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Abstract
The rapid integration of cloud computing and edge computing has brought the cloud-edge environment into the spotlight in

information technology. Within this context, the selection of high-quality and reliable services is crucial to meet the needs

of users. However, ensuring the reliability of service information is a challenge due to its vulnerability to tampering. This

research paper proposes a method for service selection in the cloud-edge environment based on blockchain smart contracts.

By leveraging blockchain technology, this method achieves decentralized and trustworthy service selection. Through smart

contracts, user interactions are securely recorded, significantly reducing the risk of information tampering and enhancing

information reliability. Additionally, the Arithmetic Optimization Algorithm is improved for service selection on the

blockchain by introducing mutation and crossover operations. Experimental results demonstrate that this method effec-

tively prevents tampering with service information and improves the utility value of selected services compared to

traditional methods and metaheuristic algorithms mentioned.

Keywords Cloud computing � Edge computing � Blockchain � Smart contract � Service selection � Arithmetic optimization

algorithm

1 Introduction

With the rapid advancement of information technology,

human society is swiftly entering a new era characterized

by digitalization and networking. In this context, cloud

computing and edge computing, which are two signifi-

cant computing paradigms, are profoundly reshaping the

way people conduct their lives and work [1]. Cloud

computing, achieved through virtualization and resource

sharing, offers users highly flexible and efficient com-

puting power, facilitating the swift deployment and

expansion of diverse applications and services. However,

in cloud computing, where data is processed on remote

servers, there may be increased data transmission and

response time [2]. Conversely, edge computing moves

computing resources and data storage to the periphery of

the network. This structure aids in decreasing data

transmission delay, resulting in quicker response time.

Nevertheless, it is constrained by limited resources,

including smaller computing and storage capacities [3]. It

is clear that cloud computing and edge computing can

complement each other [4]. Consequently, the cloud-edge

environment arises with the objective of integrating the

advantages of both cloud computing and edge comput-

ing, leveraging their combined capabilities while com-

pensating for their individual limitations [5].

With the increasing use of cloud computing and edge

computing, several new challenges have arisen. Among

these challenges is the selection of the most appropriate

service from a vast array of options to fulfill the varying

needs of users [6]. In the cloud-edge environment, there are

a large number of heterogeneous resources and services,

making service selection more complex. Traditional
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Table 1 Notations
Expression Description

sp Service provider

SP Set of service providers

s Service

S Set of services

Si Set of services provided by service provider spi

AddrS Address of service provider

AddrC Address of the contract for a specific service

B Cloud or edge server

Fs Functional attribute of a service

Q Finite set of non-functional attributes of a service

U Service requester

A Service request

K Set of tasks

Task Requested number of tasks

M Structure composition of tasks

C Maximum cost acceptable to the service requester

NO Minimum number of service selection solutions the requester wants to obtain

tlimit Longest time to wait for service selection solutions

treal Real duration for waiting to choose service solutions

Cost Price of the service

RT Response time of the service

Av Availability of the service

p Non-functional attribute

Norm Normalized value of the non-functional attribute

w Weight

F Utility value of the service

sssp Service selection solution provider

SSSP Set of service selection solution providers

CS Candidate solutions

n Name of the solution

R Service selection solution submitted by provider

O Service selection solution processed by the smart contract

o Set of service selection solution processed by the smart contract

AddrSSS Address of the service selection solution provider

CostS Total cost of selected services

tRT Total response time of selected services

a Total availability of selected services

H Whether the solution meets the requester’s cost requirement

ID Collection of IDs for all services

IDsp Set of IDs for services that the service provider sp can offer

id ID of the service

OptrR Optimal service selection solution

addrC Address of the Specific usage contract for the service selected by the optimal solution

Costtotal Total cost for the service requester

CostP Expense associated with utilizing the smart contract

CostSSS Expense associated with utilizing the optimal service selection solution

SSSPU Collection of service selection solution providers that offer solutions for U

ssspU Service selection solution provider that offers the solution for U
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service selection methods may face challenges such as

information asymmetry and information tampering [7].

During the service selection process, information asym-

metry may prevent users from gaining a comprehensive

understanding of the quality and performance of the ser-

vices offered by service providers. Service providers may

tamper with service information through the centralized

platform’s administrator to gain more revenue, making it

difficult for users to obtain reliable information. Therefore,

exploring a method that can effectively address these issues

becomes crucial.

Blockchain technology, as a distributed and decentral-

ized solution, has the potential to address the issues of

information asymmetry and data tampering in service

selection [8]. It can record information about the services

provided by service providers. Its characteristic of being

public and transparent allows users to obtain more accurate

information, thereby mitigating the problems caused by

information asymmetry. Once data is recorded in the

blockchain, it is difficult to tamper with. Each block con-

tains information from the previous block, and any tam-

pering with the data can be quickly detected. This

characteristic safeguards the integrity of the data, pre-

venting any malicious alterations or counterfeiting, and

ensuring that the data accessed by users is reliable [9]. The

decentralized nature of the blockchain enables multiple

nodes to verify and record information, establishing a

higher level of reliability. Smart contracts implemented on

the blockchain enable users to conduct secure transactions

without the involvement of third parties. By utilizing a

blockchain-based service selection method, a fair and

dependable mechanism for selecting services in cloud-edge

environments can be established, providing users with

more reliable services.

Additionally, when it comes to selecting services in the

cloud-edge environment based on blockchain, there is an

important aspect to take into account: whether users can

find the best service selection solution. This paper explores

a method that enables users to achieve automated service

selection through blockchain smart contracts. This method

involves comparing solutions generated by various service

selection algorithms to guarantee that users receive the

most optimal outcome. Furthermore, we propose an

enhanced Arithmetic Optimization Algorithm (AOA) [10]

for the service selection algorithm.

The key contributions of this paper include:

1. An architecture for service selection based on Ether-

eum smart contracts in cloud-edge environments is

proposed. This ensures transparency and prevents

tampering of information during transactions between

service providers, service requesters, and service

selection solution providers, assisting users in estab-

lishing a reliable service selection environment. A

smart contract is designed specifically for this archi-

tecture, allowing users to utilize it for service selection.

Users in this architecture do not need to write smart

contracts themselves, and at the same time, service

selection solution providers are encouraged to offer

superior solutions in competition.

2. A proposal is put forward for an algorithm to select

services on the blockchain. The algorithm is called the

Differential Evolution Arithmetic Optimization Algo-

rithm (DEAO). The DEAO combines the mutation and

crossover operations of the Differential Evolution (DE)

[11] with the AOA. Comparative experiments indicate

that the DEAO is more effective than the AOA and

other referenced studies in avoiding local optima,

showcasing its exceptional capability to discover

global optimal solutions.

In this paper, we discuss related work in Sect. 2. The

preliminary knowledge is introduced in Sect. 3. In Sect. 4,

the proposed method is presented. we report experimental

results in Sect. 5. Finally, conclusion is drawn in Sect. 6.

2 Related work

As a decentralized distributed ledger technology, block-

chain offers new possibilities for service selection in cloud-

edge environments. In this section, we introduce the

applications of service selection in cloud-edge environ-

ments, blockchain-based service selection, and the appli-

cation of blockchain in cloud-edge environments.

2.1 Service selection in cloud-edge
environments

With the rapid development of cloud computing and

Internet of Things technology, an increasing number of

application scenarios require services to be provided in the

cloud-edge environment. Cloud-edge computing extends

the capabilities of computing, storage, and processing from

the cloud to edge devices, enabling faster and real-time

data processing. However, due to the wide and dynamically

changing distribution of resources in the cloud-edge envi-

ronment, selecting the best service has become a chal-

lenging problem. Researchers have proposed different

methods to address this challenge. Zhu et al. introduced an

extended Grey Wolf Algorithm [12]. This algorithm

incorporates roulette wheel selection, solving the service

Cluster Computing

123



selection problem based on edge and cloud computing.

This algorithm introduces roulette wheel selection into the

Grey Wolf Algorithm, resolving the issue of service

selection based on edge and cloud computing. In a dynamic

and heterogeneous edge-cloud collaborative service envi-

ronment, Wang et al. proposed a model based on Petri nets

for selecting the optimal combination of services [13]. Jian

et al. put forward an improved Bee Algorithm [14]. This

algorithm effectively addresses the challenge of combining

cloud services while meeting the local Quality of Service

(QoS) requirements of edge users, maximizing the overall

QoS value of composite services.

The researchers above considered various service

selection approaches to solve the problem of service

selection in the cloud-edge environment, resulting in

optimized outcomes. However, in practical applications,

there is a risk of tampering with service information.

Directly applying these methods in practice may lead to the

selection of tampered services, thereby causing service

requesters to utilize services with the poorer QoS. To

overcome this issue, some scholars have turned their

attention to blockchain-based service selection.

2.2 Blockchain-based service selection

To prevent the tampering of service information, some

researchers have explored the application of blockchain

technology in addressing the problem of service selec-

tion. Wang et al. proposed a smart contract-based method

for QoS-aware service selection, which ensures transac-

tion reliability and data authenticity while reducing

transaction costs [15]. However, this method involves

creating a smart contract for each task to select services,

which is time-consuming and not suitable for addressing

the problem of selecting services when there are too

many tasks. Sridevi et al. introduced a blockchain-based

architecture and algorithm for QoS-aware semantic ser-

vice selection [9]. They use blockchain as a management

tool for Service Level Agreement, allowing participants

to interact in a trustless environment. However, when

handling multi-task service selection, this method

requires deploying multiple smart contracts to complete

the service selection, which consumes a substantial

amount of storage resources. Lyu et al. developed a

system that combines cloud platforms with blockchain,

using a Genetic Algorithm (GA) [16] to solve the service

selection problem and achieve immutable transaction

records and traceable information storage [8]. However,

the GA is prone to getting stuck in local optima.

In summary, there are several challenges in current

research on blockchain-based service selection. For

instance, considering the cost of time and storage resource

consumption, the more tasks there are, the more smart

contracts need to be created, which is not conducive to

solving the problem of complex service selection. Addi-

tionally, the algorithm employed for service selection is

prone to getting trapped in local optimal solutions, which is

unfavorable for finding global optimal solutions.

2.3 Application of blockchain in cloud-edge
environments

Blockchain technology in the cloud-edge environment can

provide a secure and reliable mechanism for data

exchange, resource management, and service delivery. It

can enhance the scalability and establish trust for both

cloud and edge computing, driving the development and

application of these technologies. To address the resource

selection problem, Kaur et al. proposed a multi-criteria

statistical approach [17]. This method effectively leverages

the advantages of both edge and cloud computing, meeting

the application requirements of the Internet of Things and

blockchain in Industry 4.0. The method has a positive

impact on enhancing the service provisioning rate, opti-

mizing throughput, and minimizing transmission latency of

both edge and cloud servers. Paper [18] introduced a

blockchain-based service orchestrator. This method

enables cross-service communication in the edge and cloud

environments, facilitating the full utilization of network

markets. Duan et al. designed a distributed virtual machine

agent to prevent the integrity of data in edge servers from

being compromised [19]. And they established a block-

chain-based data protection system for edge and cloud.

This method can defend against attacks from cloud service

providers and ensure the integrity of data.

However, relevant studies have primarily focused on the

issue of service selection in cloud-edge environments, as

well as blockchain-based service selection problems and

the application of blockchain in cloud-edge environments.

Fig. 1 Cloud-edge environment
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There has been relatively little exploration of the problem

of service selection in cloud-edge environments using

blockchain and smart contracts. Therefore, further research

work is still necessary.

3 Preliminary knowledge

In this section, we offer an overview of cloud-edge envi-

ronments, blockchain technology, the issue of service

selection, and metaheuristic algorithms, while also pre-

senting the definitions pertaining to service selection based

on blockchain.

3.1 Cloud-edge environments

The cloud-edge environment is a computing model that

combines edge computing with cloud computing. The

cloud-edge environment brings computing resources and

services closer to the source of data generation, aiming to

reduce data transmission latency, enhance application

performance, and support real-time responsiveness and

distributed data processing [20].

ð1Þ

As shown in Fig. 1, each edge server can transfer data and

establish connections with other servers over the Internet.

Similarly, each cloud server is capable of transferring data

and establishing connections with other servers over the

Internet. The network topology between edge servers and

cloud servers can be represented by an adjacency matrix, as

shown in formula (1). Where, B represents cloud or edge

servers, totaling u servers, and the unit ci;j represents the

time taken for data transmission between two servers Bi

and Bj.

3.2 Blockchain

Blockchain is a special type of distributed database that

combines various technologies like peer-to-peer commu-

nication, encryption algorithms, and consensus mecha-

nisms. It embodies features like multi-party consensus,

decentralization, distribution, and tamper resistance.

Blockchain is particularly effective in facilitating com-

munication and transactions between entities that have a

relatively low level of trust but maintain close business

ties. Through the establishment of a trust mechanism, it

enables secure and verifiable transaction verification

Fig. 2 Basic architecture of

blockchain

Fig. 3 Data structure of blockchain
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among business entities that may not possess inherent trust

in one another [21].

The basic architecture of blockchain is illustrated in

Fig. 2, including the physical layer, data layer, network

layer, consensus layer, contract layer, and application layer

[22]. We provide a detailed explanation of the functions

and relationships of each layer.

1. Physical Layer. The physical layer serves as the fun-

damental basis of the blockchain, encompassing hard-

ware components and network infrastructure such as

computers, servers, storage devices, sensors, etc. It is

responsible for providing the necessary computational

power and storage resources for the blockchain net-

work, while also offering essential support to the

higher layers.

2. Data Layer. In the realm of blockchain technology, the

fundamental component is known as a block. Each

block houses a cluster of transaction records and

associated metadata. Crucially, each block contains a

hash pointer pointing to the previous block, thus

creating a linked structure. A hash pointer is computed

based on the previous block. The advantage of this

back-to-front pointing is that it is possible to know if

someone has tampered with the data in the blockchain

by simply saving the hash of the last block. This is

because if someone tampers with the contents of a

block in the blockchain, then the hash pointer of the

block after that block has to be modified as well, and so

on until the pointer to the last block has been modified.

The data structure of the blockchain is shown in Fig. 3,

with each block comprising a block header and a block

body [23]. The dashed arrow points to the specific

content of the block. The block header contains

important information about the blockchain. It includes

different elements such as the version number, the hash

value of the previous block, the Merkle root, the

timestamp, and the difficulty target, among other

details. The block body comprises transaction data

and account information, alongside other particulars.

Various blockchain systems may adopt different

approaches for implementation. Furthermore, the data

layer incorporates hash encryption algorithms and

asymmetric encryption algorithms to guarantee the

integrity and security of data. It can be perceived as a

distributed and tamper-proof database.

3. Network Layer. The blockchain consists of a decen-

tralized network where all nodes participate. Whenever

a node generates a new block, it shares this information

with its neighboring nodes through broadcasting. Once

the neighboring nodes successfully validate the block,

they pass on the data to other nodes. Eventually, when

the majority of nodes in the system validate the block,

it becomes officially added to the blockchain.

4. Consensus Layer. The consensus mechanism refers to a

collection of regulations and algorithms that enable

nodes in a blockchain network to reach an agreement.

It ensures that all nodes unanimously acknowledge the

state and transactions of the blockchain without

centralized control. Popular consensus mechanisms

include Proof of Work (PoW), Proof of Stake (PoS),

Byzantine Fault Tolerance (BFT), and various others.

5. Contract Layer. The contract layer provides program-

ming languages, virtual machines, and execution

environments that allow developers to create and

deploy smart contracts. These smart contracts, which

run on the blockchain, operate independently of third-

party control. They automatically execute according to

predetermined conditions, adhering to the concept of

‘‘code is law’’ [21]. In general, smart contracts are

activated by external transactions or specific events.

Once the predetermined triggering conditions are

satisfied, the smart contracts automatically carry out

their functions based on the predefined logic and

operations. The execution of smart contracts occurs on

nodes. These smart contracts can access on-chain data

while they are being executed. Lastly, each node

verifies transactions, records the outcome of smart

contract executions, and updates the state to the latest

block.

6. Application Layer. The top layer of the blockchain is

known as the application layer, which encompasses a

wide range of application scenarios and business

domains. These include digital currencies, supply

chain management, Internet of Things, healthcare,

intellectual property, and more. By utilizing the

underlying structure and technology, the application

layer is responsible for creating specific blockchain

applications that offer users a variety of functionalities

and services.

3.3 Service selection

Definition 1 (Service provider) The service provider is

denoted as sp, SP ¼ sp1; sp2; . . .; spi; . . .; sp SPj j
� �

repre-

sents the collection of service providers, and spi refers to

the ith service provider in the collection.

Definition 2 (Service) The service, denoted as s, is a six-

tuple id;AddrS;AddrC;B;Fs;Qf g. The id is a unique

identifier for the service, AddrS represents the address of

the service provider, AddrC is the contract address used for

accessing the service, B denotes either an edge server or a

cloud server responsible for deploying and running the

service, Fs represents the functional attributes of the ser-

vice, and Q is a finite set of the QoS parameters.
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The set of services is denoted as

S ¼ s1; s2; . . .; si; . . .; s Sj j
�

g, where si refers to the ith

service.

The collection of service identifiers is represented as

ID ¼ id1; id2; . . .; idi; . . .; id IDj j
�

g, with idi denoting the ID

of the ith service.

Si(Si � S) encompasses all the services that can be

provided by the service provider spi.

The set of IDs for all services that can be provided by

service provider spi is represented by IDsp
i .

The requester needs to complete a set of tasks, and each

task requires invoking a service for completion. The

requester hopes to find a solution where the selected ser-

vices have functionalities that meet the task requirements

and possess the optimal QoS [24]. In this paper, we use

cost, response time, and availability to measure the QoS.

The QoS, also referred to as non-functional attributes. Cost

and response time are negative attributes—the higher the

value, the lower the QoS. Availability is a positive attri-

bute—the higher the value, the higher the QoS [25].

Definition 3 (QoS)

Cost (Cost): The expense incurred by the requester for

using services.

Response Time (RT): The total time taken from

receiving the requester’s service request to the completion

of the service execution.

Availability (Av): The probability of successfully invok-

ing a service. It is expressed as the ratio of successful

service accesses to the total number of service accesses,

i.e., Av ¼ As=An. Where, As represents the number of

successful service responses, and An represents the total

number of service accesses.

When presented with two services, si and sj, there are

three options for selecting these services: sequential invo-

cation si; sj, parallel invocation sijsj, and selection invoca-

tion sijjsj [26].

Definition 4 (Determining the cost of choosing services si
and sj)

Costðsi; sjÞ ¼ CostðsiÞ þ CostðsjÞ ð2Þ

CostðsijsjÞ ¼ CostðsiÞ þ CostðsjÞ ð3Þ

CostðsijjsjÞ ¼ min CostðsiÞ;CostðsjÞ
� �

ð4Þ

where min CostðsiÞ;CostðsjÞ
� �

refers to taking the smaller

value between CostðsiÞ and CostðsjÞ.

Definition 5 (Calculation of response time for selecting

services si and sj)

Tðsi; sjÞ ¼
TðsiÞ þ TðsjÞ; if si 2 Bk; sj 2 Bk

TðsiÞ þ TðsjÞ þ TðBk;BpÞ; if si 2 Bk; sj 2 Bp

(

ð5Þ

TðsijsjÞ ¼
max TðsiÞ; TðsjÞ

� �
; if si 2 Bk; sj 2 Bk

max TðsiÞ þ TðBk;BxÞ;TðsjÞ þ TðBp;ByÞ
� �

; if si 2 Bk; sj 2 Bp

(

ð6Þ

TðsijjsjÞ ¼
min TðsiÞ;TðsjÞ

� �
; if si 2 Bk; sj 2 Bk

min TðsiÞ þ TðBk;BxÞ; TðsjÞ þ TðBp;ByÞ
� �

; if si 2 Bk; sj 2 Bp

(

ð7Þ

where Bk and Bp are two servers, si 2 Bk represents that si
is deployed on Bk, TðBk;BpÞ indicates the time for data

transfer from Bk to Bp. In equations (6) and (7), we assume

that the successor service of si is located on Bx, and the

successor service of sj is located on By.

Where max TðsiÞ; TðsjÞ
� �

denotes taking the larger value

between TðsiÞ and TðsjÞ, max TðsiÞ þ TðBk;BxÞ; TðsjÞþ
�

TðBp;ByÞg represents taking the larger value between

TðsiÞ þ TðBk;BxÞ and TðsjÞ þ TðBp;ByÞ, min TðsiÞ;TðsjÞ
� �

refers to taking the smaller value between TðsiÞ and TðsjÞ,
andmin TðsiÞ þ TðBk;BxÞ; TðsjÞ þ TðBp;ByÞ

� �
denotes tak-

ing the smaller value between TðsiÞ þ TðBk;BxÞ and

TðsjÞ þ TðBp;ByÞ.

Definition 6 (Calculation of availability for selecting

services si and sj)

Avðsi; sjÞ ¼ AvðsiÞ � AvðsjÞ ð8Þ

AvðsijsjÞ ¼ AvðsiÞ � AvðsjÞ ð9Þ

AvðsijjsjÞ ¼ max AvðsiÞ;AvðsjÞ
� �

ð10Þ

max AvðsiÞ;AvðsjÞ
� �

refers to taking the larger value

between AvðsiÞ and AvðsjÞ.

Definition 7 (Calculation of the QoS value normalization)

Because different non-functional attributes have differ-

ent units, it is necessary to standardize them when

measuring the values of different attributes, that is,

normalization [27]. In this paper, the values of negative

attributes are normalized according to equation (11). The

values of positive attributes are normalized according to

equation (12).

NormðpÞ ¼
pmax � p

pmax � pmin
; if pmax 6¼ pmin

1; if pmax ¼ pmin

8
><

>:
ð11Þ

NormðpÞ ¼
p� pmin

pmax � pmin
; if pmax 6¼ pmin

1; if pmax ¼ pmin

8
><

>:
ð12Þ

where pmax and pmin respectively represent the maximum

and minimum values of attribute p. After normalization,
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the attribute values of the service are within the range of

[0,1] and can be uniformly processed thereafter.

For example, suppose we have a dataset containing two

types of QoS: response time and availability. Our goal is to

normalize them so that their values range from 0 to 1. First,

we need to find the minimum and maximum values for

response time and availability. Supposing the minimum

response time is 42ms, and the maximum response time is

3347ms; the minimum availability is 12%, and the

maximum availability is 100%. Next, we normalize for

246ms response time and 88% availability. Since response

time is a negative attribute, according to formula (11), the

normalized response time for 246ms is (3347-246)/(3347-

42)=0.94. The smaller the response time, the larger the

normalized value. Since availability is a positive attribute,

according to formula (12), the normalized availability for

88% is (88-12)/(100-12)=0.86. The greater the availability,

the larger the normalized value. Through this normaliza-

tion process, we scale the values of different attributes to

range from 0 to 1, and the higher the value, the higher the

quality of service. This allows for better comparison and

comprehensive analysis, avoiding biases caused by differ-

ences in numerical ranges.

Definition 8 (Utility value of the service)

The utility value of a service is the final evaluated value

of the quality of service. The formula is as follows:

F ¼
Xv

i¼1
NormðpiÞ � wi ð13Þ

Where v represents the number of attributes. NormðpiÞ
represents the normalized value of the ith attribute, and wi

represents the weight of the ith attribute, satisfying the

condition
Pv

i¼1 wi ¼ 1. As mentioned earlier, this paper

considers three attributes: price, response time, and avail-

ability. Additionally, their weights are all set to 1/3 in the

experiments.

Definition 9 (Service request) The service request A

consists of six components: K;M;Q;C;NO; tlimitf g. K is a

set of tasks, denoted as K ¼ k1; k2; . . .; kTaskf g, with a total

quantity of Task. M defines the structure of the tasks. C

stands for the maximum cost that the service requester is

willing to accept. NO indicates the minimum number of

service selection solutions desired by the requester. Lastly,

tlimit specifies the longest time the service requester is

prepared to wait for service selection solutions.

In addition, the variable treal represents the real waiting

time for the service requester to obtain solutions for service

selection.

Definition 10 (Service selection solution provider) The

provider of service selection solutions is referred to as sssp.

SSSP ¼ sssp1; sssp2; . . .; ssspi; . . .; sssp SSSPj j
� �

denotes the

collection of service selection solution providers, where

ssspi indicates the ith provider within the set.

Definition 11 (Name of the service selection solution) The

name of the service selection solution is denoted as n. The

set of candidate solutions CS comprises all the solution

names that can be offered by providers of service selection

solutions, represented as n1; n2; . . .; ni; . . .; n CSj j
� �

, where ni

denotes the name of the ith solution.

Definition 12 (Service selection solution provided by the

provider) The service selection solution provided by the

provider is denoted as R ¼ del1; r1; del2; r2; . . .; deli;f
ri; . . .; delTask; rTaskg, where ri denotes the service chosen

for the ith task, deli represents the time of data transfer

between the ith service and the server where the prede-

cessor service is located, and the value of del1 is 0.

R is the solution submitted by the service selection

solution provider through the smart contract.

Definition 13 (Service selection solution processed by the

smart contract) The service selection solution processed by

the smart contract, referred to as o, consists of six elements:

AddrSSS;CostS; tRT ; a;H; IDof g. AddrSSS represents the

provider’s address for the solution, CostS denotes the cost

of the selected services, tRT indicates the total response

time of the selected services, a represents the overall

Fig. 4 The flow chart of the AOA
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availability of the selected services, H signifies whether the

solution meets the requester’s cost requirement, and IDo is

a set of selected service IDs within the solution.

The collection of service selection solutions executed by

the smart contract is represented as

O ¼ o1; o2; . . .; oi; . . .; o Oj j
� �

. Each oi denotes the ith solu-

tion for service selection processed by the smart contract.

Once the service selection solution provider submits the

solution R, the smart contract initiates a sequence of

processing. The processed solution is represented as o.

Definition 14 (Optimal solution) The optimal solution is

represented by OptrR ¼ addrC1; addrC2; . . .; addrf
Ci; . . .; addrCTaskg. Each addrCi denotes the address of the

contract corresponding to chosen service for the ith task in

the final outcome.

Definition 15 (Total cost incurred by the service requester

for invoking services)

Costtotal ¼CostP þ CostSSS þ CostS ð14Þ

Where the cost that needs to be paid by the requester to the

smart contract provider for the provided smart contract is

denoted as CostP, the cost that needs to be paid by the

requester to the optimal service selection solution provider

is represented as CostSSS, and CostS represents the cost of

the selected services.

3.4 Metaheuristic algorithms

Metaheuristic algorithms are a method for searching for the

optimal solution in a specific space in a spontaneous,

efficient, and flexible manner. They are used to tackle

combinatorial optimization problems and typically aim to

find solutions within a given time frame. The core idea of

metaheuristic algorithms is to mimic heuristic processes in

nature, such as biological evolution, simulated annealing,

social behavior, etc., and abstract these processes into a

problem-solving approach. By introducing randomness,

diversity, and fitness evaluation, metaheuristic algorithms

can explore complex search spaces to find solutions that

meet specific objectives. These algorithms have excellent

applications in various fields, providing powerful tools for

solving practical problems. Next, some common algo-

rithms are introduced.

3.4.1 Arithmetic optimization algorithm

The AOA is a novel metaheuristic algorithm proposed by

Abualigah et al. in 2021 [10]. The AOA is characterized by

its fast convergence speed and high precision. The inspi-

ration for this algorithm’s design comes from the concept

of arithmetic operations in the field of mathematics. In the

AOA, multiplication and division operations are used to

enhance the breadth of global search, while addition and

subtraction operations are employed to improve the accu-

racy of local search. This enables the algorithm to effec-

tively iterate through the solution space of the problem in

search of optimized solutions. Each position represents a

solution, and the position is updated after each iteration.

The selection of exploration and exploitation stages is

determined by the mathematical optimizer acceleration

function MOA, and the random number p1 2 ½0; 1�. MOA is

computed according to equation (15):

MOA ¼ Minþ C Iter � Max�Min

M Iter

� �
ð15Þ

where C Iter represents the current iteration number, Min

and Max denote the minimum and maximum values of

MOA, and M Iter is the maximum number of iterations.

Following the suggestion of Abualigah et al., this paper

sets Min and Max to be 0.2 and 0.9, respectively.

When p1gtMOA, AOA switches to the exploration stage.

The following are the updating rules for the positions xi in

the exploration stage:

xi ¼
xbest � ðMOPþ �Þ � ððUB� LBÞ � lþ LBÞ; if p2\0:5

xbest �MOP� ððUB� LBÞ � lþ LBÞ; otherwise

(

ð16Þ

where xbest represents the best position obtained so far, � is

a very small value to prevent division by zero, UB and LB

represent the upper and lower bounds of the positions, l is

a control parameter for adjusting the search process, set to

0.499, and p2 2 ½0; 1� is a random number. MOP is calcu-

lated based on equation (17):

MOP ¼ 1� C Iter1=a

M Iter1=a
ð17Þ

The parameter a is set as 5, representing the sensitivity

factor.

When p1	MOA, AOA enters the exploitation stage.

The following are the updating rules for the positions xi in

the exploitation stage:

xi ¼
xbest �MOP� ððUB� LBÞ � lþ LBÞ; if p3\0:5

xbest þMOP� ððUB� LBÞ � lþ LBÞ; otherwise

(

ð18Þ

where the random number p3 2 ½0; 1�.
The flowchart of the AOA algorithm is shown in Fig. 4.

3.4.2 Differential evolution

The DE is an optimization algorithm that are employed to

tackle a range of intricate issues [11]. In 1995, Rainer Storn
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and Kenneth Price proposed this method. The fundamental

concept behind the DE is to explore the solution space by

imitating the mechanisms of natural selection and mutation

in order to find the most optimal solution. Each solution is

represented as an individual, and the algorithm generates

new individuals by carrying out mutation and crossover

operations.

Fig. 5 Architecture of service

selection based on Ethereum

smart contracts in cloud-edge

environment
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To obtain the mutated individual Yi for each individual

Zi, equation (19) is utilized.

Yi ¼ Za þ FðZb � ZcÞ ð19Þ

The individuals denoted as Za, Zb, and Zc represent the

ath, bth, and cth individuals, respectively. It is important to

note that i, a, b, and c are all distinct from each other. The

mutation factor, denoted as F, has a range of values

between 0 and 1.

To obtain the crossover individual Xi, equation (20) is

used with the original individual Zi and the mutated indi-

vidual Yi as inputs.

XiðjÞ ¼
YiðjÞ; if randð0; 1Þ\W or j ¼ jrandom

ZiðjÞ; otherwise

(

ð20Þ

The variable j is a number of the range [1, dim], where

dim represents the dimension of the problem, which is in

relation to the Task as defined in Definition 3. The value

rand(0, 1) refers to a random number that falls within the

range of [0,1]. The symbol W represents the crossover rate,

which is also within the range of [0,1]. Finally, jrandom
denotes a random integer chosen from the range [1, dim].

3.4.3 Other metaheuristic algorithms

Genetic Algorithm [16]: It is an optimization algorithm that

simulates the natural evolutionary process. It gradually

improves solutions from a population through operations

such as selection, crossover, and mutation, and is widely

used to solve complex problems. The GA possesses good

adaptability and parallel performance, enabling it to find

optimal solutions in solution spaces.

Moth-Flame Optimization (MFO) [28]: The MFO is a

metaheuristic algorithm based on insect behavior, simu-

lating the behavior of moths seeking light sources. By

tracking and adjusting paths, moths search for the optimal

solution. The MFO strikes a balance between local and

global search, enabling rapid localization and convergence

in the search space.

Northern Goshawk Optimization (NGO) [29]: The NGO

is a bio-inspired algorithm inspired by the hunting behavior

of the northern goshawk. By simulating the search strategy

of the goshawk, it optimizes solutions. The NGO possesses

strong search capabilities and adaptability, making it suit-

able for complex optimization problems.

Particle Swarm Optimization (PSO) [30]: It is an opti-

mization algorithm that simulates the behavior of bird

flocks or fish schools. Individuals adjust their positions

based on individual experiences and group information to

search for the optimal solution in the solution space. It is

simple to implement and has a wide range of applicability.

4 Method for service selection based
on blockchain smart contracts in cloud-
edge environment

This section describes an overview of the method pre-

sented, introducing the approach for choosing services

using blockchain smart contracts in the cloud-edge envi-

ronment from three perspectives: the overall structure, the

smart contract algorithm, and the execution process, along

with the DEAO.

4.1 Architecture for service selection based
on blockchain smart contracts in cloud-edge
environment

We propose an architecture for service selection based on

Ethereum smart contracts in the cloud-edge environment,

as shown in Fig. 5. This architecture leverages the Ether-

eum platform, with Ethereum 2.0 adopting a PoS consensus

mechanism. The entire architecture consists of seven

modules, including smart contract provider, Ethereum

network, smart contract, cloud-edge environment, service

provider, service requester, and service selection solution

provider. Below, we introduce the functions of these

modules one by one.

1. Module for smart contract provider. The provider of

the smart contract creates a contract specifically

designed for selecting services in the cloud-edge

environment and then proceeds to deploy it on the

Ethereum network. If a service requester utilizes the

service that was chosen through this particular smart

contract, the provider of the said contract will attain a

profit.

2. Module for Ethereum network. The Ethereum network

functions as a decentralized system, with Ethereum

nodes spread out across numerous servers. These nodes

are connected through a peer-to-peer network and work

together to uphold the complete Ethereum public

blockchain. When users wish to utilize the features of

a smart contract, they must interact with the smart

contract via an Ethereum node’s interface in order to

obtain the desired outcome. In the Ethereum network,

nodes vie for the privilege of recording transactions.

Whenever a smart contract is triggered, the node

authorized to record generates a new block and logs the
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outcome of the execution on the blockchain. This block

is subsequently disseminated to other nodes, which

execute the smart contract and authenticate the data.

Once verified, the block is added to their respective

copies of the blockchain. These data possess properties

of public transparency and immutability, ensuring that

participants, including service requesters, service

providers, and solution providers for service selection,

cannot refute the events that have taken place. This

mechanism guarantees the reliability of the

transactions.

3. Module for smart contract. The smart contract is

applied to service selection in a cloud-edge environ-

ment, with participants including service requesters,

service providers, and solution providers of service

selection. The smart contract assists participants in

completing the process of service selection. All

pertinent transactions are documented on the Ethereum

blockchain and can be accessed through it.

4. Module for cloud-edge environment. There are multi-

ple cloud servers and edge servers, which are inter-

connected and capable of data transmission. Services

are distributed across the network of cloud and edge

servers. The connection information between edge

servers and cloud servers is known to the service

selection solution providers.

5. Module for service provider. Service providers can

offer multiple services. When a service provider’s

service is selected by the best solution and the service

requester adopts that solution, the service provider

receives revenue.

6. Module for service requester. The service requesters

aim to fulfill a set of tasks by obtaining a group of

services that meet both functional requirements and

optimal QoS. The requesters submit requests, receive

the optimal services, and pay the corresponding fees.

7. Module for service selection solution provider. In

service selection, multiple service selection solutions

may be obtained. The necessary data for this process is

accessed via the smart contract on the blockchain.

Once the selection process is finished, the best service

selection solution is made public through the smart

contract on the blockchain. Multiple service selection

solution providers compete for the best solution. This

mechanism incentivizes service selection solution

providers to adopt more efficient service selection

algorithms, ultimately enabling them to choose higher-

quality services for service requesters.

Next, we introduce the interaction between the smart

contract provider, service providers, service requesters,

service selection solution providers, and the smart contract.

1. Smart contract provider writes and deploys the smart

contract for service selection in a cloud-edge

environment.

2. Service providers submit information about their

services by triggering a function in the smart

contract.

3. Service selection solution providers submit the

names of their service selection solutions through

the smart contract, allowing service requesters to

query the maximum number of possible service

selection solutions.

4. Service requesters retrieve the number of service

selection solutions and publish service requests

through the smart contract.

5. Based on the requests from service requesters,

service selection solution providers determine ser-

vice selection solutions and submit them through the

smart contract.

6. Service selection solution providers view the service

request and extract information on corresponding

candidate services through the smart contract, deter-

mine the service selection solution, and submit the

solution via the smart contract.

7. When the number of service selection solutions

meets the requirements or exceeds the time limit, the

service requester that is currently issuing the request

obtains the contract address of the best services

through the smart contract for the use of the specific

services.

8. If service requesters decide to use the selected

services, they pay for the service usage and selection

fees via the smart contract.

9. The provider offering the optimal service selection

solution receives the transfer from the smart contract.

10. The providers of the selected services in the best

solution receive the transfer from the smart contract.

4.2 Algorithm and process for service selection
based on blockchain smart contracts
in cloud-edge environment

Using the aforementioned architecture as a basis, we design

a smart contract that aids users in their pursuit of service

selection within the cloud-edge environment. The smart

contract is elucidated through Algorithm 1.
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Algorithm 1 Service selection based on smart contracts in cloud-edge environment

The service provider sp adds services and their corre-

sponding IDs to sets S and ID by calling the smart contract

function AddServ (lines 1-4). The service selection solution

provider sssp adds the name of the service selection solu-

tion n by calling function SolutionName (lines 5-7).

Therefore, the service requester U can view the existing

number of solutions. U, by calling Demand, adds the

number of tasks Task, the structure of task composition M,

the highest acceptable cost C, the minimum number of

solutions NO, and the maximum waiting time for solutions

tlimit (line 8), and then adds all tasks to the set K by calling

FuncDemand (lines 9-11). The service selection solution

provider sssp reviews A and candidate services. After

obtaining a solution, it submits R through Solution, which

is then processed and added to the collection O (lines 12-

20), described by Algorithm 2. Until Oj j is no less than NO,

or tactual is greater than tlimit, OptimalSolution is automati-

cally called to record the optimal selection OptrR (lines 21-

Input: CS: a collection of candidate service selection solutions
S: a collection of services
A: a service request
R: a collection of service selection solutions

Output: the optimal service selection solution OptrR
1: for each spi ∈ SP do
2: S ← S ∪ AddServ(SAddrS

i , SAddrC
i , SB

i , SFs
i , SQ

i ). Si

3: ID ← ID ∪ AddServ(SAddrS
i , SAddrC

i , SB
i , SFs

i , SQ
i ).IDsp

i

4: end for
5: for each ssspi ∈ SSSP do
6: CS ← CS ∪ SolutionName(ni)
7: end for
8: Task, M, C, NO, tlimit ← Demand(ATask, AM , AC , ANO , Atlimit)
9: for i = 1 : Task do

10: K ← K ∪ FuncDemand(ki)
11: end for
12: for each ssspUi ∈ SSSPU do
13: for j ← 1 do
14: O ← O ∪ Solution(j, Rr

j , R
del
j )

15: j ← j + 1
16: if j == Task + 1 then
17: break
18: end if
19: end for
20: end for
21: if |O| ≥ NO || tactual>tlimit then
22: OptrR ← OptrR ∪ OptimalSolution(i) //The ith solution is the best solution
23: U =⇒ Costtotal, Costtotal is calculated based on equation (14)
24: for i ← 1 do
25: AddrS ⇐= Cost
26: i ← i + 1
27: if i == Task + 1 then
28: break
29: end if
30: end for
31: AddrSSS ⇐= CostSSS

32: end if
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22). After requester U reviews OptrR, if he chooses to use

the selected services, he transfers Costtotal to the smart

contract (line 23). Subsequently, the smart contract trans-

fers the cost Cost to the respective addresses AddrS of the

selected service providers (lines 24-30). Additionally,

based on the negotiated cost CostSSS, the smart contract

transfers funds to the provider AddrSSS of the selected

solution (line 31).

The functions involved in Algorithm 1 are shown in

Table 2.

Algorithm 2 describes the function Solution. Based on

the input values j and r, the unique ID id of the service is

identified (line 1). The total cost CostS of the selected

services is calculated according to formulas (2), (3), and

(4), and the total response time tRT is computed based on

del and formulas (5), (6), and (7). The availability a of the

services is determined using formulas (8), (9), and (10)

(lines 2–4). If the task is the last one, and the total cost

CostS of the selected services is less than the maximum

acceptable cost C for the requester, the solution meets the

requester’s requirements; otherwise, it does not (lines 5–9).

Table 2 Functions
Function name Function description

AddServ input:sAddrS; sAddrC; sB; sFs ; sQ

procedure:ID ID [ id, S S [ s, ArrayCost  ArrayCost [ Q:Cost, ArrayT

 ArrayT [ Q:T , ArrayAv  ArrayAv [ Q:Av (to facilitate the reading of QoS

for service selection solution providers, ArrayCost , ArrayT , and ArrayAv are saved)

SolutionName input:n

procedure:NC  NC [ n

Demand input:ATask, AM , AC , ANO , Atlimit

procedure:Task Task, M  M, C  C, NO  NO, tlimit  tlimit

FuncDemand input:Ak

procedure:K  K [ k

Solution refer to Algorithm 2

OptimalSolution input:i

procedure:OptrR OptrR [ addrC1 [ addrC2 [ . . . [ addrCTask

Fig. 6 Execution process of smart contract provider

Fig. 7 Execution process of service provider
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Algorithm 2 Solution

Input: j: identification of the task
r: service selected for the jth task
del: time for data transmission between the server hosting the service and the
server hosting the preceding service

1: id ← ID(j, r)
2: calculate CostS based on formulas (2), (3), and (4)
3: compute tRT based on formulas (5), (6), and (7)
4: determine a based on formulas (8), (9), and (10)
5: if j == Task&&CostS ≤ C then
6: H ←true
7: else
8: H ←false
9: end if

10: record solution o

We respectively introduce the processes for smart con-

tract provider, service provider, service requester, and

solution provider of service selection.

1. The execution process for the smart contract provider

is illustrated in Fig. 6. The smart contract written by

provider P needs to be compiled into blockchain-

executable bytecode. Once the smart contract provider

submits the transaction to deploy the contract, along

with a digital signature, the transaction is placed in the

pending transaction pool. Assuming node N1 emerges

victorious in the competition for the right to record

transactions and is willing to process the transaction.

After verifying the legality of the signature and the

transaction, if everything is in order, it adds a new

block containing the transaction for deploying the

smart contract to its blockchain. Subsequently, it

transmits the block to neighboring nodes N1;1 and

N1;2. N1;1 and N1;2, after successful verification,

similarly store and forward it to other nodes until all

nodes synchronize this contract.

2. Fig. 7 illustrates the execution process for the service

provider. After nodes synchronize the smart contract,

the service provider sp submits a service s by invoking

function AddServ of the smart contract, accompanied

by a signature. Assuming node N2 wins the right to the

ledger and verifies and stores the transaction in its

blockchain replica. The node broadcasts this transac-

tion to other nodes, and eventually, the transaction is

saved by all nodes in their blockchain replicas. If a

service requester utilizes the service of sp, the smart

contract distributes ether to sp. The transfer transaction

is assumed to be initially recorded in the blockchain by

the N3 node that obtained the right to the ledger.

Finally, all nodes record this transaction.

3. The execution process for the service requester is

depicted in Fig. 8. After nodes synchronize the smart

contract, the service requester U invokes function

Demand of the smart contract to submit Task, M, C,

NO, and tlimit, along with a digital signature. Assuming

the digital signature is valid, the transaction is

presumed to be verified and packaged onto the

blockchain by the N4 node that wins the right to the

ledger. Eventually, the transaction is broadcast and

synchronized across the entire network. Subsequently,

U, carrying a signature, publishes K by invoking

FuncDemand. Assuming the node N5, which obtained

the right to the ledger, verifies the transaction, and

packages it onto the blockchain, other nodes verify and

update the data. Then, the service selection solution

providers can examine all the information uploaded by

Fig. 8 Execution process of service requester
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the requester. If the requester decides to use the

services selected in the optimal solution, a transfer is

made to the smart contract. This transaction is verified,

packaged, and added to the blockchain replica by node

N6 which possesses the right to the ledger. It is then

propagated to other nodes. Eventually, the transaction

is broadcast and synchronized across the entire

network.

4. Fig. 9 illustrates the execution process of the service

selection solution provider. After nodes synchronize

with the smart contract, the service selection solution

provider sssp carries a signature and calls the Solu-

tionName of the smart contract to publish the name n of

the solution. Assuming the transaction is verified

without errors, this solution is presumed to be pack-

aged onto the blockchain by N7, which has obtained the

right to be recorded, and it is then verified and

synchronized across the entire network. After the

service requester publishes a request, sssp extracts

relevant information for service selection and determi-

nes the optimal solution R. sssp then submits R by

calling the Solution function of the smart contract.

Assuming node N8 possesses the right to record, N8

verifies and stores the transaction in the blockchain

replica, while other nodes validate and update data. If

the service requester adopts this solution, sssp receives

a transfer from the smart contract. The transaction is

presumed to be packaged onto the blockchain by node

N9, assumed to have acquired the right to record, and is

then verified and synchronized across the entire

network.

4.3 Differential evolution arithmetic
optimization algorithm

TheAOApossesses a faster convergence speed and effective

global search capability. The algorithm demonstrates good

computational performance and is adept at achieving high-

quality solutions. However, the algorithm suffers from the

drawback of premature convergence, which may be attrib-

uted to its limited exploration capability [31, 32]. The

operations of mutation and crossover in the DE can improve

the problem of premature convergence, whose effectiveness

has been proven in other studies. Yan et al. applied the DE to

enhance the MFO, addressing the early convergence and

local optima issues of multi-objective models [5]. Debnath

et al. hybridized the Dragonfly Algorithm with the DE,

increasing the probability of obtaining globally optimal

solutions [33]. Tang et al. suggested integrating the PSOwith

theDE to evolve the individual optimal positions of particles,

avoiding stagnation issues [34]. Additionally, there has been

no study introducing the crossover and mutation operations

of the DE into the AOA. Therefore, we propose the DEAO

algorithm, which combines the crossover and mutation

operations of the DE with the AOA. Algorithm 3 explains

this approach.

Each individual’s position in Algorithm 3 represents a

service selection solution. Altering the dimensions of the

position vector allows individuals to explore solutions in

different dimensional spaces. The number of tasks Task in

the service selection problem is represented by the dimen-

sions of the position vector in Algorithm 3. The service

selection solution r1; r2; . . .; rTaskf g submitted by the service
Fig. 9 Execution process of service selection solution provider

Table 3 Configuration of

Ethereum nodes
Configuration Node 1 Node 2 Node 3–5 Node 6–8

Processor AMD Ryzen Inter core Intel Core Intel Core

7 5800 H i5-10400F i7-7700HQ i9-9900K

3.20GHz 2.90GHz 2.80GHz 3.60GHz

Internal memory 16 GB 16 GB 8 GB 32 GB

Operating system Windows 10 Windows 11 Windows 10 Windows 10

Home Professional Enterprise Enterprise

IP address 192.168.1.106 192.168.1.112 192.168.1.113–115 192.168.1.101–103

Geth v1.10.25 v1.10.25 v1.11.5 v1.11.5
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selection solution provider is represented as xbest. If the

candidate service IDs start from 1, then LB is 1. The number

of candidate services corresponding to each task is denoted

as UB. The utility value of the selected services in the solu-

tion, calculated according to formula (13), serve as the fit-

ness for each individual. A higher fitness indicates a better

position for the individual in the solution space.

In each iteration of the algorithm, individuals update

their positions through arithmetic operations (lines 11-20).

Following this, for each individual, three individuals are

randomly selected excluding the individual itself. Then,

mutation operation is performed on the selected individual

according to formula (19) to obtain mutated individual

(line 22). Subsequently, crossed individual is obtained

according to formula (20) (line 23). Then, individuals are

updated to the better position between the original position

and the position after crossover (lines 25-27). Finally, the

best fitness position obtained after a certain number of

iterations is considered the optimal solution (line 28).

Input: Task: number of tasks
M : structure composition of tasks
SA = {s1, s2, ..., sk}: candidate services

Output: optimal solution OptrR
1: Initialize UB, LB, M Iter, and the number of individuals Nd

2: Initialize Min, Max, ε, μ, and α
3: Randomly initialize the positions of Nd individuals
4: for iteration ← 1 do
5: if iteration==1 then
6: Calculate the fitness of all individuals based on formula (13)
7: Select xbest as the current best solution
8: end if
9: Update MOA according to equation (15)

10: Update MOP based on equation (17)
11: for i=1:Nd do
12: p1 ← Rand(0, 1)
13: if p1 > MOA then
14: p2 ← Rand(0, 1)
15: Individual Zi is updated according to equation (16)
16: else
17: p3 ← Rand(0, 1)
18: Individual Zi is updated based on equation (18)
19: end if
20: end for
21: for i=1:Nd do
22: Individual Zi undergoes mutation according to formula (19), generating

mutated individual Yi

23: Yi undergoes crossover according to formula (20), resulting in the crossed
individual Xi

24: end for
25: Merge the individuals and the crossed individuals
26: Sort the merged fitness values
27: Take the top Nd positions in terms of fitness ranking from the merged positions

as the new positions for the individuals
28: Select xbest as the current best solution
29: iteration ← iteration+1
30: end for
31: return xbest

Algorithm 3 Solution
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5 Experimental results and discussion

We employ two different methods to address the service

selection problem: one is the traditional approach, and the

other is our proposed blockchain-based approach. The

traditional approach utilizes the programming language

Golang [35], with the selected integrated development

environment being Goland [36]. We choose Ethereum as

the foundation to validate the effectiveness of our proposed

blockchain-based method. We implement our smart con-

tract in the Remix integrated development environment

[37] using the Solidity language [38] and deploy it on the

local Ethereum blockchain. To interact with this smart

contract, we use the Geth client [39]. We configure 8

Ethereum nodes in our local blockchain, with specific

configuration details outlined in Table 3. Additionally, the

algorithms for service selection employed in both approa-

ches are executed using Golang.

5.1 Experimental settings

We assume there is a service requester needing to complete

a set of tasks. The requester has two options: submitting the

request traditionally or issuing the request through a smart

contract. For each task, there are multiple candidate ser-

vices available for selection. Once the optimal service

selection solution is determined, the service requester can

adopt that solution.

To assess the suggested approach, this research paper

utilizes two collections of data. The first set, comprising

datasets 1–3, consists of three datasets with 15, 75, and 120

candidate services for each task, and each dataset contains

10 tasks. The second set includes datasets 4–6, with three

datasets having 5, 15, and 30 tasks for each, and each task

has 75 candidate services. The QoS of services in each

dataset takes into consideration cost Cost, response time

RT, and availability Av, where RT and Av are derived from

the Quality of Web Service (QWS) dataset [40]. The QWS

comes from the paper by Al-Masri and Mahmoud in 2007,

with its 2.0 version having QoS data for 2507 real web

services. The response time ranges from 8 to 4637 ms, and

the availability ranges from 12 to 100%. Additionally,

randomly generate Cost within the range [10, 130]. Based

on the response time and availability of the QWS, along

with randomly generated cost, we create virtual services.

These services are randomly deployed across 2 cloud ser-

vers and 4 edge servers. The data transfer times are 1-3ms

between interconnected edge servers, 20-50ms between

cloud servers, and 10–50 ms between cloud and edge

servers.

5.2 Performance evaluation

In terms of computational complexity, Table 4 documents

the gas [41] costs when users invoke functions in the smart

contract. In Ethereum, gas is a unit of measurement used to

quantify the computational resources and resource con-

sumption required for operations on the network. Trans-

action cost refers to the amount of gas needed to execute a

transaction, and execution cost refers to the amount of gas

required to run a smart contract on the Ethereum network.

In Table 4, we observe that the functions AddServ and

Solution incur higher gas costs in both transaction and

execution. This is because the AddServ function involves

storing a larger number of variables related to the service

information, and each of the QoS attributes needs to be

stored separately to facilitate retrieval by service selection

solution providers. Additionally, the Solution function

requires calculating the total cost, total response time, and

total availability of the selected services. Compared to

other functions, these two functions have a higher com-

plexity, leading to higher gas costs.

In the aspect of information tampering prevention, we

conduct experiments at different time points, t1, and t2,

comparing the performance of service selection using the

traditional method and the blockchain-based method. The

experiment uses dataset 1 and employs the proposed

DEAO for service selection. The results of the experiment

are shown in Table 5. In the traditional method, the DEAO

offers the optimal solution at moments t1 and t2. It is

noteworthy that, although the maximum utility values of

the services selected by the DEAO at t2 are greater than

those at t1, the actual utility values of the selected services

at t2 are less than those at t1. This is because, between t1
and t2, information regarding the prices, response time, and

availability of certain services has been tampered with.

Consequently, the first, fifth, and seventh services selected

in the optimal solution at t2 are tampered services. Service

Fig. 10 Response time in different environments
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requesters are not utilizing the optimal services when using

the services. However, our blockchain-based approach

leverages the tamper-resistant characteristics of block-

chain, yielding significantly different results. When using

the blockchain-based method, the DEAO also provides

optimal solutions at moments t1 and t2. It is noteworthy that

the maximum utility value at t1 is equal to the maximum

utility value at t2. More importantly, the actual utility

values align perfectly with the results provided by the

DEAO. This indicates that no information tampering

occurred between moments t1 and t2. Therefore, the service

requester uses the optimal services when utilizing the

selected services.

In the context of environments, we conducted experi-

ments in two scenarios, cloud environment, and cloud-edge

environment, comparing the response time of selected

services in 6 datasets. The experiment employed the pro-

posed DEAO for service selection. Figure 10 illustrates the

response time of selected services in both cloud and cloud-

edge environments across the 6 datasets. It is evident that,

in each dataset, the response time of selected services in the

cloud-edge environment is consistently lower than those in

the cloud environment. This is because edge computing

shifts computational capabilities from the cloud to edge

servers, thereby reducing service response time.

In the aspect of service selection algorithms, we com-

pare the proposed DEAO with the widely used GA, MFO,

PSO, and the newer AOA, NGO.

Firstly, we evaluate the performance of the algorithms,

focusing on diversity, convergence, and comprehensive

index. We use metrics such as Spacing [42], Generational

Distance (GD) [43], and Inverse Generational Distance

(IGD) [44] to objectively assess the algorithms’ perfor-

mance in different aspects.

Spacing is a metric used to quantify the diversity of

solutions by examining the distribution of solutions

generated by an algorithm in the solution space. A smaller

Spacing value indicates a better distribution of the solution

set. The formula for calculating Spacing is as follows:

Spacing ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

i¼1

ðd1;i � �d1Þ2

m� 1

s

ð21Þ

where m represents the number of solutions within the set

addressed by the algorithm, d1;i represents the Manhattan

distance between the ith solution and its nearest neighbor,

and �d1 is the mean of all d1;i distances.

The GD is a metric used to measure the dissimilarity

between the solution set generated by an algorithm and the

true Pareto front. Generally, the lower the GD value, the

better the convergence performance of the algorithm. The

following is the formula for calculating the GD:

GD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1 d

2
2;i

q

m
ð22Þ

where d2;i represents the Euclidean distance between the ith

generated solution and the nearest solution on the true

Pareto front.

The IGD assesses the performance of an algorithm by

measuring the average distance from each solution on the

true Pareto front to the generated solutions. It simultane-

ously gauges the convergence and diversity of the solution

set, with the lower IGD value indicating superior conver-

gence and diversity. The following is the formula for cal-

culating the IGD:

IGD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP Pj j
i¼1 d

2
3;i

q

Pj j
ð23Þ

where P represents the true Pareto front, and d3;i is the

Euclidean distance between the ith solution on the true

Pareto front and the nearest generated solution.

Table 4 Gas cost of users

calling different functions
Gas consumption AddServ SolutionName Demand FuncDemand Solution

Transaction cost/gas 334248 50374 28962 45435 206911

Execution cost/gas 311788 28878 7478 23763 185439

Table 5 Service selection of traditional and blockchain-based methods at times t1 and t2

Method Time Optimal solution Maximum utility value obtained Actual utility value

Traditional t1 [6, 9, 10, 3, 8, 7, 7, 10, 1, 11] 0.84 0.84

t2 ½0½1�; 9; 0; 3; 5½1�; 7; 3½1�; 10; 1; 11� 0.86 0.76

Blockchain-based t1 [6, 9, 10, 3, 8, 7, 7, 10, 1, 11] 0.84 0.84

t2 [6, 9, 10, 3, 8, 7, 7, 10, 1, 11] 0.84 0.84

[1]When using the traditional method, services with tampered Cost, RT, and Av between t1 and t2: the candidate services with ID 0 in task 1, ID 5

in task 5, and ID 3 in task 7
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We take the Pareto solution sets obtained by the men-

tioned six algorithms on six datasets as the generated

solutions. The results of the evaluations are as follows:

The SP, GD, and IGD of the algorithm are shown in

Figs. 11, 12, and 13, respectively, on different datasets.

From the graph 11, it can be observed that the DEAO has a

relatively lower Spacing compared to the other five algo-

rithms, indicating its superior solution distribution. How-

ever, the performance of the PSO’s Spacing is lower than

that of the DEAO in multiple datasets, and when the

dataset is large, the AOA’s Spacing is prone to be lower

than that of the DEAO. Therefore, in terms of solution

distribution, the PSO outperforms the DEAO, and the AOA

surpasses the DEAO for larger datasets. This may be

because the mutation and crossover operations of the

DEAO sacrifice some distribution for the sake of enhancing

its convergence. Furthermore, Figs. 12 and 13 indicate that

the GD and IGD of the DEAO are lower than those of the

AOA, GA, MFO, NGO, and PSO across all datasets.

Therefore, the DEAO exhibits better convergence and

overall performance. This suggests that the improvements

made to the AOA have effectively enhanced the quality of

solutions.

Finally, Fig. 14 illustrates the relationship between the

utility values of selected services and the number of itera-

tions for different algorithms across the six datasets. The

utility values of services selected by the DEAO are consis-

tently greater than those of the AOA, GA, MFO, NGO, and

PSO. Specifically, across the six distinct datasets, the DEAO

outperforms the AOA. This advantage stems from the

introduction of mutation and crossover operations in the

DEAO, enhancing the algorithm’s search capabilities and

effectively preventing premature convergence to local

optima, thereby aiding in the discovery of superior solutions.

6 Conclusion

This paper proposes a service selection method based on

blockchain smart contracts in the cloud-edge environment

to address the challenge of information tampering faced by

traditional service selection in the current cloud-edge

environment. This method leverages blockchain technol-

ogy to ensure a high level of transparency and tamper

resistance to information of services. Specifically, the

method makes it extremely difficult and costly for partic-

ipants or attackers to tamper with transaction data, making

it nearly impossible to achieve. This ensures the reliability

of service selection in the cloud-edge environment. This

provides participants with a trustworthy environment for

service selection. The paper provides a detailed introduc-

tion to the algorithm of smart contracts, elucidating the

Fig. 11 Statistical results of the spacing of algorithms in different

datasets

Fig. 12 Statistical results of the GD of algorithms in different datasets

Fig. 13 Statistical results of the IGD of algorithms in different

datasets

Cluster Computing

123



execution process for different users. To address the issue

of local optimization caused by premature convergence,

this method incorporates the mutation and crossover

operations of the Differential Evolution into the Arithmetic

Optimization Algorithm, creating a more exploratory Dif-

ferential Evolution Arithmetic Optimization Algorithm. In

addition, this paper assesses the computational complexity

of the designed smart contract. Different methods are used

in experiments to calculate the utility values of services,

and the results show that, compared to traditional methods,

the proposed approach effectively prevents information

tampering with services. The convergence and overall

performance of the proposed service selection algorithm

surpass those of the Arithmetic Optimization Algorithm,

Genetic Algorithm, Moth-Flame Optimization, Northern

Goshawk Optimization, and Particle Swarm Optimization.

Fig. 14 Utility value and iterations
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Moreover, the utility values obtained by the proposed

algorithm are higher than those achieved by these

algorithms.

In the future, the author will consider the practical imple-

mentation in real-world scenarios within the Internet of Things

or smart city applications. The focus will be on applying the

proposed method in the Internet of Things or smart city to

validate its feasibility and practical effectiveness.
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