
PSO-ACO-based bi-phase lightweight intrusion detection system
combined with GA optimized ensemble classifiers

Arpita Srivastava1 • Ditipriya Sinha1

Received: 16 April 2024 / Revised: 28 June 2024 / Accepted: 6 July 2024
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Features within the dataset carry a significant role; however, resource utilization, prediction-time, and model weight are

increased by utilizing high-dimensional data in intrusion-detection paradigm. This paper aims to design a novel lightweight

intrusion detection system in two phases utilizing a swarm intelligence-based technique. In 1st-phase, essential features are

selected using particle swarm optimization algorithm by considering imbalanced dataset. Ant colony optimization algo-

rithm is utilized in 2nd-phase for extracting information-rich and uncorrelated features. Additionally, genetic algorithm is

employed for fine-tuning each detection model. Proposed model’s performance is evaluated on different base and ensemble

classifiers, and it is observed that xgboost achieves best accuracy with 90.38%, 92.63%, and 97.87% on NSL-KDD,

UNSW-NB15, and CSE-CIC-IDS2018 datasets, respectively. The proposed model also outperforms other traditional

dimensionality reduction and state-of-the-art approaches with statistical validation. This paper also analyses objective

function of each metaheuristic algorithm used in this paper, applying convergence graphs, box, and swarm plots.

Keywords Cyber-security � Particle swarm optimization (PSO) � Ant colony optimization (ACO) � Genetic algorithm

(GA) � Lightweight intrusion detection system � Feature optimization

1 Introduction

In the modern era, the Internet plays a vital role in con-

necting individuals worldwide. With the vast growth of the

Internet, the chance of cyber-attacks increases and harms

individuals at the organization and personal levels. Cyber-

attackers exhibit high proficiency in exploiting vulnera-

bilities and causing harm to individuals. This harm covers a

wide range of consequences, which include data breaches,

online harassment, financial losses, intellectual property

theft, cyberbullying, and disruptions to essential services

like healthcare. Additional resources are being utilized and

assigned to defend against these cyber-attacks or abnormal

behavior in the network [1]. For this reason, cyber-security

is gaining popularity and is necessary to protect

organizations and individuals from cyber-attacks. Various

network security measures have been proposed to mitigate

these cyber-attacks, including firewalls, antivirus software,

and malware programs, which serve as an initial line of

defense [2]. Still, these security measures cannot properly

protect organizations and individuals, especially from the

contemporary cyber-attacks on the network [1].

An intrusion detection system is a security system that

monitors, analyses the network traffic, and compares it

with predefined patterns. If the match (or mismatch) hap-

pens between the observed traffic and predefined patterns,

an alert signal is generated (based on the matching or

mismatching criteria) and sent to the network administrator

to take appropriate action. Based on the detection methods,

two types of intrusion detection systems have been devel-

oped: signature-based intrusion detection systems (SIDS)

and anomaly-based intrusion detection systems (AIDS).

SIDS compares and analyses the observed network traffic

with the pre-defined signature of the malicious behavior

stored in the database and triggers an alarm signal when

malicious traffic is detected in the network. It depends on

the signature of the attack traffic behavior and fails for a

& Arpita Srivastava

arpitas.ph21.cs@nitp.ac.in

Ditipriya Sinha

ditipriyasinha87@gmail.com

1 Department of Computer Science & Engineering, National

Institute of Technology Patna, Patna Bihar, India

123

Cluster Computing
https://doi.org/10.1007/s10586-024-04673-3(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-024-04673-3&domain=pdf
https://doi.org/10.1007/s10586-024-04673-3

new type of attack or zero-day attacks. On the other hand,

AIDS overcomes the issues of SIDS by creating a baseline

model that depends on the behavior of normal network

traffic. If the observed network traffic deviates from the

usual baseline behavior of the model, an alarm is generated

and sent to the network administrator. It is generally useful

in detecting novel categories of attacks or zero-day attacks.

In this paper, an Intrusion detection system model is

designed using an intelligence approach. Most of the tra-

ditional intrusion detection system datasets are highly

imbalanced and contain many features that significantly

degrade the attack detection performance of the system [3].

The learning models with these many features take a long

time, resulting in worse classification results [4]. Moreover,

the model’s weight is one of the most crucial factors

influencing the accuracy and efficiency of any intelligent

model [5]. It depends upon the number of features present

in the data, which is fed as an input to the model. Efficient

resource (or power) consumption is a significant concern

for the networks of the IoT, where numerous devices are

interconnected to each other [6]. Due to the constraints of

limited resources, it is necessary to utilize efficiently the

available resources. To mitigate the aforementioned

resource constraint problems, there is a significant neces-

sity for designing of lightweight intrusion detection system

that can detect anomalies with high accuracy by utilizing

resources efficiently [7]. Most of the traditional IDS

designs do not consider the weight of the IDS model and

are heavily weighted in nature [8]. It is important to note

that the model’s weight is minimized by extracting the

most appropriate features from the network data, which

enhances the attack detection accuracy and reduces the

detection model’s prediction time and false alarm rate

(FAR).

2 Research gap

State-of-the-arts commonly employ unsupervised tech-

niques for selecting a substantial number of features in IDS

design, which reduces the attack detection rate. Many

studies [4, 9–15] also overlook the imbalanced nature of

datasets when selecting relevant features by using accuracy

and error rate in the fitness function. Furthermore, the

existing models [10, 16–18], are evaluated by applying

only one classifier, which may lead to biased performance.

On the other hand, several works proposed by

[4, 9–11, 14, 15, 19–23] neglect addressing the hyperpa-

rameter tuning of the detection models. As a result, the

attack detection rate of the model is very low. Additionally,

fine-tuning some existing detection models such as

[5, 6, 18, 24, 25], often rely on grid or exhaustive search

and random search techniques which have high computa-

tional cost and lack of interpretability.

In some state-of-the-art, it is revealed that the utilization

of an exhaustive search for feature selection, which

examines all possible feature combinations and selects the

best result, is an extremely naı̈ve method with very high

time complexity. Most of them are NP-hard problems due

to the high computational cost and processing time.

Metaheuristic algorithms solve NP-hard problems and

complicated optimization issues. Rather than obtaining

exact solutions, these algorithms (which are suboptimal)

find appropriate solutions in a reasonable amount of time

[4]. Traditional intrusion detection systems (IDS) are

designed using fuzzy algorithms, genetic algorithms,

swarm intelligence algorithms, data mining, machine

learning, and deep learning models. Most of them overlook

the significance of the weight of the IDS model, which

leads to computationally intensive and resource-heavy

models.

The aforesaid problems motivate to design a Light-

weight Intrusion Detection System, applying swarm intel-

ligence-based techniques and genetic algorithms with

machine intelligence approaches. The primary objectives

of the proposed model are as follows: (i) Saving attack

detection time with attack detection accuracy, (ii) Com-

pressing data features, (iii) Reducing the curse of dimen-

sionality by utilizing the combination of PSO and ACO for

feature selection. It is a powerful and efficient swarm

intelligent approach to addressing high-dimensional data

and improving the performance of various intelligence

models, and (iv) This paper employs the genetic algorithm

for optimizing the hyperparameter of the detection model

using the weighted f1-score as the fitness function. This

approach identifies the optimal hyperparameters and eval-

uates the model using multi-class classification.

Figure 1 outlines the proposed model’s block diagram,

which is divided into four major modules: data prepro-

cessing, Bi-Phase feature optimization, Hyperparameter

tuning, and Classification.

2.1 The key contributions of the proposed
approach

The main contributions of this paper are outlined as

follows:

(i) Bi-phase swarm intelligence-based feature opti-

mization: An improved Bi-Phase swarm intelli-

gence-based feature optimization technique is

proposed to reduce the number of features in the

data with the objective of designing a lightweight

IDS.

Cluster Computing

123

(ii) GA-based optimization of detection models: To

fine-tune various detection models (used in this

paper), a nature-influenced genetic algorithm is

applied to provide each model with the optimal

hyperparameter values.

(iii) Classification module: In classifying different

malicious and normal traffic, two categories of

detection models are applied to assess the effec-

tiveness of the proposed lightweight IDS. Base

detection models (such as DT, KNN, SVM,

logistic regression, DNN, and CNN) are utilized

in the category-1 classification, while ensemble

detection models (such as RF, xgboost, lightgbm,

catboost, majority, and mean voting) are used in

the category-2 classifications.

2.2 Paper structure

The rest of the paper is organized as follows: Sect. 3

analyses the related works, followed by the research

objective of this paper in Sect. 4. After that, Sect. 5

broadly discusses the proposed methodology, followed by

Sect. 6, which outlines the experimental results and dis-

cussion. Last but not least, Sect. 7 concludes the paper by

discussing the limitations and future direction of the work.

3 Related works

This section analyses the state-of-the-art works in the field

of intrusion detection systems. The paper mainly focuses

on designing a lightweight IDS model with fewer features

and aims for accurate classification among several mali-

cious and normal network traffic. Therefore, only those

state-of-the-art works are considered that emphasize the

feature optimization of the data for lightweight IDS design.

Additionally, this paper considers hyperparameter opti-

mization of the detection models for accurate classification

performance. In the existing works, feature optimization is

performed utilizing various metaheuristic and non-meta-

heuristic algorithms. Especially for feature optimization,

the related works in this paper are divided into two sub-

sections: non-metaheuristic feature optimization algorithm-

based and metaheuristic feature optimization algorithm-

based. This paper surveys one separate subsection for the

hyperparameter optimization of detection models. Related

work is structured into a total of three main subsections

according to the feature optimization approaches and

hyperparameter-tuning techniques such as non-meta-

heuristic feature optimization algorithms-based, meta-

heuristic feature optimization algorithms-based, and

hyperparameter tuning of detection model-based. This

section concludes by demonstrating the superiority of the

proposed model compared to the existing state-of-the-art.

3.1 Non-metaheuristic feature optimization
algorithm-based

Several traditional methods are used to reduce the data’s

dimensionality, including filter, wrapper, embedded, and

feature extraction techniques like PCA, ICA, LDA, t-SNE,

and autoencoder. This subsection describes selecting

information-rich features from the data in the IDS para-

digm without utilizing metaheuristic algorithms.

Chebrolu et al. [26] have built a lightweight IDS that can

efficiently and effectively detect intrusions in the classifi-

cation process. Irrelevant and redundant features are

eliminated from the data by implementing markov blanket

and decision tree models. Following this, bayesian net-

works and CART algorithms and an ensemble of bayesian

networks and CART algorithms are employed in con-

structing a lightweight IDS model. The bayesian network

utilized here requires either an O(n2) CI test in special or an

O(n4) CI test in general cases where n denotes the number

of domain variables. The outcomes of the model with

reduced features are 19.70s and 10.10s average training

and testing time, respectively, with only 88.84% average

accuracy. Li et al. [27] have used a wrapper-based feature

selection approach to build lightweight IDS. Modified

linear SVM and modified random mutation hill-climbing

(RMHC) approaches are used in the proposed wrapper-

based feature selection method. Decision tree algorithm is

utilized for the classification where nodes of the decision

tree contain linear SVMs. Best feature subsets are selected

separately for each attack category in the KDD CUP 1999

dataset. Two methods are compared in terms of processing

Fig. 1 Block diagram of proposed model

Cluster Computing

123

time in such a way that RHMC takes 1.5 h to process U2R

attacks, whereas modified RHMC processes it in under 1 h.

Mukherjee & Sharma [20] have proposed a vitality-based

feature selection method on the NSL-KDD [28] dataset,

and out of a total of 41 features, 24 best features are

selected. The process of the models is that pre-defined

accuracy, average TPR, and RMSE values are considered

threshold values. Each feature in the original data is

removed, and the performance is checked to see whether it

increases, decreases, or remains constant. Here, a sequen-

tial search is performed, and the same steps are repeated for

each feature (41 times). The importance of each feature is

examined at a time based on the pre-defined threshold

value. Thus, both time and space complexities of the pro-

posed method take O(n). The accuracy obtained by the

proposed method is 97.78%, and the time taken to build the

model is 9.42. In this case, the primary limitation is the low

true positive rate (TPR) value for the U2R attack class, as

well as the lack of addressing hyperparameter tuning.

Additionally, the model is evaluated on only one traditional

dataset and within a very complex framework. The high

complexity of the proposed framework results in high

resource utilization.

Li et al. [29] have proposed a three-phase model that

includes data preprocessing, feature selection, and anomaly

detection. L2 regularization is employed in the prepro-

cessing phase, and feature selection is performed using the

random forest with affinity propagation clustering algo-

rithm for the feature grouping. Auto-encoder is used at the

anomaly detection phase, where average RMSE is utilized

to measure the error rate of multiple auto-encoders. Despite

the affinity propagation technique being advantageous in

classifying massive amounts of data, it is very difficult with

an O(n2logn) complexity (in terms of time as well as space)

where n is the number of instances in data. The detection

time and recall rate achieved by the AE-IDS model are

2493.83s (which is very high) and 61.90%, respectively, on

the brute force—web dataset. Kunhare et al. [30] have

designed the IDS model, where features are selected by

combining the wrapper method with the filter. Random

forest algorithm is utilized for calculating the importance

of each feature in the data. It is observed that the random

forest algorithm reduces the number of features from 41 to

10, and the performance of the model is best utilizing the

PSO-based classification algorithm. Based on the experi-

mental results, it is found that the proposed framework has

a 99.26% detection rate, 99.32% efficiency, and low

computing complexity. The main limitation here is that the

data imbalance problem is not considered, and hyperpa-

rameter optimization of the model is not explored. Gu &

Lu [19] have carried out naı̈ve bayes-based feature

embedding in the initial step of the proposed model to

transform the data. Subsequently, the transformed train

data is used to train the SVM model, and finally, trained

models are used to detect intrusions using new test data

samples. An optimal accuracy achieved by the detection

model is 93.75%, 98.92%, 99.35%, and 98.58% on UNSW-

NB15, CICIDS2017, NSL-KDD, and Kyoto 2006 ? data-

sets, respectively. However, the detection performance is

evaluated here utilizing binary classification, which con-

siders only three metrics. Moreover, the model’s hyper-

parameter tuning has not been explored. Rao et al. [17]

have proposed the two-stage hybrid IDS model. In the first

stage, an unsupervised sparse auto-encoder is employed for

the extraction of the features, and in the second stage, the

deep neural network is utilized to classify different attacks.

Auto-encoder is utilized in the first stage of the proposed

model for the feature extraction, and classification among

different attacks is performed using the deep neural net-

work model. In the classification stage, only one deep

neural network model is used. Here, the paper does not deal

with the hyperparameter optimization of the deep neural

network model. The optimal performance in terms of

efficiency is achieved with ten features for the KDD-

CUP99 and NSL-KDD datasets and 11 features for the

UNSW-NB15 dataset. The accuracy and detection rate of

the proposed model are 99.03% and 99.48%, respectively,

on the KDD-CUP99 dataset. However, here, a standard

technique for hyperparameter tuning is not discussed, and

detection performance is evaluated on one detection model,

which leads to biased results. Kunhare et al. [31] have

explored the effectiveness of port scanning methods for

obtaining the IP addresses of networked hosts that are

vulnerable to attack. The attacker’s initial step to launch a

targeted cyber-attack is employing the port scanning

technique. The snort IDS tool is also analyzed, including its

architecture, installation process, file configuration, and

detection approach. Furthermore, real-time network traffic

implementation of the different variants of DoS attacks is

demonstrated.

Li et al. [16] have introduced a Hierarchical and

Dynamic Feature Extraction Framework (HDFEF) for

designing network intrusion detection systems (NIDS).

This approach considers multiple network flow packets to

comprehensively define network activity. Here, the optimal

performance is best achieved by combining HDFEF with

the LSTM with focal loss instead of cross-entropy loss. The

experiment is performed up to 40 epochs, which achieves

an accuracy of 99.75%, and the time for one epoch taken

by the model is 145.17s. Zhao et al. [21] have proposed a

three-phase framework that includes data pre-processing,

dimensionality reduction, and weighted stacking of clas-

sifiers with the aim of improving accuracy and efficiency.

For dimensionality reduction, correlation-based feature

selection with the deferential evolution algorithm (CFS-

Cluster Computing

123

DE) approach is utilized, and classification is performed

based on weights given to the base classifiers. The twenty

best features are selected by the proposed CFS-DE model,

which achieves an accuracy rate of 87.34% and 168.93s on

the KDDTest ? dataset. Here, the model increases the

computation time cost because of the extra overhead of the

base model’s weight calculation. Gupta et al. [32] have

used an ensemble model for the detection of brain tumors

and classification of the cancer stage, which is either

pituitary, meningioma, or glioma cancer. The proposed

model is majorly divided into three modules: data prepro-

cessing, tumor detection, and classification. Preprocessing

of the data is performed, which includes increasing the

contrast of the MRI images, followed by image augmen-

tation with the help of CycleGAN. For the detection of the

brain tumor in the second module, modified inception

ResNetV2 is employed, which gives a binary output of

either yes or no. If the tumor is detected, then the tumor

stage is classified in the third module. It is achieved by

combining modified Inception ResNetV2 and random for-

est algorithms, which yield either of the three categories,

including pituitary, meningioma, and glioma cancer, with

an accuracy of 98%. Azimjonov & Kim [5] have developed

a lightweight IDS capable of detecting various cyber-at-

tacks while addressing the challenges posed by limited

computational resources and high-dimensional data within

the IoT environment. The number of features is reduced by

utilizing four feature selection methods: importance coef-

ficient, backward sequential, forward sequential, and cor-

relation coefficient with ridge regressor model. A

stochastic gradient descent-based classifier is used for the

classification. Here, the worst-case time complexity of the

method is O(n2) with a 92.69% accuracy rate on average,

where the data contain the ‘n’ number of features. The run

time of the model with a reduced feature set utilizing the

backward sequential algorithm is 2.5 ms on the N-BaIoT-

2021 dataset. The backward sequential algorithm takes the

worst time (7.21 h) to select the appropriate features on the

N-BaIoT-2021 dataset. Here, exactly the six best features

are selected by the method. Here, the main limitation is that

grid-search-based hyperparameter optimization is per-

formed, which increases the complexity of the model as a

result, takes high resource utilization. Additionally, only

traditional feature selection methods are explored. Dhanya

& Chitra [33] have designed a framework for the IoMT

environment to reduce resource utilization with compre-

hensive time. Auto-encoder is used to decode the features

while the xgboost classifier detects the malware. The

hyperparameters of the auto-encoder are tuned using the

random search, and the hyperparameters of the xgboost

classifier are tuned using the genetic algorithm. The

adaptive mutation used in the genetic algorithm enhances

the search space, hence making it complex in terms of

space. Here, cohen’s kappa metric is employed for statis-

tical validation of the model, and it achieves an accuracy of

98.66%, while cohen’s kappa is 96.37%.

3.2 Metaheuristics feature optimization
algorithm-based

This subsection discusses several metaheuristic methods

for feature selection within the data, including GA, tabu

search, MFO, and RSA. It selects the crucial and infor-

mation-rich features from the data in the IDS paradigm by

applying metaheuristic algorithms.

Khammassi & Krichen [9] have proposed a genetic

algorithm combined with a logistic algorithm-based

wrapper approach for the feature selection. The model is

divided into three stages: preprocessing, feature selection,

and classification. The optimal subset of features is

obtained from the feature selection stage, where the GA-

LR-based approach is applied. The complexity of the

proposed genetic algorithm depends upon the fitness

function here. The aim is to maximize the fitness function

within the genetic algorithm, which is a combination of

accuracy (directly proportional to fitness function) and the

number of features in the subset (inversely proportional to

fitness function). The number of features and accuracy pair

in this work is as follows: (18, 99.90%) and (20, 81.42%)

on the KDD99 and UNSW-NB15 datasets respectively.

Vijayanand et al. [10] have proposed a method that uses a

genetic algorithm for the feature selection, and multiple

support vector machines are used to detect multiple attacks

and build IDS for wireless mess networks. Multiple SVM

classifiers are arranged linearly, and each classifier is

dedicated to each attack and normal class in the input

dataset. Performance achieved in this paper is 95.7%

accuracy, with 1.90% FPR, 0.5486s average training time,

and 0.0023s average testing time on the WMN dataset. The

time complexity of the proposed method is O(L*S), where

L represents the length of the candidate solution, and S

denotes the size of the population in the genetic algorithm.

Mohammadi et al. [14] have designed an IDS model that

combines filter and wrapper-based methods for feature

grouping and feature selection. In the data pre-processing

phase, transformation, discretization, and normalization-

based techniques have been applied. A filter method-based

linear correlation coefficient is used for feature grouping

and is called FGLCC. Additionally, the authors have

combined the cuttlefish algorithm (CFA) to improve the

performance of the model. Here, the fitness function is a

combination of detection rate and false positive rate. The

main aim of this paper is to enhance the fitness score of the

candidate solution as much as possible. To classify

between intrusive activity and normal flow, decision tree

Cluster Computing

123

classification algorithm is employed here. The efficiency of

the proposed FGLCC-CFA with the ten best features in

terms of detection rate, accuracy rate, FPR, fitness, model

building, and testing time are as follows: 95.23%, 95.03%,

1.65%, 95.46%, 83.28s, and 43.50s respectively on KDD

CUP99 dataset. Nguyen & Kim [22] have used the genetic

algorithm along with KNN and the fuzzy c-means clus-

tering algorithm for the optimal feature subset selection

and feature improvement, respectively. After selecting the

optimal feature subset, the optimal model is selected

employing GA-CNN along with fivefold cross-validation.

Only the training dataset is used in these two aforemen-

tioned steps. After that, the model is validated using a

validation set, and deep features are extracted by the CNN

model. Finally, classification models such as KNN, RF,

BG, and BS, along with fivefold cross-validation, are uti-

lized to evaluate the performance of the proposed NIDS.

Here, the model achieves an accuracy of 98.2%, FPR of

0.5%, and TPR of 95.4% with the 33 best features on the

KDDTest-21 dataset. The main limitation is that the data

imbalanced issue is not addressed, has a very high com-

putational time, and is evaluated on only one dataset.

Khammassi & Krichen [13] have used the combination

of NSGA2 and logistic regression classifier for the feature

selection in network intrusion detection. Two schemes are

utilized to test the proposed feature selection approach,

which includes multinomial logistic regression corre-

sponding to multiple classes and binary logistic regression,

which corresponds to each attack class separately in the

dataset. Three different decision tree algorithms, such as

the C4.5 decision tree, naı̈ve bayes tree, and random forest,

are applied to test the performance of the model. The main

limitation of this work is that the proposed multi-objective

function includes accuracy, which is not a better metric for

evaluating the candidate feature subsets in case of an

imbalanced dataset. The value of the weighted mean CPU

time of the proposed NSGA2-BLR is approx. 20000s while

NSGA2-MLR takes nearly 200000s on the CIC-IDS2017

dataset. Performance of the model in terms of accuracy,

detection rate, FAR, and the number of features on the

UNSW-NB15 dataset is as follows: 94.90%, 55.73%, 0.72,

and 8 to 17 respectively, for the binary class, while 66%,

64.90%, 3.85%, and 11 respectively for multi-class. Nazir

& Khan [11] have applied the tabu search algorithm to

select an optimal subset of features, and the random forest

is used to evaluate the performance of the model. In the

fitness (cost) function of the tabu search, a combination of

multiple objective functions have been used such as error

rate, false positive rate, and number of features in the

candidate solution. The main aim is to minimize the fitness

function for each candidate solution as much as it can be.

Here, the feature space is decreased by greater than 60%

because tabu search is not hampered by the complexity of

the search space, and the time complexity is decreased by

up to 40% with a random forest classifier. The proposed

method achieves 83.12% accuracy and 3.70% FPR, with 16

optimal features, resulting in a 12.18% cost for the UNSW-

NB15 dataset. Halim et al. [15] have designed an IDS that

performs feature selection by applying the genetic algo-

rithm for the designing of IDS. The fitness function in the

genetic algorithm uses the combination of the correlation

metric and accuracy. The correlation metric employs the

different combinations of feature sets in the original dataset

for the specific candidate feature subset. Moreover, accu-

racy is not an appropriate metric for evaluating the can-

didate feature set in an imbalanced dataset, and features are

selected in an unsupervised manner. The roulette wheel

selection function is applied for the selection of the parent

solution in the genetic algorithm. After applying the

genetic algorithm, the number of features is reduced up to

10. Different machine learning classification algorithms,

such as xgboost, SVM, and KNN, are used to detect

intrusive and normal traffic. Time and space complexities

of the proposed algorithm are O(gðp � c2Þ) and O ðp � c2Þ,
respectively, where g, p, and c represent the number of

generations, population size, and length of chromosome

within the genetic algorithm. The average accuracy of the

model is reported as 98.11%. Ogundokun et al. [34] have

applied the PSO algorithm to select the feature and design

an IDS model. Subsequently, decision tree and KNN

algorithms are utilized to evaluate the feature subset dis-

tilled by applying the PSO algorithm. This paper does not

consider the imbalanced nature of the dataset. Furthermore,

the objective function in the proposed PSO algorithm is not

discussed, which is a crucial phase for selecting candidate

feature subsets. The model achieves an accuracy rate of

98.6%, a detection rate of 89.6%, and an FPR of 1.1%. The

time and space complexities of the model have not been

discussed.

Aksu & Aydin [4] have used machine learning tech-

niques to secure CAN Buses. A modified genetic algorithm

is utilized to select the ‘m’ optimal feature according to the

k-fold cross-validation. Furthermore, five different classi-

fication algorithms are employed as candidate classifiers:

decision tree, SVM, KNN, logistic regression, and linear

discriminant analysis classifier. The overall run time

complexity of the proposed model in the worst case is

O(n7). Here, the hyperparameter of the detection model is

not addressed for better accuracy and detection rate. The

main limitation is a complex structure with high compu-

tational time. Chohra et al. [35] have used the PSO algo-

rithm for feature optimization in the anomaly detection

domain. The fitness function employs the ensemble of

different machine learning and deep learning classifiers

where weighted f1-scores of the ensemble model are

Cluster Computing

123

selected as the objective function. Subsequently, the

selected features are used to filter out original datasets, and

a deep learning-based autoencoder model is used for the

anomaly detection task. Autoencoder uses the following

hyperparameter settings: dropout rate of 0.5 and L2 regu-

larization, categorical cross-entropy, and mean squared

error loss functions, which are utilized in the anomaly

detection phase. Here, the time complexity of the proposed

method is O(k*n*m*log(m)), where n, m, and k represent

the number of features, number of samples, and number of

trees, respectively. The model is not hampered by space

complexity due to the utilization of 128 GB RAM, and it

reports an 89.523% accuracy and (28 min ? 38s) training

time on the UNSW-NB15 dataset. Here, the fine-tuning of

only two and three hyperparameters is considered for

random forest and xgboost, respectively. Additionally,

features are not selected based on the correlation between

feature-feature and class-feature pairs. Alazab et al. [36]

have designed a network-based IDS (called CossimMFO)

by utilizing the swarm optimization algorithm combined

with the machine learning algorithm for classification. A

modified moth-flame optimizer (MFO) algorithm (a

wrapper method) is proposed for selecting the best feature

subsets, and a decision tree algorithm is applied for the

classification task. Only four of the best features are

selected in the NSL-KDD and UNSW-NB15 datasets, and

five features are selected in the KDD-CUP99 dataset. The

model achieves an accuracy rate and TPR of 97.8% and

99.6%, respectively. Dahou et al. [37] have designed an

IDS for IoT security by utilizing deep learning and meta-

heuristic algorithms. CNN is utilized to extract the relevant

features from the IoT data, followed by an enhanced reptile

search algorithm (RSA) to select the information-rich

features. The fitness function of the RSA uses a combina-

tion of error rate and ratio of selected features. The error

rate is computed by utilizing the KNN-based classification

algorithm. The main limitation of the paper is that the

convergence rate of the proposed RSA algorithm is very

low. The time complexity of the model is O(n * (t *

d ? 1)), where n, t, and d indicate the number of candidate

solutions, max. number of iterations and the dimension of

each candidate solution, respectively. The model achieves

a 92.04% accuracy rate for multi-classification on the

KDD99 dataset.

Kunhare et al. [38] have proposed a model that is sep-

arated into four major modules, including data pre_pro-

cessing, feature_selection, classification, and finally,

optimization. For selecting the best subset of features from

the NSL-KDD data (which originally contains 41 features),

here genetic algorithm is applied (which reduces the

number of features to 20). These reduced features are uti-

lized to filter the dataset with only these feature sets. The

filtered dataset is used in the classification module, which

employs the hybrid method combining supervised and

unsupervised classifiers such as decision trees and logistic

regression. In the last module, several metaheuristic algo-

rithms, including GWO, PSO, MVO, and BAT, are applied

for optimization. It is observed that the GWO algorithm

gives the best accuracy (99.44%), FPR (0.60%), and

detection rate (99.36%). Here, the time complexity of the

proposed GWO-based algorithm is O(n*logn). Chowdhury

et al. [23] have built a network intrusion detection system

to identify malicious traffic using the information-rich

feature subset. Various combinations of the PSO algorithm,

GA algorithm, and threshold correlation (TC) have been

explored. PSO and GA algorithms are used to remove the

redundant features, and threshold correlation is used to

remove the correlated features by setting a certain thresh-

old value. In phase 2 of the classification model, different

ensemble models have been employed that best perform at

phase 1, including majority voting, mean voting, and cat-

boost. The performance of the model is 73.23% accuracy

and 187.125s run time with the SVM classifier and 98.39%

accuracy and 5.862s run time with the xgboost classifier for

binary and multiclass classification, respectively. Kumar

et al. [12] have used the grasshopper optimization-based

algorithm to extract the most essential and relevant features

from the datasets. Deep residual convolutional neural

networks are applied to design an IDS for classification,

which further optimizes utilizing the gazelle optimization-

based algorithm. The aim is to minimize the fitness func-

tion for each candidate solution as much as possible. The

time complexity of the model is O(Maximum_Iteration * m

* (m*d)), where m represents the number of candidate

solutions utilized, and d denotes the size of the problem.

Here, the model achieves the following results: 99.17%

accuracy, 0.87% FAR, 99.08% detection rate, 47s pro-

cessing time, and 23.01s testing time. Here, the error rate in

the fitness function is utilized, which is a very common

approach.

3.3 Hyperparameter tuning of detection model-
based

Several studies use traditional methods for optimizing the

hyperparameter values, such as grid search, random search,

and bayesian optimization methods, and some use meta-

heuristic methods like the firefly algorithm. This subsection

Cluster Computing

123

outlines the selection of the optimal hyperparameters of the

models in the IDS paradigm.

Wazirali [18] has proposed a method that is majorly

separated into four phases: data pre-processing, feature

selection, classification, and model validation. This paper

mainly addresses the zero-day attack problem to reduce

model building and model testing time. In this paper, the

optimized hyperparameters are as follows: number of

neighbors, distance function and weight, and data stan-

dardization. The main drawback of this paper is that the

model is evaluated only on a single classifier, such as

KNN. Furthermore, the hyperparameter of the model is

optimized using the exhaustive search technique, which is a

computationally extremely inefficient approach (takes

exponential time O(nk)), where n and k are no. of hyper-

parameter values and no. of hyperparameters respectively.

The accuracy and f1-score of the presented framework are

98.49% and 98.43%, respectively. Kunang et al. [24] have

separated the proposed architecture into three modules: a

data preprocessing module, a deep learning module with

hyperparameter optimization, and an attack detection

module. Furthermore, hyperparameter optimization is used

in the second module to determine the best model. The

deep autoencoder is used as the model in the second

module for feature extraction, which includes the encoding,

decoding, and bottleneck layers. Achieved values of the

accuracy rate, training, and run time of the proposed

framework are 83.33%, 382.48s, and 0.968s, respectively,

with multiclass classification on the NSL-KDD dataset.

Batchu & Seetha [25] have used machine learning models

to detect DDoS attacks. During data preparation and pre-

processing, the data undergo five phases: exploratory

analysis, sample balancing with techniques like SMOTE

and Tomek, imputing missing/infinite/zero values with

median values, feature normalization using a standard

scaler, and label encoding for categorical features. Feature

selection is performed using a combination of two tradi-

tional feature selection techniques, filter and embedded-

based, and the model’s hyperparameters are optimized by

utilizing the grid search technique. The main drawback of

the paper is that grid search-based hyperparameter tuning

increases the time complexity of the model exponentially

(O(nk)). Here, a gradient boosting algorithm is utilized,

which takes O(n � f � ntrees), where f and ntrees are a number

of features and a number of trees respectively. The per-

formance of the proposed model in terms of accuracy and

run time is 99.97% and 40.78s, respectively.

Jovanovic et al. [39] have designed a network intrusion

detection system (called XGBoost-TSFA) using the

improved firefly and xgboost algorithms. The six different

hyperparameters of the xgboost algorithm (including eta,

max_depth, gamma, colsamplel_bytree, min_child_weight,

and subsample) are optimized using the improved firefly

algorithm, which enhances the detection capabilities of the

IDS. Evaluation of the proposed framework is performed

on the UNSW-NB15 dataset. The experiments are per-

formed using a population size of ten with fifteen itera-

tions, and the model is evaluated by applying binary and

multi-class classification with 97.49% and 86.96% accu-

racies, respectively. To enhance the detection abilities,

reducing the false positives and false negatives ratio [40]

have proposed a NIDS, which uses the xgboost algorithm

to identify malicious traffic. To improve the performance,

the hyperparameters of the xgboost algorithm are opti-

mized using the modified sine–cosine metaheuristic algo-

rithm. The performance of the proposed model is evaluated

utilizing the NSL-KDD dataset and compared with another

metaheuristic algorithm based on optimized xgboost and

without optimized xgboost algorithm. Kalita et al. [41]

have used a drift detection technique to measure the

magnitude of the drift in the dynamic or non-stationary

environment. Only the hyperparameters of the SVM clas-

sifier (C & c) are discussed, and based on the magnitude of

drift, one of three mechanisms is selected. The first

mechanism is the introduction of the base optimization

algorithm, i.e., the moth flame optimization algorithm

(MFO), and random initialization of the algorithm is con-

sidered here. In the second mechanism, lightweight-MFO

is introduced, which uses the knowledge base for the ini-

tialization of the algorithm. In the third mechanism, the

knowledge base search space is utilized to achieve the

optimal value of the SVM hyperparameters. The execution

time at the 10th time instance with and without drift

detection module are 17,473.99s and 28,321.6s, respec-

tively, and the average accuracy obtained by the model is

97.5%.

Savanovi et al. [42] have developed an IDS model for

the security of IoT devices for healthcare 4.0. Here, the

machine learning classification algorithm is utilized along

with the metaheuristic algorithms. The modified firefly

algorithm is utilized to optimize the xgboost model’s

hyperparameters. To select the best feature within the

dataset, the KNN algorithm is applied with the value of

K = 5. As a result, out of 50 features, ten best features are

selected. The proposed model is compared with the other

eight metaheuristic algorithms such as FA [43], GA [44],

PSO [45], ABC [46], ChOA [47], COLSHADE [48], and

SASS [49]. The SHAP plot is utilized to analyze the

selected features, and statistical validation of the observed

results is performed using the p-values at significance

levels 0.1 and 0.05. The accuracy and f1-score of the

proposed framework are 99.69% and 99.69%, respectively.

Six hyperparameters of only xgboost based detection

model are tuned. Saheed & Misra [50] have designed an

intrusion detection system for IoT security, which

Cluster Computing

123

considers the average probability of a voting classifier. The

dimensionality of the dataset is reduced with the hybrid

approach utilizing information gain for feature selection

and PCA for feature extraction. The voting classifier uses

four machine and deep learning-based base classifiers such

as random forest, KNN, decision tree, and multilayer per-

ceptron. The hyperparameters of these base classifiers are

optimized using the gray wolf optimizer. The class

imbalance issues present in the IoT datasets (such as

UNSW-NB15 and BoT-IoT) are handled with the help of

SMOTE. The performance attained by the framework in

terms of accuracy, detection rate, and FAR is 99.87%,

99.89%, and 1.20%, respectively. Azimjonov & Kim [6]

have presented a framework with two main contributions

based on implementation and methodology. In the imple-

mentation, the dataset preparation portion has been dis-

cussed, such as balancing imbalanced data, removing

duplicate records, transforming categorical data into

numerical data, dealing with missing values, and splitting

the data into train and test sets. Four feature selection

techniques have been applied in the methodology: forward

sequential, backward sequential, importance coefficient,

and correlation coefficient with linear SVM classifier.

Moreover, the hyperparameters of the ridge regressor and

LSVM classifier have been tuned utilizing the grid search-

based hyperparameter tuning approach. However, the grid

search-based hyperparameter tuning approach is inefficient

in terms of computational cost and high-dimensional data.

Grid search explores all combinations of the search space,

and hence, it takes exponential time (e.g. O(nk)). Although

the model’s accuracy is 94.64%, it takes an extremely long

training time of 5394.409 ms. Table 1 summarizes the

state-of-the-art work by discussing the five major compo-

nents such as (i) Objective, (ii) Method, (iii) Result, (iv)

Advantages, and (v) Limitations.

4 Research objective

This paper proposes a lightweight intrusion detection sys-

tem to address the aforementioned challenges. The pro-

posed model uses the swarm intelligence-based technique

to select the most crucial features from the network traffic

dataset. There are three main advantages of using swarm

intelligence-based feature optimization techniques, which

are as follows: (i) Capability to adjust to the dynamic

environment, (ii) Resilience to individual failures, and (iii)

Capability to effectively explore a broad solution space.

Since the IDS datasets are imbalanced and contain many

features, they extensively obstruct the accuracy of attack

detection [3]. To account for the imbalanced nature of the

dataset, the PSO-based feature selection algorithm incor-

porates the geometric mean of ensemble models into its

fitness function. The metric ‘‘geometric mean’’ is said to be

superior to accuracy in dealing with the imbalanced nature

of the dataset [51]. Here, feature selection is performed

using a supervised approach, which prioritizes the target

class when determining the optimal feature subset by

introducing the correlation metric and information gain

metric into the fitness function in the ACO-based feature

selection approach. On the other hand, this paper considers

the hyperparameter tuning of the different detection models

using the nature-influenced genetic algorithm-based tech-

nique, which gives optimized results even in complex and

high-dimensional data scenarios. The genetic algorithm-

based fine-tuning technique determines the best hyperpa-

rameter settings for each detection model after every

generation. This search process continues iteratively till an

optimized result can be achieved. Moreover, the potency of

the proposed lightweight Intrusion Detection System is

examined on twelve different detection models, each on

three different datasets. A detailed description of the pro-

posed methodology of this paper is given in the following

section.

5 Proposed methodology

The Proposed Light-Weight IDS model is mainly devel-

oped employing four major modules, which are given as

follows: (i) Dataset Description & Data Preprocessing, (ii)

Bi-Phase Swarm Intelligence-based Feature Optimization

(Phase1: PSO-based feature selection, and Phase2: ACO-

based feature selection), (iii) Hyperparameter Tuning (ge-

netic algorithm-based hyperparameter tuning), and (iv)

Classification (by applying either Base or Ensemble

detection models). Figure 2 depicts the overall flow of the

proposed model. Algorithm 1 summarizes the complete

step-by-step development of the Light-Weight IDS model

employing all four major modules discussed above. Table 2

illustrates the abbreviations and their description used in

the algorithm.

Cluster Computing

123

Table 1 A concise summary of state-of-the-art works

Paper Objective Method Result Advantages Limitations

Chebrolu

et al. [26]

Designing a

lightweight IDS

model

Bayesian Networks,

CART algorithm, an

ensemble of bayesian

networks and CART

algorithm

The proposed model

achieves accuracy for

Normal, Probe, DoS,

U2R, and R2L attacks

100%, 100%, 100%,

84%, and 99.47%

respectively

• Multiclass

classification on the

KDD Cup 99 dataset

• Real-time

implementation is not

explored

• Only one dataset is

used

Li et al. [27] Developing

lightweight IDS

Linear SVM, Random

Mutation Hill

Climbing, wrapper-

based feature selection

technique, Decision

Tree

Performance is evaluated

on the KDD CUP99

dataset; 18 and 8 s is

the time consumed on

all features and

selected features,

respectively

• Features are selected

for each attack class

separately

• Multiclass

classification is

performed,

• The ROC curve for

each attack class is

evaluated

• Wrapper based

feature selection

technique is

computationally

inefficient,

• Only one dataset is

used

Mukherjee &

Sharmas

[20]

Designing

effective and

efficient NIDS

Naı̈ve Bayes;

Correlation-Based,

Information-Based,

and Gain Ratio-based

feature selection

The proposed FVBRM
model achieves

97.78% accuracy, and

the time taken to build

the model is 9.42

• A simple approach is

applied

• Out of 41 features, 24

optimal features are

selected

• One traditional

dataset is used

• Hyperparameter

tuning is not

addressed

• Low TPR value for

U2R attack class

• Complex framework

Khammassi

& Krichen

[9]

Building NIDS

with reduced

features

Wrapper based with GA,

Logistic regression,

Decision Tree

Approximately 99.8%

and 81.2% accuracies

are reported against

KDD99 and UNSW-

NB15 datasets

respectively; 18 and 20

features are selected in

KDD99 and UNSW-

NB15 datasets,

respectively

• Three decision tree

algorithms (C4.5, RF,

NBTree) are used,

• Multi-class

classification is

performed

• Hyperparameter

tuning of the

classification model

is not addressed,

• Weka software is

used in the

classification phase

Vijayanand

et al. [10]

Developing

wireless mesh

network IDS

genetic algorithm, SVM 83.54% and 95.56%

accuracies are achieved

on the WMN dataset

512-bit and 1024-bit,

respectively

• Multi-class

classification is

performed

• Performance is

evaluated on multiple

datasets

• Only the SVM

classification

algorithm is used for

evaluating the model,

• Hyperparameter

tuning is not

addressed

Mohammadi

et al. [14]

Aiming to design

an IDS with

reduced features

and high

accuracy

Filter & wrapper

methods, linear

correlation coefficient

& cuttlefish algorithm,

Decision Tree

95.03% accuracy is

achieved on the KDD

Cup 99 dataset

• Accuracy rate,

detection rate, and

false positive rate are

improved for the

proposed FGLCC-CFA
model

• Proposed model

(FGLCC-CFA)

performs better with

less number of features

(10) compared to

FGLCC

• Performance is

evaluated only on the

KDD-Cup 99 dataset,

• Not consider the

imbalance nature of

data

• Fine tuning of the

classifier is not

performed

Cluster Computing

123

Table 1 (continued)

Paper Objective Method Result Advantages Limitations

Kunhare

et al. [30]

Designing IDS

with reduced

features

RF, PSO, KNN, SVM,

LR, DT, Naı̈ve bayes

99.32% efficiency and

99.26% attack

detection rate are

observed on the NSL-

KDD dataset

• High attack detection

performance

• Ten best features are

selected

• Computationally

efficient

• Hyperparameter

optimization of the

classifiers is not

discussed

• Data imbalanced

issue is not

considered

Li et al.,

2020 [29]

Building AE-IDS
to improve

accuracy and

decrease training

time

Auto-Encoder, Affinity

Propagation, Random

Forest, Gaussian

Mixture Model,

K-Means, RMSE, L2

Regularization

Recall rates are 2.99%,

11.32%, 17.22%, and

23.37% for DoS

attacks-Hulk, SQL

Injection, Brute Force

–XSS, and Infiltration

datasets, respectively

• The CSE-CIC-IDS

2018 dataset is used in

the overall experiment,

• Binary classification is

performed

• Performance is

evaluated on only one

dataset,

• Recall rate is very

low, detection time is

high

Nguyen &

Kim [22]

Designing NIDS

with reduced

features

CNN, GA, Fuzzy

c-means clustering,

Bagging classifier,

KNN, and RF

98.2%, 0.5%, and 95.4%

accuracy, FPR, and

TPR, respectively are

achieved on the NSL-

KDD dataset

• Feature construction

with three-layered

architecture

• Validation method

• Multi-class

classification is

performed

• Only one dataset is

used

• Data imbalanced

issue is not addressed

• High time complexity

• Hyperparameter

tuning of the

classification models

is not addressed

Khammassi

& Krichen

[13]

Designing of

NIDS, which

reduces

computational

time

C4.5 DT, Random forest,

Naı̈ve bayes tree,

Logistic regression

98.99%, 66.00%, and

95.16% accuracies are

achieved on NSL-

KDD, UNSW-NB15,

and CIC-IDS2017

datasets, respectively

• Both multi-class and

binary classification

are performed

• Evaluated on three

benchmark datasets

• Employing multiple

objectives to select

appropriate features

• The proposed multi-

objective function

does not consider the

imbalanced nature of

the dataset

(Wazirali,

2020) [18]

Designing an IDS

for detecting

Zero-day attacks

with reduced

data

dimensionality

Semi-supervised

approach, PCA, KNN,

fivefold cross-

validation, one hot

encoding, standard

scalar

98.87% accuracy is

achieved by the

proposed model on the

NSL-KDD dataset

• Optimal values of

number of neighbors

(k), distance function,

distance weight, data

standardization,

• Dimensionality of data

reduced from 42 to 2

• Only the KNN

classification

algorithm is used,

• Exhaustive search-

based

hyperparameter

tuning is performed,

which is

computationally very

expensive

Rao et al.

[17]

A hybrid model is

proposed for the

intrusion

detection

Sparse auto-encoder,

DNN

99.98% accuracy and

99.99% detection rate

are obtained on the

UNSW-NB15 dataset

• The L1-regularization

technique is utilized to

create an optimized

model,

• KDDCup99, NSL-

KDD, and UNSW-

NB15 datasets are used

• No standard

technique is

considered for the

hyperparameter

tuning of the

classification model;

• Only one

classification model

is utilized

Cluster Computing

123

Table 1 (continued)

Paper Objective Method Result Advantages Limitations

Nazir &

Khan [11]

Designing NIDS

with the aim of

reducing

features, error

rate, FPR

Tabu Search, Random

Forest

83.12%, and 3.7%

accuracy and FPR,

respectively are

achieved

• 16 best features are

selected

• Only one dataset is

used for evaluating

the performance,

• The imbalanced

dataset problem is not

addressed,

• Hyperparameter

tuning of the

classifier is not

addressed

Halim et al.

[15]

Designing IDS

with a reduced

feature set

utilizing an

unsupervised

manner

GA, Xgboost, SVM,

KNN

Performance of the

proposed approach is

98.94%, 98.90%, and

96.48% on CIRA-CIC-

DOHBrw-2020, Bot-

IoT, and UNSW-NB15

datasets, respectively

• Multi-class

classification is

performed

• Efficiency of the

proposed model is

evaluated on three

different datasets

• Performance with the

reduced feature set

increases

• Ensembing approach

is not utilized

• Unsupervised feature

selection is

performed

• The fitness function

uses accuracy, that is

not a suitable metric

for imbalanced data

• Hyperparameter

tuning of different

classifiers is not

discussed

Gu & Lu

[19]

Building IDS

model using

SVM and Naı̈ve

bayes

Naı̈ve bayes, SVM 93.75%, 98.92%,

99.35%, and 98.58%

accuracies are achieved

on UNSW-NB15,

CICIDS2017, NSL-

KDD, and Kyoto

2006 ? datasets,

respectively

• Performance of the

proposed model is

evaluated on four

traditional datasets

• Binary classification

is performed,

• Only three metrics

(accuracy, detection

rate, and FAR) are

considered,

• Hyperparameter

tuning of the model

has not been carried

out

Batchu &

Seetha [25]

Designing a model

to detect DDoS

attacks with

reduced features

Logistic regression,

KNN, DT, SVM,

Gradient boost, Grid

search-based

hyperparameter tuning,

SMOTE ? Tomek,

standard scaler, label

encoding

99.97% accuracy is

achieved by the

gradient boost model

on the CICDDoS2019

dataset

• High accuracy is

obtained,

• Very less computation

time (40.78 s),

• Removal of

unnecessary features

results in 80 number of

new features

• Filter ? Embedded

based feature

selection technique is

chosen, which falls

under traditional

feature selection

technique,

• Grid search-based

hyperparameter

optimization takes a

very long time to find

optimal

hyperparameters

• Only one dataset is

used for evaluating

the proposed model

Ogundokun

et al. [34]

Designing NIDS

for detecting

network

anomalies

utilizing the

semi-supervised

technique

PSO ? DT, and

PSO ? KNN

Detection accuracy for

PSO ? KNN is 96.2%

and for PSO ? DT is

89.6%

• PSO ? KNN gives

better performance

than PSO ? DT

• Binary classification

is performed

• Performance is

evaluated on only one

dataset (i.e. KDD-

CUP 99),

• Performance is not

evaluated on any

deep learning model

Cluster Computing

123

Table 1 (continued)

Paper Objective Method Result Advantages Limitations

Kunang et al.

[24]

Designing NIDS

with optimized

hyperparameters

to classify the

attacks

One-hot encoding, min–

max scaling, Deep

auto-encoder, Deep

neural network,

Stacked auto-encoder,

and auto-encoder, grid

and random search for

hyperparameter tuning

83.33% overall accuracy

is achieved on NSL-

KDD testing data

• Multiclass

classification is

performed on two

datasets such as NSL-

KDD and CSE-CIC-

IDS2018

• Hyperparameters are

optimized using the

automatic method,

which merges two

approaches, such as

grid and random

search,

• Hyperparameter

optimization using

these techniques

takes a comparatively

very long time

Li et al. [16] Designing network

IDS with

hierarchical and

dynamic feature

extraction

structure

(HDFEF)

CNN, RNN, LSTM, and

GRU

F1-scores achieved by

HDFEF are 99.84%,

99.24%, and 98.49%

for CIC-IDS2017,

UNSW-NB15, and

CSE-CIC-IDS2018

datasets, respectively

• Three datasets are used

such as CSE-CIC-

IDS2018, CIC-

IDS2017, and UNSW-

NB15

• Statistical features

from multiple

network flow traffic

are not taken

• Performance is

assessed using only a

limited number of

classification models

• Complexity is

increased

Zhao et al.

[21]

Designing IDS

with low

dimensionality

and weighted

classifiers

One-hot-encoding, min–

max scaler, CFS-DE,

Random forest,

Xgboost, KNN, and

Logistic regression

87.44% and 99.87%

accuracies are achieved

on NSL-KDD and

CSE-CIC-IDS2018

datasets, respectively

• Weights of the base

classifier are calculated

depending on their

classification

performance

• Hyperparameter

tuning of the

classifiers is not

addressed

Chohra et al.

[35]

Designing of

network anomaly

detection model

with a reduced

number of

features

Autoencoder, PSO

algorithm, Random

forest, Xgboost, CNN,

NN, Catboost,

LightGBM

92.09%, 92.90%, and

97.30% f1-scores are

achieved on NSL-

KDD, UNSW-NB15,
and IoT-Zeek datasets

respectively

• Performance is

evaluated on three

datasets

• The AUC value for the

Zeek oversampled

dataset is 0.990

• Fine-tuning of only

two and three

hyperparameters is

considered for

random forest and

xgboost classification

models, respectively

• Correlation-based

feature selection is

not explored

Aksu &

Aydin [4]

Designing IDS for

the CAN buses’

security

Modified genetic

algorithm, SVM, DT,

KNN, and Linear

discriminant analysis

98%, 96.5%, and 99.3%

accuracies are reported

against HCRL-car

hacking, UNSW-

NB15, and CIC-

IDS2017 datasets

respectively

• Best performance is

achieved on 5, 7, and 9

subsets of features,

• Both multi-class and

binary classification is

performed

• Hyperparameter

tuning of the

classifiers is not

addressed

Chowdhury

et al. [23]

Bi-phase NIDS is

designed with

reduced features

PSO, GA, Threshold

correlation algorithm,

voting classifier, MLP,

KNN, DT, RF, and

CatBoost

Phase1 and Phase2 have

achieved detection

accuracies of 99.82%

and 99.41%

respectively

• Combinations of

different algorithms are

used for feature

selection

• Evaluation is

performed in two

phases

• Real-time

implementation is

performed

• Fitness function used

in the PSO and GA is

not discussed

• Fine-tuning of

different classifiers is

not explored

Cluster Computing

123

Table 1 (continued)

Paper Objective Method Result Advantages Limitations

Kalita et al.

[41]

Designing an IDS

model for the

non-stationary

domain

SVM, Moth flame

optimization

algorithm, drift

detection technique

97.5% average accuracy

is achieved on the

NSL-KDD dataset;

Overall reduction in

computation time

• The optimal

hyperparameter values

of the SVM classifier,

such as C and c are

obtained

• Only

hyperparameters of

the SVM classifier

are optimized,

• Hyperparameter

optimization of the

other classifiers, such

as KNN, ANN, DT,

RF, etc., are not

explored,

• Performance is

evaluated on only one

dataset

Savanovi

et al. [42]

Designing IDS for

IoT devices for

Healthcare 4.0

Modified Firefly

algorithm, Xgboost,

KNN, SHAP

99.17% accuracy is

obtained on the ICU

dataset

• Binary and multi-class-

classification

• SHAP analysis

• Statistical validation

• 10 best features are

selected

• Only the xgboost

model is analyzed for

hyperparameter

tuning

• Few hyperparameters

(six only) are

considered for

analysis

Kumar et al.

[12]

Designing NIDS to

improve the

security of the

network

One-hot-encoding, Deep

residual CNN, Gazelle

optimization

algorithm, Grasshopper

optimization algorithm

99.56%, 99.06%, and

99.12% accuracies are

achieved on CIC-

IDS2017, UNSW-

NB15, and

Cicddos2019 datasets,

respectively

• Multi-class

classification,

• Optimizing the

hyperparameters of the

DRCNN

• Error rate is used in

the fitness function,

which is a very

common approach

Azimjonov

& Kim [6]

Designing an

accurate and

lightweight IDS

for IoT networks

Ridge regressor, Linear
SVM, Forward

sequential, Backward

sequential, Correlation

coefficients,

Importance coefficient

95.66%, 99.48%, and

99.81% maximum

accuracies are achieved

on KDD-CUP-1999,

BotIoT-2018, and

N-BaIoT-2021

datasets, respectively

• The feature sets are

reduced up to 6

features out of 40, 15,

and 115 features for

KDD-Cup-1999,

BotIoT-2018, and

N-BaIoT-2021

datasets, respectively

• Grid search is used

for the

hyperparameter

tuning of the ridge

regressor;

• LSVM is an

inefficient approach

in terms of

computational cost

and for a large

number of

hyperparameters

Dhanya &

Chitra [33]

Building an

intelligent

system that

reduces resource

utilization and

time in the IoMT

environment

Auto-encoder, Xgboost,

genetic algorithm,

Hyperparameter tuning

using random search

98.98% and 98.69% of

accuracies are reported

against dataset1

(Wustl, 2020) [66] and

dataset2 (Shahane,

2021) [67] respectively

• Results are evaluated

on two datasets,

• Hyperparameter tuning

of the models is

addressed

• Optimal

hyperparameter

values of only the

Xgboost classifier are

given

Cluster Computing

123

Table 1 (continued)

Paper Objective Method Result Advantages Limitations

Azimjonov

& Kim [5]

Designing a

lightweight

Intrusion

detection system

for IoT devices

Stochastic gradient

descent classifier,

feature optimization

using importance

coefficient, backward

sequential, forward

sequential, and

correlation coefficient,

grid search for

hyperparameter tuning

The best accuracy

achieved by the IDS

model is 96.61%,

94.76%, and 98.42%

on the KDD-1999,

BotIoT-2018, and

N-BaIoT-2021

datasets, respectively

• Six best features are

selected

• Duplicate records are

dropped

• Three datasets are used

such as KDD-CUP-

1999, BotIoT-2018,

N-BaIoT-2021

• Traditional feature

selection approach is

utilized

• Grid search-based

hyperparameter

tuning increases the

computational

complexity

• Real-time

implementation of

the data or

implementation of

the realistic data is

not explored

Fig. 2 Overall Working of Proposed Model

Cluster Computing

123

5.1 Dataset description & data preprocessing

The first module of the proposed framework discusses the

dataset and the preprocessing steps applied in this paper.

5.1.1 Dataset description

Three most popular Intrusion detection system traditional

datasets (such as NSL-KDD [28], UNSW-NB15 [52], and

CSE-CIC-IDS2018 [53]) are utilized in this paper. The

NSL-KDD [28] dataset is an enhanced form of the KDD

Cup’99 dataset [54]. A detailed description of the CSE-

CIC-IDS2018 dataset is present at (https://www.unb.ca/cic/

datasets/ids-2018.html) [55]. All these datasets are imbal-

anced. Here, complete training and testing sets of NSL-

KDD and UNSW-NB15 are used. Since the CSE-CIC-

IDS2018 dataset contains many records, only the samples

belonging to a subset of Wednesday traffic are randomly

selected in this paper. Table 3 shows a brief description of

the datasets used in this paper.

5.1.2 Data preprocessing

Data preprocessing is required for cleaning the dataset as

the first step of the proposed framework since the dataset

contains null or redundant values, outliers, and categorical

values. Here, the data preprocessing process is divided into

3 steps, which include (i) Filling Missing Values, (ii) Label

Encoding, and (iii) Outlier Removal. The sequential flow

of data preprocessing steps used in this paper is described

as follows:

(i) Filling Missing Values: Some of the entries

contain ‘‘Null’’ values, which give no information

about the detection of attack. Therefore, in this

paper, a particular row’s ‘null’ values are filled

with a top value of that column.

(ii) Label Encoding: In the datasets used in this paper,

some of the features contain categorical values

that need to be converted into numerical values.

For this reason, the label encoding technique is

applied here. By doing label encoding, the values

Algorithm 1 Proposed model

Table 3 Description of datasets used in this paper

Dataset NSL-

KDD

UNSW-

NB15

CSE-CIC-

IDS2018

No. of Features (except

target class)

42 44 79

No. of Training Samples 1,25,973 1,75,341 1,59,784

No. of Testing Samples 22,543 82,332 39,946

Table 2 Algorithm Parameters

Parameter Description

FP A subset of features after applying PSO

FA An optimal subset of features after applying ACO

MB Base Model

ME Ensemble Model

HB Best_Hyperparameters

PB Classification Report for Base Model

PE Classification Report for Ensemble Model

Cluster Computing

123

https://www.unb.ca/cic/datasets/ids-2018.html
https://www.unb.ca/cic/datasets/ids-2018.html

of categorical features can be converted into their

corresponding numerical values.

(iii) Outlier Removal: Outlier removal is the process of

normalizing or scaling the features in the data to a

specific range. In this paper, min–max scaling is

applied, and its formula is given in Eq. (1) as

follows:

x:scaled ¼ ðx� x:minÞ
ðx:max� x:minÞ ð1Þ

Where x is the specific feature’s original value, x:min is

the minimum value of that specific feature, x:max is the

maximum value of that specific feature, and x:scaled is the

specific feature’s scaled value within the range [0,1].

5.2 Bi-phase swarm intelligence-based feature
optimization

To make data with the most efficient utilization for building

the model, appropriate and scrupulous selection of the fea-

tures in the data is one of the important parts that is being

addressed in this module. In the context of machine learning

or deep learning, the model’s weight is highly dependent on

the number of features in the data. The weight of the model is

highly dependent on the number of features used in training

the model. If the data contains high dimensions, the model

weight becomes high. Many numbers of redundant and non-

informative features in the training data make the model

heavyweight. Therefore, the number of features plays a

crucial role in designing a lightweight IDS model.

This module is divided into two phases; hence, it is called

Bi-Phase Swarm Intelligence-based Feature Optimization.

The term swarm intelligence [56] is used because it is

influenced by how a group of simple agents works together to

solve complicated or intricate problems in social organisms.

These fields come under the nature-inspired metaheuristic

class of algorithms. A modified version of two algorithms,

particle swarm optimization, and ant colony optimization, is

applied to the proposed approach. The reason behind intro-

ducing two-phase feature optimization is to build the model

as light as possible, which can save time and reduce over-

fitting and overall cost.

However, the field of optimization has seen the emer-

gence of several advanced algorithms such as the reptile

search algorithm (RSA) [57], red fox optimization algo-

rithm (RFO) [58], salp swarm algorithm (SSA) [59], but-

terfly optimization algorithm (BOA) [60], and many others.

Despite these advancements, the hybrid use of PSO and

ACO remains prevalent. The no free lunch (NFL) theorem

[61] asserts that no single optimization algorithm outper-

forms all others across all possible problems. Its problem-

specific nature implies that an algorithm effective for one

type of problem may not work well for another. Conse-

quently, there is no universally superior heuristic for all

optimization tasks. This underscores the importance of

carefully selecting and tuning optimization algorithms

based on the unique characteristics of each problem rather

than a generalized approach.

Considering the ‘‘no free lunch’’ (NFL) theorem, com-

bining different algorithms or utilizing hybrid approaches

can offer a way forward by harnessing the unique strengths

of multiple algorithms. For instance, combining PSO and

ACO for feature selection tasks offers several advantages

over algorithms like RSA, RFO, SSA, and BOA due to

their complementary strengths. RSA may suffer from

slower convergence and lack of fine-tuning mechanisms,

RFO may not possess a robust dual mechanism for bal-

ancing exploration and exploitation across diverse prob-

lems, and on the other hand, SSA may struggle with

exploitation and fine-tuning, and BOA may lack the precise

search refinement offered by the combination of PSO’s

global search and ACO’s local search capabilities. PSO

offers fast convergence and effective global search, while

ACO provides robust exploration and fine-tuning through

pheromone trails. PSO excels in quick global search and

convergence, while ACO excels in refining the search

locally through pheromone-based learning. The combina-

tion of these two methods improves exploration and

exploitation processes, preserves diversity, as well as

adjusts the search process dynamically. This leads to a

more resilient and efficient method for feature selection

tasks. The following sections, 5.2.1 and 5.2.2, describe in

detail the phases of the proposed feature selection process.

5.2.1 Phase1: particle swarm optimization based feature
selection

Since the dataset used in this paper is imbalanced, g_mean

is considered a more acceptable metric than accuracy for

the imbalanced dataset [51]. The main goal of this phase is

to extract the most crucial features from the intrusion

detection system data based on the imbalanced nature of

the dataset. It reduces the complexity and false alarm rate,

enhances the attack detection accuracy and interpretability,

and yields a more efficient model. Several machine and

deep learning-based intelligent detection models are used

in ensemble learning techniques. The machine learning

models applied in the ensemble technique are decision tree,

random forest, xgboost, k-nearest neighbor, support vector

machine, lightgbm, and catboost. The deep learning models

of ensemble technique are dense neural networks and

1-dimensional convolutional neural networks. The geo-

metric mean is employed in the fitness function, which

preserves the imbalanced property of the dataset and gives

the best attack detection performance.

Cluster Computing

123

Figure 3 shows the flowchart, and Algorithm 2 outlines

the steps involved in the proposed phase 1 feature selec-

tion. Mainly six steps are involved in the construction of

this algorithm which is given as follows: (i) Initialize

Particle and Velocity Position, (ii) Evaluation of Fitness

Function, (iii) Update Personal and Global Best Position,

(iv) Compute Velocity and Update Particle Position,

(v) Termination Condition. Each step of the proposed

phase 1 feature selection algorithm is described in detail as

follows:

(i) Initialize particle and velocity position(i) Initialize

particle and velocity position

Nitialization of the particle position and velocity is the

first step in the particle swarm optimization algorithm. A

particle position within a swarm represents one of the

acceptable solutions. The size of a particle and its corre-

sponding velocity position are randomly initialized. Parti-

cle position vectors are allocated with binary values

denoting the inclusion or exclusion of the feaures within

that feature subset. The presence of 1’s in the particle

position denotes that the corresponding feature is included

in the feature subset and 0’s denotes the absence of the

feature in the subset. The size of a particle is equivalent to

the number of 1’s present in that particle position vector.

Algorithm 2 Phase1 for feature selection

Cluster Computing

123

The maximum size of the particle is limited to the number

of features available in the dataset. Figure 4a depicts the

arrangement of particles in a swarm and Fig. 4b represents

the structure of a particle position and velocity vector

where, S1, S2, S3, …, Sm denote the set of samples and F1,

F2, F3, …. Fn denote the set of features in the dataset.

(ii) Evaluation of fitness_function

Fitness function computation is a prominent step in the

PSO algorithm. It produces the scores, and based on that

score, the significance of a particular particle (candidate

solution) is determined. This is the novelty of this paper

because, here, the fitness function is computed by taking

the G_mean of the ensemble model (described in Function

1). An ensemble model is employed, which combines

multiple machine learning (in this case, 7) and deep

learning models (in this case, 2) with a weight parameter

(c) given to each model (M) depending upon their impor-

tance. Common hyperparameter values given to both DNN

and CNN models are as follows: ‘Adam’ as an optimizer,

‘categorical cross-entropy’ in the loss function, ‘relu’ &

‘softmax’ in the activation function, batch size = 32, and

no. of epochs = 25. For the DNN model, the dropout rate is

determined to be 0.2, and for the CNN model, kernel size

and pool size are equal to 3 and 2, respectively. Equa-

tion (2) explains the fitness function used in the proposed

phase 1 of the feature selection module.

Fitness Function ¼
X7

i¼1

ðc � GMeanðMiÞÞ

þ
X2

j¼1

ðc � GMeanðMjÞÞ ð2Þ

where, Mi 2 fDT ;RF;Xgboost; Lightgbm; Catboost; SV

M;KNNg,Mj 2 fDNN;CNNg
Several extensive experiments are performed by varying

the value of c from 0.1 to 1, and it is observed that c = 1

offers optimal results in this paper. Thus, equal weights (c)

Fig. 4 In proposed framework a Arrangement of particles in a swarm, b Randomly initializing positions of a particle and a velocity

Fig. 3 Flowchart of Phase 1 Feature Selection

Cluster Computing

123

are given to all the models, equal to 1, determined by the

trial-and-error method.

The following Eq. (3) shows the formula for computing

the geometric mean between specificity and sensitivity.

Equations (4) and (5) provide the formula for computing

specificity and sensitivity, respectively. Definitions of True

Positives, False Negatives, True Negatives, and False

Positives are given in Sect. 6.2 of this paper.

GMean ¼
ffi
ðSpecificity � SensitivityÞ

p
ð3Þ

where,

Specif icity ¼ TrueNegatives

TrueNegativesþ False Positives
ð4Þ

Sensitivity ¼ True Positives

True Positivesþ False Negatives
ð5Þ

(iii) Update personal and global best position

After computing the fitness score of each particle in the

swarm, the personal best position of each particle is

updated based on fitness function. If a particle’s fitness

score performs better than its previous fitness score, change

the current personal best position of that particular particle

to the position with a large fitness score value; otherwise,

the previous personal best position is considered the cur-

rent one. The global best position is determined by the

highest fitness score among all the personal best positions

of the particles within a swarm. At the end of the iterations,

the global best position is considered the best feature subset

provided by this phase of the proposed model.

(iv) Compute velocity and update particle position

The velocity vector of the particle (described in Func-

tion 2) is computed using the following Eq. (6), and the

position of the particle is updated (shown in Function 3)

using the following Eq. (7).

Vtþ1
i ¼ W:Vt

i þ C1:r
t
1 Pt

b1
� Pt

i

� �
þ C2:r

t
2ðgtb � Pt

iÞ ð6Þ

Ptþ1
i ¼ Pt

i þ Vtþ1
i ð7Þ

where W is the inertia weight, r1, and r2 are the random

numbers in the range [0,1], and they are randomly chosen,

C1 and C2 are the learning factors termed as cognitive

behavior and social behavior coefficients, respectively. Pt
i

and Vt
i denote the position and velocity vector of the ith

particle, respectively, at time t. Pt
b1

denotes the personal

best position of ith particle at time t, and gtb is the global

best position (optimal feature subset) within the swarm at

Input: particlek, DC_Train

Output: fitness_scorek

1 procedure FITNESS FUNCTION

2 Begin
3 MML ← [DT, RF, Xgboost, Lightgbm, Catboost, SVM, KNN], MDL ← [DNN, CNN], γ ← 1

4 fitness_scorek ← ∑ ∗ ((, _))7
=1 + ∑ ∗ ((,2

=1

_))
5 return fitness_scorek

6 End
7 end procedure

Function 1 Compute_fitness(particlek, DC_Train)

Table 4 Parameter settings of

the Phase 1 Feature Selection
Parameters Values

Number of Iterations 58 (NSL-KDD), 95 (UNSW-NB15), 79 (CIC-IDS2018)

c1 1

c2 1

W 0.2

C 1

Swarm_size 10

Seed 42

Cluster Computing

123

time t. In this paper, several extensive experiments are

performed on all three datasets to determine the best values

of each parameter in phase 1 PSO-based feature selection.

The optimal values of each parameter are provided in

Table 4, which are determined by the trial-and-error

method. Only those values are selected, which gives an

optimal result in terms of fitness score at every iteration.

The experiments are conducted by varying the swarm size

from 10 to 50; it is observed that the swarm size is equal to

10, providing the optimal result for all the datasets.

Function 3 Update_position(velocity_particlek?1, particlek)

Input: velocity_particlek+1, particlek

Output: particlek+1

1 procedure PARTICLE POSITION UPDATE

2 Begin
3 particlek+1 ← particlek + velocity_particlek+1

4 return particlek+1

5 End
6 end procedure

(V) Termination condition

There are two ways to terminate the execution of the

algorithm: (a) By defining a fixed number of iterations and

(b) By constantly observing the progress of the graph

between the best fitness score for each iteration and the

number of iterations. In the second case, the execution of

the algorithm will be terminated if the fitness score of the

global best position (feature subset) of each iteration

becomes stable. In this paper, a rigorous number of

experiments are conducted to select the appropriate value

for the number of iterations per dataset. Therefore, the

number of iterations varies depending on the type of

dataset. Figure 9a demonstrates the convergence graph

between the best fitness score per iteration and the number

of iterations in the algorithm. Table 4 indicates the number

of iterations for each dataset as the convergence condition

of the algorithm. After this phase, the number of features is

reduced to 25, 29, and 48 for the NSL-KDD, UNSW-

NB15, and CIC-IDS2018 datasets, respectively.

5.2.2 Phase2: ant colony optimization based feature
selection

In this phase, the most informative features are selected

based on the mutual information value and correlation

value between feature-feature pairs and class-feature pairs.

It is achieved by considering mutual information and cor-

relation metrics in the fitness function of the ant colony

optimization algorithm. Therefore, the feature subset

obtained after this phase contains uncorrelated and infor-

mation-rich features. By removing irrelevant features, this

phase ensures computational efficiency, while the less

dimensionality of the data ensures the lightweight of the

model. Figure 5 shows the flowchart, and Algorithm 3

outlines the overall steps involved in the proposed phase 2

feature selection.

To determine the optimal values of each parameter in

the ACO-based feature selection in phase 2, various com-

prehensive experiments are performed on each dataset

considered in this paper. The optimal values of each

parameter are provided in Table 5 by the trial-and-error

method. Only those values are selected, which offers an

optimal result in terms of the fitness function at each iter-

ation and considering multi-class classification. The fitness

function is observed to stop increasing its values after 50,

60, and 50 iterations for NSL-KDD, UNSW-NB15, and

CIC-IDS2018 datasets, respectively demonstrated in

Fig. 9a. The number of ants is initialized with the number

Input: c1, c2, r1, r2, w, global_best, personal_bestk, particlek, velocity_particlek

Output: velocity_particlek+1

1 procedure COMPUTE VELOCITY

2 Begin
3 velocity_particlek+1 ← w * velocity_particlek + c1 * r1 * (personal_bestk - particlek) + c2 * r2 *

(global_best - particlek)

4 return velocity_particlek+1

5 End
6 end procedure

Function 2 Compute_velocity(c1, c2, r1, r2, w, global_best, personal_bestk, particlek, velocity_particlek)

Cluster Computing

123

of features obtained from the PSO-based feature selection

phase corresponding to each dataset (discussed in

Sect. 5.2.1). Moreover, the number of features in the subset

is determined on the basis of the feature importance, which

is obtained by the importance plot using Xgboost for each

datasets.

The primary step of the ant colony optimization algo-

rithm applied in this paper can be analyzed using the fol-

lowing points: (i) Initialization of Look-up-table (LUT), (ii)

Heuristic Function, (iii) Probability Function, (iv) Fitness

Function, (v) Pheromone Update Rule. Each step involved

in the construction of this phase is described as follows:

(i) Initialization of look-up-table (LUT)

Initialization of the look-up table (LUT) is the first step

in the ant colony optimization algorithm. LUT is a matrix

in the form of either lower or upper triangular. The reason

behind using only half (either upper or lower) part of the

matrix is that it contains symmetric values on both sides of

LUT. It is a matrix of dimension (n*n) where only one-half

part of the matrix is utilized. It implies that only ðn � ðn�
1ÞÞ=2 entries contain unique values in the LUT. Therefore,

only those entries in the LUT are filled with values. Here,

‘n’ represents the number of features obtained after the first

phase of the feature selection module in the proposed

model. It includes mainly two pieces of information asso-

ciated with feature-feature pairs, i.e., (a) Pheromone value

and (b) Heuristic value. Figure 6 shows an example of the

LUT employed in this paper where both the values are

combined in a single table. Functions 4 and 5 explain the

initializing of the pheromone LUT and heuristic LUT,

respectively.

Function 4 Initialize_Pheromone_LUT(n)

Input: n
Output: pheromone_matrix

1 procedure INITIALIZATION OF PHEROMONE

2 Begin
3 value ← 0.8

4 pheromone_matrix ← full((n,n), value)

5 return pheromone_matrix

6 End
7 end procedure

Algorithm 3 Phase 2 for feature selection

Cluster Computing

123

Function 5 Heuristic_LUT(n, Xgboost(), DF_Train)

Input: n, Xgboost(), DF_Train

Output: heuristic_matrix

1 procedure COMPUTE HEURISTIC LUT

2 Begin
3 heuristic_matrix ← zeros((n,n))

4 for i in range(n) do
5 for j in range(n) do
6 if (i <= j):
7 heuristic_value ← Heuristic_value(i, j, DF_Train, Xgboost())

8 heuristic_matrix [i, j] ← heuristic_value

9 heuristic_matrix [j, i] ← heuristic_value

10 end if
11 end for
12 end for
13 return heuristic_matrix

14 End
15 end procedure

Pheromone LUT is first initialized with a constant value

(here, it is equal to 0.8) and is updated after each iteration,

as indicated in Algorithm 3. Furthermore, heuristic LUT is

initialized with the heuristic value (described in Function

6) corresponding to each entry in LUT, which is computed

by applying the proposed heuristic function (shown in

Eq. 8). Heuristic value depends upon ‘true positive rate’

and ‘cosine similarity’ corresponding to different feature-

feature pairs in the LUT. Therefore, entries in heuristic

LUT will remain constant throughout the execution of

Algorithm 3. In Fig. 6, the upper section represents the

heuristic value, whereas the bottom section denotes the

pheromone value of each row in the LUT. For instance, the

entries corresponding to feature ‘1’ and feature ‘2’ are 0.55

and 0.73, respectively, which indicate the heuristic and the

pheromone values respectively.

Fig. 5 Flowchart of Phase 2 Feature Selection

Cluster Computing

123

(ii) Heuristic function

A novel heuristic function is utilized to evaluate the

heuristic values in the heuristic LUT. Function 6 represents

the overall step-by-step procedure for evaluating the

heuristic value for different feature-feature pairs in the

LUT. The heuristic value corresponding to feature ‘A’ and

feature ‘B’ (gAB) is computed using the following Eq. (8).

It is measured by simply dividing the ‘True Positive Rate’

by the ‘Cosine_Similarity’ between feature-feature pairs.

gAB ¼ Weighted TPR

Cosine SimilarityðA;BÞ ð8Þ

TPR for a specific class ‘i’ can be assessed using the

given Eq. (9), while the weighted TPR can be measured

using the corresponding Eq. (10). For measuring the value

of Weighted_TPR, several classification algorithms (such

as DT, RF, Xgboost, and KNN) are analyzed, and it is

observed that the ‘Xgboost’ classifier offers the optimal

performance.

TPRi ¼
True Positivei

True Positivei þ False Negativei
ð9Þ

Weighted TPR ¼
PC

i¼1 ðSi � TPRiÞ
S

ð10Þ

where ‘C’ and ‘S’ are the total number of classes and the

total number of samples, respectively, in the data.Si rep-

resents the number of instances of a particular class ‘i’

present in the data. The Cosine_Similarity between two

features, ‘A’ and ‘B’, is determined using the following

Eq. (11). The actual meaning of True Positive and False

Negative are provided in Sect. 6.2.

Cosine SimilarityðA;BÞ ¼
PS

i¼1ðAi � BiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPS
i¼1 Ai

2
q� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPS

i¼1 Bi
2

q� �

��������

��������

ð11Þ

where Ai & Bi are the specific instances of feature vectors

‘A’ and ‘B’, respectively.

Function 6 Heuristic_value(column_i, column_j, DF_Train, Xgboost())

(iii) Probability function

Initially, the number of ants is equivalent to the number

of features in the subset obtained after phase 1 feature

selection. Each ant is standing at every feature provided

that no two ant stands at the same feature. Now each ant

explores their path by visiting the other features (nodes)

with the aim of achieving the best feature subset. This is

attained by choosing the routes with the highest probability

value. Equation (12) signifies the function for assessing

probability values related to each feature in the unvisited

feature list, which helps the ants select the next feature

appropriately in their path. Function 7 explains the sys-

tematic approach to calculate the probability values

between two given features and it gives the best feature

subset selected by specific ant ‘k’.

Pk
AB ¼ saAB � gbABP

m saAB � gbAB
ð12Þ

where Pk
AB is the probability of selecting the next feature as

‘B’ by ant ‘k’ if the ant ‘k’ is standing at feature ‘A’. 0gAB0
is the heuristic value between feature ‘A’ and feature ‘B’

present in the heuristic LUT. 0sAB0 is the pheromone value

between feature ‘A’ and feature ‘B’ present in the pher-

omone LUT. ‘m’ is the total number of unvisited features.

The parameter ‘a’ adjusts the impact of 0sAB0, while the

parameter ‘b’ governs the effect of ‘gAB0.

Table 5 Parameter settings of

Phase 2 Feature Selection
Parameters Values

Number of Ants 25 (NSL-KDD), 29 (UNSW-NB15), 48 (CIC-IDS2018)

Number of Iterations 50 (NSL-KDD), 60 (UNSW-NB15), 50 (CIC-IDS2018)

Alpha (a) 1

Beta (b) 1

Evaporation_rate (q) 0.1

Number of Features in subset 15 (NSL-KDD), 20 (UNSW-NB15), 20 (CIC-IDS2018)

Constant (Q) 1

Initial Pheromone 0.8

Seed 42

Cluster Computing

123

Function 7 antBuildSubset(ia, n, s, alpha, beta)

Input: ia, n, s, alpha, beta

Output: feature_subset_ia

1 procedure
2 begin
3 initialize, unvisited_features ← [0,1,2,3,…,(n-1)], s1 ← 1

4 indexes ← where(in1d(unvisited_features, ants[ia].feature_path))[0]

5 ua ← unvisited_features[indexes]

6 unvisited_features ← unvisited_features.delete(ua)

7 while (s1 <= s) do
8 values ← [0] * len(unvisited_features) , prob_value ← [0] * len(unvisited_features)

9 for index_uf in range(len(unvisited_features)) do
10 uf ← unvisited_features[index_uf]

11 eta ← heuristic_matrix[ua, uf]

12 tau ← pheromone_matrix[ua, uf]

13 values [index_uf] ← (tau**alpha) * (eta**beta)

14 end for
15 total_sum ← sum(values)

16 for index_uf in range(len(unvisited_features)) do
17 prob_value[index_uf] ← values[index_uf] / total_sum

18 end for
19 max_index ← argmax(prob_value)

20 next_features ← unvisited_features[max_index]

21 if (s1 == s - 1) do
22 feature_subset ← ants[ia].feature_path

23 feature_subset ← feature_subset.append(next_features)

24 end if
25 ants[ia].feature_path.append(next_features)

26 unvisited_features.delete(next_features)

27 s1 ← s1 + 1

28 ua ← next_features

29 end while
30 return feature_subset

31 end
32 end procedure

(iv) Fitness function

In the ant colony optimization-based feature selection

algorithm, the fitness function plays a very crucial role in

precisely determining the best feature subset. Therefore,

setting the fitness function appropriately is a primary key in

the ant colony optimization-based feature selection algo-

rithm. During this phase, two different fitness functions are

utilized to analyze various combinations in subset selec-

tion. The aim is to identify the most crucial features subset

for designing of a light-weighted IDS model. Description

of both these fitness functions, along with the algorithmic

details, are provided in the following subsections (a) and

(b):

a. Mutual information-based

It selects the most crucial features based on the mutual

information theory concept. It observes the mutual infor-

mation between the feature subset selected by a specific ant

and its corresponding target class feature. It calculates the

entropy related to the subset and conditional entropy rela-

ted to the subset given class feature. Functions 8.a and 8.a1

explain the systematic way to execute the mutual infor-

mation as a fitness function in the proposed model. Equa-

tion (13) shows the mutual information (IðF;CÞÞ by

selecting a subset of features (F) and the class label (C).

Cluster Computing

123

Function 8.a. fitness_score (feature_subset_ia, DF_Train)

Input: feature_subset_ia, DF_Train

Output: score_ia

1 procedure MUTUAL INFORMATION BASED

2 begin
3 columns ← DF_Train.shape[1]

4 X ← DF_Train[: , feature_subset_ia], Y ← DF_Train[columns:]

5 features ← X.shape[1]

6 Mutual_Information ← []

7 for feature in range (features) do
8 Xf ← X[: , feature]

9 mutual_info ← Mutual_Information(Xf, Y)

10 Mutual_Information.append(mutual_info)

11 score_ia ← sum(Mutual_Information)

12 end for
13 return score_ia

14 end
15 end procedure

Function 8.a1. Mutual_Information(Xf, Y)

Input: Xf, Y

Output: mutual_info

1 procedure MUTUAL INFORMATION

2 begin
3 H_F ← Entropy(Xf)

4 H_F_C ← Conditional_Entropy(Xf, Y)

5 mutual_info ← (H_F - H_F_C)
6 return mutual_info

7 end
8 end procedure

IðF;CÞ ¼ H Fð Þ �HðFjCÞ ð13Þ

Entropy ‘H’ of feature subset ‘F’ is estimated using the

following Eq. (14).

H Fð Þ ¼ �
X

f i2F
P f ið Þ � log2ðP f ið ÞÞ ð14Þ

Entropy ‘H’ for feature subset ‘F’ after analyzing class

‘C’ can be measured using the following Eq. (15).

HðFjCÞ ¼ �
X

ck2C
P ckð Þ �

X

f i2F
ðP f ijckð Þ � log2P f ijckð ÞÞ

ð15Þ

where F and C represent the feature subset and target class,

respectively. IðF;CÞ, H Fð Þ, and HðFjCÞ describe the

mutual information between F and C, the entropy of F, and

the conditional entropy of F provided C, respec-

tively.P f ijckð Þ presents probability of a feature having a

value f i and target class being ck, while P f ið Þ, and P ckð Þ
represent the probability of a feature having a value f i and

the probability of target class being ck respectively.

b. Correlation-based

The second type of fitness function used here is the

correlation-based. Equation (16) determines the potential

of a particular feature subset ‘F’ selected by the ant colony

optimization-based feature selection algorithm. This func-

tion selects features based on the feature-feature correlation

and the class-feature correlation. Therefore, this fitness

function gives importance to both correlation values. It is

important to observe that for selecting the best feature

subset, the correlation between the class-feature pair should

be as high as possible, and the correlation between the

feature-feature pair should be as low as possible. Function

8.b, along with functions 8.b1 and 8.b2, explains this fit-

ness function.

Fitness Function ¼ s � rcfffi
ðsþ s � s� 1ð Þrff Þ

p ð16Þ

where ‘s’ is the number of features in the feature subset

selected by a particular ant and rcf indicates the correlation

between categorical and numerical features. It is measured

using kendall’s rank correlation coefficients, and its aver-

age value is taken here. The systematic procedure for

computing the value of rcf is outlined in function 8.b1. rff
is the pearson correlation coefficient between two numer-

ical features, and it is computed between two features ‘A’

and feature ‘B’ using the following Eq. (17) and its average

value are taken. Where ‘S’ represents the total number of

samples while Ai and Bi indicate the feature value of the

‘ith’ sample of features ‘A’ and ‘B’, respectively. The step-

by-step process for computing the average value of rff is

provided in function 8.b2.

Function 8.b. fitness_score (feature_subset_ia, DF_Train)

Input: feature_subset_ia, DF_Train

Output: score_ia

1 procedure CORRELATION BASED

2 begin
3 columns ← DF_Train.shape[1]

4 X ← DF_Train[: ,feature_subset_ia] , Y ← DF_Train[columns :]

5 r_cf ← compute_rcf(X,Y)

6 r_ff ← compute_rff(X)

7 s ← len(feature_subset_ia)

8 score_ia ← (∗) (√ + ∗ (− 1) ∗)⁄
9 return score_ia

10 end
11 end procedure

rAB ¼
S

PS
i¼1 AiBi

� �
�

PS
i¼1 Ai

� �
� ð

PS
i¼1 BiÞ

ffi
S
PS

i¼1 Ai
2 �

PS
i¼1 Ai

� �2
� 	

� S
PS

i¼1 Bi
2 �

PS
i¼1 Bi

� �2
� 	s

ð17Þ

Cluster Computing

123

Function 8.b1. compute_rcf(X,Y)

Input: X,Y

Output: r_cf

1 procedure
2 begin
3 r_cf ← []

4 for i in range(X.shape[1]) do
5 tau ← kendalltau (X[: , i], Y)

6 r_cf.append(tau)

7 end for
8 return mean(r_cf)

9 end
10 end procedure

(v) Pheromone update rule

Pheromone updation (summarized in Function 9) is the

last step in the ant colony optimization-based feature

selection algorithm, and its value is updated in the pher-

omone LUT. It has been studied that ants secrete a kind of

chemical (called pheromone) in the path where they walk.

In searching for the best feature subset, they secrete a

chemical to help other ants follow the suitable route

attracted by the amount of chemicals in the route. If the

concentration of pheromones in a route is higher, the

probability of an ant selecting the route with the highest

pheromone concentration increases. Hence, the pheromone

LUT is updated appropriately corresponding to the feature-

feature pair.

The pheromone value is decremented for all feature–

feature pairs. Moreover, Eqs. (18) and (19) describe the

formula for updating the values in the pheromone LUT.

s
tþ1ð Þ
ij ¼ 1 � qð Þ � s tð Þ

ij þ
XjNo:ofAntsj

k¼1

sum delta½k� ð18Þ

sum delta½k� ¼ Q

1 � F1 Scoreðant k½ �:feature pathÞð Þ � 100
ð19Þ

where s tþ1ð Þ
ij represents the amount of pheromones between

feature (i) and feature (j) pair at the (t ? 1)th iteration. q is

the evaporation rate, and by the trial-and-error method, its

value is determined as 0.1, and Q is a constant number

(here, it is 1). To find the F1-Score value, various machine

learning models, such as KNN, DT, RF, and xgboost, are

applied. It is observed that xgboost performs better than

others.

5.3 GA-based hyperparameter tuning

The best set of hyperparameters improves the detection

models’ performance. For this reason, this paper introduces

a genetic algorithm-based hyperparameter tuning module

for retrieving the best set of hyperparameters per detection

model. Genetic algorithms (GAs) offer a powerful and

flexible approach to optimizing hyperparameters in

machine learning models. They excel in global search

capability, adaptability, parallelism, robustness to noise,

and a balanced exploration–exploitation trade-off. These

attributes make GAs highly effective for navigating com-

plex and high-dimensional hyperparameter spaces, often

surpassing other optimization methods such as grid search,

random search, and bayesian optimization. Compared to

grid search, GAs efficiently explore the search space

without an exhaustive search. They can leverage historical

information to guide the search more effectively than

random search. In contrast to bayesian optimization, GAs

are less computationally intensive per iteration and are

better equipped to handle larger search spaces. GAs also

excel in handling mixed types of hyperparameters and

maintaining diversity in the population, thereby reducing

the risk of premature convergence. Algorithm 4 outlines

the proposed GA-based hyperparameter tuning module. As

shown in Algorithm 4, this module is executed using

training and testing datasets.

Table 6 shows the parameter settings for executing the

genetic algorithm in the search for the best hyperparameter

values. To determine the optimal values of each parameter

in the GA-based hyperparameter optimization in the third

module, this paper performs several rigorous experiments

by varying the population size, selection rate, and mutation

Input: X
Output: r_ff

1 procedure
2 begin
3 r_ff ← []

4 for i in range(X.shape[1]) do
5 for j in range(i+1, X.shape[1]) do
6 tau ← pearsonr (X[: , i], X[: , j])

7 r_ff.append(tau)

8 end for
9 end for
10 return mean(r_ff)

11 end
12 end procedure

Function 8.b2. compute_rff(X)

Cluster Computing

123

rate on each dataset. The optimal values of each parameter

are given in Table 6 by the trial-and-error method. Only

those values that offer an optimal result in terms of the

fitness function at each iteration are selected by focusing on

multi-class classification. The fitness function gives maxi-

mum values at 128, 64, and 64 generations for NSL-KDD,

UNSW-NB15, and CIC-IDS2018 datasets, respectively as

depicted in Fig. 9b, the convergence graph between fitness

score and no. of iterations (or generations).

(i) Initialization of population

Initialization of the population is the first step in

implementing the GA-based hyperparameter tuning mod-

ule. Each detection model is executed separately in the

search of the best hyperparameters. So, this module is

executed as many times as the number of detection models

provided as input to this module. Hyperparameters and

their approximate ranges are pre-specified in this module,

as the populations are initialized based on the hyperpa-

rameters’ ranges. Figure 7 describes the structure of a

population, chromosome, and gene for xgboost classifier in

the proposed genetic algorithm. For instance, executing

this module for the xgboost classifier, the genes in the

chromosome are ‘max_depth’, ‘booster’, ‘n_estimators’,

‘min_child_weight’, ‘gamma’, and ‘subsample’.

(ii) Fitness score computation

Each candidate chromosome is evaluated using the fit-

ness function. Since multi-class (multiple attacks and

normal class) classification is being performed here, the

weighted F1-Score of the detection model is utilized for the

fitness score computation of the chromosomes. The for-

mula for computing the f1-score, precision, and recall for a

Table 6 Parameter settings of GA algorithm in this work

Parameters Values

No. of

Generations

128 (NSL-KDD), 64 (UNSW-NB15), 64 (CIC-

IDS2018)

Population Size 50

Selection Rate 0.5

Mutation Rate 0.5

Seed 42

Fig. 6 Look-Up Table

Input: n, , Q, feature_subset_list, F1_Score, Pheromone_LUT

Output: Pheromone_matrix

1 procedure UPDATE PHEROMONE LUT

2 begin
3 for i in range(n) do
4 for j in range(n) do
5 Pheromone_matrix [i][j] ← (1-) * Pheromone_matrix [i][j]

6 end for
7 end for
8 num_ants ← len(feature_subset_list)

9 for f1_score, feature_subset in (F1_Score, feature_subset_list) do
10 for i in range (len(feature_subset) - 1) do
11 current_feature ← feature_subset[i]

12 next_feature ← feature_subset[i+1]

13 Pheromone_matrix[current_feature][next_feature] ←
Pheromone_matrix[current_feature][next_feature] + ((1 − 1_)⁄)

14 end for
15 end for
16 return Pheromone_matrix

17 end
18 end procedure

Function 9 Update_Pheromone(n, q, Q, feature_subset_list, F1_Score, Pheromone_LUT)

Cluster Computing

123

particular class ‘i’ are specified in Eqs. (20–22), respec-

tively. The formula for computing the weighted f1-score is

provided in Eq. (23).

F1 � Scorei ¼
2 � Precisioni � Recalli
Precisioni þ Recalli

ð20Þ

Precisioni ¼
True Positivei

True Positivei þ FalsePositivei
ð21Þ

Recalli ¼
True Positivei

True Positivei þ Fals eNegativei
ð22Þ

WeightedF1� Score ¼
Pjcj

i¼1 jSijF1� Scorei
N

ð23Þ

where N and jcj represent the total no. of instances and

total no. of classes, respectively, while jSij denotes the total

no. of instances of the ‘ith’ class in the dataset.

Algorithm 4 Hyperparameter Tuning.

Fig. 7 Structure of a population, chromosome, and gene

Fig. 8 Single point crossover and random resetting mutation operations in the proposed GA-based hyperparameter optimization

Cluster Computing

123

(iii) Parent selection

Parent chromosomes are selected using the roulette

wheel selection function [62]. The parent selection rate is

determined as 0.5 by trial and error. This means that 50%

of chromosomes from the old population are selected as in

the new population, and the remaining 50% of new child

chromosomes are built through the reproduction process

described below.

(iv) Reproduction operation

Reproduction operation is performed to generate new

child chromosomes to balance the number of chromosomes

in the population. This phase contains two operations:

crossover and mutation. Figure 8 describes the overall

reproduction operation used in this paper for the xgboost

classifier.

a. Crossover: In this phase, single-point crossover [63]

operation is applied, as shown in Fig. 8. From the two

parent chromosomes, two new child chromosomes are

created. The overall steps involved in the crossover

operation are given as follows:

a Initially, two chromosomes are selected from the

population as the parent chromosomes for the cross-

over operation

b The first half part of the first parent chromosome and

the second half part of the second parent chromosomes

are merged to make the first child chromosome

c Similarly, the first half part of the second parent

chromosome and the second half part of the first

chromosome are merged to make the second child

chromosome

b. Mutation: In this phase, a random resetting mutation

operation is applied to make the variation in the

population. This operation is performed on each

chromosome in the population. Here, the mutation rate

is determined as 0.5 by trial and error method. This

means that 50% of genes in each chromosome in the

population have changed their values to new random

values from their pre-defined ranges. Figure 8 depicts

the mutation operation where, out of 6 genes in the

chromosome, randomly, 3 genes (‘yellow’ in color

after mutation operation) changed their values to a new

value from the appropriate pre-defined ranges for these

genes.

(V) Termination condition

The termination condition is decided based on the fitness

score value in this phase. If the fitness function stops

enhancing its values, this is the termination condition for

the genetic algorithm-based hyperparameter tuning. The

trial-and-error method demonstrates that each detection

model takes different generations to stop increasing their

values (some detection model takes 64, and some take

128). Therefore, the maximum number of generations is

fixed for each detection model, equal to 128 (in the case of

NSL-KDD) and 64 (in the case of UNSW-NB15 and CIC-

IDS2018). Table 6 shows the maximum number of gen-

erations the detection model takes to achieve optimal

performance on each dataset. Choosing these values as the

Fig. 9 Convergence graph between fitness score and number of iterations for a PSO, and ACO algorithms, b GA

Cluster Computing

123

Table 7 For Correlation-based Fitness function

Detection

Model

Best Hyperparameter values for each detection model

NSL-KDD UNSW-NB15 CSE-CIC-IDS2018

DT • splitter: best

• criterion: gini

• max_depth: 14

• min_samples_split: 15

• min_samples_leaf: 7

• min_weight_fraction_leaf: 1.4e-07

• min_impurity_decrease: 1.3e-05

• max_leaf_nodes: 10

• splitter: random

• criterion: gini

• max_depth: 13

• min_samples_split: 16

• min_samples_leaf: 15

• min_weight_fraction_leaf: 0.00265

• min_impurity_decrease: 0.00029

• max_leaf_nodes: 22

• splitter: best

• criterion: entropy

• max_depth: 10

• min_samples_split: 27

• min_samples_leaf: 14

• min_weight_fraction_leaf: 4.8e-08

• min_impurity_decrease: 6.3e-05

• max_leaf_nodes: 32

LR • C: 689.89754

• solver: lbfgs

• penalty: l2

• tol: 0.00798

• max_iter: 587

• C: 432.71826

• solver: lbfgs

• penalty: l2

• tol: 0.00128

• max_iter: 288

• C: 0.10842

• solver: lbfgs

• penalty: l2

• tol: 0.000326

• max_iter: 525

KNN • algorithm: auto

• k_n_neighbors: 10

• weights: distance

• p: 2

• leaf_size: 6

• algorithm: kd_tree

• k_n_neighbors: 10

• weights: uniform

• p: 1

• leaf_size: 10

• algorithm: ball_tree

• k_n_neighbors: 5

• weights: distance

• p: 1

• leaf_size: 10

SVM • C: 30.72994

• kernel: poly

• C: 10.74238

• kernel: poly

• C: 88.06638

• kernel: poly

DNN • num_layers: 4

• units_0: 118

• units_1: 108

• units_2: 86

• units_3: 68

• dropout_rate: 0.15575

• learning_rate: 0.00128

• batch_size: 16

• num_layers: 2

• units_0: 93

• units_1: 91

• dropout_rate: 0.41787

• learning_rate: 0.00603

• batch_size: 32

• num_layers: 3

• units_0: 98

• units_1: 90

• units_2: 66

• dropout_rate: 0.19406

• learning_rate: 0.00184

• batch_size: 32

CNN • filters: 25

• kernel_size: 4

• num_dense_units: 97

• dropout_rate: 0.44467

• learning_rate: 0.00327

• batch_size: 16

• filters: 55

• kernel_size: 4

• num_dense_units: 119

• dropout_rate: 0.47851

• learning_rate: 0.00143

• batch_size: 64

• filters: 49

• kernel_size: 5

• num_dense_units: 117

• dropout_rate: 0.11797

• learning_rate: 0.00365

• batch_size: 16

RF • n_estimators: 96

• max_depth: 14

• min_samples_split: 30

• min_samples_leaf: 10

• n_estimators: 90

• max_depth: 16

• min_samples_split: 22

• min_samples_leaf: 11

• n_estimators: 8

• max_depth: 11

• min_samples_split: 26

• min_samples_leaf: 12

Cluster Computing

123

Table 7 (continued)

Detection

Model

Best Hyperparameter values for each detection model

NSL-KDD UNSW-NB15 CSE-CIC-IDS2018

Xgboost • booster: gbtree

• lambda: 7.07e-05

• alpha: 0.00219

• subsample: 0.25869

• colsample_bytree: 0.96169

• early_stopping_rounds: 9

• n_estimators: 32

• max_depth: 5

• min_child_weight: 9

• eta: 0.38903

• gamma: 0.00134

• grow_policy: depthwise

• booster: dart

• lambda: 0.03457

• alpha: 0.19941

• subsample: 0.47035

• colsample_bytree: 0.93334

• early_stopping_rounds: 20

• n_estimators: 16

• max_depth: 9

• min_child_weight: 8

• eta: 0.08403

• gamma: 3.2e-05

• grow_policy: depthwise

• booster: gbtree

• lambda: 0.00048

• alpha: 0.00119

• subsample: 0.59606

• colsample_bytree: 0.97709

• early_stopping_rounds: 22

• n_estimators: 64

• max_depth: 9

• min_child_weight: 5

• eta: 3.78013e-07

• gamma: 7.99526e-07

• grow_policy: depthwise

LightGBM • learning_rate: 0.00223

• n_estimators: 843

• num_leaves: 35

• max_depth: 5

• min_data_in_leaf: 22

• learning_rate: 0.01233

• n_estimators: 928

• num_leaves: 31

• max_depth: 4

• min_data_in_leaf: 27

• learning_rate: 0.01144

• n_estimators: 541

• num_leaves: 27

• max_depth: 10

• min_data_in_leaf: 38

Catboost • learning_rate: 0.04165

• iterations: 890

• depth: 5

• l2_leaf_reg: 0.03197

• learning_rate: 0.04226

• iterations: 715

• depth: 5

• l2_leaf_reg: 0.02854

• learning_rate: 0.05712

• iterations: 683

• depth: 6

• l2_leaf_reg: 1.16369

Table 8 For Mutual Information-based Fitness function

Detection Model Best Hyperparameter values for each model

NSL-KDD UNSW-NB15 CSE-CIC-IDS2018

DT • splitter: random

• criterion: gini

• max_depth: 15

• min_samples_split: 24

• min_samples_leaf: 4

• min_weight_fraction_leaf: 0.00033

• min_impurity_decrease: 0.00053

• max_leaf_nodes: 14

• splitter: best

• criterion: entropy

• max_depth: 7

• min_samples_split: 31

• min_samples_leaf: 16

• min_weight_fraction_leaf: 0.01069

• min_impurity_decrease: 0.00019

• max_leaf_nodes: 19

• splitter: best

• criterion: gini

• max_depth: 9

• min_samples_split: 11

• min_samples_leaf: 7

• min_weight_fraction_leaf: 0.00016

• min_impurity_decrease: 3.6e-08

• max_leaf_nodes: 29

LR • C: 0.00794

• solver: lbfgs

• penalty: l2

• tol: 0.00066

• max_iter: 903

• C: 26.72402

• solver: lbfgs

• penalty: l2

• tol: 0.00015

• max_iter: 285

• C: 0.09749

• solver: lbfgs

• penalty: l2

• tol: 0.00909

• max_iter: 1000

KNN • algorithm: auto

• n_neighbors: 6

• weights: uniform

• p: 2

• leaf_size: 6

• algorithm: brute

• k_n_neighbors: 4

• weights: uniform

• p: 1

• leaf_size: 6

• algorithm: brute

• k_n_neighbors: 3

• weights: distance

• p: 2

• leaf_size: 2

Cluster Computing

123

number generation in this module gives a better result for

each detection model. Figure 9b shows the convergence

graph between the fitness score and no. of generations (or

iterations) for the xgboost model. The graph shows

stable behavior from 60 to 64 iterations for the UNSW-

NB15 and CIC-IDS2018 datasets and from 123 to 128

iterations for the NSL-KDD dataset. Tables 7 and 8 outline

the best hyperparameter values for correlation-based and

mutual information-based fitness functions, respectively,

corresponding to each detection model.

Table 8 (continued)

Detection Model Best Hyperparameter values for each model

NSL-KDD UNSW-NB15 CSE-CIC-IDS2018

SVM • C: 9.35784

• kernel: rbf

• C: 14.33070

• kernel: poly

• C: 1.58833

• kernel: rbf

DNN • num_layers: 4

• units_0: 116

• units_1: 65

• units_2: 51

• units_3: 70

• dropout_rate: 0.30623

• learning_rate: 0.00016

• batch_size: 16

• num_layers: 2

• units_0: 42

• units_1: 78

• dropout_rate: 0.27976

• learning_rate: 0.00290

• batch_size: 64

• num_layers: 2

• units_0: 100

• units_1: 112

• dropout_rate: 0.22691

• learning_rate: 0.00261

• batch_size: 16

CNN • filters: 48

• kernel_size: 4

• num_dense_units: 119

• dropout_rate: 0.15852

• learning_rate: 0.00019

• batch_size: 16

• filters: 28

• kernel_size: 3

• num_dense_units: 125

• dropout_rate: 0.28289

• learning_rate: 0.00142

• batch_size: 16

• filters: 31

• kernel_size: 5

• num_dense_units: 72

• dropout_rate: 0.28022

• learning_rate: 0.00177

• batch_size: 32

RF • n_estimators: 22

• max_depth: 12

• min_samples_split: 20

• min_samples_leaf: 11

• n_estimators: 63

• max_depth: 14

• min_samples_split: 5

• min_samples_leaf: 5

• n_estimators: 27

• max_depth: 14

• min_samples_split: 14

• min_samples_leaf: 3

Xgboost • booster: gbtree

• lambda: 0.00028

• alpha: 1.1e-07

• subsample: 0.96331

• colsample_bytree: 0.97232

• early_stopping_rounds: 30

• n_estimators: 96

• max_depth: 9

• min_child_weight: 8

• eta: 1.0e-08

• gamma: 1.7e-07

• grow_policy: depthwise

• booster: dart

• lambda: 0.34347

• alpha: 0.00066

• subsample: 0.98447

• colsample_bytree: 0.76967

• early_stopping_rounds:14

• n_estimators: 96

• max_depth: 5

• min_child_weight: 7

• eta: 0.87030

• gamma: 0.00894

• grow_policy: depthwise

• booster: dart

• lambda: 0.00027

• alpha: 2.9e-08

• subsample: 0.89111

• colsample_bytree: 0.93290

• early_stopping_rounds: 26

• n_estimators: 16

• max_depth: 9

• min_child_weight: 3

• eta: 0.32162

• gamma: 3.2e-06

• grow_policy: lossguide

LightGBM • learning_rate: 0.02191

• n_estimators: 604

• num_leaves: 20

• max_depth: 4

• min_data_in_leaf: 48

• learning_rate:0.00241

• n_estimators: 215

• num_leaves: 40

• max_depth: 8

• min_data_in_leaf: 44

• learning_rate: 0.07838

• n_estimators: 416

• num_leaves: 21

• max_depth: 8

• min_data_in_leaf: 47

Catboost • learning_rate: 0.08224

• iterations: 936

• depth: 7

• l2_leaf_reg: 0.33265

• learning_rate:0.00617

• iterations: 962

• depth: 10

• l2_leaf_reg: 0.00208

• learning_rate: 0.28400

• iterations: 865

• depth: 9

• l2_leaf_reg: 0.13820

Cluster Computing

123

5.4 Classification

In this module, two different categories of detection

models, such as base and ensemble models, are employed

to identify distinct attacks and normal network traffic

behavior. Twelve different detection models are used, six

of which are included in the base model category and the

remaining six in the ensemble model category. Algorithm 5

describes the classification modeling module of the pro-

posed model.

Base Models = {Decision Tree (DT), Logistic Regres-

sion (LR), K-Nearest Neighbor (KNN), Support Vector

Machine (SVM), Dense Neural Network (DNN), 1D-

Convolution Neural Network (1D-CNN)}.

Ensemble Models = {Random Forest (RF), Xgboost,

LightGBM, Catboost, Majority Voting, Mean Voting}.

The majority and mean voting classifiers are an

ensemble of four detection models: RF, LR, KNN, and

Xgboost.

5.5 Applications of the proposed method

By implementing the proposed technique, the IDS signifi-

cantly enhances its efficiency and accuracy, transforming it

into a viable solution for real-time attack detection in

dynamic and resource-limited environments. The proposed

method offers a range of applications, including:

(i) Performance enhancement: When feature selec-

tion is combined with hyperparameter tuning, it

results in models that are not only lightweight but

also highly accurate. This approach assures that

the IDS can operate effectively, even in environ-

ments with limited computational resources. Spe-

cially in IoT-based organizations where resource

constraints are one of the challenges, this light-

weight IDS is highly applicable.

(ii) Scalability: A lightweight IDS can scale seam-

lessly across large networks or multiple devices

without substantially increasing computational

load.

(iii) Real-time capabilities: Enhancing real-time detec-

tion capabilities by reducing latency introduced by

high-dimensional data is essential for promptly

identifying and mitigating security threats.

(iv) Cost efficiency: Optimizing the IDS’s computa-

tional efficiency reduces hardware and energy

consumption costs. This approach is ideal for

organizations seeking to implement highly cost-

effective security solutions.

6 Experimental results and discussion

This section discusses the experimental setup and different

performance metrics used in this paper to evaluate the

proposed model’s effectiveness. Based on the classification

metrics, performance is analyzed for each detection model

on all three datasets one by one. Furthermore, the

Algorithm 5 Classification

Table 9 Performance Metrics

Metrics Formula

Accuracy
PC

i¼1
True Positivei

S

Weighted Precision
PC

i¼1
ðSi�PrecisioniÞ

S

Weighted Recall
PC

i¼1
ðSi�RecalliÞ

S

Weighted F1-Score
PC

i¼1
ðSi�F1�ScoreiÞ

S

False Alarm Rate False Positivei

False PositiveiþTrue Negative
i

Prediction Time Stop time � Start time

Cluster Computing

123

performance of the proposed model is also compared with

different traditional dimensionality reduction techniques

and similar state-of-the-art works.

6.1 Experimental setup

This paper performs all the experiments using Python

programming with sklearn, matplotlib, keras, and tensor-

flow-based libraries. The experiments are performed on the

local server by launching jupyter notebook on the ana-

conda. Here, the advantage of Google Colab has been taken

for its high speed and GPU. The system specification of the

machine where all the experiments are performed is as

follows: RAM- 12.0 GB, Processor- Intel(R) Core(TM) i5-

7200U CPU @2.50 GHz 2.70 GHz, and system type is the

64-bit operating system, 964-based processor.

6.2 Performance metrics

Table 9 shows the performance metrics used in this paper

to evaluate the effectiveness of the proposed model. Here,

six different classification metrics are utilized: accuracy,

weighted precision, weighted recall, weighted f1-score,

false alarm rate, and prediction time. Where S and Si rep-

resent the total no. of samples and the total no. of samples

of the ith class, respectively, while C represents the total

no. of classes in the dataset. The formulas for computing

F1 � Scorei, Precisioni, and Recalli are discussed

(Sect. 5.3) in Eqs. (20–22), respectively. Where

True Positive denotes correctly identified samples in the

attack class, True Negative represents correctly identified

samples in the normal class, False Positive represents

misclassified non-attacks as attacks, and False Negative

outlines misclassified attacks as non-attacks.

6.3 Performance analysis

In this section, the proposed model’s performance is ana-

lyzed sequentially. This means that after applying each

module of the proposed framework one by one, the effec-

tiveness of the proposed model is evaluated.

6.3.1 Detection model’s performance after pre-processing
module of the proposed model

Table 10 shows the performance of all the detection models

(discussed in Sect. 5.4) in terms of classification metrics

(discussed in Sect. 6.2) on all three datasets after applying

the preprocessing module of the proposed framework

(discussed in Sect. 5.1.2). Table 10 shows that performance

on the CIC-IDS2018 dataset is better compared to the

NSL-KDD and UNSW-NB15 datasets. It is also noticed

Table 10 Classification performance after pre-processing module

Dataset Metrics Base Classifier Ensemble Classifier

DT LR KNN SVM DNN CNN RF Xgboost LightGBM Catboost Majority

Voting

Mean

Voting

NSL-KDD Accuracy(%) 69.49 72.57 74.80 71.86 72.68 72.45 72.22 33.08 73.57 75.29 71.96 73.20

Precision(%) 65.21 72.16 74.14 76.21 66.93 67.22 79.19 10.95 72.63 81.16 67.38 67.24

Recall(%) 69.49 72.57 74.80 71.86 72.68 72.45 72.22 33.08 73.57 75.29 71.96 73.20

F1-Score(%) 64.20 67.68 70.17 66.96 67.74 67.52 67.56 16.45 69.85 71.24 67.03 68.19

FAR(%) 10.44 9.20 8.50 9.62 9.39 9.41 9.50 20.00 8.77 8.47 9.66 9.17

Prediction

Time(sec)

0.017 0.023 16.87 16.78 1.502 2.666 0.255 0.031 4.997 0.216 17.08 16.96

UNSW-

NB15

Accuracy(%) 58.94 66.14 66.68 63.91 71.61 70.58 76.18 58.89 65.92 63.66 69.20 71.91

Precision(%) 70.36 70.64 81.83 74.62 76.75 80.40 82.89 76.02 70.99 62.27 82.77 83.55

Recall(%) 58.94 66.14 66.68 63.91 71.61 70.58 76.18 58.89 65.92 63.66 69.20 71.91

F1-Score(%) 61.31 67.12 67.78 65.78 71.69 71.43 76.53 61.28 66.96 60.40 69.59 72.77

FAR(%) 4.73 4.12 3.57 4.28 3.38 3.31 2.70 4.18 4.28 3.90 3.31 3.12

Prediction

Time(s)

0.018 0.012 26.56 401.94 10.46 10.39 0.92 1.424 26.34 0.518 26.61 22.31

CIC-

IDS2018

Accuracy(%) 89.71 89.18 89.96 89.43 89.42 89.51 89.88 90.11 90.56 90.40 90.21 90.50

Precision(%) 93.70 92.71 90.18 92.74 93.67 93.23 91.59 93.14 92.03 91.23 93.46 91.37

Recall(%) 89.70 89.17 89.96 89.43 89.41 89.50 89.87 90.11 90.55 90.39 90.20 90.49

F1-Score(%) 90.09 89.57 90.05 89.84 89.81 89.90 90.22 90.49 90.86 90.63 90.58 90.73

FAR(%) 2.01 2.14 2.18 2.10 2.10 2.06 2.08 1.97 1.94 2.02 1.93 2.00

Prediction

Time(s)

9.775 0.799 65.27 137.26 10.463 5.318 1.055 1.993 4.010 3.209 69.38 60.022

Cluster Computing

123

that Catboost in the case of NSL-KDD, RF in the case of

UNSW-NB15, and LightGBM in the case of CIC-IDS2018

datasets offer better performance than other detection

models. The best results by the specific detection models

are indicated by the numbers highlighted in bold in the

Tables 10, 11, 12, 13, and 15.

6.3.2 Detection model’s performance after applying phase
1 feature selection module of the proposed model

Table 11 shows the detection model’s performance after

applying the PSO-based feature selection module (dis-

cussed in Sect. 5.2.1) on all three datasets. The detection

models’ performance is significantly improved compared

to the previous module on the NSL-KDD and UNSW-

NB15 datasets. Here, the Xgboost model shows a signifi-

cant improvement.

6.3.3 Detection model’s performance after applying phase
2 feature selection module of the proposed model

In this phase, the performance is evaluated utilizing two

different metrics in the fitness function of ACO-based

feature selection (discussed in Sect. 5.2.2) such as

(a) Mutual Information, (b) Correlation Metric.

(a) Fitness function: mutual information based

Table 12 shows the classification performance after

stacking PSO with the ACO-based feature selection on all

three datasets utilizing mutual information in the ACO’s

fitness function. The table shows a remarkable improve-

ment after applying this module in the proposed frame-

work. DNN in the case of NSL-KDD, RF in the case of

UNSW-NB15, and LightGBM, as well as majority voting

in the case of CIC-IDS2018, outperform other detection

models.

(b) Fitness function: correlation based

Table 13 shows the classification performance after

stacking PSO with the ACO-based feature selection on

three datasets utilizing a correlation metric in the ACO’s

fitness function. From Table 13, it is observed that DNN

and Catboost in the case of NSL-KDD, Xgboost, and

Catboost in the case of UNSW-NB15, and LightGBM and

mean voting in the case of CIC-IDS2018 give impressive

detection performance. The reason behind improved per-

formance compared to the previous phase is that here,

noisy and correlated features are removed, which shows a

high correlation with other features in the data, while only

those features are retained, which shows a high correlation

with the target class. Thus, the noisy features from the data

are removed, hence, performance improvement after

training the model on filtered with crucial features of data.

6.3.4 Detection model’s performance after applying
the hyperparameter tuning module of the proposed
model

Tables 14 and 15 demonstrate the classification perfor-

mance after utilizing all four major modules of the pro-

posed framework in the case of mutual information-based

and correlation-based, respectively, on three datasets. The

tables show the result after stacking PSO ? ACO ? GA

on each detection model.

GA-based hyperparameter tuning iteratively searches

for the best hyperparameters corresponding to each detec-

tion model. Table 14 shows that xgboost performs better

than others on the UNSW-NB15 and CIC-IDS2018 data-

sets, while catboost outperforms others on the NSL-KDD

dataset. Moreover, from Table 15, it is scrutinized that

xgboost and catboost give the best results on all three

datasets. Both Tables 14 and 15 summarize that stacking of

PSO ? ACO ? GA in the proposed framework gives the

best results. The performance is significantly better in the

case of correlation metric than mutual information on all

the datasets for almost each detection model. The proposed

model demonstrates notably superior performance on the

NSL-KDD and UNSW-NB15 datasets while achieving

comparatively stronger results on the CIC-IDS2018 data-

set. From the results of the detection model, it is obvious

that the application of PSO-ACO stacked with GA

demonstrates a highly improved performance.

6.4 Results and discussion

After the preprocessing, the data is split into training and

testing sets with the number of features 42, 44, and 84 for

the NSL-KDD, UNSW-NB15, and CIC-IDS2018 datasets,

respectively. At this point, it is observed in Table 10 that

Catboost, RF, and LightGBM give better performance than

other detection models as 75.29%, 76.18%, and 90.56%,

respectively, on NSL-KDD, UNSW-NB15, and CIC-

IDS2018 data. The performance is very low at this stage.

Feature selection is implemented in the next module on

the preprocessed data, and it gives an outstanding result as

it removes all the correlated, redundant, and irrelevant

features. It keeps only information-rich features through

the proposed bi-phase feature selection technique in the

proposed framework. In the first phase, PSO-based feature

selection reduces the feature space by considering the

imbalanced nature of the data. The value of the weight

parameter c ¼ 1 gives the optimal performance, and the

geometric mean of all nine detection models (including

DT, RF, Xgboost, LightGBM, Catboost, SVM, KNN,

DNN, and CNN) is summed. Here, the activation function

of the DNN and CNN model considers ‘relu’ (at the hidden

layer) and ‘softmax’ (at the last layer since multi-class

Cluster Computing

123

Table 11 Classification Performance after applying PSO-Based feature selection Module

Dataset Metrics Base Classifier Ensemble Classifier

DT LR KNN SVM DNN CNN RF Xgboost LightGBM Catboost Majority

Voting

Mean

Voting

NSL-KDD Accuracy (%) 72.79 74.19 74.71 74.08 72.38 72.52 72.24 74.21 75.21 76.28 72.57 73.24

Precision (%) 73.34 67.72 74.15 76.13 66.67 75.75 79.65 77.05 81.24 81.62 80.03 80.11

Recall (%) 72.79 74.19 74.71 74.08 72.38 72.52 72.24 74.21 75.21 76.28 72.57 73.24

F1-Score (%) 68.74 69.17 70.18 69.22 67.38 67.42 67.49 70.20 70.97 72.54 67.79 68.47

FAR (%) 9.17 8.74 8.51 8.83 9.22 9.34 9.52 8.79 8.49 8.12 9.44 9.13

Prediction

Time(s)

0.009 0.012 6.99 14.14 1.077 1.066 0.062 0.009 0.140 0.039 7.500 6.467

UNSW-

NB15

Accuracy (%) 63.11 75.20 72.28 64.53 77.11 76.84 83.62 63.19 77.54 77.59 74.65 72.99

Precision (%) 65.56 80.86 77.13 81.75 84.80 79.23 84.48 57.98 83.42 83.96 81.64 79.07

Recall (%) 63.11 75.20 72.28 64.53 77.11 76.84 83.61 63.19 77.54 77.59 74.65 72.99

F1-Score (%) 59.73 74.06 73.76 57.99 75.96 75.56 83.45 59.46 78.23 77.68 74.46 73.45

(%) 4.11 2.77 3.27 3.98 2.53 2.58 2.17 3.96 2.55 2.58 2.97 3.01

Prediction

Time(s)

0.007 0.011 20.93 194.18 2.744 2.718 0.475 0.051 7.372 0.147 21.23 19.07

CICIDS2018 Accuracy (%) 89.83 89.23 89.98 89.44 89.44 89.57 90.34 90.25 90.56 90.37 90.34 90.51

Precision (%) 93.61 92.85 90.17 92.88 92.65 93.61 92.47 92.35 93.09 92.67 93.26 91.54

Recall (%) 89.83 89.22 89.98 89.43 89.43 89.56 90.33 90.25 90.56 90.37 90.33 90.51

F1-Score (%) 90.22 89.61 90.06 89.83 89.84 89.96 90.69 90.60 90.92 90.73 90.71 90.77

FAR (%) 1.99 2.13 2.18 2.09 2.06 2.04 1.95 1.96 1.88 1.94 1.91 1.98

Prediction

Time (s)

0.414 0.437 10.75 137.01 2.671 3.199 0.559 0.627 2.228 0.861 11.94 10.86

Table 12 Classification Performance after stacking of PSO ? ACO in Case of Mutual Information

Dataset Metrics Base Classifiers Ensemble Classifier

DT LR KNN SVM DNN CNN RF Xgboost LightGBM Catboost Majority

Voting

Mean

Voting

NSL-KDD Accuracy(%) 76.27 78.71 77.67 79.09 79.80 72.79 76.37 78.88 75.23 79.19 77.09 79.15

Precision(%) 75.93 81.27 80.53 81.04 80.54 67.29 81.02 81.87 77.33 81.84 81.00 82.03

Recall(%) 76.27 78.71 77.67 79.09 79.80 72.79 76.37 78.88 75.23 79.19 77.09 79.15

F1-Score(%) 74.30 76.62 74.59 76.05 77.05 67.68 73.86 77.00 73.02 77.78 74.40 76.85

FAR(%) 7.26 6.43 7.18 6.56 6.17 9.32 7.90 6.80 8.00 6.72 7.57 6.72

Prediction

Time(s)

0.005 0.008 6.00 12.40 1.03 1.00 0.033 0.005 0.128 0.027 6.32 5.14

UNSW-

NB15

Accuracy(%) 71.97 78.84 79.61 73.35 81.11 79.29 85.41 78.96 80.10 82.09 75.67 74.38

Precision(%) 76.43 81.14 80.01 82.29 85.65 82.04 86.33 77.83 81.62 84.36 82.61 80.75

Recall(%) 71.97 78.84 79.60 73.35 81.10 79.29 85.41 78.96 80.10 82.09 75.67 74.38

F1-Score(%) 72.41 79.97 79.80 77.56 83.31 80.64 85.86 78.32 78.39 83.20 75.44 75.47

FAR(%) 3.29 1.22 2.41 2.32 2.24 2.12 1.98 2.97 2.48 1.61 2.84 2.93

Prediction

Time(s)

0.006 0.010 18.09 180.26 2.271 2.66 0.332 0.020 5.652 0.131 19.39 17.215

CICIDS2018 Accuracy(%) 90.30 90.92 91.61 89.43 89.87 90.44 90.46 91.21 91.55 90.43 91.93 91.54

Precision(%) 90.31 92.98 92.96 92.98 93.55 93.73 90.79 92.67 93.60 92.91 93.86 91.83

Recall(%) 90.30 90.91 91.60 89.43 89.86 90.44 90.46 91.20 91.54 90.43 91.92 91.53

F1-Score(%) 90.31 91.93 92.27 89.82 91.66 92.05 90.58 91.92 92.55 90.87 92.48 91.67

FAR(%) 1.73 2.05 2.15 2.04 1.99 1.99 1.89 1.84 1.81 1.82 1.85 1.89

Prediction

Time(s)

0.365 0.388 9.72 129.33 2.565 3.178 0.547 0.601 1.846 0.748 11.15 10.44

Cluster Computing

123

Ta
bl
e
13

C
la

ss
ifi

ca
ti

o
n

P
er

fo
rm

an
ce

af
te

r
st

ac
k

in
g

o
f

P
S

O
?

A
C

O
in

ca
se

o
f

C
o

rr
el

at
io

n
M

et
ri

c

D
at

as
et

M
et

ri
cs

B
as

e
C

la
ss

ifi
er

s
E

n
se

m
b

le
C

la
ss

ifi
er

D
T

L
R

K
N

N
S

V
M

D
N

N
C

N
N

R
F

X
g

b
o

o
st

L
ig

h
tG

B
M

C
at

b
o

o
st

M
aj

o
ri

ty
V

o
ti

n
g

M
ea

n
V

o
ti

n
g

N
S

L
-K

D
D

A
cc

u
ra

cy
(%

)
7

6
.6

4
7

6
.8

0
8

0
.2

2
8

0
.5

6
8
1
.4
9

7
8

.4
8

7
7

.1
8

7
9

.2
6

7
7

.1
5

8
1
.3
8

7
8

.6
5

8
0

.3
2

P
re

ci
si

o
n

(%
)

7
6

.9
2

7
6

.5
4

7
9

.6
2

7
9

.5
3

7
9
.9
6

7
6

.7
9

7
9

.5
8

8
0

.8
0

8
1

.4
1

8
2
.6
0

8
0

.2
5

8
0

.7
4

R
ec

al
l(

%
)

7
6

.6
4

7
6

.8
0

8
0

.2
2

8
0

.5
6

8
1
.4
9

7
8

.4
8

7
7

.1
8

7
9

.2
6

7
7

.1
5

8
1
.3
8

7
8

.6
5

8
0

.3
2

F
1

-S
co

re
(%

)
7

4
.8

9
7

4
.1

2
7

8
.2

5
7

8
.9

1
7
9
.9
2

7
7

.6
2

7
5

.1
1

7
7

.4
9

7
9

.2
2

8
0
.1
5

7
6

.6
8

7
8

.3
9

F
A

R
(%

)
7

.3
3

6
.9

3
6

.1
6

6
.0

2
5
.4
6

7
.3

2
7

.5
1

6
.6

4
8

.3
2

5
.9
6

6
.9

5
6

.2
6

P
re

d
ic

ti
o

n
T

im
e(

s)
0

.0
0

4
0

.0
0

5
5

.9
3

3
1

1
.0

7
1
.0
0
2

1
.0

5
8

0
.0

5
3

0
.0

0
7

0
.1

2
9

0
.0
3
1

5
.9

9
8

5
.1

9
7

U
N

S
W

-N
B

1
5

A
cc

u
ra

cy
(%

)
8

6
.6

4
7

9
.4

4
7

9
.9

8
7

8
.6

9
8

2
.6

0
7

9
.9

8
8

7
.6

9
8
8
.3
1

7
8

.0
1

8
8
.8
1

8
7

.9
0

8
7

.5
8

P
re

ci
si

o
n

(%
)

8
8

.3
8

8
0

.9
7

8
4

.1
1

8
3

.4
7

8
4

.9
9

8
0

.3
3

8
9

.0
1

8
9
.6
6

8
6

.3
8

8
9
.5
2

8
9

.2
9

8
7

.5
5

R
ec

al
l(

%
)

8
6

.6
4

7
9

.4
4

7
9

.9
8

7
8

.6
9

8
2

.6
0

7
9

.9
8

8
7

.6
9

8
8
.3
1

7
8

.0
1

8
8
.8
1

8
7

.9
0

8
7

.5
8

F
1

-S
co

re
(%

)
8

7
.0

5
7

7
.9

9
8

0
.9

1
7

7
.0

8
8

3
.7

7
8

0
.1

5
8

7
.2

5
8
7
.8
3

8
1

.9
8

8
7
.7
6

8
6

.6
7

8
6

.9
2

F
A

R
(%

)
1

.4
5

2
.3

2
2

.1
6

2
.4

1
1

.9
4

2
.1

4
1

.3
4

1
.2
8

2
.0

1
1
.2
5

1
.3

4
1

.3
7

P
re

d
ic

ti
o

n
T

im
e(

s)
0

.0
0

4
0

.0
0

6
1

7
.0

0
1

7
6

.1
7

2
.2

5
1

0
.4

0
0

.3
5

1
0
.0
4
3

6
.3

4
3

0
.1
3
9

1
7

.4
3

1
6

.9
4

C
IC

ID
S

2
0

1
8

A
cc

u
ra

cy
(%

)
9

0
.2

6
9

0
.1

7
9

0
.6

6
9

1
.4

1
9

2
.4

1
9

2
.3

0
9

3
.5

3
9

3
.2

9
9
4
.5
5

9
4

.3
0

9
2

.4
2

9
4
.5
1

P
re

ci
si

o
n

(%
)

9
0

.2
7

9
3

.5
1

9
1

.0
0

9
3

.0
0

9
3

.3
5

9
4

.3
4

9
3

.8
9

9
4

.7
3

9
5
.6
2

9
5

.0
7

9
1

.0
9

9
5
.3
3

R
ec

al
l(

%
)

9
0

.2
5

9
0

.1
6

9
0

.6
5

9
1

.4
0

9
2

.4
0

9
2

.3
0

9
3

.5
3

9
3

.2
8

9
4
.5
4

9
4

.2
9

9
2

.4
1

9
4
.5
1

F
1

-S
co

re
(%

)
9

0
.2

6
9

1
.8

0
9

0
.8

2
9

2
.1

9
9

2
.8

7
9

3
.3

0
9

3
.7

0
9

3
.9

9
9
5
.0
7

9
4

.6
7

9
1

.7
5

9
4
.9
2

F
A

R
(%

)
1

.1
4

2
.0

5
1

.8
7

1
.9

1
1

.7
8

1
.3

7
1

.1
4

1
.2

1
1
.1
5

1
.3

8
1

.0
3

1
.1
0

P
re

d
ic

ti
o

n
T

im
e(

s)
0

.3
8

4
0

.3
6

0
9

.4
8

1
2

5
.6

2
2

.2
8

2
.8

7
0

.4
7

4
0

.5
2

2
1
.7
6
0

0
.8

0
1

1
0

.2
4

0
9
.8
8

Cluster Computing

123

Ta
bl
e
14

C
la

ss
ifi

ca
ti

o
n

P
er

fo
rm

an
ce

af
te

r
st

ac
k

in
g

o
f

P
S

O
?

A
C

O
?

G
A

in
ca

se
o

f
M

u
tu

al
In

fo
rm

at
io

n

D
at

as
et

M
et

ri
cs

B
as

e
C

la
ss

ifi
er

s
E

n
se

m
b

le
C

la
ss

ifi
er

D
T

L
R

K
N

N
S

V
M

D
N

N
C

N
N

R
F

X
g

b
o

o
st

L
ig

h
tG

B
M

C
at

b
o

o
st

M
aj

o
ri

ty
V

o
ti

n
g

M
ea

n
V

o
ti

n
g

N
S

L
-K

D
D

A
cc

u
ra

cy
(%

)
8

0
.1

8
8

2
.1

5
7

9
.7

1
8

2
.7

6
8

2
.3

6
7

8
.6

9
7

9
.9

6
8

3
.2

1
8

0
.7

4
8

4
.6

5
8

1
.5

9
8

2
.9

5

P
re

ci
si

o
n

(%
)

7
9

.6
8

8
4

.9
0

8
0

.9
8

8
3

.2
2

8
4

.4
6

8
0

.0
8

8
3

.8
1

8
4

.4
3

8
2

.1
9

8
5

.8
0

8
4

.3
2

8
4

.6
2

R
ec

al
l(

%
)

8
0

.1
8

8
2

.1
5

7
9

.7
1

8
2

.7
6

8
2

.3
6

7
8

.6
9

7
9

.9
6

8
3

.2
1

8
0

.7
4

8
4

.6
5

8
1

.5
9

8
2

.9
5

F
1

-S
co

re
(%

)
7

9
.9

2
7

9
.3

2
8

0
.3

3
8

2
.9

8
8

3
.3

9
7

4
.3

7
8

1
.8

3
8

3
.8

1
8

1
.4

5
8

5
.2

2
8

2
.9

2
8

3
.7

7

F
A

R
(%

)
6

.9
8

5
.5

0
6

.3
9

5
.4

0
5

.9
5

6
.8

2
6

.7
8

6
.1

3
7

.2
6

5
.9

5
6

.5
3

5
.5

1

P
re

d
ic

ti
o

n
T

im
e(

s)
0

.0
0

4
0

.0
0

6
5

.7
7

5
.9

8
1

.0
0

7
0

.9
1

6
0

.0
2

9
0

.0
0

4
0

.1
0

6
0

.0
1

4
5

.7
9

5
.5

6

U
N

S
W

-N
B

1
5

A
cc

u
ra

cy
(%

)
8

6
.3

1
8

1
.7

0
8

4
.8

6
8

3
.3

3
8

5
.3

8
8

5
.7

5
8

7
.5

9
8

8
.6

3
8

6
.5

6
8

7
.9

3
8

7
.6

3
8

7
.6

0

P
re

ci
si

o
n

(%
)

8
6

.4
7

8
3

.7
0

8
4

.0
2

8
1

.6
9

8
6

.5
8

8
4

.3
9

8
7

.2
8

8
8

.7
2

8
8

.0
2

8
7

.8
5

8
7

.2
7

8
7

.4
2

R
ec

al
l(

%
)

8
6

.3
1

8
1

.7
0

8
4

.8
6

8
3

.3
3

8
5

.3
8

8
5

.7
5

8
7

.5
9

8
8

.6
3

8
6

.5
6

8
7

.9
3

8
7

.6
3

8
7

.6
0

F
1

-S
co

re
(%

)
8

6
.3

8
8

2
.6

8
8

4
.0

4
8

0
.3

7
8

5
.9

7
8

3
.0

2
8

7
.3

7
8

8
.0

7
8

7
.2

8
8

7
.3

0
8

6
.2

6
8

6
.9

4

F
A

R
(%

)
1

.5
2

0
.0

2
1

1
.7

3
1

.9
5

1
.7

2
1

.6
8

1
.3

9
1

.3
1

1
.1

4
1

.3
9

1
.4

5
1

.4
2

P
re

d
ic

ti
o

n
T

im
e(

s)
0

.0
0

6
0

.0
0

8
1

5
.7

0
1

4
2

.2
9

1
.5

5
1

.6
1

2
0

.2
7

5
0

.0
1

5
2

.9
1

0
.1

0
7

1
5

.8
6

1
5

.4
4

C
IC

-I
D

S
2

0
1

8
A

cc
u

ra
cy

(%
)

9
2

.3
5

9
2

.1
4

9
3

.2
4

9
1

.4
2

9
1

.4
5

9
2

.4
2

9
3

.5
3

9
4

.7
1

9
2

.8
2

9
3

.6
6

9
3

.6
8

9
3

.8
1

P
re

ci
si

o
n

(%
)

9
4

.3
8

9
5

.1
4

9
4

.5
5

9
3

.3
6

9
4

.2
8

9
5

.9
9

9
4

.7
3

9
5

.2
6

9
4

.5
2

9
5

.3
3

9
4

.0
1

9
4

.4
8

R
ec

al
l(

%
)

9
2

.3
4

9
2

.1
4

9
3

.2
4

9
1

.4
1

9
1

.4
5

9
2

.4
1

9
3

.5
2

9
4

.7
0

9
2

.8
1

9
3

.6
5

9
3

.6
8

9
3

.8
0

F
1

-S
co

re
(%

)
9

3
.3

4
9

3
.6

1
9

3
.8

9
9

2
.3

7
9

2
.8

4
9

4
.1

6
9

4
.1

2
9

4
.9

7
9

3
.6

5
9

4
.4

8
9

3
.8

4
9

4
.1

3

F
A

R
(%

)
1

.1
8

1
.3

7
2

.1
1

1
.7

8
1

.2
7

1
.1

9
1

.1
3

1
.0

6
1

.4
5

1
.7

6
1

.3
8

1
.2

2

P
re

d
ic

ti
o

n
T

im
e(

s)
0

.2
8

6
0

.2
6

2
7

.8
4

1
1

4
.8

9
1

.8
0

3
2

.8
7

9
0

.4
7

1
0

.5
2

4
1

.3
5

0
.5

7
1

9
.3

7
8

.5
1

Cluster Computing

123

Ta
bl
e
15

C
la

ss
ifi

ca
ti

o
n

P
er

fo
rm

an
ce

af
te

r
st

ac
k

in
g

o
f

P
S

O
?

A
C

O
?

G
A

in
ca

se
o

f
C

o
rr

el
at

io
n

M
et

ri
c

D
at

as
et

M
et

ri
cs

B
as

e
C

la
ss

ifi
er

s
E

n
se

m
b

le
C

la
ss

ifi
er

D
T

L
R

K
N

N
S

V
M

D
N

N
C

N
N

R
F

X
g

b
o

o
st

L
ig

h
tG

B
M

C
at

b
o

o
st

M
aj

o
ri

ty
V

o
ti

n
g

M
ea

n
V

o
ti

n
g

N
S

L
-K

D
D

A
cc

u
ra

cy
(%

)
8

8
.2

7
8

9
.3

5
8

2
.3

1
8

2
.5

5
8

5
.4

6
8

2
.1

6
8

9
.0

6
9
0
.3
8

8
5

.4
3

9
0
.5
6

8
1

.0
7

8
1

.1
4

P
re

ci
si

o
n

(%
)

8
9

.7
1

9
1

.4
6

8
0

.6
4

8
0

.5
7

8
1

.8
6

8
0

.6
5

9
0

.7
6

9
2
.3
3

8
7

.8
5

9
1
.4
7

8
1

.8
6

8
1

.2
3

R
ec

al
l(

%
)

8
8

.2
7

8
9

.3
5

8
2

.3
1

8
2

.5
5

8
5

.4
6

8
2

.1
6

8
9

.0
6

9
0
.3
8

8
5

.4
3

9
0
.5
6

8
1

.0
7

8
1

.1
4

F
1

-S
co

re
(%

)
8

8
.1

5
9

0
.3

9
8

1
.4

3
8

1
.5

4
8

3
.6

2
8

0
.1

8
8

9
.9

0
9
1
.3
4

8
6

.6
2

9
1
.0
1

7
9

.4
1

7
9

.3
4

F
A

R
(%

)
5

.2
5

6
.7

7
6

.1
1

5
.9

8
5

.1
7

5
.3

2
6

.8
7

5
.2
1

7
.0

0
4
.8
9

5
.1

4
5

.0
1

P
re

d
ic

ti
o

n
T

im
e(

s)
0

.0
0

2
0

.0
0

4
5

.1
3

7
2

.5
6

9
0

.9
9

8
0

.9
8

1
0

.0
4

3
0
.0
0
5

0
.1

0
7

0
.0
2
2

5
.2

7
7

4
.7

4
9

U
N

S
W

-N
B

1
5

A
cc

u
ra

cy
(%

)
9

1
.5

9
9

1
.7

1
8

4
.8

6
8

3
.3

3
8

5
.2

5
8

5
.3

2
9

0
.3

1
9
2
.6
3

8
2

.5
2

8
9

.9
3

9
0

.6
3

9
1

.6
0

P
re

ci
si

o
n

(%
)

9
3

.2
8

9
2

.7
0

8
4

.1
2

8
1

.6
9

8
5

.4
2

8
4

.0
7

9
2

.4
7

9
3
.7
2

8
5

.7
2

9
0

.8
5

9
2

.2
7

9
0

.4
2

R
ec

al
l(

%
)

9
1

.5
9

9
1

.7
0

8
4

.8
6

8
3

.3
3

8
5

.2
5

8
5

.3
2

9
0

.3
0

9
2
.6
3

8
2

.5
2

8
9

.9
3

9
0

.6
3

9
1

.6
0

F
1

-S
co

re
(%

)
9

2
.4

2
9

2
.1

9
8

4
.0

4
8

0
.3

7
8

2
.3

8
8

2
.5

9
9

1
.3

7
9
3
.1
7

8
4

.0
8

9
0

.3
8

9
1

.4
4

9
1

.0
0

F
A

R
(%

)
1

.0
2

1
.6

3
1

.7
3

1
.9

5
1

.7
3

1
.7

3
1

.0
9

0
.9
5

1
.4

2
1

.1
7

1
.0

2
1

.1
2

P
re

d
ic

ti
o

n
T

im
e(

s)
0

.0
0

2
0

.0
0

5
1

2
.8

2
1

1
8

.7
4

2
.0

0
5

9
.3

3
0

.2
2

6
0
.0
2
9

1
.1

9
0

.1
3

6
1

3
.8

1
1

1
.6

2

C
IC

ID
S

2
0

1
8

A
cc

u
ra

cy
(%

)
9

6
.3

9
9

2
.4

7
9

4
.0

2
9

3
.7

9
9

5
.5

8
9

5
.2

1
9

6
.3

7
9
7
.8
7

9
7

.9
6

9
7
.9
0

9
6

.5
8

9
7

.5
5

P
re

ci
si

o
n

(%
)

9
6

.3
7

9
4

.2
2

9
4

.4
8

9
4

.5
0

9
6

.2
8

9
6

.0
0

9
6

.4
1

9
8
.1
1

9
8

.1
9

9
8
.1
5

9
6

.5
8

9
7

.7
5

R
ec

al
l(

%
)

9
6

.3
8

9
2

.4
7

9
4

.0
1

9
3

.7
9

9
5

.5
8

9
5

.2
1

9
6

.3
6

9
7
.8
7

9
7

.9
5

9
7
.9
0

9
6

.5
7

9
7

.5
4

F
1

-S
co

re
(%

)
9

6
.3

7
9

3
.3

3
9

4
.1

3
9

3
.9

4
9

5
.6

9
9

5
.3

3
9

6
.3

8
9
7
.9
0

9
7

.9
9

9
7
.9
3

9
6

.5
8

9
7

.5
8

F
A

R
(%

)
0

.8
0

1
.4

9
1

.2
5

1
.2

8
0

.8
8

0
.9

5
0

.7
8

0
.4
1

0
.3

9
0
.4
0

0
.7

4
0

.4
9

P
re

d
ic

ti
o

n
T

im
e(

s)
0

.2
6

7
0

.2
8

2
8

.4
9

1
0

3
.6

3
1

.8
8

9
1

.9
7

9
0

.3
3

9
0
.4
3
4

1
.2

1
0

0
.7
1
0

9
.9

4
8

.3
1

Cluster Computing

123

classification is performed), 0.2 as the dropout rate, and

executes these models up to 25 epochs. After completing

this phase, 25, 29, and 48 features are obtained on NSL-

KDD, UNSW-NB15, and CIC-IDS2018 datasets, respec-

tively. By trial and error methods, the values of these

parameters are determined. In phase 1, Catboost, RF, and

LightGBM again give better performance than other

detection models as 76.28%, 83.62%, and 90.56%,

respectively, on NSL-KDD, UNSW-NB15, and CIC-

IDS2018 data, respectively, as depicted in Table 11. It

shows improved performance compared to the previous

results on preprocessed data, achieved by effectively

addressing imbalanced data issues and removing irrelevant

features. This phase leverages all nine models trained on

the training set and efficiently selects features.

Now, in the second phase, the model is analyzed from

two perspectives: correlation-based feature analysis and

mutual information-based feature analysis. Correlation-

based feature selection considers both feature-feature

importance and class-feature. Based on these measures, the

most crucial features are selected utilizing the ACO-based

feature selection technique. In phase 2, (DNN & Catboost),

(Xgboost & Catboost), and (LightGBM & Mean voting)

give better performance than other detection models as

(81.49% & 81.38%), (88.31% & 88.81%), and (94.55% &

94.51%) respectively on NSL-KDD, UNSW-NB15, and

CIC-IDS2018 data respectively, as shown in Table 13.

Mutual information measures the information gained by

taking a feature subset, more the mutual-information value

of the feature subset, most likely of that candidate feature

subset selection by the ACO algorithm. Considering the

mutual-information metric in the fitness function of the

ACO algorithm offers the following performance as DNN

(79.80%), RF (85.41%), and LightGBM & Majority voting

(91.55% & 91.93%, respectively) on NSL-KDD, UNSW-

NB15, and CIC-IDS2018 datasets, respectively, as shown

in Table 12. After executing this phase, 15, 20, and 20

features are obtained on NSL-KDD, UNSW-NB15, and

CIC-IDS2018 datasets, respectively. Since only a few

features are selected for training the final detection model,

it ensures a lightweight implementation. Better detection

performance is utilizing correlation metrics against mutual

information metrics, and as a result, correlation metrics

offer a linear relationship, which is the more interpretable,

computationally efficient, and redundancy-handling

approach. It selects and evaluates features based on feature-

feature and class-feature pairs. For this reason, it has a high

impact on the overall performance of the model, while the

mutual information metric in the fitness function selects

features that might not always result in the best combina-

tion of features.

In the final module, the hyperparameters of each

detection model are optimized using a nature-influenced

genetic algorithm. The hyperparameter values of these

detection models are shown in Tables 7 and 8. It is

observed that 64, 64, and 128 generations give the optimal

result against other values on the UNSW-NB15, CIC-

IDS2018, and NSL-KDD datasets, respectively. Here, the

population size is fixed, equal to 50 for all datasets. The

performance after completing this module using the mutual

information metric is as follows: Catboost achieved

84.65% accuracy, Xgboost achieved 88.63% accuracy, and

Xgboost model achieved 94.71% accuracy on NSL-KDD,

UNSW-NB15, and CIC-IDS2018 data, respectively, as

shown in Table 14. The performance using the correlation

metric is 90.38% and 90.56% accuracies for Xgboost and

Catboost, 92.63% accuracy for Xgboost, and 97.87% and

97.90% accuracies for Xgboost and Catboost models on the

same datasets as shown in Table 15. Xgboost outperforms

other models across all three datasets due to its efficient

handling of large datasets, capturing complex patterns

through boosting, reducing overfitting with regularization,

and quick data processing because of its parallelized

implementation. The results show that the application of

PSO ? ACO ? GA in the proposed framework improves

performance. Furthermore, performance significantly

improves when using the correlation metric compared to

mutual information across all datasets for almost every

detection model. Overall, the proposed model shows

superior performance on the NSL-KDD and UNSW-NB15

datasets and achieves relatively strong results on the CIC-

IDS2018 dataset.

6.5 Objective function analysis

In this section, the objective function of each metaheuristic

algorithm used in this paper is analyzed using convergence

diagrams, box plots, and swarm plots. Finally, the out-

comes of the objective function are analyzed in terms of

best, worst, mean, median, standard deviation, and

variance.

6.5.1 Convergence diagram

Figure 9 shows the convergence diagram of proposed

metaheuristic algorithms such as PSO, ACO, and GA.

Module 2 of the proposed model which discusses the fea-

ture selection in bi-phase utilizing PSO and ACO. Thus,

the convergence diagram of PSO and ACO is combined in

a single diagram, as shown in Fig. 9a. Here, the GA-based

hyperparameter tuning module is applied, whose conver-

gence diagram is shown in Fig. 9b. As a random algorithm,

the converge history comparison on a single run is unfair.

Thus, to reduce the effect of randomness, this paper fixes

the seed value = 42 for each algorithm and performs the

experiment with several runs or iterations (depending on

Cluster Computing

123

the selected algorithm), and holds the best fitness score for

each optimization algorithm at every iteration.

In the case of the PSO algorithm, the objective function

is the summation of the geometric mean of the nine

detection models, so the result of the objective function lies

within the range of [0,9]. The fitness score is normalized to

lie within the range [0,10], especially for phase 1 of feature

selection in the proposed framework. As observed from

Fig. 9a, after 58, 95, and 79 iterations, the best fitness score

value stopped increasing for NSL-KDD, UNSW-NB15,

and CIC-IDS2018 datasets, respectively. Hence, this is the

termination condition of the algorithms. Similarly, in the

case of the ACO algorithm, two objective functions are

considered for selecting the optimal feature subset, such as

(i) correlation-based and (ii) mutual-information-based.

Since the result based on the correlation function is better

than the mutual information function, the correlation-based

objective function in phase 2 of feature selection is ana-

lyzed here. The convergence diagram of Fig. 9a shows that

the optimal fitness score value is obtained at 50, 60, and 50

iterations for NSL-KDD, UNSW-NB15, and CIC-IDS2018

datasets, respectively. Since the multi-class classification is

explored, the fitness function in the genetic algorithm uses

the weighted f1-score value. The best fitness score at each

generation (or iteration) of the genetic algorithm is

encountered for each detection model. Figure 9b analyses

the fitness function of the xgboost algorithm within the

correlation metric in the hyperparameter tuning module.

The reason behind selecting the xgboost algorithm for the

analysis is that it offers optimal results for all the datasets.

It is obvious from the convergence diagram Fig. 9b that

128, 64, and 64 generations provide the best results for

NSL-KDD, UNSW-NB15, and CIC-IDS2018 datasets,

respectively.

Fig. 10 Objective function box plots a PSO, b ACO, c GA

Cluster Computing

123

6.5.2 Box plot, and swarm plot

The paper analyses the objective function data distribution

of each metaheuristic algorithm (used here) with the help

of box plots. The box plots are analyzed with different runs

for different algorithms in such a way that the PSO, ACO,

and GA algorithms are analyzed with 95, 60, and 128 runs

respectively. Figure 10a–c show the box plots of the

objective function data for PSO, ACO, and GA

respectively.

Similarly, the paper also analyses the data distribution of

each metaheuristic algorithm’s objective function (such as

PSO, ACO, and GA) using swarm plots. It shows the

diversity in the data. Here, the swarm plots are analyzed

with different runs for different algorithms in such a way

that the PSO, ACO, and GA algorithms are analyzed with

95, 60, and 128 runs, respectively. Figure 11 (a), (b), and

(c) show the swarm plots of the objective function data for

PSO, ACO, and GA, respectively.

6.5.3 Outcomes of objective function in terms of best,
worst, mean, median, std, and var

Figure 12a–f shows the results of the metaheuristics

objective function in terms of mean, best, worst, median,

standard deviation (std), and variance (var). If a meta-

heuristic algorithm’s objective function is denoted as Z,

then its best, worst, mean, median, standard deviation and

variance are calculated utilizing the formula provided in

Table 16. The symbols l and Ij j indicate the mean and the

number of iterations performed by the algorithm

respectively.

Fig. 11 Data diversity of objective function through swarm plots a PSO, b ACO, c GA

Cluster Computing

123

6.6 Comparative analysis

This section compares the proposed model’s performance

with that of other traditional dimensionality reduction

techniques and state-of-the-art techniques.

6.6.1 Comparative analysis of the proposed method
with other traditional dimensionality reduction
techniques

Different dimensionality reduction techniques are utilized

here for comparative purposes, such as principal compo-

nent analysis (PCA), linear discriminant analysis (LDA),

autoencoder (AE), information gain (IG), and Pearson

Fig. 12 Objective function in terms of a Mean, b Best, c Worst, d Median, e Standard deviation (Std), and f Variance (Var)

Cluster Computing

123

correlation (P.Corr.). Tables 17, 18, and 19 demonstrate the

results after applying different dimensionality reduction

techniques on the preprocessed form of NSL-KDD,

UNSW-NB15, and CSE-CIC-IDS2018 datasets, respec-

tively. It is observed from these tables that proposed

framework outperforms other traditional dimensionality

reduction techniques in terms of accuracy, precision, recall,

f1-score, FAR, and prediction time. The reason behind the

improved performance of the proposed method is that here,

the most crucial and important features from the dataset are

selected through two phases. It filters the features based on

the imbalanced nature of the data using geometric mean in

the objective function of the PSO algorithm. The best

features subset is selected through this objective function.

Now, these filtered data are provided as input to the second

phase of the feature selection module, where the features

are selected not only based on feature-feature correlation

but also on the class-feature correlation. The feature subset

selected has the highest correlation with target classes and

the lowest correlation with the other features in the subset.

This way, the proposed model selects the most important,

and relevant features from the data and performs better

than other dimensionality reduction methods.

6.6.2 Statistical validation

To demonstrate the enhanced performance of the proposed

framework, a statistical analysis utilizing the two-tailed

t-test hypothesis testing is conducted in this paper.

Assumptions are made that the baseline method’s f1-score

is statistically identical to the value proposed in this work

(null hypothesis H0) and that the baseline method’s f1-

score differs statistically from the reported value (alterna-

tive hypothesis HA). Ten times execution of the xgboost

(for NSL-KDD and UNSW-NB15) and the catboost mod-

els (for CSE-CIC-IDS2018) are performed on each dataset

to obtain the different outcomes. The significance threshold

of the two-tailed t-test is selected as 5% (0.05) in this

paper. Table 20 displays the p-value at the 0.05 signifi-

cance level. Each entry in the table is less than 0.05. Thus,

it shows the rejection of the null hypothesis in each case.

The proposed model performance is not statistically iden-

tical to the respective baseline models. The performance of

the proposed framework is statistically significant and does

not happen by chance, as can be seen from the table where

the p-value is significantly below the significance level.

6.6.3 Result interpretation of best model through SHAP
analysis

The method of SHAP analysis has been acknowledged as a

way to enhance transparency in evaluating model perfor-

mance [42]. Figure 13a–c compute the feature importance

using the xgboost algorithm for NSL-KDD, UNSW-NB15,

and CSE-CIC-IDS2018 datasets. Through the experiment,

it is observed that xgboost performs best in all three

datasets. Thus, xgboost is considered for analyzing the

feature importance and SHAP. It is noticed from Fig. 13a

that ‘level’, ‘dst_host_srv_count’, ‘dst_host_diff_srv_rate’,

and ‘dst_host_count’ are top-performing features followed

by ‘count’, ‘dst_bytes’, and the remaining features are

comparatively less important for the NSL-KDD dataset.

Similarly, it is remarked from Fig. 13b that ‘smean’ is the

top-most performing feature, followed by ‘synack’,

‘sinpkt’, ‘dinpkt’, and ‘sjit’ for the UNSW-NB15 dataset.

In the same way, Fig. 13c shows the feature importance for

the CSE-CIC-IDS2018 dataset. It is perceived from the fig

that ‘Fwd IAT Min’ is the top performing feature, followed

by ‘Dst Port’, and ‘Flow Duration’. It is scrutinized that

feature importance for the UNSW-NB15 dataset is com-

paratively higher than that of the NSL-KDD and CSE-CIC-

IDS2018 datasets.

For analyzing the SHAP, features obtained after the

proposed bi-phase feature selection method are utilized to

determine the feature impact for each class in the dataset.

Figure 14 (a), (b), and (c) show the feature impact of multi-

class on the NSL-KDD, UNSW-NB15, and CSE-CIC-

IDS2018 datasets, respectively. It is scrutinized from

Fig. 14a that ‘level’ feature on the NSL-KDD dataset

contributes approximately equal to all the five classes.

Similarly, Fig. 14b suggests that ‘smean’ feature offers a

high impact compared to others on the UNSW-NB15

dataset. However, it contributes equally to every class in

the dataset. In the same way, the feature impact for the

CSE-CIC-IDS2018 data is shown in Fig. 14c. It is noticed

from Fig. 14c that feature ‘day’ provides a higher impact

than other features in the dataset while it does not con-

tribute equally to every class.

Table 16 Formula for objective function evaluation

Objective Function Formula

Best ZBest ¼ Max
Ij j
i¼1ðZiÞ

Worst ZWorst ¼ Min
Ij j
i¼1ðZiÞ

Mean ZMean ¼ 1
Ij j
P Ij j

i¼1ðZiÞ
Median

ZMedian ¼ Ij jþ1

2

� �th

term

or,ZMedian ¼
Ij j
2ð Þthtermþ Ij jþ1

2ð Þthterm
2

Standard Deviation (Std)
ZStd ¼

ffiP Ij j
i¼1

ðZi�lÞ2

Ij j

r

Variance (Var)
ZVar ¼

P Ij j
i¼1

ðZi�lÞ2

Ij j

Cluster Computing

123

Table 17 Comparative analysis of different traditional dimensionality reduction techniques with the proposed approach on NSL-KDD

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) FAR (%) Prediction Time (s)

DT PCA 77.41 80.10 77.41 74.84 7.18 0.003

LDA 74.45 71.79 74.44 71.01 7.69 0.003

AE 79.38 81.56 79.37 76.98 6.48 0.003

IG 72.88 68.57 72.88 69.00 8.74 0.004

P.Corr 78.33 80.69 78.33 75.77 6.75 0.007

Proposed 88.27 89.71 88.27 88.15 5.25 0.002

RF PCA 77.35 81.30 77.35 74.12 7.45 0.255

LDA 74.68 72.88 74.68 71.12 7.66 0.341

AE 78.21 81.63 78.21 74.24 7.24 0.257

IG 74.70 77.98 74.69 69.90 8.69 0.278

P.Corr 76.07 79.25 76.06 71.55 7.93 0.365

Proposed 89.06 90.76 89.06 89.90 6.87 0.043

KNN PCA 77.28 79.51 77.28 74.08 7.43 7.985

LDA 75.56 73.21 75.56 72.01 7.44 10.670

AE 78.17 79.44 78.17 74.86 7.15 9.628

IG 77.31 78.33 77.31 73.96 7.63 29.88

P.Corr 77.10 77.82 77.09 71.98 7.49 20.40

Proposed 82.31 80.64 82.31 81.43 6.11 5.137

LR PCA 79.04 80.84 79.04 76.02 7.48 0.004

LDA 73.35 66.37 73.34 68.47 8.26 0.006

AE 75.44 74.78 75.44 70.68 7.83 0.005

IG 68.62 71.86 68.62 63.90 10.33 0.007

P.Corr 79.76 81.74 79.76 75.32 7.16 0.017

Proposed 89.35 91.46 89.35 90.39 6.77 0.004

SVM PCA 78.06 78.28 78.05 74.58 6.96 15.29

LDA 73.30 66.14 73.29 68.41 8.34 13.52

AE 78.52 75.78 78.52 74.47 6.97 7.647

IG 71.16 66.14 71.16 66.25 9.64 36.18

P.Corr 76.28 77.33 76.28 71.33 7.51 10.51

Proposed 82.55 80.57 82.55 81.54 5.98 2.569

XGB PCA 79.86 81.54 79.85 76.70 6.42 0.216

LDA 75.71 75.34 75.70 72.38 7.38 0.212

AE 80.17 82.79 80.16 76.40 6.50 0.243

IG 74.63 73.83 74.63 69.87 8.70 0.226

P.Corr 78.16 81.37 78.16 74.87 7.14 0.206

Proposed 90.38 92.33 90.38 91.34 5.21 0.005

LightGBM PCA 77.37 77.85 77.37 74.53 7.24 0.921

LDA 74.68 72.79 74.68 71.27 7.65 0.583

AE 78.20 77.86 78.20 75.31 7.97 0.997

IG 72.66 70.24 72.65 68.17 9.21 0.867

P.Corr 74.91 77.44 74.91 74.22 7.66 0.881

Proposed 85.43 87.85 85.43 86.62 7.00 0.107

Catboost PCA 80.09 82.50 80.09 77.06 6.33 0.201

LDA 76.58 75.89 76.57 73.04 7.19 0.237

AE 78.60 81.43 78.60 74.72 7.015 0.124

IG 74.76 76.25 74.75 69.99 8.65 0.169

P.Corr 79.20 81.89 79.20 76.00 6.78 0.109

Proposed 90.56 91.47 90.56 91.01 4.89 0.022

Cluster Computing

123

6.6.4 Comparative analysis of the proposed method
with other state-of-the-art approaches

In this section, the proposed model is compared with dif-

ferent state-of-the-art techniques on the NSL-KDD,

UNSW-NB15, and CSE-CIC-IDS2018 datasets, which are

shown in Tables 21, 22, 23, and 24.

Table 21 compares the prediction time (in second) of

various detection models in the proposed framework with

the [23] on the CIC-IDS2018 dataset. Observing from the

table, it is summarized that the proposed framework takes

comparatively less prediction time than that of [23]. The

reduced prediction time compared to [23] is attributed to

the introduction of two phases in the feature selection

module, enabling the selection of only essential, relevant,

information-rich, uncorrelated with other features, and

correlated with the target class. Consequently, this results

in a significant reduction in the size of the data, leading to a

substantial decrease in both model building and prediction

time. As a result, the proposed model becomes lightweight.

Table 22 compares the logistic regression-based detec-

tion models of the proposed framework with that of [64] on

two datasets. The table shows that the proposed model

gives better results than [64] in terms of accuracy, preci-

sion, recall, and f1-score. Moreover, the values of recall

and f1-score in the proposed framework are significantly

better than that of [64] on both datasets, while the accuracy

of the proposed model has not significantly deteriorated,

particularly on the UNSW-NB15 dataset. The proposed

model clearly outperforms the one mentioned in [64]. This

is due to the fact that the cost matrix in [64] is determined

using a random forest classifier to evaluate feature impor-

tance. The proposed model integrates feature selection

from two phases, concentrating on the mutual information

metric and correlation metric within the ACO objective

function. Another key factor contributing to the superior

performance of the proposed model is the optimization of

the logistic regression-based detection model using the

genetic algorithm, which significantly boosts performance.

Table 23 compares the proposed model with [21] on the

NSL-KDD dataset. The table shows that the proposed

model gives impressive results for the RF, LR, and

xgboost-based detection models; however, performance is

not significantly degraded for the KNN-based detection

Table 17 (continued)

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) FAR (%) Prediction Time (s)

Majority Voting PCA 77.78 81.33 77.78 74.41 7.30 8.484

LDA 74.76 73.25 74.76 70.96 7.84 6.868

AE 78.48 79.90 78.47 74.64 7.16 8.483

IG 73.02 75.07 73.02 68.27 9.29 20.30

P.Corr 77.09 79.58 77.09 72.56 7.56 19.79

Proposed 81.07 81.86 81.07 79.41 5.14 5.277

Mean Voting PCA 79.31 78.02 79.31 76.05 6.69 6.086

LDA 75.13 73.58 75.13 71.20 7.59 5.579

AE 79.85 79.49 79.84 76.08 6.63 6.651

IG 74.38 76.14 74.38 69.62 8.78 36.44

P.Corr 79.18 79.81 79.18 74.67 6.72 18.63

Proposed 81.14 81.23 81.14 79.34 5.01 4.749

DNN PCA 81.50 80.20 81.50 78.21 5.75 1.426

LDA 73.35 66.35 73.35 68.43 8.38 2.724

AE 80.06 77.79 80.06 75.81 6.45 1.350

IG 69.34 63.18 69.34 64.57 9.86 1.368

P.Corr 76.26 75.30 76.26 71.61 7.29 1.48

Proposed 85.46 81.86 85.46 83.62 5.17 0.998

CNN PCA 80.57 79.42 80.57 77.43 6.12 2.732

LDA 75.29 65.01 75.28 69.39 7.84 1.379

AE 80.39 79.36 80.38 75.42 6.34 2.682

IG 69.52 63.32 69.52 64.65 10.13 2.727

P.Corr 77.83 80.14 77.83 74.00 6.69 2.695

Proposed 82.16 80.65 82.16 80.18 5.32 0.981

Cluster Computing

123

Table 18 Comparative analysis of different traditional dimensionality reduction techniques with the proposed approach on UNSW-NB15

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) FAR (%) Prediction Time (s)

DT PCA 59.54 68.50 59.54 55.02 4.82 0.008

LDA 41.88 54.66 41.88 41.29 7.85 0.020

AE 57.37 71.93 57.37 54.16 5.10 0.014

IG 62.64 69.56 62.64 59.48 4.16 0.037

P.Corr 38.68 41.70 38.68 32.87 9.05 0.023

Proposed 91.59 93.28 91.59 92.42 1.02 0.002

RF PCA 61.90 56.32 61.90 56.64 4.53 1.570

LDA 44.52 56.18 44.52 44.56 7.55 1.841

AE 70.52 81.20 70.51 72.00 3.16 1.340

IG 80.30 80.11 80.29 78.85 2.86 1.041

P.Corr 43.19 58.35 43.19 40.08 8.59 1.455

Proposed 90.31 92.47 90.30 91.37 1.09 0.226

KNN PCA 63.85 81.74 63.85 63.93 3.87 13.17

LDA 41.73 55.41 41.72 40.66 7.91 4.448

AE 69.49 80.87 69.49 71.38 3.26 13.16

IG 61.01 80.25 61.01 59.69 4.17 14.31

P.Corr 41.10 56.65 41.10 36.39 8.34 91.29

Proposed 84.86 84.12 84.86 84.04 1.73 12.82

LR PCA 70.67 79.12 70.66 68.91 3.27 0.015

LDA 45.34 52.98 45.34 41.61 7.93 0.010

AE 71.39 78.36 71.38 69.68 3.21 0.022

IG 73.75 81.78 73.75 72.22 2.94 0.017

P.Corr 32.83 22.05 32.82 25.58 10.77 0.026

Proposed 91.71 92.70 91.70 92.19 1.63 0.005

SVM PCA 63.58 56.97 63.58 56.44 4.08 257.78

LDA 38.29 42.60 38.28 32.87 8.73 460.44

AE 65.26 76.98 65.26 60.36 3.93 441.29

IG 63.79 54.69 63.79 57.41 3.96 455.53

P.Corr 38.57 29.42 38.56 31.64 9.22 599.40

Proposed 83.33 81.69 83.33 80.37 1.95 118.74

XGB PCA 61.79 59.48 61.78 58.80 4.06 1.471

LDA 42.15 55.20 42.14 40.80 7.99 1.433

AE 67.41 79.09 67.41 67.95 3.52 1.578

IG 61.92 59.46 61.91 58.75 4.09 1.300

P.Corr 39.51 35.14 39.50 34.51 8.78 1.547

Proposed 92.63 93.72 92.63 93.17 0.95 0.029

LightGBM PCA 66.60 70.74 66.59 64.86 4.63 19.29

LDA 42.40 56.58 42.39 43.62 7.59 7.617

AE 63.47 75.91 63.46 63.64 4.04 8.577

IG 46.60 56.44 46.59 49.35 7.01 7.266

P.Corr 42.07 55.19 42.07 38.32 8.71 7.678

Proposed 82.52 85.72 82.52 84.08 1.42 1.19

Catboost PCA 61.62 60.95 61.62 58.65 4.12 0.926

LDA 43.30 55.25 43.30 42.68 7.80 0.566

AE 70.37 81.53 70.36 71.04 3.21 0.567

IG 63.65 63.39 63.65 60.32 3.90 0.648

P.Corr 40.36 36.73 40.35 35.83 8.46 0.560

Proposed 89.93 90.85 89.93 90.38 1.17 0.136

Cluster Computing

123

Table 18 (continued)

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) FAR (%) Prediction Time (s)

Majority Voting PCA 64.45 83.44 64.45 63.48 3.82 16.66

LDA 43.84 56.91 43.84 43.95 7.54 17.827

AE 64.24 80.76 64.23 63.56 3.85 19.462

IG 65.51 82.07 65.51 64.31 3.71 16.64

P.Corr 39.03 56.78 39.03 33.87 9.02 95.60

Proposed 90.63 92.27 90.63 91.44 1.02 13.81

Mean Voting PCA 65.01 83.79 65.01 64.67 3.75 12.41

LDA 43.21 55.42 43.21 42.09 7.85 13.765

AE 64.92 80.78 64.92 64.68 3.77 16.015

IG 66.22 82.04 66.21 65.08 3.63 13.61

P.Corr 39.30 33.36 39.29 33.64 9.06 88.49

Proposed 91.60 90.42 91.60 91.00 1.12 11.62

DNN PCA 69.43 77.79 69.43 67.19 3.43 5.327

LDA 37.76 31.31 37.76 32.25 8.80 10.35

AE 66.52 76.58 66.51 63.19 3.76 3.089

IG 76.40 84.20 76.40 75.42 2.61 10.40

P.Corr 36.19 24.47 36.19 29.13 9.73 10.42

Proposed 85.25 85.42 85.25 82.38 1.73 2.005

CNN PCA 73.04 75.92 73.04 70.85 3.06 16.187

LDA 51.33 71.85 51.32 54.88 5.51 10.48

AE 61.81 76.64 61.81 54.99 4.28 13.691

IG 45.74 51.57 45.74 45.15 7.75 16.027

P.Corr 34.34 22.76 34.33 27.37 10.11 10.213

Proposed 85.32 84.07 85.32 82.59 1.73 9.33

Table 19 Comparative analysis of different traditional dimensionality reduction techniques with the proposed approach on CSE-CIC-IDS2018

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) FAR (%) Prediction Time (s)

DT PCA 94.68 94.67 94.68 94.67 1.17 0.308

LDA 90.44 90.47 90.43 90.45 2.09 0.558

AE 94.07 94.06 94.06 94.06 1.30 0.469

IG 90.11 90.15 90.10 90.13 2.17 0.814

P.Corr 94.36 94.35 94.36 94.35 0.99 0.338

Proposed 96.39 96.37 96.38 96.37 0.80 0.267

RF PCA 94.24 94.35 94.23 94.27 0.90 1.640

LDA 91.24 91.36 91.23 91.28 1.91 2.818

AE 95.13 95.20 95.12 95.15 1.05 1.646

IG 90.63 91.32 90.63 90.84 1.98 1.184

P.Corr 94.96 94.06 94.96 94.98 0.94 1.001

Proposed 96.37 96.41 96.36 96.38 0.78 0.339

KNN PCA 92.45 92.92 92.44 92.67 2.15 39.96

LDA 90.49 90.63 90.49 90.55 2.07 12.534

AE 93.79 93.09 93.79 93.43 2.09 40.86

IG 89.43 89.83 89.42 89.58 2.28 71.47

P.Corr 92.49 92.92 92.48 92.69 1.92 47.41

Proposed 94.02 94.48 94.01 94.13 1.25 8.49

LR PCA 88.45 89.00 88.45 88.65 2.48 0.407

Cluster Computing

123

Table 19 (continued)

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) FAR (%) Prediction Time (s)

LDA 86.43 85.11 86.42 85.56 3.08 0.307

AE 88.45 88.84 88.45 88.60 2.49 0.513

IG 89.00 91.97 88.99 89.40 2.21 0.413

P.Corr 88.29 88.70 88.28 88.44 2.53 0.423

Proposed 92.47 94.22 92.47 93.33 1.49 0.282

SVM PCA 90.35 89.07 90.35 89.70 1.95 188.36

LDA 87.20 86.86 87.20 87.00 2.84 215.61

AE 92.61 91.03 92.61 91.81 2.57 120.92

IG 89.34 88.24 89.33 88.78 2.09 113.25

P.Corr 91.12 84.88 91.12 87.88 3.80 119.89

Proposed 93.79 94.50 93.79 93.94 1.28 103.63

XGB PCA 91.16 89.41 91.16 90.27 0.79 0.591

LDA 90.78 91.08 90.77 90.89 1.99 0.738

AE 94.83 95.09 94.82 94.90 1.09 0.692

IG 90.66 92.51 90.65 90.98 1.90 0.585

P.Corr 93.81 88.06 93.81 90.84 1.42 0.549

Proposed 97.87 98.11 97.87 97.90 0.41 0.434

LightGBM PCA 85.91 86.24 85.90 86.06 0.84 2.057

LDA 90.69 91.11 90.68 90.83 1.99 1.724

AE 94.69 95.04 94.68 94.77 1.11 1.680

IG 90.79 92.98 90.79 91.12 1.85 1.588

P.Corr 87.86 88.12 87.86 87.90 1.41 1.400

Proposed 97.96 98.19 97.95 97.99 0.39 1.210

Catboost PCA 86.31 86.59 86.30 86.36 2.76 1.474

LDA 90.69 90.95 90.69 90.79 2.01 2.336

AE 94.77 95.00 94.76 94.83 1.11 2.424

IG 90.81 92.91 90.81 91.14 1.85 1.211

P.Corr 91.85 89.11 91.84 90.45 1.41 2.330

Proposed 97.90 98.15 97.90 97.93 0.40 0.710

Majority Voting PCA 86.02 86.09 86.01 86.04 2.85 42.72

LDA 90.59 90.35 90.59 90.42 2.11 3.314

AE 94.96 95.00 94.96 94.98 1.09 37.28

IG 90.57 91.52 90.57 90.82 1.98 39.55

P.Corr 87.08 87.18 87.08 87.10 2.61 48.52

Proposed 96.58 96.58 96.57 96.58 0.74 9.94

Mean Voting PCA 86.32 86.61 86.31 86.37 1.75 37.28

LDA 91.19 91.31 91.18 91.24 1.92 1.318

AE 85.31 85.57 85.30 85.37 2.98 34.51

IG 90.71 91.79 90.70 90.97 1.94 38.13

P.Corr 87.61 87.84 87.60 87.64 1.47 50.62

Proposed 97.55 97.75 97.54 97.58 0.49 8.31

DNN PCA 86.14 86.86 86.13 86.23 1.75 2.981

LDA 88.52 92.34 88.51 88.91 2.27 2.261

AE 83.42 85.29 83.41 84.33 1.29 2.803

IG 89.31 93.48 89.31 89.71 2.09 3.947

P.Corr 85.78 86.44 85.78 86.10 1.84 5.283

Proposed 95.58 96.28 95.58 95.69 0.88 1.889

Cluster Computing

123

model. In existing research [21], the feature-selection

method utilizing CFS-DE is examined, however, it does

not address the optimization of the classifiers. The

improved performance of the proposed model can be

attributed to the implementation of a bi-phase feature

optimization technique for data feature selection, in

Table 19 (continued)

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) FAR (%) Prediction Time (s)

CNN PCA 83.69 84.67 83.69 84.17 1.28 5.309

LDA 88.13 90.14 88.13 88.52 2.44 2.349

AE 91.73 91.69 91.72 91.71 1.82 2.389

IG 89.27 93.55 89.27 89.67 2.09 5.289

P.Corr 85.81 86.37 85.81 86.08 2.84 5.311

Proposed 95.21 96.00 95.21 95.33 0.95 1.979

Table 20 Statistical validation

of the proposed model with

baseline method using p-value

on two-tailed t-test at 0.05

significance level

Dataset p-value

PCA LDA AE IG P.Corr

NSL-KDD (Xgboost) 5.47e-07 1.33e-10 5.24e-09 2.95e-12 3.37e-09

UNSW-NB15 (Xgboost) 5.37e-09 2.34e-08 0.000103 1.14e-06 1.78e-08

CSE-CIC-IDS2018 (Catboost) 5.60e-05 0.021061 0.030745 0.021049 0.019673

Fig. 13 Feature importance for xgboost on a NSL-KDD, b UNSW-NB15, c CSE-CIC-IDS2018

Cluster Computing

123

conjunction with the optimization of each detection model

to yield precise results through fine-tuned hyperparameters.

Table 24 shows the results of different state-of-the-art

works [9, 11, 35], and [65] and compares them with the

proposed framework on NSL-KDD and UNSW-NB15

datasets. From Table 24, it is observed that the proposed

model offers significant results in terms of accuracy, FAR,

training, and testing time. The reason behind this is that the

proposed model selects features based on the imbalanced

nature of the data, the correlation between the feature-

Fig. 14 SHAP analysis for xgboost on a NSL-KDD, b UNSW-NB15, c CSE-CIC-IDS2018

Table 21 Comparison of Prediction time (in seconds) of the Proposed Model and Chowdhury et al. [23] on the CIC-IDS2018 Dataset

Method DT KNN DNN RF Catboost Majority Voting Mean Voting

Chowdhury et al. [23] 1.247 1030.725 109.213 23.398 2.140 640.041 524.656

Proposed 0.267 8.49 1.889 0.339 0.710 9.94 8.31

Table 22 Comparison of

classification report of the

Proposed Model with state-of-

the-art Pramilarani & Kumari

[64]

Dataset Pramilarani & Kumari [64] Proposed

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

NSL-KDD 84.25 89.78 83.43 86.27 89.35 91.46 89.35 90.39

UNSW-NB15 92.45 91.78 88.43 90.27 91.71 92.70 91.70 92.19

Cluster Computing

123

feature pairs and class-feature pairs, and, last but not least,

information-rich features. Moreover, all the detection

models offer their performances on the best hyperparam-

eter values.

7 Conclusion and future works

For securing the network from different kinds of cyber-

attacks, the Intrusion Detection System is proven to be an

effective and efficient technique. The main aim of this

paper is to design a lightweight Intrusion detection system

that uses resources efficiently. To achieve the aforemen-

tioned goal, features in the network traffic in the intrusion

detection system dataset are reduced with the stacking of

the particle swarm optimization and ant colony optimiza-

tion algorithms. Here, the main objective is to select the

most effective features from the dataset to make the IDS

lightweight. The particle swarm optimization algorithm

determines the features based on the imbalanced nature of

the dataset by utilizing the geometric mean in the fitness

function, and the ant colony optimization algorithm is

utilized here to address issues related to correlated and

uninformative features in the obtained feature subset.

These issues can be mitigated by utilizing the correlation

metric and information gain metric in the fitness function

of the ant colony optimization-based feature selection

algorithm. The selected features through proposed bi-phase

technique is analysed using the feature importance and

SHAP (discussed in Sect. 6.6.3). Several base and

ensemble-based detection models (such as DT, SVM,

KNN, RF, Xgboost, LightGBM, Catboost, LR, Majority

Voting, Mean Voting, DNN, and 1D-CNN) are introduced

in this paper to evaluate the effectiveness of the proposed

model. A nature-influenced genetic algorithm is applied

(individually for each model) by utilizing a weighted f1-

score in the fitness function to optimize the hyperparame-

ters of these detection models. The objective function of

each metaheuristic algorithms are analysed using conver-

gence graphs, box plots, swarm plots, and in terms of best,

worst, mean, median, standard deviation, and variance

(demonstrated in Sect. 6.5). Several extensive experi-

ments are performed on three traditional datasets such as

NSL-KDD, UNSW-NB15, and CSE-CIC-IDS2018, and it

is compared with several traditional dimensionality

reduction techniques such as PCA, LDA, Pearson Corre-

lation, Information Gain, and Auto-encoder. Statistical

validation of the proposed model is also performed to

Table 23 Comparison of the Proposed Model with state-of-the-art Zhao et al. [21] on NSL-KDD dataset

Detection Model Zhao et al. [21] Proposed

Accuracy

(%)

Precision

(%)

Recall

(%)

F1-Score (%) Training

Time (s)

Accuracy

(%)

Precision

(%)

Recall

(%)

F1-Score

(%)

Training Time (s)

RF 86.51 88.61 86.51 87.55 9.06 89.06 90.76 89.06 89.90 8.44

LR 81.53 72.67 81.53 76.84 11.95 89.35 91.46 89.35 90.39 9.37

Xgboost 86.53 87.37 86.53 86.95 5.83 90.38 92.33 90.38 91.34 1.097

KNN 85.70 80.82 85.70 83.19 130.42 82.31 80.64 82.31 81.43 29.309

Table 24 Comparison of Classification Report of the Proposed Model with different state-of-the-art works

Dataset Method Accuracy

(%)

Precision

(%)

Recall

(%)

F1-Score

(%)

FAR

(%)

Training Time

(s)

Testing Time

(s)

NSL-KDD Thakkar et al. [65] 82.22 92.01 75.30 82.82 8.62 NA NA

Chohra et al. [35] 90.71 89.35 95.00 92.09 NA 373 NA

Proposed 90.56 91.47 90.56 91.01 4.89 97.127 0.022

UNSW-

NB15

Thakkar et al. [65] 76.28 71.58 94.39 81.41 45.92 NA NA

Chohra et al. [35] 89.52 90.00 96.00 92.90 NA 1718 NA

Khammassi & Krichen 2017

[9]

81.42 NA NA NA 6.39 NA NA

Nazir & Khan [11] 83.12 NA NA NA 3.7 NA NA

Proposed 92.63 93.72 92.63 93.17 0.95 401.442 0.029

Cluster Computing

123

examine the effectivenss of the proposed approach with the

baseline methods (shown in Table 20). The accuracy and

FAR of the proposed model is as follows: (90.38% and

5.21%), (92.63% and 0.95%), and (97.87% and 0.41%) on

NSL-KDD, UNSW-NB15, and CSE-CIC-IDS2018 data-

sets respectively. It is observed that proposed method

outperforms other traditional dimensionality reduction

techniques and the existing state-of-the-art works

[9, 11, 21, 23, 35, 64, 65].

7.1 Limitations and future directions
of the proposed research:

The limitations of the proposed research are highlighted as

follows: (i) The current proposed model is limited to

detecting only known attacks in the network traffic but can

not detect unknown or new cyber-attacks. (ii) Several

extensive experiments are performed only on traditional

datasets, while implementation of the proposed model is

unexplored on the real-time test bed. In the future, other

enhanced feature selection techniques will be utilized to

enhance the model’s performance. Future research may

consider the imbalanced nature of the IDS dataset by

generating more realistic samples by adding generative AI,

and real-time datasets can also be generated to test the

detection performance. Furthermore, a more enhanced

hyperparameter tuning module will be implemented to

enhance the model’s performance.

Author contributions Methodology: [Arpita Srivastava]; Implemen-

tation: [Arpita Srivastava]; Validation: [Arpita Srivastava]; Concep-

tualization: [Arpita Srivastava]; Data Curation: [Arpita Srivastava];

Writing- Original Draft: [Arpita Srivastava]; Conceptualization:

[Ditipriya Sinha]; Methodology: [Ditipriya Sinha]; Validation:

[Ditipriya Sinha]; Supervision: [Ditipriya Sinha]; Writing- Original

Draft: [Ditipriya Sinha]; Writing- Review & Editing: [Ditipriya

Sinha].

Funding The authors declare that no funds, grants, or other support

were received during the preparation of this manuscript.

Data availability Data will be made available on request.

Declarations

Competing interests The authors declare that they have no conflict of

interest.

References

1. Injadat, M., Moubayed, A., Nassif, A.B., Shami, A.: Multi-stage

optimized machine learning framework for network intrusion

detection. IEEE Trans. Netw. Serv. Manage. 18(2), 1803–1816

(2020)

2. Salem, M.B., Hershkop, S., Stolfo, S.J.: A survey of insider attack

detection research. In: Insider Attack and Cyber Security: Beyond

the Hacker, pp. 69–90. Springer, Cham (2008)

3. Papamartzivanos, D., Mármol, F.G., Kambourakis, G.: Dendron:

genetic trees driven rule induction for network intrusion detection

systems. Futur. Gener. Comput. Syst. 79, 558–574 (2018)

4. Aksu, D., Aydin, M.A.: MGA-IDS: optimal feature subset

selection for anomaly detection framework on in-vehicle net-

works-CAN bus based on genetic algorithm and intrusion

detection approach. Comput. Secur. 118, 102717 (2022)

5. Azimjonov, J., Kim, T.: Stochastic gradient descent classifier-

based lightweight intrusion detection systems using the efficient

feature subsets of datasets. Expert Syst. Appl. 237, 121493 (2024)

6. Azimjonov, J., Kim, T.: Designing accurate lightweight intrusion

detection systems for IoT networks using fine-tuned linear SVM

and feature selectors. Comput. Secur. 137, 103598 (2024)

7. Wang, Z., Li, Z., He, D., Chan, S.: A lightweight approach for

network intrusion detection in industrial cyber-physical systems

based on knowledge distillation and deep metric learning. Expert

Syst. Appl. 206, 117671 (2022)

8. Sohn, I.: Deep belief network based intrusion detection tech-

niques: a survey. Expert Syst. Appl. 167, 114170 (2021)

9. Khammassi, C., Krichen, S.: A GA-LR wrapper approach for

feature selection in network intrusion detection. Comput. Secur.

70, 255–277 (2017)

10. Vijayanand, R., Devaraj, D., Kannapiran, B.: Intrusion detection

system for wireless mesh network using multiple support vector

machine classifiers with genetic-algorithm-based feature selec-

tion. Comput. Secur. 77, 304–314 (2018)

11. Nazir, A., Khan, R.A.: A novel combinatorial optimization based

feature selection method for network intrusion detection. Com-

put. Secur. 102, 102164 (2021)

12. Kumar, G.S.C., Kumar, R.K., Kumar, K.P.V., Sai, N.R., Brah-

maiah, M.: Deep residual convolutional neural Network: an

efficient technique for intrusion detection system. Expert Syst.

Appl. 238, 121912 (2024)

13. Khammassi, C., Krichen, S.: A NSGA2-LR wrapper approach for

feature selection in network intrusion detection. Comput. Netw.

172, 107183 (2020)

14. Mohammadi, S., Mirvaziri, H., Ghazizadeh-Ahsaee, M., Karim-

ipour, H.: Cyber intrusion detection by combined feature selec-

tion algorithm. J. Inform. Secur. Appl. 44, 80–88 (2019)

15. Halim, Z., Yousaf, M.N., Waqas, M., Sulaiman, M., Abbas, G.,

Hussain, M., Hanif, M.: An effective genetic algorithm-based

feature selection method for intrusion detection systems. Comput.

Secur. 110, 102448 (2021)

16. Li, Y., Qin, T., Huang, Y., Lan, J., Liang, Z., Geng, T.: HDFEF: a

hierarchical and dynamic feature extraction framework for

intrusion detection systems. Comput. Secur. 121, 102842 (2022)

17. Rao, K.N., Rao, K.V., Prasad Reddy, P.V.G.D.: A hybrid intru-

sion detection system based on sparse autoencoder and deep

neural network. Comput. Commun. 180, 77–88 (2021)

18. Wazirali, R.: An improved intrusion detection system based on

KNN hyperparameter tuning and cross-validation. Arab. J. Sci.

Eng. 45(12), 10859–10873 (2020)

19. Gu, J., Lu, S.: An effective intrusion detection approach using

SVM with naı̈ve Bayes feature embedding. Comput. Secur. 103,

102158 (2021)

20. Mukherjee, S., Sharma, N.: Intrusion detection using naive Bayes

classifier with feature reduction. Procedia Technol. 4, 119–128

(2012)

21. Zhao, R., Mu, Y., Zou, L., Wen, X.: A hybrid intrusion detection

system based on feature selection and weighted stacking classi-

fier. IEEE Access 10, 71414–71426 (2022)

Cluster Computing

123

22. Nguyen, M.T., Kim, K.: Genetic convolutional neural network

for intrusion detection systems. Futur. Gener. Comput. Syst. 113,

418–427 (2020)

23. Chowdhury, R., Sen, S., Goswami, A., Purkait, S., Saha, B.: An

implementation of bi-phase network intrusion detection system

by using real-time traffic analysis. Expert Syst. Appl. 224,

119831 (2023)

24. Kunang, Y.N., Nurmaini, S., Stiawan, D., Suprapto, B.Y.: Attack

classification of an intrusion detection system using deep learning

and hyperparameter optimization. J. Inform. Secur. Appl. 58,

102804 (2021)

25. Batchu, R.K., Seetha, H.: A generalized machine learning model

for DDoS attacks detection using hybrid feature selection and

hyperparameter tuning. Comput. Netw. 200, 108498 (2021)

26. Chebrolu, S., Abraham, A., Thomas, J.P.: Feature deduction and

ensemble design of intrusion detection systems. Comput. Secur.

24(4), 295–307 (2005)

27. Li, Y., Wang, J.L., Tian, Z.H., Lu, T.B., Young, C.: Building

lightweight intrusion detection system using wrapper-based fea-

ture selection mechanisms. Comput. Secur. 28(6), 466–475

(2009)

28. Revathi, S., Malathi, A.: A detailed analysis on NSL-KDD

dataset using various machine learning techniques for intrusion

detection. Int. J. Eng. Res. Technol. (IJERT) 2(12), 1848–1853

(2013)

29. Li, X., Chen, W., Zhang, Q., Wu, L.: Building auto-encoder

intrusion detection system based on random forest feature

selection. Comput. Secur. 95, 101851 (2020)

30. Kunhare, N., Tiwari, R., Dhar, J.: Particle swarm optimization

and feature selection for intrusion detection system. Sādhanā 45,

1–14 (2020)

31. Kunhare, N., Tiwari, R., & Dhar, J.: Network packet analysis in

real time traffic and study of snort IDS during the variants of DoS

attacks. In Hybrid Intelligent Systems: 19th International Con-
ference on Hybrid Intelligent Systems (HIS 2019) held in Bhopal,
India, December 10–12, 2019 19 (pp. 362–375). Springer Inter-

national Publishing. (2021)

32. Gupta, R.K., Bharti, S., Kunhare, N., Sahu, Y., Pathik, N.: Brain

tumor detection and classification using cycle generative adver-

sarial networks. Interdisc. Sci.: Comput. Life Sci. 14(2), 485–502

(2022)

33. Dhanya, L., Chitra, R.: A novel autoencoder based feature

independent GA optimised XGBoost classifier for IoMT malware

detection. Expert Syst. Appl. 237, 121618 (2024)

34. Ogundokun, R.O., Awotunde, J.B., Sadiku, P., Adeniyi, E.A.,

Abiodun, M., Dauda, O.I.: An enhanced intrusion detection sys-

tem using particle swarm optimization feature extraction tech-

nique. Procedia Comput. Sci. 193, 504–512 (2021)

35. Chohra, A., Shirani, P., Karbab, E.B., Debbabi, M.: Chameleon:

Optimized feature selection using particle swarm optimization

and ensemble methods for network anomaly detection. Comput.

Secur. 117, 102684 (2022)

36. Alazab, M., Khurma, R.A., Awajan, A., Camacho, D.: A new

intrusion detection system based on moth-flame optimizer algo-

rithm. Expert Syst. Appl. 210, 118439 (2022)

37. Dahou, A., Abd Elaziz, M., Chelloug, S.A., Awadallah, M.A., Al-

Betar, M.A., Al-Qaness, M.A., Forestiero, A.: Intrusion detection

system for IoT based on deep learning and modified reptile search

algorithm. Comput. Intell. Neurosci. 2022(1), 6473507 (2022)

38. Kunhare, N., Tiwari, R., Dhar, J.: Intrusion detection system

using hybrid classifiers with meta-heuristic algorithms for the

optimization and feature selection by genetic algorithm. Comput.

Electr. Eng. 103, 108383 (2022)

39. Jovanovic, Luka, et al.: The xgboost tuning by improved firefly

algorithm for network intrusion detection. 2022 24th

International Symposium on Symbolic and Numeric Algorithms

for Scientific Computing (SYNASC). IEEE, 2022.

40. AlHosni, N., Jovanovic, L., Antonijevic, M., Bukumira, M.,

Zivkovic, M., Strumberger, I., Bacanin, N.: The xgboost model

for network intrusion detection boosted by enhanced sine cosine

algorithm. In International Conference on Image Processing and

Capsule Networks (pp. 213–228). Cham: Springer International

Publishing. (2022)

41. Kalita, D.J., Singh, V.P., Kumar, V.: A novel adaptive opti-

mization framework for SVM hyper-parameters tuning in non-

stationary environment: a case study on intrusion detection sys-

tem. Exp. Syst. Appl. 213, 119189 (2023)

42. Savanović, N., Toskovic, A., Petrovic, A., Zivkovic, M., Dama-

ševičius, R., Jovanovic, L., Nikolic, B.: Intrusion detection in

healthcare 4.0 internet of things systems via metaheuristics

optimized machine learning. Sustainability 15(16), 12563 (2023)

43. Yang, X. S.: Firefly algorithms for multimodal optimization.

In International symposium on stochastic algorithms (pp.

169–178). Berlin, Heidelberg: Springer Berlin Heidelberg. (2009)

44. Mirjalili, S., Mirjalili, S.: Genetic algorithm. Evolut. Algorithm.

Neural Netw.: Theory Appl. 780, 43–55 (2019)

45. Kennedy, J., & Eberhart, R.: Particle swarm optimization.

In Proceedings of ICNN’95-international conference on neural
networks (Vol. 4, pp. 1942–1948). ieee. (1995)

46. Karaboga, D., Basturk, B.: On the performance of artificial bee

colony (ABC) algorithm. Appl. Soft Comput. 8(1), 687–697

(2008)

47. Khishe, M., Mosavi, M.R.: Chimp optimization algorithm. Expert

Syst. Appl. 149, 113338 (2020)

48. Gurrola-Ramos, J., Hernàndez-Aguirre, A., & Dalmau-Cedeño,

O.: COLSHADE for real-world single-objective constrained

optimization problems. In 2020 IEEE congress on evolutionary

computation (CEC) (pp. 1–8). IEEE. (2020)

49. Zhao, J., Zhang, B., Guo, X., Qi, L., Li, Z.: Self-adapting

spherical search algorithm with differential evolution for global

optimization. Mathematics 10(23), 4519 (2022)

50. Saheed, Y.K., Misra, S.: A voting gray wolf optimizer-based

ensemble learning models for intrusion detection in the internet

of things. Int. J. Inform. Secur. (2024). https://doi.org/10.1007/

s10207-023-00803-x

51. Tharwat, A.: Classification assessment methods. Appl. Comput.

Inform. 17(1), 168–192 (2020)

52. Moustafa, N., & Slay, J. (2015, November). UNSW-NB15: a

comprehensive data set for network intrusion detection systems

(UNSW-NB15 network data set). In 2015 military communica-

tions and information systems conference (MilCIS) (pp. 1–6).

IEEE.

53. Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: Toward gener-

ating a new intrusion detection dataset and intrusion traffic

characterization. ICISSp 1, 108–116 (2018)

54. Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A.: A

detailed analysis of the KDD CUP 99 data set. In 2009 IEEE

symposium on computational intelligence for security and

defense applications (pp. 1–6). Ieee. (2009)

55. https://www.unb.ca/cic/datasets/ids-2018.html

56. Chakraborty, A., Kar, A.K.: Swarm intelligence: a review of

algorithms. Nat. Inspired Comput. Optim.: Theory Appl. (2017).

https://doi.org/10.1007/978-3-319-50920-4_19

57. Abualigah, L., Abd Elaziz, M., Sumari, P., Geem, Z.W., Gan-

domi, A.H.: Reptile search algorithm (RSA): a nature-inspired

meta-heuristic optimizer. Expert Syst. Appl. 191, 116158 (2022)

58. Połap, D., Woźniak, M.: Red fox optimization algorithm. Expert

Syst. Appl. 166, 114107 (2021)

59. Abualigah, L., Shehab, M., Alshinwan, M., Alabool, H.: Salp

swarm algorithm: a comprehensive survey. Neural Comput. Appl.

32(15), 11195–11215 (2020)

Cluster Computing

123

https://doi.org/10.1007/s10207-023-00803-x
https://doi.org/10.1007/s10207-023-00803-x
https://www.unb.ca/cic/datasets/ids-2018.html
https://doi.org/10.1007/978-3-319-50920-4_19

60. Arora, S., Singh, S.: Butterfly optimization algorithm: a novel

approach for global optimization. Soft. Comput. 23, 715–734

(2019)

61. Wolpert, D.H., Macready, W.G.: No free lunch theorems for

optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

62. Lipowski, A., Lipowska, D.: Roulette-wheel selection via

stochastic acceptance. Physica A 391(6), 2193–2196 (2012)

63. Hasançebi, O., Erbatur, F.: Evaluation of crossover techniques in

genetic algorithm based optimum structural design. Comput.

Struct. 78(1–3), 435–448 (2000)

64. Pramilarani, K., Kumari, P.V.: Cost based random forest classi-

fier for intrusion detection system in internet of things. Appl. Soft

Comput. 151, 111125 (2024)

65. Thakkar, A., Kikani, N., Geddam, R.: Fusion of linear and non-

linear dimensionality reduction techniques for feature reduction

in LSTM-based intrusion detection system. Appl. Soft Comput.

(2024). https://doi.org/10.1016/j.asoc.2024.111378

66. WUSTL, E. (2020). Dataset for internet of medical things (IoMT)

Cybersecurity Research.

67. https://www.kaggle.com/datasets/saurabhshahane/classification-

of-malwares

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Arpita Srivastava is pursuing

Ph.D. degree in the Department

of Computer Science and Engi-

neering from the National

Institute of Technology Patna,

Bihar, India. She has received

her Master of Technology

degree in the Department of

Computer Science and Engi-

neering from Kamla Nehru

Institute of Technology, Sul-

tanpur, Uttar Pradesh, India. Her

research interest includes Intru-

sion Detection System, Machine

Learning, and Deep Learning.

Ditipriya Sinha has received

Ph.D. degree in the Department

of Computer Science and

Technology, Indian Institute of

Engineering Science and Tech-

nology (IIEST), Shibpur and

Master of Technology from

West Bengal University of

Technology in the department

of Software Engineering. She is

the Silver Medallist during

MTech. She is presently serving

as an Assistant Professor in the

department of Computer Sci-

ence and Engineering, National

Institute of Technology Patna. She was an Assistant Professor in the

department of Computer Science and Engineering, Birla Institute of

Technology, Mesra. Her area of research is Cyber Security, Block-

chain, Machine and Deep Learning and Wireless Sensor Network.

Cluster Computing

123

https://doi.org/10.1016/j.asoc.2024.111378
https://www.kaggle.com/datasets/saurabhshahane/classification-of-malwares
https://www.kaggle.com/datasets/saurabhshahane/classification-of-malwares

	PSO-ACO-based bi-phase lightweight intrusion detection system combined with GA optimized ensemble classifiers
	Abstract
	Introduction
	Research gap
	The key contributions of the proposed approach
	Paper structure

	Related works
	Non-metaheuristic feature optimization algorithm-based
	Metaheuristics feature optimization algorithm-based
	Hyperparameter tuning of detection model-based

	Research objective
	Proposed methodology
	Dataset description & data preprocessing
	Dataset description
	Data preprocessing

	Bi-phase swarm intelligence-based feature optimization
	Phase1: particle swarm optimization based feature selection
	Phase2: ant colony optimization based feature selection

	GA-based hyperparameter tuning
	Classification
	Applications of the proposed method

	Experimental results and discussion
	Experimental setup
	Performance metrics
	Performance analysis
	Detection model’s performance after pre-processing module of the proposed model
	Detection model’s performance after applying phase 1 feature selection module of the proposed model
	Detection model’s performance after applying phase 2 feature selection module of the proposed model
	Detection model’s performance after applying the hyperparameter tuning module of the proposed model

	Results and discussion
	Objective function analysis
	Convergence diagram
	Box plot, and swarm plot
	Outcomes of objective function in terms of best, worst, mean, median, std, and var

	Comparative analysis
	Comparative analysis of the proposed method with other traditional dimensionality reduction techniques
	Statistical validation
	Result interpretation of best model through SHAP analysis
	Comparative analysis of the proposed method with other state-of-the-art approaches

	Conclusion and future works
	Limitations and future directions of the proposed research:

	Author contributions
	Data availability
	References

