each detection model, equal to 128 (in the case of
NSL-KDD) and 64 (in the case of UNSW-NB15 and CIC-
IDS2018). Table 6 shows the maximum number of gen-
erations the detection model takes to achieve optimal
performance on each dataset. Choosing these values as the

Cluster Computing

Table 7 For Correlation-based Fitness function

Detection Best Hyperparameter values for each detection model
Model NSL-KDD UNSW-NB15 CSE-CIC-IDS2018
DT e splitter: best e splitter: random e splitter: best
e criterion: gini e criterion: gini e criterion: entropy
e max_depth: 14 e max_depth: 13 e max_depth: 10
e min_samples_split: 15 e min_samples_split: 16 e min_samples_split: 27
e min_samples_leaf: 7 e min_samples_leaf: 15 e min_samples_leaf: 14
e min_weight_fraction_leaf: 1.4e-07 e min_weight_fraction_leaf: 0.00265 e min_weight_fraction_leaf: 4.8e-08
e min_impurity_decrease: 1.3e-05 e min_impurity_decrease: 0.00029 e min_impurity_decrease: 6.3e-05
e max_leaf nodes: 10 e max_leaf nodes: 22 e max_leaf nodes: 32
LR o C: 689.89754 o C: 432.71826 e C: 0.10842
e solver: 1bfgs e solver: 1bfgs e solver: Ibfgs
e penalty: 12 e penalty: 12 e penalty: 12
e tol: 0.00798 e tol: 0.00128 e tol: 0.000326
e max_iter: 587 e max_iter: 288 e max_iter: 525
KNN e algorithm: auto e algorithm: kd_tree e algorithm: ball_tree
e k_n_neighbors: 10 e k_n_neighbors: 10 e k_n_neighbors: 5
e weights: distance e weights: uniform e weights: distance
ep:2 ep: 1 ep: 1
e Jeaf size: 6 e Jeaf size: 10 e Jeaf size: 10
SVM e C: 30.72994 o C: 10.74238 e C: 88.06638
e kernel: poly e kernel: poly e kernel: poly
DNN e num_layers: 4 e num_layers: 2 e num_layers: 3
e units_0: 118 e units_0: 93 e units_0: 98
e units_1: 108 e units_1: 91 e units_1: 90
e units_2: 86 e dropout_rate: 0.41787 ® units_2: 66
® units_3: 68 e learning_rate: 0.00603 e dropout_rate: 0.19406
e dropout_rate: 0.15575 e batch_size: 32 e learning_rate: 0.00184
e learning_rate: 0.00128 e batch_size: 32
e batch_size: 16
CNN o filters: 25 o filters: 55 o filters: 49
e kernel_size: 4 e kernel_size: 4 e kernel_size: 5
e num_dense_units: 97 e num_dense_units: 119 e num_dense_units: 117
e dropout_rate: 0.44467 e dropout_rate: 0.47851 e dropout_rate: 0.11797
e learning_rate: 0.00327 e learning_rate: 0.00143 e learning_rate: 0.00365
e batch_size: 16 e batch_size: 64 e batch_size: 16
RF e n_estimators: 96 e n_estimators: 90 ® n_estimators: 8

e max_depth: 14
e min_samples_split: 30

e min_samples_leaf: 10

e max_depth: 16
e min_samples_split: 22

e min_samples_leaf: 11

e max_depth: 11
e min_samples_split: 26

e min_samples_leaf: 12

@ Springer

Cluster Computing

Table 7 (continued)

Detection Best Hyperparameter values for each detection model
Model NSL-KDD UNSW-NB15 CSE-CIC-IDS2018
Xgboost e booster: gbtree e booster: dart e booster: gbtree
e lambda: 7.07e-05 e lambda: 0.03457 e lambda: 0.00048
e alpha: 0.00219 e alpha: 0.19941 e alpha: 0.00119
e subsample: 0.25869 e subsample: 0.47035 e subsample: 0.59606
e colsample_bytree: 0.96169 e colsample_bytree: 0.93334 e colsample_bytree: 0.97709
e early_stopping_rounds: 9 e early_stopping_rounds: 20 e early_stopping_rounds: 22
e n_estimators: 32 e n_estimators: 16 e n_estimators: 64
e max_depth: 5 e max_depth: 9 e max_depth: 9
e min_child_weight: 9 e min_child_weight: 8 e min_child_weight: 5
e eta: 0.38903 e eta: 0.08403 e eta: 3.78013e-07
e gamma: 0.00134 e gamma: 3.2e-05 e gamma: 7.99526e-07
e grow_policy: depthwise e grow_policy: depthwise e grow_policy: depthwise
LightGBM e learning_rate: 0.00223 e learning_rate: 0.01233 e learning_rate: 0.01144
e n_estimators: 843 e n_estimators: 928 e n_estimators: 541
e num_leaves: 35 e num_leaves: 31 e num_leaves: 27
e max_depth: 5 e max_depth: 4 e max_depth: 10
e min_data_in_leaf: 22 e min_data_in_leaf: 27 e min_data_in_leaf: 38
Catboost e learning_rate: 0.04165 e learning_rate: 0.04226 e learning_rate: 0.05712

e iterations: 890
e depth: 5
e 12_leaf reg: 0.03197

e iterations: 715
e depth: 5
e 12_leaf reg: 0.02854

e iterations: 683
e depth: 6
e 12_leaf reg: 1.16369

Table 8 For Mutual Information-based Fitness function

Detection Model

Best Hyperparameter values for each model

NSL-KDD

UNSW-NBI15

CSE-CIC-IDS2018

DT

LR

KNN

e splitter: random

e criterion: gini

e max_depth: 15

e min_samples_split: 24

e min_samples_leaf: 4

e min_weight_fraction_leaf: 0.00033
e min_impurity_decrease: 0.00053
e max_leaf nodes: 14

e C: 0.00794

e solver: lbfgs

e penalty: 12

o tol: 0.00066

e max_iter: 903

e algorithm: auto

e n_neighbors: 6

e weights: uniform

ep:2

o leaf size: 6

e splitter: best

e criterion: entropy

e max_depth: 7

e min_samples_split: 31

e min_samples_leaf: 16

e min_weight_fraction_leaf: 0.01069
e min_impurity_decrease: 0.00019
e max_leaf nodes: 19

o C: 26.72402

e solver: lbfgs

e penalty: 12

e tol: 0.00015

e max_iter: 285

e algorithm: brute

e k_n_neighbors: 4

e weights: uniform

ep: 1

o Jeaf size: 6

e splitter: best

e criterion: gini

e max_depth: 9

e min_samples_split: 11

e min_samples_leaf: 7

e min_weight_fraction_leaf: 0.00016
e min_impurity_decrease: 3.6e-08
e max_leaf nodes: 29

e C: 0.09749

e solver: 1bfgs

e penalty: 12

e tol: 0.00909

e max_iter: 1000

e algorithm: brute

e k_n_neighbors: 3

e weights: distance

ep:2

o leaf size: 2

@ Springer

Cluster Computing

Table 8 (continued)

Detection Model

Best Hyperparameter values for each model

NSL-KDD UNSW-NBI15 CSE-CIC-IDS2018
SVM e C:9.35784 e C: 14.33070 e C: 1.58833
e kernel: rbf e kernel: poly e kernel: rbf
DNN e num_layers: 4 e num_layers: 2 e num_layers: 2
e units_0: 116 e units_0: 42 e units_0: 100
e units_1: 65 e units_1: 78 e units_1: 112
® units_2: 51 e dropout_rate: 0.27976 e dropout_rate: 0.22691
e units_3: 70 e learning_rate: 0.00290 e learning_rate: 0.00261
e dropout_rate: 0.30623 e batch_size: 64 e batch_size: 16
e learning_rate: 0.00016
e batch_size: 16
CNN o filters: 48 o filters: 28 o filters: 31
e kernel_size: 4 e kernel size: 3 e kernel_size: 5
e num_dense_units: 119 e num_dense_units: 125 e num_dense_units: 72
e dropout_rate: 0.15852 e dropout_rate: 0.28289 e dropout_rate: 0.28022
e learning_rate: 0.00019 e learning_rate: 0.00142 e learning_rate: 0.00177
e batch_size: 16 e batch_size: 16 e batch_size: 32
RF e n_estimators: 22 e n_estimators: 63 e n_estimators: 27
e max_depth: 12 e max_depth: 14 e max_depth: 14
e min_samples_split: 20 e min_samples_split: 5 e min_samples_split: 14
e min_samples_leaf: 11 e min_samples_leaf: 5 e min_samples_leaf: 3
Xgboost e booster: gbtree e booster: dart e booster: dart
e lambda: 0.00028 e lambda: 0.34347 e lambda: 0.00027
e alpha: 1.1e-07 e alpha: 0.00066 e alpha: 2.9¢-08
e subsample: 0.96331 e subsample: 0.98447 e subsample: 0.89111
e colsample_bytree: 0.97232 e colsample_bytree: 0.76967 e colsample_bytree: 0.93290
e carly_stopping_rounds: 30 e early_stopping_rounds: 14 e carly_stopping_rounds: 26
e n_estimators: 96 e n_estimators: 96 e n_estimators: 16
e max_depth: 9 e max_depth: 5 e max_depth: 9
e min_child_weight: 8 e min_child_weight: 7 e min_child_weight: 3
e cta: 1.0e-08 e eta: 0.87030 e cta: 0.32162
e gamma: 1.7e-07 e gamma: 0.00894 e gamma: 3.2e-06
e grow_policy: depthwise e grow_policy: depthwise e grow_policy: lossguide
LightGBM e learning_rate: 0.02191 e learning_rate:0.00241 e learning_rate: 0.07838
e n_estimators: 604 e n_estimators: 215 e n_estimators: 416
e num_Jleaves: 20 e num_leaves: 40 e num_leaves: 21
e max_depth: 4 e max_depth: 8 e max_depth: 8
e min_data_in_leaf: 48 e min_data_in_leaf: 44 e min_data_in_leaf: 47
Catboost e learning_rate: 0.08224 e learning_rate:0.00617 e learning_rate: 0.28400

e jterations: 936
e depth: 7
e 12_leaf _reg: 0.33265

e iterations: 962
e depth: 10
e 12_leaf reg: 0.00208

e jterations: 865
e depth: 9
e 12_leaf reg: 0.13820

number generation in this module gives a better result for
each detection model. Figure 9b shows the convergence
graph between the fitness score and no. of generations (or
iterations) for the xgboost model. The graph shows
stable behavior from 60 to 64 iterations for the UNSW-

NB15 and CIC-IDS2018 datasets and from 123 to 128
iterations for the NSL-KDD dataset. Tables 7 and 8 outline
the best hyperparameter values for correlation-based and
mutual information-based fitness functions, respectively,
corresponding to each detection model.

@ Springer

Cluster Computing

Algorithm 5 Classification

Input: Drpin, Dreg, Hr, Mp or Mg

Output: Classification Report for Base or Ensemble Model (Pg or P)

10 end procedure

1 procedure MULTI-CLASS CLASSIFICATION
2 begin
3 columns < Drp,p.shape[1]
4
DTest[:a '1:]
5 LM ¢ classifier(x_train, y train, Hr)
6 y_pred< LM.predict(x_test, Hr)
7 Py or P < classification_report(y test, y pred)
8 return Py or Py
9 end

X_train < Dryin[:, :columns-1], y_train ¢~ Dypiq[:, -1:], X_test < Dreg[:, :columns-1], y_test «

// classifier € {Mg or Mg}

5.4 Classification

In this module, two different categories of detection
models, such as base and ensemble models, are employed
to identify distinct attacks and normal network traffic
behavior. Twelve different detection models are used, six
of which are included in the base model category and the
remaining six in the ensemble model category. Algorithm 5
describes the classification modeling module of the pro-
posed model.

Base Models = {Decision Tree (DT), Logistic Regres-
sion (LR), K-Nearest Neighbor (KNN), Support Vector
Machine (SVM), Dense Neural Network (DNN), 1D-
Convolution Neural Network (1D-CNN)}.

Ensemble Models = {Random Forest (RF), Xgboost,
LightGBM, Catboost, Majority Voting, Mean Voting}.

The majority and mean voting classifiers are an
ensemble of four detection models: RF, LR, KNN, and
Xgboost.

5.5 Applications of the proposed method

By implementing the proposed technique, the IDS signifi-
cantly enhances its efficiency and accuracy, transforming it
into a viable solution for real-time attack detection in
dynamic and resource-limited environments. The proposed
method offers a range of applications, including:

(i) Performance enhancement: When feature selec-
tion is combined with hyperparameter tuning, it
results in models that are not only lightweight but
also highly accurate. This approach assures that
the IDS can operate effectively, even in environ-
ments with limited computational resources. Spe-
cially in IoT-based organizations where resource
constraints are one of the challenges, this light-
weight IDS is highly applicable.

@ Springer

(i) Scalability: A lightweight IDS can scale seam-
lessly across large networks or multiple devices

without substantially increasing computational
load.

(iii) Real-time capabilities: Enhancing real-time detec-
tion capabilities by reducing latency introduced by
high-dimensional data is essential for promptly
identifying and mitigating security threats.

(iv) Cost efficiency: Optimizing the IDS’s computa-

tional efficiency reduces hardware and energy
consumption costs. This approach is ideal for
organizations seeking to implement highly cost-
effective security solutions.

6 Experimental results and discussion

This section discusses the experimental setup and different
performance metrics used in this paper to evaluate the
proposed model’s effectiveness. Based on the classification
metrics, performance is analyzed for each detection model
on all three datasets one by one. Furthermore, the

Table 9 Performance Metrics

Metrics Formula

Accuracy 3¢ True Positive;

Weighted Precision Ei: (s;+Precision;)
Weighted Recall 3¢ (s+Recall)
s
Weighted F1-Score S, (s.<F1-Score;)
- s

False Positive;]
False Positive;+True Negative,

False Alarm Rate

Prediction Time Stop_time — Start_time

Cluster Computing

Table 10 Classification performance after pre-processing module

Dataset Metrics Base Classifier Ensemble Classifier
DT LR KNN SVM DNN CNN RF Xgboost LightGBM Catboost Majority Mean
Voting Voting
NSL-KDD Accuracy(%) 69.49 72.57 74.80 71.86 72.68 7245 72.22 33.08 73.57 75.29 71.96 73.20
Precision(%) 65.21 72.16 74.14 76.21 66.93 67.22 79.19 10.95 72.63 81.16 67.38 67.24
Recall(%) 69.49 72.57 74.80 71.86 72.68 72.45 72.22 33.08 73.57 75.29 71.96 73.20
F1-Score(%) 64.20 67.68 70.17 66.96 67.74 67.52 67.56 16.45 69.85 71.24 67.03 68.19
FAR(%) 10.44 9.20 8.50 9.62 9.39 9.41 9.50 20.00 8.77 8.47 9.66 9.17
Prediction 0.017 0.023 16.87 16.78 1.502 2.666 0.255 0.031 4.997 0.216 17.08 16.96
Time(sec)
UNSW- Accuracy(%) 5894 66.14 66.68 6391 71.61 70.58 76.18 58.89 65.92 63.66 69.20 7191
NB15 Precision(%) 70.36 70.64 81.83 74.62 76.75 80.40 82.89 76.02 70.99 62.27 82.77 83.55
Recall(%) 5894 66.14 66.68 6391 71.61 70.58 76.18 58.89 65.92 63.66 69.20 7191
F1-Score(%) 61.31 67.12 67.78 65.78 71.69 71.43 76.53 61.28 66.96 60.40 69.59 72.77
FAR(%) 4.73 4.12 3.57 4.28 3.38 3.31 2.70 4.18 4.28 3.90 3.31 3.12
Prediction 0.018 0.012 26.56 401.94 10.46 10.39 0.92 1.424 26.34 0.518 26.61 22.31
Time(s)
CIC- Accuracy(%) 89.71 89.18 89.96 89.43 89.42 89.51 89.88 90.11 90.56 90.40 90.21 90.50
IDS2018 precision(%) 9370 9271 90.18 9274 9367 9323 9159 93.14 92.03 91.23 93.46 91.37
Recall(%) 89.70 89.17 89.96 89.43 89.41 89.50 89.87 90.11 90.55 90.39 90.20 90.49
F1-Score(%) 90.09 89.57 90.05 89.84 89.81 89.90 90.22 90.49 90.86 90.63 90.58 90.73
FAR(%) 2.01 2.14 2.18 2.10 2.10 2.06 2.08 1.97 1.94 2.02 1.93 2.00
Prediction 9.775 0.799 6527 137.26 10.463 5.318 1.055 1.993 4.010 3.209 69.38 60.022
Time(s)

performance of the proposed model is also compared with
different traditional dimensionality reduction techniques
and similar state-of-the-art works.

6.1 Experimental setup

This paper performs all the experiments using Python
programming with sklearn, matplotlib, keras, and tensor-
flow-based libraries. The experiments are performed on the
local server by launching jupyter notebook on the ana-
conda. Here, the advantage of Google Colab has been taken
for its high speed and GPU. The system specification of the
machine where all the experiments are performed is as
follows: RAM- 12.0 GB, Processor- Intel(R) Core(TM) i5-
72000 CPU @2.50 GHz 2.70 GHz, and system type is the
64-bit operating system, x64-based processor.

6.2 Performance metrics

Table 9 shows the performance metrics used in this paper
to evaluate the effectiveness of the proposed model. Here,
six different classification metrics are utilized: accuracy,
weighted precision, weighted recall, weighted fl-score,
false alarm rate, and prediction time. Where S and S; rep-
resent the total no. of samples and the total no. of samples
of the ith class, respectively, while C represents the total

no. of classes in the dataset. The formulas for computing
F1 — Score;, Precision;, and Recall; are discussed
(Sect. 5.3) in Egs. (20-22), respectively. Where
True Positive denotes correctly identified samples in the
attack class, True Negative represents correctly identified
samples in the normal class, False Positive represents
misclassified non-attacks as attacks, and False Negative
outlines misclassified attacks as non-attacks.

6.3 Performance analysis

In this section, the proposed model’s performance is ana-
lyzed sequentially. This means that after applying each
module of the proposed framework one by one, the effec-
tiveness of the proposed model is evaluated.

6.3.1 Detection model’s performance after pre-processing
module of the proposed model

Table 10 shows the performance of all the detection models
(discussed in Sect. 5.4) in terms of classification metrics
(discussed in Sect. 6.2) on all three datasets after applying
the preprocessing module of the proposed framework
(discussed in Sect. 5.1.2). Table 10 shows that performance
on the CIC-IDS2018 dataset is better compared to the
NSL-KDD and UNSW-NB15 datasets. It is also noticed

@ Springer

Cluster Computing

that Catboost in the case of NSL-KDD, RF in the case of
UNSW-NB15, and LightGBM in the case of CIC-IDS2018
datasets offer better performance than other detection
models. The best results by the specific detection models
are indicated by the numbers highlighted in bold in the
Tables 10, 11, 12, 13, and 15.

6.3.2 Detection model’s performance after applying phase
1 feature selection module of the proposed model

Table 11 shows the detection model’s performance after
applying the PSO-based feature selection module (dis-
cussed in Sect. 5.2.1) on all three datasets. The detection
models’ performance is significantly improved compared
to the previous module on the NSL-KDD and UNSW-
NB15 datasets. Here, the Xgboost model shows a signifi-
cant improvement.

6.3.3 Detection model’s performance after applying phase
2 feature selection module of the proposed model

In this phase, the performance is evaluated utilizing two
different metrics in the fitness function of ACO-based
feature selection (discussed in Sect. 5.2.2) such as
(a) Mutual Information, (b) Correlation Metric.

(a) Fitness function: mutual information based

Table 12 shows the classification performance after
stacking PSO with the ACO-based feature selection on all
three datasets utilizing mutual information in the ACO’s
fitness function. The table shows a remarkable improve-
ment after applying this module in the proposed frame-
work. DNN in the case of NSL-KDD, RF in the case of
UNSW-NB15, and LightGBM, as well as majority voting
in the case of CIC-IDS2018, outperform other detection
models.

(b) Fitness function: correlation based

Table 13 shows the classification performance after
stacking PSO with the ACO-based feature selection on
three datasets utilizing a correlation metric in the ACO’s
fitness function. From Table 13, it is observed that DNN
and Catboost in the case of NSL-KDD, Xgboost, and
Catboost in the case of UNSW-NB15, and LightGBM and
mean voting in the case of CIC-IDS2018 give impressive
detection performance. The reason behind improved per-
formance compared to the previous phase is that here,
noisy and correlated features are removed, which shows a
high correlation with other features in the data, while only
those features are retained, which shows a high correlation
with the target class. Thus, the noisy features from the data
are removed, hence, performance improvement after
training the model on filtered with crucial features of data.

@ Springer

6.3.4 Detection model’s performance after applying
the hyperparameter tuning module of the proposed
model

Tables 14 and 15 demonstrate the classification perfor-
mance after utilizing all four major modules of the pro-
posed framework in the case of mutual information-based
and correlation-based, respectively, on three datasets. The
tables show the result after stacking PSO 4+ ACO + GA
on each detection model.

GA-based hyperparameter tuning iteratively searches
for the best hyperparameters corresponding to each detec-
tion model. Table 14 shows that xgboost performs better
than others on the UNSW-NB15 and CIC-IDS2018 data-
sets, while catboost outperforms others on the NSL-KDD
dataset. Moreover, from Table 15, it is scrutinized that
xgboost and catboost give the best results on all three
datasets. Both Tables 14 and 15 summarize that stacking of
PSO + ACO + GA in the proposed framework gives the
best results. The performance is significantly better in the
case of correlation metric than mutual information on all
the datasets for almost each detection model. The proposed
model demonstrates notably superior performance on the
NSL-KDD and UNSW-NBI15 datasets while achieving
comparatively stronger results on the CIC-IDS2018 data-
set. From the results of the detection model, it is obvious
that the application of PSO-ACO stacked with GA
demonstrates a highly improved performance.

6.4 Results and discussion

After the preprocessing, the data is split into training and
testing sets with the number of features 42, 44, and 84 for
the NSL-KDD, UNSW-NB15, and CIC-IDS2018 datasets,
respectively. At this point, it is observed in Table 10 that
Catboost, RF, and LightGBM give better performance than
other detection models as 75.29%, 76.18%, and 90.56%,
respectively, on NSL-KDD, UNSW-NBI15, and CIC-
IDS2018 data. The performance is very low at this stage.

Feature selection is implemented in the next module on
the preprocessed data, and it gives an outstanding result as
it removes all the correlated, redundant, and irrelevant
features. It keeps only information-rich features through
the proposed bi-phase feature selection technique in the
proposed framework. In the first phase, PSO-based feature
selection reduces the feature space by considering the
imbalanced nature of the data. The value of the weight
parameter y = 1 gives the optimal performance, and the
geometric mean of all nine detection models (including
DT, RF, Xgboost, LightGBM, Catboost, SVM, KNN,
DNN, and CNN) is summed. Here, the activation function
of the DNN and CNN model considers ‘relu’ (at the hidden
layer) and ‘softmax’ (at the last layer since multi-class

Cluster Computing

Table 11 Classification Performance after applying PSO-Based feature selection Module

Dataset Metrics Base Classifier Ensemble Classifier
DT LR KNN SVM DNN CNN RF Xgboost LightGBM Catboost Majority Mean
Voting Voting
NSL-KDD Accuracy (%) 72.79 74.19 74.71 74.08 72.38 72.52 72.24 74.21 75.21 76.28 72.57 73.24
Precision (%) 73.34 67.72 74.15 76.13 66.67 75.75 79.65 77.05 81.24 81.62 80.03 80.11
Recall (%) 72.79 74.19 74.71 74.08 72.38 72.52 72.24 74.21 75.21 76.28 72.57 73.24
F1-Score (%) 68.74 69.17 70.18 69.22 67.38 67.42 67.49 70.20 70.97 72.54 67.79 68.47
FAR (%) 9.17 8.74 8.51 8.83 9.22 9.34 9.52 8.79 8.49 8.12 9.44 9.13
Prediction 0.009 0.012 6.99 14.14 1.077 1.066 0.062 0.009 0.140 0.039 7.500 6.467
Time(s)
UNSW- Accuracy (%) 63.11 7520 7228 6453 77.11 76.84 83.62 63.19 77.54 77.59 74.65 72.99
NB15 Precision (%) 6556 8086 77.13 8175 8480 79.23 8448 57.98 83.42 83.96 81.64 79.07
Recall (%) 63.11 7520 7228 6453 77.11 7684 83.61 63.19 77.54 77.59 74.65 72.99
F1-Score (%) 59.73 74.06 73.76 57.99 75.96 75.56 83.45 59.46 78.23 77.68 74.46 73.45
(%) 4.11 2.77 3.27 3.98 2.53 2.58 217 3.96 2.55 2.58 2.97 3.01
Prediction 0.007 0.011 2093 194.18 2.744 2.718 0475 0.051 7.372 0.147 21.23 19.07
Time(s)
CICIDS2018 Accuracy (%) 89.83 89.23 89.98 89.44 89.44 89.57 90.34 90.25 90.56 90.37 90.34 90.51
Precision (%) 93.61 92.85 90.17 92.88 92.65 93.61 92.47 92.35 93.09 92.67 93.26 91.54
Recall (%) 89.83 89.22 89.98 89.43 89.43 89.56 90.33 90.25 90.56 90.37 90.33 90.51
F1-Score (%) 90.22 89.61 90.06 89.83 89.84 89.96 90.69 90.60 90.92 90.73 90.71 90.77
FAR (%) 1.99 2.13 2.18 2.09 2.06 2.04 1.95 1.96 1.88 1.94 1.91 1.98
Prediction 0.414 0.437 10.75 137.01 2.671 3.199 0.559 0.627 2.228 0.861 11.94 10.86
Time (s)
Table 12 Classification Performance after stacking of PSO + ACO in Case of Mutual Information
Dataset Metrics Base Classifiers Ensemble Classifier
DT LR KNN SVM DNN CNN RF Xgboost LightGBM Catboost Majority Mean
Voting Voting
NSL-KDD Accuracy(%) 76.27 78.71 77.67 79.09 79.80 72.79 76.37 78.88 75.23 79.19 77.09 79.15
Precision(%) 75.93 81.27 80.53 81.04 80.54 67.29 81.02 81.87 77.33 81.84 81.00 82.03
Recall(%) 76.27 78.71 77.67 79.09 79.80 72.79 76.37 78.88 75.23 79.19 77.09 79.15
F1-Score(%) 74.30 76.62 74.59 76.05 77.05 67.68 73.86 77.00 73.02 71.78 74.40 76.85
FAR(%) 7.26 6.43 7.18 6.56 6.17 9.32 7.90 6.80 8.00 6.72 7.57 6.72
Prediction 0.005 0.008 6.00 12.40 1.03 1.00 0.033 0.005 0.128 0.027 6.32 5.14
Time(s)
UNSW- Accuracy(%) 7197 78.84 79.61 73.35 8l1.11 79.29 85.41 78.96 80.10 82.09 75.67 74.38
NB15 Precision(%) 7643 81.14 8001 8229 8565 8204 8633 77.83 81.62 84.36 82.61 80.75
Recall(%) 71.97 78.84 79.60 73.35 81.10 79.29 85.41 78.96 80.10 82.09 75.67 74.38
F1-Score(%) 72.41 79.97 79.80 77.56 83.31 80.64 85.86 78.32 78.39 83.20 75.44 75.47
FAR(%) 3.29 1.22 241 232 224 2.12 1.98 297 248 1.61 2.84 2.93
Prediction 0006 0010 1809 18026 2271 266 0332 0.020 5.652 0.131 19.39 17215
Time(s)
CICIDS2018 Accuracy(%) 90.30 90.92 91.61 89.43 89.87 90.44 90.46 91.21 91.55 90.43 91.93 91.54
Precision(%) 90.31 92.98 92.96 9298 93.55 93.73 90.79 92.67 93.60 9291 93.86 91.83
Recall(%) 90.30 90.91 91.60 89.43 89.86 90.44 90.46 91.20 91.54 90.43 91.92 91.53
F1-Score(%) 90.31 91.93 92.27 89.82 91.66 92.05 90.58 91.92 92.55 90.87 92.48 91.67
FAR(%) 1.73 2.05 2.15 2.04 1.99 1.99 1.89 1.84 1.81 1.82 1.85 1.89
Prediction 0.365 0.388 9.72 129.33 2.565 3.178 0.547 0.601 1.846 0.748 11.15 10.44
Time(s)

@ Springer

Cluster Computing

88°6 0¥T 01 108°0 09L'T TS0 PLYO L8'T 8TT TSt 86 09€0 $8E€0 (S)owr[, uondIpaid
or't €0°1 8¢€'T ST'T 1T1 4N LE'T 8L'T 16'1 L8'T S0'C 4N (%)avd
13 SL'16 L9Y6 L0°S6 66€6 0L'E6 0£€6 L8T6 61T6 7806 08'16 9706 (9)01008-14
IS'v6 1'26 6276 ¥S'b6 876 €5€6 0£T6 OVT6 O¥'16 §906 9106 ST06 (%)1reoay
£€°S6 60’16 LOS6 79'S6 ELY6 68€6 PEV6 SEE6 00°€6 0016 1S€6 LT06 (9)uors121g
ISV6 e 0€+6 SS'H6 676 €5¢6 0£T6 726 1+'16 9906 LI'06 9T06 (%)Loemooy 810TSAIDID
7691 €v'LI 6€T°0 €vE9 €00 1S£0 0F0l STT LIOLL O00LL 9000 +00°0 (S)dWIL], UONIIPAI]
LE'T PE'T STT 10T 8T'1 ve'l 14N v6'1 |84 91'C €T Pl (%)avd
7698 L998 9L'L8 8618 €8°L8 STL8 ST08 LL'ES SO'LL 1608 66'LL SO'LS8 (9)21098-14
86°L8 06'L8 18°88 10°8L I€'88 6948 86'6L 0978 69'8L 86'6L tY6L 1998 (%)1reoay
SS'L8 6768 75°68 8¢'98 9968 1068 €€08 6678 L¥E8 I1'¥8 L6083 8¢'88 (9)uorsI2Ig
8G°L8 06'L8 18°88 10°8L I€88 69°L8 86'6L 0978 69°8L 86'6L ¥Y6L ¥9°98 (%)Koemdoy STAN-MSNN
L61'S 866'S 1€0°0 621°0 LO00 €500 8SO'T TOO'T LO'II €66'S S000 $00°0 (S)duwLy, uonorpaid
929 S6'9 96°'S €8 99 IS'L L 9W's W09 919 €69 €e'L (%)av4d
6£'8L 89°9L ST'08 TT6L 6¥'LL IISL TYLL TE6L 16'8L ST8L TIVL 68YL (9)21008-14
T€08 S9'8L 8€'I8 ST'LL 9T6L 8I'LL 8%¥8L 6H'I8 9508 TC08 089L ¥99L (%)11eo0y
vL08 §T08 0978 18 0808 8S6L 6L9L 96'6L €S6L T96L ¥S9L TEIL (9)uotsIo21g
T€08 S9'8L 8¢°I8 ST'LL 9z6L 8T'LL 8%¥'8L 618 9508 TT08 089L ¥99L (%)koemooy dAaI-ISN
SunoA uedy Sunop Ajuofely Jsooqie) NGDWYSIT 180093X Er| NND NNA INAS NN 1 1a
ISyISSe[) S[quiasuy S1oyIsse[) aseq SO jasere

JLRIAl UOTR[AIIO)) JO 3Sed Ul 0DV + OSd JO Sumjorls 10)je oouewIojiod Uoneoyisse[) €| d|qel

pringer

A's

Cluster Computing

158 LE6 1LS°0 Sl ¥TS0 ILy0 6L8T €081 68VIT ¥8L T9TO 98T0 (S)dwiL uonoipaid
Tl 8¢'1 9L'1 Sl 901 €Il 611 LT1 8L 114 LET 8I°1 (%)avd
€116 ¥8°€6 8Y' 16 $9°¢6 L6V6 TI'P6 9Tv6 ¥8T6 LET6 68¢6 1966 PEE6 (9)91008-14
08°¢6 89°¢6 $9°€6 18726 oLv6 TSe6 1¥T6 SPl6 I¥l6 U6 vIT6 ¥ET6 (%)1reosy
876 1076 €€°56 Y6 9TS6 €L¥6 66S6 8TF6 9¢€6 SST6 vIS6 8EY6 (9)uors10214
18°€6 89°€6 99°€6 7876 ILY6 — €5€6 ThT6 SYI6 THI6 vTEe vIT6 SET6 (%)Aoemooy 810TSAI-DID
249! 98°S1 LOT°0 16T SI00 SLTO0 TI9T SS'1 6TTPI OL'ST 8000 9000 (S)dwr uonoipaig
Wl St'1 6¢'1 Pl 11 6¢1 89'1 Tl S6'1 €Ll 120°0 49! (%)avd
¥6'98 9798 0¢'L8 8T'L8 LO88 LEL8 TOE8 L6SS LE0S FOF8 89T8 8¢98 (9)91008-14
09°L8 €9°L8 €6°L8 9698 €988 6SL8 SL'S8 8E€S8 €€€8 98F8 OLIS8 1£798 (%)1reoay
LS LTLY $8°L8 7088 TL88 STL8 6EP8 8598 6918 TOP8 OL'ES LY'98 (9)uors10219
09°'L8 €9°L8 €6°L8 9698 €988 6S5L8 SL'SS 8E€S8 €€€8 98F8 OLIS8 1€°98 (%)Aoemooy GTIN-MSNN
95°g 6L'S Y100 901°0 000 6200 9160 LOO'] 86°S LLS 9000 $000 (S)Swiy uondmpaid
1SS €59 S6'S 9L €19 8L°9 789 S6Ss o' 6£9 0SS 86'9 (%)avd
LLE8 7678 TTS8 SH'I8 1868 €818 LEVL 6£€8 8678 €£08 TE6L T66L (9)91008-14
$6'C8 6518 S9'+8 ¥L08 1768 966L 698L 9¢T8 9LT8 IL6L SI'T8 8108 (%)11eoay
978 P8 0868 618 €v'H8 18€8 8008 9FP8 TCES 8608 068 896L (9)uors1021g
$6'T8 6518 S948 vL08 1T€8 966L 698L 9€T8 9LTS IL6L SI'T8 8108 (9%)£oemooy dad-1SN
SunoA uedy Sunop Auofely Isooqie) NGOWSIT 180098X a9 NND NNA INAS NN 1 1da
IOYISSe[D) Q[quIdsuy SIQYISSe[) aseq SOLIIN jasere

UONRULIOJU] [BMINJA] JO 3SBO UI VO + 0DV + OSd JO Suroe)s I19)je 90UeULIOfIS UONBOYISSE[) {1 d|qel

pringer

A

Cluster Computing

1€'8 76’6 01L0 01T'1 PEP'0 6£€0 6L6T 6881 €9°€0T 6¥'8 ¢8T0 L9TO (S)dwi], uonorpaid
6¥'0 vLO 0+"0 6£°0 0 8L°0 $6'0 88°0 8T’ STl 67’1 080 (%)avd
86°L6 8596 £6°L6 66'L6 06'L6 8€96 €€S6 69S6 ¥6°€6 €Iv6 €€€6 LE96 (%)01008-T
v$'L6 L§96 06°L6 S6°L6 L8L6 996 ITS6 8SS6 6LE6 1076 L¥T6 8£96 (%)11eooy
SL'L6 8596 ST'86 6186 II86 I¥'96 0096 879 0S¥6 8F¥6 TTH6 LE96 (9)uorsIoalg
SS°L6 8596 06°L6 96'L6 L8L6 LE£96 1TS6 8SS6 6L'E6 W0v6 LYT6 6£96 (9)Koemooy 8102SAIDID
911 I18°€1 9€1°0 611 6200 9TT0 €66 S00C YL8IT T8TI G000 TO00 (S)ouwL] uondipaid
Tl 01 LTT W $6°0 60'T €Lt €Ll S6'1 €Lt €9'T 01 (%)avA
0016 716 8€°06 80'+8 LT'€6 LE€T6 6ST8 8€T8 LE08 v0¥8 61T6 TY'T6 (%)91008-1
09°16 £€9°06 £6'68 75°C8 €9°T6 0€06 TES8 STS8 €€y 98¥8 OLT6 6516 (%)1Ieoay
w06 LTT6 6806 TLS8 TLUE6 LYT6 LO¥8 THSS 6918 TIv8 0LT6 8T (9)uolsIoalg
09°'16 £€9°06 £€6'68 758 €9°C6 1€06 CES8 STSS €€€8 98¥8 ILT6 6516 ()Aoemooy GTAN-MSNN
6vLY LLT'S 7200 LOT°0 S00°0 €700 1860 8660 69S°T LET'S $00'0 T000 (S)dwiLy, uonorpaid
10°S 148 68°p 00°L 1S L89 TS LTS 86'S 19 LL9 YA (%)avA
vE6L 17°6L 10°T6 7998 PET6 0668 8108 T9E8 ¥SI8 €718 6506 SI'88 (%)91098-1
vI°18 LO'T8 9506 €7'68 8€°06 9068 91'T8 9¥'S8 SSC8 1€78 S£68 LTS8 (CAlILEEN |
€T'18 98°18 LY'T6 S8'L8 €676 9L06 S908 9818 LS08 v908 9F'I6 1L68 (9)uorstoalg
vI'18 LO18 95°06 €7'68 8606 9068 91'C8 9¥'S8 SST8 1€78 S£68 LTS8 (%)AorIN00Y Aay-ISN
Sunop ueoy Sunop Awofely 1sooqie) NGOWSIT 1s0093X 44 NND NNA INAS NNM a1 1a
JIoYISSe[D) S[quuasuyg SIayIsse[) aseq SOOI josereq

JLIJRIAl UONE[AIIOD) JO 3Sed Ul VO + ODV + OSd JO Sun[oe)s Iojje 90UBULIONId] UONBIYISSED) G| d|qel

pringer

A's

Cluster Computing

classification is performed), 0.2 as the dropout rate, and
executes these models up to 25 epochs. After completing
this phase, 25, 29, and 48 features are obtained on NSL-
KDD, UNSW-NB15, and CIC-IDS2018 datasets, respec-
tively. By trial and error methods, the values of these
parameters are determined. In phase 1, Catboost, RF, and
LightGBM again give better performance than other
detection models as 76.28%, 83.62%, and 90.56%,
respectively, on NSL-KDD, UNSW-NBI15, and CIC-
IDS2018 data, respectively, as depicted in Table 11. It
shows improved performance compared to the previous
results on preprocessed data, achieved by effectively
addressing imbalanced data issues and removing irrelevant
features. This phase leverages all nine models trained on
the training set and efficiently selects features.

Now, in the second phase, the model is analyzed from
two perspectives: correlation-based feature analysis and
mutual information-based feature analysis. Correlation-
based feature selection considers both feature-feature
importance and class-feature. Based on these measures, the
most crucial features are selected utilizing the ACO-based
feature selection technique. In phase 2, (DNN & Catboost),
(Xgboost & Catboost), and (LightGBM & Mean voting)
give better performance than other detection models as
(81.49% & 81.38%), (88.31% & 88.81%), and (94.55% &
94.51%) respectively on NSL-KDD, UNSW-NBI15, and
CIC-IDS2018 data respectively, as shown in Table 13.
Mutual information measures the information gained by
taking a feature subset, more the mutual-information value
of the feature subset, most likely of that candidate feature
subset selection by the ACO algorithm. Considering the
mutual-information metric in the fitness function of the
ACO algorithm offers the following performance as DNN
(79.80%), RF (85.41%), and LightGBM & Majority voting
(91.55% & 91.93%, respectively) on NSL-KDD, UNSW-
NB15, and CIC-IDS2018 datasets, respectively, as shown
in Table 12. After executing this phase, 15, 20, and 20
features are obtained on NSL-KDD, UNSW-NB15, and
CIC-IDS2018 datasets, respectively. Since only a few
features are selected for training the final detection model,
it ensures a lightweight implementation. Better detection
performance is utilizing correlation metrics against mutual
information metrics, and as a result, correlation metrics
offer a linear relationship, which is the more interpretable,
computationally efficient, and redundancy-handling
approach. It selects and evaluates features based on feature-
feature and class-feature pairs. For this reason, it has a high
impact on the overall performance of the model, while the
mutual information metric in the fitness function selects
features that might not always result in the best combina-
tion of features.

In the final module, the hyperparameters of each
detection model are optimized using a nature-influenced

genetic algorithm. The hyperparameter values of these
detection models are shown in Tables 7 and 8. It is
observed that 64, 64, and 128 generations give the optimal
result against other values on the UNSW-NBI15, CIC-
IDS2018, and NSL-KDD datasets, respectively. Here, the
population size is fixed, equal to 50 for all datasets. The
performance after completing this module using the mutual
information metric is as follows: Catboost achieved
84.65% accuracy, Xgboost achieved 88.63% accuracy, and
Xgboost model achieved 94.71% accuracy on NSL-KDD,
UNSW-NB15, and CIC-IDS2018 data, respectively, as
shown in Table 14. The performance using the correlation
metric is 90.38% and 90.56% accuracies for Xgboost and
Catboost, 92.63% accuracy for Xgboost, and 97.87% and
97.90% accuracies for Xgboost and Catboost models on the
same datasets as shown in Table 15. Xgboost outperforms
other models across all three datasets due to its efficient
handling of large datasets, capturing complex patterns
through boosting, reducing overfitting with regularization,
and quick data processing because of its parallelized
implementation. The results show that the application of
PSO + ACO + GA in the proposed framework improves
performance. Furthermore, performance significantly
improves when using the correlation metric compared to
mutual information across all datasets for almost every
detection model. Overall, the proposed model shows
superior performance on the NSL-KDD and UNSW-NB15
datasets and achieves relatively strong results on the CIC-
IDS2018 dataset.

6.5 Objective function analysis

In this section, the objective function of each metaheuristic
algorithm used in this paper is analyzed using convergence
diagrams, box plots, and swarm plots. Finally, the out-
comes of the objective function are analyzed in terms of
best, worst, mean, median, standard deviation, and
variance.

6.5.1 Convergence diagram

Figure 9 shows the convergence diagram of proposed
metaheuristic algorithms such as PSO, ACO, and GA.
Module 2 of the proposed model which discusses the fea-
ture selection in bi-phase utilizing PSO and ACO. Thus,
the convergence diagram of PSO and ACO is combined in
a single diagram, as shown in Fig. 9a. Here, the GA-based
hyperparameter tuning module is applied, whose conver-
gence diagram is shown in Fig. 9b. As a random algorithm,
the converge history comparison on a single run is unfair.
Thus, to reduce the effect of randomness, this paper fixes
the seed value = 42 for each algorithm and performs the
experiment with several runs or iterations (depending on

@ Springer

Cluster Computing

Multiclass Dataset (Geometric Mean) - Objective Box Plot

Multiclass Dataset (Correlation Metric) - Objective Box Plot

1.0 —T T
0.9
— 09
0 g
g | | B l
2, £ 0.
g o8 2 :
s c
% o7 g
i = 07
= 5
: == =
2 g
£,'90 o
2 = 06
7] 2
2 os 3
L -
< < os
0.4
0.3 0.4 —
QL] G
) N N
* ‘;0 A5 L 2 2
& s & © ® ol
< < S Y 2
N o & ©
& b & e
& o <~
Datasets &
Datasets
a
(@ (b)
Multiclass Dataset (Weighted F1 Score) - Objective Box Plot
os B E
o Tr —
8 o7 1
(=]
£ - =
g o.e
3
2 i
E’ o.s
$ *
o.4
>
0.3
o > >
S & &5
<~ < <
S G5
&
Datasets
(©

Fig. 10 Objective function box plots a PSO, b ACO, ¢ GA

the selected algorithm), and holds the best fitness score for
each optimization algorithm at every iteration.

In the case of the PSO algorithm, the objective function
is the summation of the geometric mean of the nine
detection models, so the result of the objective function lies
within the range of [0,9]. The fitness score is normalized to
lie within the range [0,10], especially for phase 1 of feature
selection in the proposed framework. As observed from
Fig. 9a, after 58, 95, and 79 iterations, the best fitness score
value stopped increasing for NSL-KDD, UNSW-NBI15,
and CIC-IDS2018 datasets, respectively. Hence, this is the
termination condition of the algorithms. Similarly, in the
case of the ACO algorithm, two objective functions are
considered for selecting the optimal feature subset, such as
(i) correlation-based and (ii) mutual-information-based.
Since the result based on the correlation function is better
than the mutual information function, the correlation-based

@ Springer

objective function in phase 2 of feature selection is ana-
lyzed here. The convergence diagram of Fig. 9a shows that
the optimal fitness score value is obtained at 50, 60, and 50
iterations for NSL-KDD, UNSW-NB15, and CIC-IDS2018
datasets, respectively. Since the multi-class classification is
explored, the fitness function in the genetic algorithm uses
the weighted fl-score value. The best fitness score at each
generation (or iteration) of the genetic algorithm is
encountered for each detection model. Figure 9b analyses
the fitness function of the xgboost algorithm within the
correlation metric in the hyperparameter tuning module.
The reason behind selecting the xgboost algorithm for the
analysis is that it offers optimal results for all the datasets.
It is obvious from the convergence diagram Fig. 9b that
128, 64, and 64 generations provide the best results for
NSL-KDD, UNSW-NB15, and CIC-IDS2018 datasets,
respectively.

Cluster Computing

Multiclass Dataset (Geometric Mean) - Objective Swarm Plot

1.0

0.9

0.8

0.7

0.6

0.5

Particle Swarm Optimization (Objective)

0.4

0.3
o o ®
g e°~ oS
i 3 o°
& S S
& ©
) «;0
&
Datasets
(@)

Muilticlass Dataset (Correlation Metric) - Objective Swarm Plot

0.9

08

G

0.7

0.6

AL
e

o
Oy

Ant Colony Optimization (Objective)
o®,
)

0.5

0009690857000

0.4

') R

K
%

o N O
& S P
R

Datasets

(®)

Multiclass Dataset (Weighted F1-Score) - Objective Swarm Plot

0.8

0.7

0.6

0.5

Genetic Algorithm (Objective)

0.4

0.3

R 2
~ id
Y ©
& <’
5 cs;\
o‘_’
Datasets
©

Fig. 11 Data diversity of objective function through swarm plots a PSO, b ACO, ¢ GA

6.5.2 Box plot, and swarm plot

The paper analyses the objective function data distribution
of each metaheuristic algorithm (used here) with the help
of box plots. The box plots are analyzed with different runs
for different algorithms in such a way that the PSO, ACO,
and GA algorithms are analyzed with 95, 60, and 128 runs
respectively. Figure 10a—c show the box plots of the
objective function data for PSO, ACO, and GA
respectively.

Similarly, the paper also analyses the data distribution of
each metaheuristic algorithm’s objective function (such as
PSO, ACO, and GA) using swarm plots. It shows the
diversity in the data. Here, the swarm plots are analyzed
with different runs for different algorithms in such a way
that the PSO, ACO, and GA algorithms are analyzed with

95, 60, and 128 runs, respectively. Figure 11 (a), (b), and
(c) show the swarm plots of the objective function data for
PSO, ACO, and GA, respectively.

6.5.3 Outcomes of objective function in terms of best,
worst, mean, median, std, and var

Figure 12a—f shows the results of the metaheuristics
objective function in terms of mean, best, worst, median,
standard deviation (std), and variance (var). If a meta-
heuristic algorithm’s objective function is denoted as Z,
then its best, worst, mean, median, standard deviation and
variance are calculated utilizing the formula provided in
Table 16. The symbols p and |I| indicate the mean and the
number of iterations performed by
respectively.

the algorithm

@ Springer

Cluster Computing

1.0 cn Best
. PSO mm ACO 1.0 - PSO = ACO
0.9
oo
0.8
0.8
0.7
0.7
0.6
o6
0.5
0.5
04
0.4
0.3
0.3
0.2 s
0.1 .
0.0 oo
NSL-KDD UNSW-NB15 CSE-CIC-IDS2018 NSL-KDD UNSW-NB15 cSE-CIc-IDS2018
() (b)
1.0 et 1.0 Median
0.9 BN PSO ®EEm ACO mm GA — = PSO == AcO
0.8 _—
0.7 — -
06 -
05 — _—
04) _
0.3 0.3
0.2 0.2
01 o
0.0 o6
NSL-KDD UNSW-NB15 CSE-CIC-IDS2018 NSL-KDD DRewHETel: (Caricichbasois
©) (d)
Std g
0.18 1 0.03
s PSO —
- == ACO === ACO
= GA S o
0.14 |
0.12 0.02
0.10
oco8 — LE
0.06 e a] 7
0.04
0.02 I l l
0.00 - . — l.

NSL-KDD UNSW-NB15 CSE-CIC-IDS2018 NSL-KDD UNSW-NB15
(e) ®

Fig. 12 Objective function in terms of a Mean, b Best, ¢ Worst, d Median, e Standard deviation (Std), and f Variance (Var)

CSE-CIC-IDS2018

6.6 Comparative analysis 6.6.1 Comparative analysis of the proposed method
with other traditional dimensionality reduction
This section compares the proposed model’s performance techniques
with that of other traditional dimensionality reduction
techniques and state-of-the-art techniques. Different dimensionality reduction techniques are utilized

here for comparative purposes, such as principal compo-
nent analysis (PCA), linear discriminant analysis (LDA),
autoencoder (AE), information gain (IG), and Pearson

@ Springer

Cluster Computing

Table 16 Formula for objective function evaluation

Objective Function Formula
1
Best ZBest = Maxl»:‘ 1(Z)
o
Worst Zworst = Ml"!] (Zi)
1
Mean ZMean = ‘%‘Zl:‘l (Zl)
oy th
Median ZMedian = (U‘TJH) term
1] :hm " 1 ml
OF Zytedian = Lo+ () term
Standard Deviation (Std) S /ZL 210’
Std — 1
Variance (Var) " (Zi—ny
(Zour = 2oz

17

correlation (P.Corr.). Tables 17, 18, and 19 demonstrate the
results after applying different dimensionality reduction
techniques on the preprocessed form of NSL-KDD,
UNSW-NB15, and CSE-CIC-IDS2018 datasets, respec-
tively. It is observed from these tables that proposed
framework outperforms other traditional dimensionality
reduction techniques in terms of accuracy, precision, recall,
fl-score, FAR, and prediction time. The reason behind the
improved performance of the proposed method is that here,
the most crucial and important features from the dataset are
selected through two phases. It filters the features based on
the imbalanced nature of the data using geometric mean in
the objective function of the PSO algorithm. The best
features subset is selected through this objective function.
Now, these filtered data are provided as input to the second
phase of the feature selection module, where the features
are selected not only based on feature-feature correlation
but also on the class-feature correlation. The feature subset
selected has the highest correlation with target classes and
the lowest correlation with the other features in the subset.
This way, the proposed model selects the most important,
and relevant features from the data and performs better
than other dimensionality reduction methods.

6.6.2 Statistical validation

To demonstrate the enhanced performance of the proposed
framework, a statistical analysis utilizing the two-tailed
t-test hypothesis testing is conducted in this paper.
Assumptions are made that the baseline method’s fl-score
is statistically identical to the value proposed in this work
(null hypothesis Hy) and that the baseline method’s f1-
score differs statistically from the reported value (alterna-
tive hypothesis Ha). Ten times execution of the xgboost
(for NSL-KDD and UNSW-NB15) and the catboost mod-
els (for CSE-CIC-IDS2018) are performed on each dataset

to obtain the different outcomes. The significance threshold
of the two-tailed t-test is selected as 5% (0.05) in this
paper. Table 20 displays the p-value at the 0.05 signifi-
cance level. Each entry in the table is less than 0.05. Thus,
it shows the rejection of the null hypothesis in each case.
The proposed model performance is not statistically iden-
tical to the respective baseline models. The performance of
the proposed framework is statistically significant and does
not happen by chance, as can be seen from the table where
the p-value is significantly below the significance level.

6.6.3 Result interpretation of best model through SHAP
analysis

The method of SHAP analysis has been acknowledged as a
way to enhance transparency in evaluating model perfor-
mance [42]. Figure 13a—c compute the feature importance
using the xgboost algorithm for NSL-KDD, UNSW-NBI15,
and CSE-CIC-IDS2018 datasets. Through the experiment,
it is observed that xgboost performs best in all three
datasets. Thus, xgboost is considered for analyzing the
feature importance and SHAP. It is noticed from Fig. 13a
that ‘level’, ‘dst_host_srv_count’, ‘dst_host_diff srv_rate’,
and ‘dst_host_count’ are top-performing features followed
by ‘count’, ‘dst_bytes’, and the remaining features are
comparatively less important for the NSL-KDD dataset.
Similarly, it is remarked from Fig. 13b that ‘smean’ is the
top-most performing feature, followed by ‘synack’,
‘sinpkt’, ‘dinpkt’, and ‘sjit’ for the UNSW-NB15 dataset.
In the same way, Fig. 13c shows the feature importance for
the CSE-CIC-IDS2018 dataset. It is perceived from the fig
that ‘Fwd IAT Min’ is the top performing feature, followed
by ‘Dst Port’, and ‘Flow Duration’. It is scrutinized that
feature importance for the UNSW-NB15 dataset is com-
paratively higher than that of the NSL-KDD and CSE-CIC-
IDS2018 datasets.

For analyzing the SHAP, features obtained after the
proposed bi-phase feature selection method are utilized to
determine the feature impact for each class in the dataset.
Figure 14 (a), (b), and (c) show the feature impact of multi-
class on the NSL-KDD, UNSW-NB15, and CSE-CIC-
IDS2018 datasets, respectively. It is scrutinized from
Fig. 14a that ‘level’ feature on the NSL-KDD dataset
contributes approximately equal to all the five classes.
Similarly, Fig. 14b suggests that ‘smean’ feature offers a
high impact compared to others on the UNSW-NBI5
dataset. However, it contributes equally to every class in
the dataset. In the same way, the feature impact for the
CSE-CIC-IDS2018 data is shown in Fig. 14c. It is noticed
from Fig. 14c that feature ‘day’ provides a higher impact
than other features in the dataset while it does not con-
tribute equally to every class.

@ Springer

Cluster Computing

Table 17 Comparative analysis of different traditional dimensionality reduction techniques with the proposed approach on NSL-KDD

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) FAR (%) Prediction Time (s)
DT PCA 77.41 80.10 77.41 74.84 7.18 0.003
LDA 74.45 71.79 74.44 71.01 7.69 0.003
AE 79.38 81.56 79.37 76.98 6.48 0.003
1G 72.88 68.57 72.88 69.00 8.74 0.004
P.Corr 78.33 80.69 78.33 75.77 6.75 0.007
Proposed 88.27 89.71 88.27 88.15 5.25 0.002
RF PCA 77.35 81.30 77.35 74.12 7.45 0.255
LDA 74.68 72.88 74.68 71.12 7.66 0.341
AE 78.21 81.63 78.21 74.24 7.24 0.257
1G 74.70 77.98 74.69 69.90 8.69 0.278
P.Corr 76.07 79.25 76.06 71.55 7.93 0.365
Proposed 89.06 90.76 89.06 89.90 6.87 0.043
KNN PCA 77.28 79.51 77.28 74.08 7.43 7.985
LDA 75.56 73.21 75.56 72.01 7.44 10.670
AE 78.17 79.44 78.17 74.86 7.15 9.628
1G 77.31 78.33 77.31 73.96 7.63 29.88
P.Corr 77.10 77.82 77.09 71.98 7.49 20.40
Proposed 82.31 80.64 82.31 81.43 6.11 5.137
LR PCA 79.04 80.84 79.04 76.02 7.48 0.004
LDA 73.35 66.37 73.34 68.47 8.26 0.006
AE 75.44 74.78 75.44 70.68 7.83 0.005
1G 68.62 71.86 68.62 63.90 10.33 0.007
P.Corr 79.76 81.74 79.76 75.32 7.16 0.017
Proposed 89.35 91.46 89.35 90.39 6.77 0.004
SVM PCA 78.06 78.28 78.05 74.58 6.96 15.29
LDA 73.30 66.14 73.29 68.41 8.34 13.52
AE 78.52 75.78 78.52 74.47 6.97 7.647
1G 71.16 66.14 71.16 66.25 9.64 36.18
P.Corr 76.28 77.33 76.28 71.33 7.51 10.51
Proposed 82.55 80.57 82.55 81.54 5.98 2.569
XGB PCA 79.86 81.54 79.85 76.70 6.42 0.216
LDA 75.71 75.34 75.70 72.38 7.38 0.212
AE 80.17 82.79 80.16 76.40 6.50 0.243
1G 74.63 73.83 74.63 69.87 8.70 0.226
P.Corr 78.16 81.37 78.16 74.87 7.14 0.206
Proposed 90.38 92.33 90.38 91.34 5.21 0.005
LightGBM PCA 77.37 77.85 77.37 74.53 7.24 0.921
LDA 74.68 72.79 74.68 71.27 7.65 0.583
AE 78.20 77.86 78.20 75.31 7.97 0.997
1G 72.66 70.24 72.65 68.17 9.21 0.867
P.Corr 7491 77.44 74.91 74.22 7.66 0.881
Proposed 85.43 87.85 85.43 86.62 7.00 0.107
Catboost PCA 80.09 82.50 80.09 77.06 6.33 0.201
LDA 76.58 75.89 76.57 73.04 7.19 0.237
AE 78.60 81.43 78.60 74.72 7.015 0.124
1G 74.76 76.25 74.75 69.99 8.65 0.169
P.Corr 79.20 81.89 79.20 76.00 6.78 0.109
Proposed 90.56 91.47 90.56 91.01 4.89 0.022

@ Springer

Cluster Computing

Table 17 (continued)

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) FAR (%) Prediction Time (s)
Majority Voting PCA 77.78 81.33 77.78 74.41 7.30 8.484
LDA 74.76 73.25 74.76 70.96 7.84 6.868
AE 78.48 79.90 78.47 74.64 7.16 8.483
1G 73.02 75.07 73.02 68.27 9.29 20.30
P.Corr 77.09 79.58 77.09 72.56 7.56 19.79
Proposed 81.07 81.86 81.07 79.41 5.14 5.277
Mean Voting PCA 79.31 78.02 79.31 76.05 6.69 6.086
LDA 75.13 73.58 75.13 71.20 7.59 5.579
AE 79.85 79.49 79.84 76.08 6.63 6.651
1G 74.38 76.14 74.38 69.62 8.78 36.44
P.Corr 79.18 79.81 79.18 74.67 6.72 18.63
Proposed 81.14 81.23 81.14 79.34 5.01 4.749
DNN PCA 81.50 80.20 81.50 78.21 5.75 1.426
LDA 73.35 66.35 73.35 68.43 8.38 2.724
AE 80.06 77.79 80.06 75.81 6.45 1.350
1G 69.34 63.18 69.34 64.57 9.86 1.368
P.Corr 76.26 75.30 76.26 71.61 7.29 1.48
Proposed 85.46 81.86 85.46 83.62 5.17 0.998
CNN PCA 80.57 79.42 80.57 77.43 6.12 2.732
LDA 75.29 65.01 75.28 69.39 7.84 1.379
AE 80.39 79.36 80.38 75.42 6.34 2.682
1G 69.52 63.32 69.52 64.65 10.13 2.727
P.Corr 77.83 80.14 77.83 74.00 6.69 2.695
Proposed 82.16 80.65 82.16 80.18 5.32 0.981

6.6.4 Comparative analysis of the proposed method
with other state-of-the-art approaches

In this section, the proposed model is compared with dif-
ferent state-of-the-art techniques on the NSL-KDD,
UNSW-NB15, and CSE-CIC-IDS2018 datasets, which are
shown in Tables 21, 22, 23, and 24.

Table 21 compares the prediction time (in second) of
various detection models in the proposed framework with
the [23] on the CIC-IDS2018 dataset. Observing from the
table, it is summarized that the proposed framework takes
comparatively less prediction time than that of [23]. The
reduced prediction time compared to [23] is attributed to
the introduction of two phases in the feature selection
module, enabling the selection of only essential, relevant,
information-rich, uncorrelated with other features, and
correlated with the target class. Consequently, this results
in a significant reduction in the size of the data, leading to a
substantial decrease in both model building and prediction
time. As a result, the proposed model becomes lightweight.

Table 22 compares the logistic regression-based detec-
tion models of the proposed framework with that of [64] on

two datasets. The table shows that the proposed model
gives better results than [64] in terms of accuracy, preci-
sion, recall, and fl-score. Moreover, the values of recall
and fl-score in the proposed framework are significantly
better than that of [64] on both datasets, while the accuracy
of the proposed model has not significantly deteriorated,
particularly on the UNSW-NBI15 dataset. The proposed
model clearly outperforms the one mentioned in [64]. This
is due to the fact that the cost matrix in [64] is determined
using a random forest classifier to evaluate feature impor-
tance. The proposed model integrates feature selection
from two phases, concentrating on the mutual information
metric and correlation metric within the ACO objective
function. Another key factor contributing to the superior
performance of the proposed model is the optimization of
the logistic regression-based detection model using the
genetic algorithm, which significantly boosts performance.

Table 23 compares the proposed model with [21] on the
NSL-KDD dataset. The table shows that the proposed
model gives impressive results for the RF, LR, and
xgboost-based detection models; however, performance is
not significantly degraded for the KNN-based detection

@ Springer

Cluster Computing

Table 18 Comparative analysis of different traditional dimensionality reduction techniques with the proposed approach on UNSW-NB15

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) FAR (%) Prediction Time (s)
DT PCA 59.54 68.50 59.54 55.02 4.82 0.008
LDA 41.88 54.66 41.88 41.29 7.85 0.020
AE 57.37 71.93 57.37 54.16 5.10 0.014
1G 62.64 69.56 62.64 59.48 4.16 0.037
P.Corr 38.68 41.70 38.68 32.87 9.05 0.023
Proposed 91.59 93.28 91.59 92.42 1.02 0.002
RF PCA 61.90 56.32 61.90 56.64 4.53 1.570
LDA 44.52 56.18 44.52 44.56 7.55 1.841
AE 70.52 81.20 70.51 72.00 3.16 1.340
1G 80.30 80.11 80.29 78.85 2.86 1.041
P.Corr 43.19 58.35 43.19 40.08 8.59 1.455
Proposed 90.31 92.47 90.30 91.37 1.09 0.226
KNN PCA 63.85 81.74 63.85 63.93 3.87 13.17
LDA 41.73 55.41 41.72 40.66 791 4.448
AE 69.49 80.87 69.49 71.38 3.26 13.16
1G 61.01 80.25 61.01 59.69 4.17 14.31
P.Corr 41.10 56.65 41.10 36.39 8.34 91.29
Proposed 84.86 84.12 84.86 84.04 1.73 12.82
LR PCA 70.67 79.12 70.66 68.91 3.27 0.015
LDA 45.34 52.98 45.34 41.61 7.93 0.010
AE 71.39 78.36 71.38 69.68 3.21 0.022
1G 73.75 81.78 73.75 72.22 2.94 0.017
P.Corr 32.83 22.05 32.82 25.58 10.77 0.026
Proposed 91.71 92.70 91.70 92.19 1.63 0.005
SVM PCA 63.58 56.97 63.58 56.44 4.08 257.78
LDA 38.29 42.60 38.28 32.87 8.73 460.44
AE 65.26 76.98 65.26 60.36 393 441.29
1G 63.79 54.69 63.79 57.41 3.96 455.53
P.Corr 38.57 29.42 38.56 31.64 9.22 599.40
Proposed 83.33 81.69 83.33 80.37 1.95 118.74
XGB PCA 61.79 59.48 61.78 58.80 4.06 1.471
LDA 42.15 55.20 42.14 40.80 7.99 1.433
AE 67.41 79.09 67.41 67.95 3.52 1.578
1G 61.92 59.46 61.91 58.75 4.09 1.300
P.Corr 39.51 35.14 39.50 34.51 8.78 1.547
Proposed 92.63 93.72 92.63 93.17 0.95 0.029
LightGBM PCA 66.60 70.74 66.59 64.86 4.63 19.29
LDA 42.40 56.58 42.39 43.62 7.59 7.617
AE 63.47 7591 63.46 63.64 4.04 8.577
1G 46.60 56.44 46.59 49.35 7.01 7.266
P.Corr 42.07 55.19 42.07 38.32 8.71 7.678
Proposed 82.52 85.72 82.52 84.08 1.42 1.19
Catboost PCA 61.62 60.95 61.62 58.65 4.12 0.926
LDA 43.30 55.25 43.30 42.68 7.80 0.566
AE 70.37 81.53 70.36 71.04 3.21 0.567
1G 63.65 63.39 63.65 60.32 3.90 0.648
P.Corr 40.36 36.73 40.35 35.83 8.46 0.560
Proposed 89.93 90.85 89.93 90.38 1.17 0.136

@ Springer

Cluster Computing

Table 18 (continued)

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) FAR (%) Prediction Time (s)
Majority Voting PCA 64.45 83.44 64.45 63.48 3.82 16.66
LDA 43.84 56.91 43.84 43.95 7.54 17.827
AE 64.24 80.76 64.23 63.56 3.85 19.462
1G 65.51 82.07 65.51 64.31 3.71 16.64
P.Corr 39.03 56.78 39.03 33.87 9.02 95.60
Proposed 90.63 92.27 90.63 91.44 1.02 13.81
Mean Voting PCA 65.01 83.79 65.01 64.67 3.75 12.41
LDA 43.21 55.42 43.21 42.09 7.85 13.765
AE 64.92 80.78 64.92 64.68 3.77 16.015
1G 66.22 82.04 66.21 65.08 3.63 13.61
P.Corr 39.30 33.36 39.29 33.64 9.06 88.49
Proposed 91.60 90.42 91.60 91.00 1.12 11.62
DNN PCA 69.43 77.79 69.43 67.19 3.43 5.327
LDA 37.76 31.31 37.76 32.25 8.80 10.35
AE 66.52 76.58 66.51 63.19 3.76 3.089
1G 76.40 84.20 76.40 75.42 2.61 10.40
P.Corr 36.19 24.47 36.19 29.13 9.73 10.42
Proposed 85.25 85.42 85.25 82.38 1.73 2.005
CNN PCA 73.04 75.92 73.04 70.85 3.06 16.187
LDA 51.33 71.85 51.32 54.88 5.51 10.48
AE 61.81 76.64 61.81 54.99 4.28 13.691
1G 45.74 51.57 45.74 45.15 7.75 16.027
P.Corr 34.34 22.76 34.33 27.37 10.11 10.213
Proposed 85.32 84.07 85.32 82.59 1.73 9.33

Table 19 Comparative analysis of different traditional dimensionality reduction techniques with the proposed approach on CSE-CIC-IDS2018

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) FAR (%) Prediction Time (s)
DT PCA 94.68 94.67 94.68 94.67 1.17 0.308
LDA 90.44 90.47 90.43 90.45 2.09 0.558
AE 94.07 94.06 94.06 94.06 1.30 0.469
1G 90.11 90.15 90.10 90.13 2.17 0.814
P.Corr 94.36 94.35 94.36 94.35 0.99 0.338
Proposed 96.39 96.37 96.38 96.37 0.80 0.267
RF PCA 94.24 94.35 94.23 94.27 0.90 1.640
LDA 91.24 91.36 91.23 91.28 1.91 2.818
AE 95.13 95.20 95.12 95.15 1.05 1.646
1G 90.63 91.32 90.63 90.84 1.98 1.184
P.Corr 94.96 94.06 94.96 94.98 0.94 1.001
Proposed 96.37 96.41 96.36 96.38 0.78 0.339
KNN PCA 92.45 92.92 92.44 92.67 2.15 39.96
LDA 90.49 90.63 90.49 90.55 2.07 12.534
AE 93.79 93.09 93.79 93.43 2.09 40.86
1G 89.43 89.83 89.42 89.58 2.28 71.47
P.Corr 92.49 92.92 92.48 92.69 1.92 47.41
Proposed 94.02 94.48 94.01 94.13 1.25 8.49
LR PCA 88.45 89.00 88.45 88.65 2.48 0.407

@ Springer

Cluster Computing

Table 19 (continued)

Model

SVM

XGB

LightGBM

Catboost

Majority Voting

Mean Voting

DNN

LDA

AE

1G
P.Corr
Proposed
PCA
LDA

AE

1G
P.Corr
Proposed
PCA
LDA

AE

1G
P.Corr
Proposed
PCA
LDA

AE

1G
P.Corr
Proposed
PCA
LDA

AE

1G
P.Corr
Proposed
PCA
LDA

AE

1IG
P.Corr
Proposed
PCA
LDA

AE

1G
P.Corr
Proposed
PCA
LDA

AE

1G
P.Corr
Proposed

Accuracy (%)
86.43

88.45
89.00
88.29
92.47
90.35
87.20
92.61
89.34
91.12
93.79
91.16
90.78
94.83
90.66
93.81
97.87
85.91
90.69
94.69
90.79
87.86
97.96
86.31
90.69
94.77
90.81
91.85
97.90
86.02
90.59
94.96
90.57
87.08
96.58
86.32
91.19
85.31
90.71
87.61
97.55
86.14
88.52
83.42
89.31
85.78
95.58

Precision (%)
85.11

88.84
91.97
88.70
94.22
89.07
86.86
91.03
88.24
84.88
94.50
89.41
91.08
95.09
92.51
88.06
98.11
86.24
91.11
95.04
92.98
88.12
98.19
86.59
90.95
95.00
9291
89.11
98.15
86.09
90.35
95.00
91.52
87.18
96.58
86.61
91.31
85.57
91.79
87.84
97.75
86.86
92.34
85.29
93.48
86.44
96.28

Recall (%)
86.42

88.45
88.99
88.28
92.47
90.35
87.20
92.61
89.33
91.12
93.79
91.16
90.77
94.82
90.65
93.81
97.87
85.90
90.68
94.68
90.79
87.86
97.95
86.30
90.69
94.76
90.81
91.84
97.90
86.01
90.59
94.96
90.57
87.08
96.57
86.31
91.18
85.30
90.70
87.60
97.54
86.13
88.51
83.41
89.31
85.78
95.58

F1-Score (%)
85.56

88.60
89.40
88.44
93.33
89.70
87.00
91.81
88.78
87.88
93.94
90.27
90.89
94.90
90.98
90.84
97.90
86.06
90.83
94.71
91.12
87.90
97.99
86.36
90.79
94.83
91.14
90.45
97.93
86.04
90.42
94.98
90.82
87.10
96.58
86.37
91.24
85.37
90.97
87.64
97.58
86.23
88.91
84.33
89.71
86.10
95.69

FAR (%)
3.08

2.49
2.21
2.53
1.49
1.95
2.84
2.57
2.09
3.80
1.28
0.79
1.99
1.09
1.90
1.42
0.41
0.84
1.99
1.11
1.85
1.41
0.39
2.76
2.01
1.11
1.85
1.41
0.40
2.85
2.11
1.09
1.98
2.61
0.74
1.75
1.92
2.98
1.94
1.47
0.49
1.75
2.27
1.29
2.09
1.84
0.88

Prediction Time (s)
0.307

0.513
0.413
0.423
0.282
188.36
215.61
120.92
113.25
119.89
103.63
0.591
0.738
0.692
0.585
0.549
0.434
2.057
1.724
1.680
1.588
1.400
1.210
1.474
2.336
2.424
1.211
2.330
0.710
42.72
3.314
37.28
39.55
48.52
9.94
37.28
1.318
34.51
38.13
50.62
8.31
2.981
2.261
2.803
3.947
5.283
1.889

@ Springer

Cluster Computing

Table 19 (continued)

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) FAR (%) Prediction Time (s)
CNN PCA 83.69 84.67 83.69 84.17 1.28 5.309
LDA 88.13 90.14 88.13 88.52 2.44 2.349
AE 91.73 91.69 91.72 91.71 1.82 2.389
IG 89.27 93.55 89.27 89.67 2.09 5.289
P.Corr 85.81 86.37 85.81 86.08 2.84 5.311
Proposed 95.21 96.00 95.21 95.33 0.95 1.979
Table 20 Statistical validation Dataset value
of the proposed model with P
baseline method using p-value PCA LDA AE 1G P.Corr
on two-tailed t-test at 0.05
significance level NSL-KDD (Xgboost) 5.47e-07 1.33e-10 5.24e-09 2.95e-12 3.37e-09
UNSW-NB15 (Xgboost) 5.37e-09 2.34e-08 0.000103 1.14e-06 1.78e-08
CSE-CIC-IDS2018 (Catboost) 5.60e-05 0.021061 0.030745 0.021049 0.019673
Feature Importances Feature Importances
level 1627. smean 5411.4
dst_host_srv_count 1237.0 sz:iit -,;57:_%)'0
dst_host_diff_srv_rate 1054.0 dinpkt 4 2183.0
dst_host_count 1006.0 sjit 2068.0
. e —r 4
dst_bytes 70 dmean 1591.0
2 protocol_type F—— 663.0 o ct_src_ltm 1482.0
5 dst_host_same_srv_rate = 635.0 5 ct_dst_src_Itm q 1321.0
& -0st_same_siv_{] ct_srv_dst 1217.0
@ dst_host_srv_diff_host_rate +—= 579.0 K] spkts 1099.0
dst_host_serror_rate 4 465.0 ct_dst_|tm {=———————=951.0
flag F=—= 420.0 service 925.0
sloss 4 704.0
dst_host_srv_serror_rate f=======235.0 ct_dst_sport_Itm 659.0
serror_rate 198.0 S dloss 639.0
rerror_rate ==—=—==178.0 stt] =———=588.0
num_file_creations {==78.0 ct_src_dport_l;tra :-98.0 220
o 2(’]0 460 660 860 10‘00 12‘00 14‘00 16‘00) 1000 2000 30’00 40‘00 50’00
F score F score
(a) (®)
Feature Importances
Fwd IAT Min 1004.
Dst Port 736.0
Flow Duration 2.0
Flow Byts/s 1.0
Flow Pkts/s 558.0
Fwd IAT Tot 546.0
Flow IAT std 510.0
Bwd Pkts/s 478.0
$ Fwd Header Len 428.0
5 Init Bwd Win Byts 07.0
‘w Fwd Pkt Len Mean 397.0
& Flow IAT Mean 0.0
Pkt Len Mean + 369.0
TotLen Fwd Pkts 366.0
Fwd Pkt Len Max - 316.0
day 310.0
Pkt Size Avg 1 230.0
Fwd Pkt Len Min + 195.0
Tot Bwd Pkts 180.0
Fwd Seg Size Min - 141.0
o]} 260 4(‘)0 660 80‘0 1060
F score

(©

Fig. 13 Feature importance for xgboost on a NSL-KDD, b UNSW-NB15, ¢ CSE-CIC-IDS2018

improved performance of the proposed model can be
attributed to the implementation of a bi-phase feature
optimization technique for data feature selection, in

model. In existing research [21], the feature-selection
method utilizing CFS-DE is examined, however, it does
not address the optimization of the classifiers. The

@ Springer

Cluster Computing

|
i mm||||I

level
dst_bytes
count

protocol_type

dst_host_srv_count
dst_host_diff_srv_rate
dst_host_same_srv_rate
dst_host_count
dst_host_serror_rate
rerror_rate

dst_host_srv_diff_host_rate

=
o
Q

serror_rate i85

normal
probe
21

uzr

dst_host_srv_serror_rate [l

num_file_creations |

O

1 2 3 4
mean(|SHAP value|)(average impact on model output magnitude)

(@

o~]
Fwa Seg size min IR
ost Port IR
Fwd 1AT Min IR
Flow Duration [N

Flow 1aT Mean i
Fwd 1aT Tot |

Init Bwd Win Byts ||
TotLen Fwd Pkes ||
Flow 1AT std |
Flow Byts/s ||

Pkt Size Avg |
DDOS attack HOIC
SsH force

DDOS attack-LOIC-UDP

5 z 3 3 B 1o 1= 13
mean(ISHAP valuel) (average impact on model output magnitude)

()

smean
stel
ct_dst_sport_Itm
ct_srv_src
ct_srv_dst
ct_dst_src_ltm
ct_src_dport_Itm
sloss

dmean

service

synack

dbytes

sinpkt

spkts

dinpkt

[y — = Normal
= Generic
sjit _ W Reconnaissance
! Worms
ct_src_ltm _ m— Analysis
I = Exploits
ct_ast_iem I = Backdoor
diii - m— Fuzzers
| — Dos
o 2 4 6 8
mean(|SHAP value|) (average impact on model output magnitude)

(b)

Fig. 14 SHAP analysis for xgboost on a NSL-KDD, b UNSW-NB15, ¢ CSE-CIC-IDS2018

Table 21 Comparison of Prediction time (in seconds) of the Proposed Model and Chowdhury et al. [23] on the CIC-IDS2018 Dataset

Method DT KNN DNN RF Catboost Majority Voting Mean Voting

Chowdhury et al. [23] 1.247 1030.725 109.213 23.398 2.140 640.041 524.656

Proposed 0.267 8.49 1.889 0.339 0.710 9.94 8.31

Tablg 22 .Comparlson of Dataset Pramilarani & Kumari [64] Proposed

classification report of the

Proposed Model with state-of- Accuracy Precision Recall FI-Score Accuracy Precision Recall F1-Score

the-art Pramilarani & Kumari

[64] NSL-KDD 84.25 89.78 83.43 86.27 89.35 91.46 89.35 90.39
UNSW-NBI15 9245 91.78 88.43 90.27 91.71 92.70 91.70 92.19

conjunction with the optimization of each detection model
to yield precise results through fine-tuned hyperparameters.

Table 24 shows the results of different state-of-the-art
works [9, 11, 35], and [65] and compares them with the
proposed framework on NSL-KDD and UNSW-NBI15

@ Springer

datasets. From Table 24, it is observed that the proposed
model offers significant results in terms of accuracy, FAR,
training, and testing time. The reason behind this is that the
proposed model selects features based on the imbalanced
nature of the data, the correlation between the feature-

Cluster Computing

Table 23 Comparison of the Proposed Model with state-of-the-art Zhao et al. [21] on NSL-KDD dataset

Detection Model Zhao et al. [21]

Proposed

Accuracy Precision Recall Fl1-Score (%) Training Accuracy Precision Recall F1-Score Training Time (s)
(%) (%) (%) Time (s) (%) (%) (%) (%)

RF 86.51 88.61 86.51 87.55 9.06 89.06 90.76 89.06 89.90 8.44

LR 81.53 72.67 81.53 76.84 11.95 89.35 91.46 89.35 90.39 9.37

Xgboost 86.53 87.37 86.53 86.95 5.83 90.38 92.33 90.38 91.34 1.097

KNN 85.70 80.82 85.70 83.19 130.42 82.31 80.64 8231 8143 29.309

Table 24 Comparison of Classification Report of the Proposed Model with different state-of-the-art works

Dataset Method Accuracy Precision Recall F1-Score FAR Training Time Testing Time
(%) (%) (%) (%) (%) (s) (s)
NSL-KDD Thakkar et al. [65] 82.22 92.01 7530 82.82 8.62 NA NA
Chohra et al. [35] 90.71 89.35 95.00 92.09 NA 373 NA
Proposed 90.56 91.47 90.56 91.01 4.89 97.127 0.022
UNSW- Thakkar et al. [65] 76.28 71.58 9439 81.41 45.92 NA NA
NBI5 Chohra et al. [35] 89.52 90.00 96.00 92.90 NA 1718 NA
Khammassi & Krichen 2017 81.42 NA NA NA 6.39 NA NA
91
Nazir & Khan [11] 83.12 NA NA NA 3.7 NA NA
Proposed 92.63 93.72 92.63 93.17 0.95 401.442 0.029

feature pairs and class-feature pairs, and, last but not least,
information-rich features. Moreover, all the detection
models offer their performances on the best hyperparam-
eter values.

7 Conclusion and future works

For securing the network from different kinds of cyber-
attacks, the Intrusion Detection System is proven to be an
effective and efficient technique. The main aim of this
paper is to design a lightweight Intrusion detection system
that uses resources efficiently. To achieve the aforemen-
tioned goal, features in the network traffic in the intrusion
detection system dataset are reduced with the stacking of
the particle swarm optimization and ant colony optimiza-
tion algorithms. Here, the main objective is to select the
most effective features from the dataset to make the IDS
lightweight. The particle swarm optimization algorithm
determines the features based on the imbalanced nature of
the dataset by utilizing the geometric mean in the fitness
function, and the ant colony optimization algorithm is
utilized here to address issues related to correlated and
uninformative features in the obtained feature subset.

These issues can be mitigated by utilizing the correlation
metric and information gain metric in the fitness function
of the ant colony optimization-based feature selection
algorithm. The selected features through proposed bi-phase
technique is analysed using the feature importance and
SHAP (discussed in Sect. 6.6.3). Several base and
ensemble-based detection models (such as DT, SVM,
KNN, RF, Xgboost, LightGBM, Catboost, LR, Majority
Voting, Mean Voting, DNN, and 1D-CNN) are introduced
in this paper to evaluate the effectiveness of the proposed
model. A nature-influenced genetic algorithm is applied
(individually for each model) by utilizing a weighted f1-
score in the fitness function to optimize the hyperparame-
ters of these detection models. The objective function of
each metaheuristic algorithms are analysed using conver-
gence graphs, box plots, swarm plots, and in terms of best,
worst, mean, median, standard deviation, and variance
(demonstrated in Sect. 6.5). Several extensive experi-
ments are performed on three traditional datasets such as
NSL-KDD, UNSW-NB15, and CSE-CIC-IDS2018, and it
is compared with several traditional dimensionality
reduction techniques such as PCA, LDA, Pearson Corre-
lation, Information Gain, and Auto-encoder. Statistical
validation of the proposed model is also performed to

@ Springer

Cluster Computing

examine the effectivenss of the proposed approach with the
baseline methods (shown in Table 20). The accuracy and
FAR of the proposed model is as follows: (90.38% and
5.21%), (92.63% and 0.95%), and (97.87% and 0.41%) on
NSL-KDD, UNSW-NBI15, and CSE-CIC-IDS2018 data-
sets respectively. It is observed that proposed method
outperforms other traditional dimensionality reduction
techniques and the existing state-of-the-art works
[9, 11, 21, 23, 35, 64, 65].

7.1 Limitations and future directions
of the proposed research:

The limitations of the proposed research are highlighted as
follows: (i) The current proposed model is limited to
detecting only known attacks in the network traffic but can
not detect unknown or new cyber-attacks. (ii) Several
extensive experiments are performed only on traditional
datasets, while implementation of the proposed model is
unexplored on the real-time test bed. In the future, other
enhanced feature selection techniques will be utilized to
enhance the model’s performance. Future research may
consider the imbalanced nature of the IDS dataset by
generating more realistic samples by adding generative Al,
and real-time datasets can also be generated to test the
detection performance. Furthermore, a more enhanced
hyperparameter tuning module will be implemented to
enhance the model’s performance.

Author contributions Methodology: [Arpita Srivastava]; Implemen-
tation: [Arpita Srivastava]; Validation: [Arpita Srivastava]; Concep-
tualization: [Arpita Srivastava]; Data Curation: [Arpita Srivastaval;
Writing- Original Draft: [Arpita Srivastava]; Conceptualization:
[Ditipriya Sinha]; Methodology: [Ditipriya Sinha]; Validation:
[Ditipriya Sinha]; Supervision: [Ditipriya Sinha]; Writing- Original
Draft: [Ditipriya Sinha]; Writing- Review & Editing: [Ditipriya
Sinha].

Funding The authors declare that no funds, grants, or other support
were received during the preparation of this manuscript.

Data availability Data will be made available on request.

Declarations

Competing interests The authors declare that they have no conflict of
interest.

References

1. Injadat, M., Moubayed, A., Nassif, A.B., Shami, A.: Multi-stage
optimized machine learning framework for network intrusion
detection. IEEE Trans. Netw. Serv. Manage. 18(2), 1803-1816
(2020)

@ Springer

10.

11.

14.

16.

17.

18.

19.

20.

21.

. Salem, M.B., Hershkop, S., Stolfo, S.J.: A survey of insider attack

detection research. In: Insider Attack and Cyber Security: Beyond
the Hacker, pp. 69-90. Springer, Cham (2008)

. Papamartzivanos, D., Marmol, F.G., Kambourakis, G.: Dendron:

genetic trees driven rule induction for network intrusion detection
systems. Futur. Gener. Comput. Syst. 79, 558-574 (2018)

. Aksu, D., Aydin, M.A.: MGA-IDS: optimal feature subset

selection for anomaly detection framework on in-vehicle net-
works-CAN bus based on genetic algorithm and intrusion
detection approach. Comput. Secur. 118, 102717 (2022)

. Azimjonov, J., Kim, T.: Stochastic gradient descent classifier-

based lightweight intrusion detection systems using the efficient
feature subsets of datasets. Expert Syst. Appl. 237, 121493 (2024)

. Azimjonov, J., Kim, T.: Designing accurate lightweight intrusion

detection systems for IoT networks using fine-tuned linear SVM
and feature selectors. Comput. Secur. 137, 103598 (2024)

. Wang, Z., Li, Z., He, D., Chan, S.: A lightweight approach for

network intrusion detection in industrial cyber-physical systems
based on knowledge distillation and deep metric learning. Expert
Syst. Appl. 206, 117671 (2022)

. Sohn, L.: Deep belief network based intrusion detection tech-

niques: a survey. Expert Syst. Appl. 167, 114170 (2021)

. Khammassi, C., Krichen, S.: A GA-LR wrapper approach for

feature selection in network intrusion detection. Comput. Secur.
70, 255-277 (2017)

Vijayanand, R., Devaraj, D., Kannapiran, B.: Intrusion detection
system for wireless mesh network using multiple support vector
machine classifiers with genetic-algorithm-based feature selec-
tion. Comput. Secur. 77, 304-314 (2018)

Nazir, A., Khan, R.A.: A novel combinatorial optimization based
feature selection method for network intrusion detection. Com-
put. Secur. 102, 102164 (2021)

. Kumar, G.S.C., Kumar, R.K., Kumar, K.P.V., Sai, N.R., Brah-

maiah, M.: Deep residual convolutional neural Network: an
efficient technique for intrusion detection system. Expert Syst.
Appl. 238, 121912 (2024)

. Khammassi, C., Krichen, S.: A NSGA2-LR wrapper approach for

feature selection in network intrusion detection. Comput. Netw.
172, 107183 (2020)

Mohammadi, S., Mirvaziri, H., Ghazizadeh-Ahsaee, M., Karim-
ipour, H.: Cyber intrusion detection by combined feature selec-
tion algorithm. J. Inform. Secur. Appl. 44, 80-88 (2019)

. Halim, Z., Yousaf, M.N., Waqas, M., Sulaiman, M., Abbas, G.,

Hussain, M., Hanif, M.: An effective genetic algorithm-based
feature selection method for intrusion detection systems. Comput.
Secur. 110, 102448 (2021)

Li, Y., Qin, T., Huang, Y., Lan, J., Liang, Z., Geng, T.: HDFEF: a
hierarchical and dynamic feature extraction framework for
intrusion detection systems. Comput. Secur. 121, 102842 (2022)
Rao, K.N., Rao, K.V, Prasad Reddy, P.V.G.D.: A hybrid intru-
sion detection system based on sparse autoencoder and deep
neural network. Comput. Commun. 180, 77-88 (2021)
Wazirali, R.: An improved intrusion detection system based on
KNN hyperparameter tuning and cross-validation. Arab. J. Sci.
Eng. 45(12), 10859-10873 (2020)

Gu, J., Lu, S.: An effective intrusion detection approach using
SVM with naive Bayes feature embedding. Comput. Secur. 103,
102158 (2021)

Mukherjee, S., Sharma, N.: Intrusion detection using naive Bayes
classifier with feature reduction. Procedia Technol. 4, 119-128
(2012)

Zhao, R., Mu, Y., Zou, L., Wen, X.: A hybrid intrusion detection
system based on feature selection and weighted stacking classi-
fier. IEEE Access 10, 71414-71426 (2022)

Cluster Computing

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Nguyen, M.T., Kim, K.: Genetic convolutional neural network
for intrusion detection systems. Futur. Gener. Comput. Syst. 113,
418-427 (2020)

Chowdhury, R., Sen, S., Goswami, A., Purkait, S., Saha, B.: An
implementation of bi-phase network intrusion detection system
by using real-time traffic analysis. Expert Syst. Appl. 224,
119831 (2023)

Kunang, Y.N., Nurmaini, S., Stiawan, D., Suprapto, B.Y.: Attack
classification of an intrusion detection system using deep learning
and hyperparameter optimization. J. Inform. Secur. Appl. 58,
102804 (2021)

Batchu, R.K., Seetha, H.: A generalized machine learning model
for DDoS attacks detection using hybrid feature selection and
hyperparameter tuning. Comput. Netw. 200, 108498 (2021)
Chebrolu, S., Abraham, A., Thomas, J.P.: Feature deduction and
ensemble design of intrusion detection systems. Comput. Secur.
24(4), 295-307 (2005)

Li, Y., Wang, J.L., Tian, Z.H., Lu, T.B., Young, C.: Building
lightweight intrusion detection system using wrapper-based fea-
ture selection mechanisms. Comput. Secur. 28(6), 466-475
(2009)

Revathi, S., Malathi, A.: A detailed analysis on NSL-KDD
dataset using various machine learning techniques for intrusion
detection. Int. J. Eng. Res. Technol. (IJERT) 2(12), 1848-1853
(2013)

Li, X., Chen, W., Zhang, Q., Wu, L.: Building auto-encoder
intrusion detection system based on random forest feature
selection. Comput. Secur. 95, 101851 (2020)

Kunhare, N., Tiwari, R., Dhar, J.: Particle swarm optimization
and feature selection for intrusion detection system. Sadhana 45,
1-14 (2020)

Kunhare, N., Tiwari, R., & Dhar, J.: Network packet analysis in
real time traffic and study of snort IDS during the variants of DoS
attacks. In Hybrid Intelligent Systems: 19th International Con-

ference on Hybrid Intelligent Systems (HIS 2019) held in Bhopal,

India, December 10-12, 2019 19 (pp. 362-375). Springer Inter-
national Publishing. (2021)

Gupta, R.K., Bharti, S., Kunhare, N., Sahu, Y., Pathik, N.: Brain
tumor detection and classification using cycle generative adver-
sarial networks. Interdisc. Sci.: Comput. Life Sci. 14(2), 485-502
(2022)

Dhanya, L., Chitra, R.: A novel autoencoder based feature
independent GA optimised XGBoost classifier for [oMT malware
detection. Expert Syst. Appl. 237, 121618 (2024)

Ogundokun, R.O., Awotunde, J.B., Sadiku, P., Adeniyi, E.A.,
Abiodun, M., Dauda, O.I.: An enhanced intrusion detection sys-
tem using particle swarm optimization feature extraction tech-
nique. Procedia Comput. Sci. 193, 504-512 (2021)

Chohra, A., Shirani, P., Karbab, E.B., Debbabi, M.: Chameleon:
Optimized feature selection using particle swarm optimization
and ensemble methods for network anomaly detection. Comput.
Secur. 117, 102684 (2022)

Alazab, M., Khurma, R.A., Awajan, A., Camacho, D.: A new
intrusion detection system based on moth-flame optimizer algo-
rithm. Expert Syst. Appl. 210, 118439 (2022)

Dahou, A., Abd Elaziz, M., Chelloug, S.A., Awadallah, M.A., Al-
Betar, M.A., Al-Qaness, M.A., Forestiero, A.: Intrusion detection
system for IoT based on deep learning and modified reptile search
algorithm. Comput. Intell. Neurosci. 2022(1), 6473507 (2022)
Kunhare, N., Tiwari, R., Dhar, J.: Intrusion detection system
using hybrid classifiers with meta-heuristic algorithms for the
optimization and feature selection by genetic algorithm. Comput.
Electr. Eng. 103, 108383 (2022)

Jovanovic, Luka, et al.: The xgboost tuning by improved firefly
algorithm for network intrusion detection. 2022 24th

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51

52.

53.

54.

55.
56.

57.

58.

59.

International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing (SYNASC). IEEE, 2022.

AlHosni, N., Jovanovic, L., Antonijevic, M., Bukumira, M.,
Zivkovic, M., Strumberger, 1., Bacanin, N.: The xgboost model
for network intrusion detection boosted by enhanced sine cosine
algorithm. In International Conference on Image Processing and
Capsule Networks (pp. 213-228). Cham: Springer International
Publishing. (2022)

Kalita, D.J., Singh, V.P., Kumar, V.: A novel adaptive opti-
mization framework for SVM hyper-parameters tuning in non-
stationary environment: a case study on intrusion detection sys-
tem. Exp. Syst. Appl. 213, 119189 (2023)

Savanovié, N., Toskovic, A., Petrovic, A., Zivkovic, M., Dama-
Sevicius, R., Jovanovic, L., Nikolic, B.: Intrusion detection in
healthcare 4.0 internet of things systems via metaheuristics
optimized machine learning. Sustainability 15(16), 12563 (2023)
Yang, X. S.: Firefly algorithms for multimodal optimization.
In International symposium on stochastic algorithms (pp.
169-178). Berlin, Heidelberg: Springer Berlin Heidelberg. (2009)
Mirjalili, S., Mirjalili, S.: Genetic algorithm. Evolut. Algorithm.
Neural Netw.: Theory Appl. 780, 43-55 (2019)

Kennedy, J., & Eberhart, R.: Particle swarm optimization.
In Proceedings of ICNN’95-international conference on neural
networks (Vol. 4, pp. 1942-1948). ieee. (1995)

Karaboga, D., Basturk, B.: On the performance of artificial bee
colony (ABC) algorithm. Appl. Soft Comput. 8(1), 687-697
(2008)

Khishe, M., Mosavi, M.R.: Chimp optimization algorithm. Expert
Syst. Appl. 149, 113338 (2020)

Gurrola-Ramos, J., Hernandez-Aguirre, A., & Dalmau-Cedefio,
O.: COLSHADE for real-world single-objective constrained
optimization problems. In 2020 IEEE congress on evolutionary
computation (CEC) (pp. 1-8). IEEE. (2020)

Zhao, J., Zhang, B., Guo, X., Qi, L., Li, Z.: Self-adapting
spherical search algorithm with differential evolution for global
optimization. Mathematics 10(23), 4519 (2022)

Saheed, Y.K., Misra, S.: A voting gray wolf optimizer-based
ensemble learning models for intrusion detection in the internet
of things. Int. J. Inform. Secur. (2024). https://doi.org/10.1007/
$10207-023-00803-x

Tharwat, A.: Classification assessment methods. Appl. Comput.
Inform. 17(1), 168-192 (2020)

Moustafa, N., & Slay, J. (2015, November). UNSW-NBI15: a
comprehensive data set for network intrusion detection systems
(UNSW-NB15 network data set). In 2015 military communica-
tions and information systems conference (MilCIS) (pp. 1-6).
IEEE.

Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: Toward gener-
ating a new intrusion detection dataset and intrusion traffic
characterization. ICISSp 1, 108-116 (2018)

Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A.: A
detailed analysis of the KDD CUP 99 data set. In 2009 IEEE
symposium on computational intelligence for security and
defense applications (pp. 1-6). Ieee. (2009)
https://www.unb.ca/cic/datasets/ids-2018.html

Chakraborty, A., Kar, A.K.: Swarm intelligence: a review of
algorithms. Nat. Inspired Comput. Optim.: Theory Appl. (2017).
https://doi.org/10.1007/978-3-319-50920-4_19

Abualigah, L., Abd Elaziz, M., Sumari, P., Geem, Z.W., Gan-
domi, A.H.: Reptile search algorithm (RSA): a nature-inspired
meta-heuristic optimizer. Expert Syst. Appl. 191, 116158 (2022)
Potap, D., WozZniak, M.: Red fox optimization algorithm. Expert
Syst. Appl. 166, 114107 (2021)

Abualigah, L., Shehab, M., Alshinwan, M., Alabool, H.: Salp
swarm algorithm: a comprehensive survey. Neural Comput. Appl.
32(15), 11195-11215 (2020)

@ Springer

https://doi.org/10.1007/s10207-023-00803-x
https://doi.org/10.1007/s10207-023-00803-x
https://www.unb.ca/cic/datasets/ids-2018.html
https://doi.org/10.1007/978-3-319-50920-4_19

Cluster Computing

60.

61.

62.

63.

64.

65.

66.

67.

Arora, S., Singh, S.: Butterfly optimization algorithm: a novel
approach for global optimization. Soft. Comput. 23, 715-734
(2019)

Wolpert, D.H., Macready, W.G.: No free lunch theorems for
optimization. IEEE Trans. Evol. Comput. 1(1), 67-82 (1997)
Lipowski, A., Lipowska, D.: Roulette-wheel selection via
stochastic acceptance. Physica A 391(6), 2193-2196 (2012)
Hasancebi, O., Erbatur, F.: Evaluation of crossover techniques in
genetic algorithm based optimum structural design. Comput.
Struct. 78(1-3), 435-448 (2000)

Pramilarani, K., Kumari, P.V.: Cost based random forest classi-
fier for intrusion detection system in internet of things. Appl. Soft
Comput. 151, 111125 (2024)

Thakkar, A., Kikani, N., Geddam, R.: Fusion of linear and non-
linear dimensionality reduction techniques for feature reduction
in LSTM-based intrusion detection system. Appl. Soft Comput.
(2024). https://doi.org/10.1016/j.as0c.2024.111378

WUSTL, E. (2020). Dataset for internet of medical things (IoMT)
Cybersecurity Research.
https://www.kaggle.com/datasets/saurabhshahane/classification-
of-malwares

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the
accepted manuscript version of this article is solely governed by the
terms of such publishing agreement and applicable law.

Arpita Srivastava is pursuing
Ph.D. degree in the Department
of Computer Science and Engi-
neering from the National
Institute of Technology Patna,
Bihar, India. She has received
her Master of Technology
degree in the Department of
Computer Science and Engi-
neering from Kamla Nehru
Institute of Technology, Sul-
tanpur, Uttar Pradesh, India. Her
research interest includes Intru-
sion Detection System, Machine
Learning, and Deep Learning.

@ Springer

Ditipriya Sinha has received
Ph.D. degree in the Department
of Computer Science and
Technology, Indian Institute of
Engineering Science and Tech-
nology (IIEST), Shibpur and
Master of Technology from
West Bengal University of
Technology in the department
of Software Engineering. She is
the Silver Medallist during
MTech. She is presently serving
as an Assistant Professor in the
department of Computer Sci-
ence and Engineering, National
Institute of Technology Patna. She was an Assistant Professor in the
department of Computer Science and Engineering, Birla Institute of
Technology, Mesra. Her area of research is Cyber Security, Block-
chain, Machine and Deep Learning and Wireless Sensor Network.

https://doi.org/10.1016/j.asoc.2024.111378
https://www.kaggle.com/datasets/saurabhshahane/classification-of-malwares
https://www.kaggle.com/datasets/saurabhshahane/classification-of-malwares

	PSO-ACO-based bi-phase lightweight intrusion detection system combined with GA optimized ensemble classifiers
	Abstract
	Introduction
	Research gap
	The key contributions of the proposed approach
	Paper structure

	Related works
	Non-metaheuristic feature optimization algorithm-based
	Metaheuristics feature optimization algorithm-based
	Hyperparameter tuning of detection model-based

	Research objective
	Proposed methodology
	Dataset description & data preprocessing
	Dataset description
	Data preprocessing

	Bi-phase swarm intelligence-based feature optimization
	Phase1: particle swarm optimization based feature selection
	Phase2: ant colony optimization based feature selection

	GA-based hyperparameter tuning
	Classification
	Applications of the proposed method

	Experimental results and discussion
	Experimental setup
	Performance metrics
	Performance analysis
	Detection model’s performance after pre-processing module of the proposed model
	Detection model’s performance after applying phase 1 feature selection module of the proposed model
	Detection model’s performance after applying phase 2 feature selection module of the proposed model
	Detection model’s performance after applying the hyperparameter tuning module of the proposed model

	Results and discussion
	Objective function analysis
	Convergence diagram
	Box plot, and swarm plot
	Outcomes of objective function in terms of best, worst, mean, median, std, and var

	Comparative analysis
	Comparative analysis of the proposed method with other traditional dimensionality reduction techniques
	Statistical validation
	Result interpretation of best model through SHAP analysis
	Comparative analysis of the proposed method with other state-of-the-art approaches

	Conclusion and future works
	Limitations and future directions of the proposed research:

	Author contributions
	Data availability
	References

