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Abstract
Metaheuristic algorithms have wide applicability, particularly in wireless sensor networks (WSNs), due to their superior

skill in solving and optimizing many issues in different domains. However, WSNs suffer from several issues, such as

deployment, localization, sink node placement, energy efficiency, and clustering. Unfortunately, these issues negatively

affect the already limited energy of the WSNs; therefore, the need to employ metaheuristic algorithms is inevitable to

alleviate the harm imposed by these issues on the lifespan and performance of the network. Some associated issues

regarding WSNs are modelled as single and multi-objective optimization issues. Single-objective issues have one optimal

solution, and the other has multiple desirable solutions that compete, the so-called non-dominated solutions. Several

optimization strategies based on metaheuristic algorithms are available to address various types of optimization concerns

relating to WSN deployment, localization, sink node placement, energy efficiency, and clustering. This review reports and

discusses the literature research on single and multi-objective metaheuristics and their evaluation criteria, WSN archi-

tectures and definitions, and applications of metaheuristics in WSN deployment, localization, sink node placement, energy

efficiency, and clustering. It also proposes definitions for these terms and reports on some ongoing difficulties linked to

these topics. Furthermore, this review outlines the open issues, challenge paths, and future trends that can be applied to

metaheuristic algorithms (single and multi-objective) and WSN difficulties, as well as the significant efforts that are

necessary to improve WSN efficiency.
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1 Introduction

Wireless sensor networks (WSNs) are found in different

areas of our lives, including medicine, engineering,

industry, monitoring, and military purposes [1, 2]. WSNs

have many challenges that must be addressed to improve

the network’s overall performance. These challenges

include deployment, localization, placement of sink nodes,

energy efficiency, and clustering. Deployment describes

how to position sensor nodes in optimal locations to

achieve a high percentage of area coverage rate [3];

Localization describes how to obtain the unknown posi-

tions of nonanchor nodes without using the global posi-

tioning system (GPS), achieving a low percentage of

squared and localization errors [4]; Sink node placement

describes how to better allocate the single or multiple sink

nodes in the service area to reinforce the overall efficiency

of the network regarding energy [5]; energy efficiency

describes how to better use the limited power resources of

sensor nodes to prolong the network lifespan [6]; and

clustering describes how to divide the sensor nodes of the

network into subparts and then assign a cluster head to each

part to organize the routing mechanism and maintain the

power usage of the entire network [7, 8].

The WSN challenges can be formulated as optimization

challenges and solved using various metaheuristic algo-

rithms. metaheuristic algorithms are the most common

techniques used to address these challenges depending on

their intelligent search mechanisms [9]. metaheuristic

algorithms are classified into two main approaches in the
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literature as follows: single-objective approaches (SO) [10]

to deal with SO optimization problems and multi-objective

approaches (MO) [11] to deal with MO optimization

issues. Basically, metaheuristic algorithms are search

algorithms to obtain the optimum solution to a given

optimization issue. They extract their intelligent inspiration

from nature and are found in different types [12, 13].

Various metaheuristic solutions are available to meet the

numerous natures of optimization challenges related to

WSN deployment, localization, sink node placement,

energy efficiency, and clustering. Therefore, researchers

must examine the current literature to determine the

direction of the research society regarding the WSN

methodologies used, the simulation tools used, and the

pop-up searches of different geographical areas and diverse

engineering fields. Additionally, the researchers proposed a

broad problem with resource allocation in the WSN, which

includes varied inputs and outputs, objectives, and limita-

tions. The table of limitations will also provide a general

overview of the numerous limitations considered when

constructing the optimization model in WSNs. Taking into

account the comprehensive overview of recent meta-

heuristic algorithms, this will help pave the way for

research on optimization for WSNs [14]. Most of the

articles that will be mentioned, discussed, and visualized in

this review, whether in the metaheuristic solution scope or

their applications in WSNs, have been picked up from very

recent publications in the core of the field as a result of a

Scopus search and based on our previous readings and

experience in the point. The main contributions of this

paper are organized as follows:

• Providing an overview of metaheuristic algorithms

found in the literature, including the SO and MO

approaches, as well as their evaluation criteria and

applications in WSN challenges.

• Introducing a description of the WSN definition,

categories, and architecture.

• Defining WSN challenges, including deployment,

localization, placement of sink nodes, energy effi-

ciency, and clustering.

• Providing a large list of recent studies related to

metaheuristic algorithms and their applications in

addressing WSN challenges including deployment,

localization, sink node placement, energy efficiency,

and clustering.

• Open issues, challenges and possible future research

trends are also presented to illustrate the types of

research issues related to metaheuristic algorithms and

WSN challenges that need to be solved and given

attention.

The rest of this paper is structured as follows: Sect. 2 will

comprehensively cover the metaheuristic algorithms and

their classifications. Section 3 will cover the definition and

architecture of WSNs. Next, Sect. 4 will discuss the

applications of metaheuristic algorithms in WSNs. Sec-

tion 5 will cover open issues and challenges. Finally, the

research review is concluded in Sect. 6.

2 Metaheuristic algorithms (MAs)

The concept of metaheuristic strategy involves applying

various optimization techniques to develop, locate, or

choose the optimal solution to an optimization issue, par-

ticularly when there is poor or partial information or lim-

ited computing capability. Specifically, metaheuristic

algorithm employs metaheuristic algorithms to solve SO

and MO optimization issues. Optimization is everywhere,

be it engineering design or industrial design, business

planning, etc. [15, 16]. Therefore, making the most of these

resources is essential because time and money are always

limited. Generally, metaheuristic algorithms are found in

the literature in various categories, including bio-inspired

algorithms [17], math-inspired algorithms [18], swarm-

based algorithms [19], nature-inspired algorithms [20],

biogeographic-stimulated algorithms [21], evolutionary

algorithms [22], physics-based algorithms [23], human-

base algorithms [24], and chemistry-based algorithms [25].

Under diverse and complex restrictions, most advances in

the real world are non-linear and extremely multimodal.

Several goals are often at odds. Even for a single goal,

there may be no perfect solution. Generally, obtaining a

flawless or even sub-optimal solution is difficult to

undertake. metaheuristic algorithms, particularly in nature,

emulate nature to clarify optimization problems. Therefore,

to tackle realistic optimization issues, performance opti-

mization techniques should be used; however, there is no

guarantee that the best solution will be discovered, but they

can at their best reach the sub-optimal one efficiently with

respect to time and computer resources. In addition, new

algorithms have been presented to investigate whether they

can dominate these complex optimization issues. Based on

the preceding considerations, the subsections that follow

attempt to categorize the extant algorithms into two major

categories: SO and MO metaheuristic algorithms [26].

2.1 Single-objective metaheuristic algorithms

The literature has many proposed SO metaheuristic algo-

rithms, such as the neural network algorithm (NNA), which

is inspired by biological nervous systems integrated with

artificial neural networks to address various optimization

issues. The proposed NNA was validated at Congress on

Evolutionary Computation (CEC) 2015 and many engi-

neering design issues, including pressure vessel design,
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welded beam design, speed reducer design, three-bar truss

design, and gear train design. The experimental results

demonstrated the super capacity of NNA compared to other

competitors [27]. Similarly, the artificial electric field

algorithm (AEFA) is inspired by Coulomb’s law of elec-

trostatic force to address various and complex optimization

issues. The proposed AEFA is validated on 15 functions

from CEC 2015 to test its applicability. The findings

indicate that the suggested AEFA can outsmart meta-

heuristic techniques in the comparison of nonlinear opti-

mization [28].

The seagull optimization algorithm (SOA) is suggested

based on the combination of emigration and attacking

procedures of seagulls in the wild. These procedures are

theoretically defined and applied to encourage diversifica-

tion and intensification within a specified search space.

According to 44 benchmark routines from CEC 2005 and

2015, the efficacy of the SOA is compared with that of 9

familiar metaheuristics. Notably, the computational cost

and convergence properties of the suggested algorithm

have been investigated. Therefore, to demonstrate its use-

fulness, it is then used to address seven limited real-world

manufacturing issues, including optical buffer design,

pressure vessel design, speed reducer design, welded beam

design, tension / compression spring design, 25 bar truss

design and rolling element bearing design. The experi-

mental findings indicate that the suggested method can

solve restricted, complex problems on a large scale and is

highly competitive compared to existing metaheuristic

techniques [29]. Similarly, artificial ecosystem-based

optimization (AEO) is a recent population-based optimizer

based on the energy flow in an ecosystem on the earth

according to the simulation of three procedures of alive

organisms, including generation, exhaustion, and putre-

faction. AEO is put through its paces on 31 benchmark

routines from CEC 2014, and also eight real-world engi-

neering design issues, including a three-bar truss, can-

tilever beam, tension/compression spring, pressure vessel,

welded beam, speed reducer, rolling element bearing, and

multiple disk clutch brake designs. Overall, the compar-

isons show that AEO’s optimization performance beats that

of other cutting-edge competitors. Furthermore, in terms of

the convergence rate and the complexional effort, AEO

outperforms other documented approaches, particularly for

real-world engineering issues [30].

The artificial gorilla troops optimizer (GTO) is a con-

temporary metaheuristic model that considers inspiration

from the social intelligence of gorilla troops in the wild.

Diversification and intensification, also known as opti-

mization procedures based on gorilla behavior, are per-

formed by the algorithm using five unique operators. The

model was mathematically modeled, implemented, and

tested on 52 benchmark routines from CEC 2017.

Furthermore, to test its applicability, it is used to address

seven engineering issues, including frequency-modulated

sound wave parameter estimation, circular antenna array

design, spread spectrum radar polyphase code design,

Cassini 2: spacecraft trajectory optimization, messenger:

spacecraft trajectory optimization, Lennard–Jones (LJ)

potential, and static economic load dispatch (ELD). The

results indicate that the GTO surpass comparable models

on most benchmark routines, notably on high-dimensional

issues. The results show that the GTO outperforms other

metaheuristics in terms of performance [31]. Furthermore,

the orca predation algorithm (OPA) is a modern stochastic

metaheuristic model that mimics the attitude of a smart

carnivorous predatory dolphin known as orcas, with a high

level of social interaction. Orcas, such as wolves, hunt with

troops and have their hunting techniques. Instead of surg-

ing and gulping several fish, they employ their sonar to

interact with each other and organize their strategies when

they come across a swarm of fish. Members of the troop

work together to herd a large group of fish to the surface

and surround them in a controllable ball. Then, each takes

turns blowing bubbles, flashing their white stomachs, and

whipping their tails against the ball, shocking or killing the

fish. The orca beats the edge of the shoal with its tail to

collect food after the shoal is under control [32]. Therefore,

to assess the performance of OPA, 67 non-constrained

benchmark routines from CEC 2015 were used, followed

by an evaluation of the algorithm’s efficiency on five

constrained engineering optimization issues, including

welded beam, pressure vessel, speed reducer, tension /

compression spring and three-bar truss designs. The test

results show that OPA can produce more promising results

with greater performance compared to other test models in

various search landscapes [33].

The hunger games search (HGS) is presented in [34]

with a clear structure, remarkable stability properties, and

an extremely competitive ability to address limited and

unconstrained issues more effectively. The HGS suggested

is based on animal hunger-driven actions and behavioral

preferences. This dynamic, fitness-based search method is

based on the clear approach of ‘‘hunger’’ as the most

important homeostatic motivation and reason for all ani-

mals’ behaviors, decisions, and actions to make the opti-

mization procedure more understandable and consistent for

new users and decision-makers. The efficacy of HGS was

demonstrated by comparing it with a complete selection of

popular and sophisticated algorithms on 23 optimization

routines from the CEC 2014 benchmark suite. Addition-

ally, to illustrate the usefulness of the HGS, it was applied

to many engineering issues, including the welded beam

design, the i-beam design, and the multiple disk clutch

brake. The experimental findings demonstrate that the

method is adaptable and scalable, allowing it to be adapted
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to fit more optimization instances in both the architectural

and application dimensions. Moreover, the mayfly algo-

rithm (MA) is proposed to address optimization difficulties.

The suggested method, which is based on the flight

behavior and mating procedure of mayflies, combines the

major benefits of swarm intelligence and evolutionary

algorithms. Therefore, to assess the performance of the

suggested approach, 38 mathematical test routines were

used, including 13 test routines from the CEC 2017

benchmark suite, and the results were compared with those

of seven popular and robust metaheuristic algorithms. The

MA’s performance is also evaluated using MO optimiza-

tion convergence behavior and a real-world discrete flow-

shop scheduling issue. The comparison findings show that

the proposed strategy is superior in terms of convergence

rate and speed [35].

Therefore, to handle limited engineering optimization

issues, the search and rescue optimization technique (SAR)

was proposed. This metaheuristic model mimics human

diversification during search and rescue efforts. SAR is

tested by addressing 18 CEC 2010 benchmark routines and

7 constrained engineering design issues, such as speed

reducer, three-bar truss, pressure vessel, welded beam,

spring, tubular column, and reinforced concrete beam

designs. The SAR performance is compared with that of

some robust optimization techniques. According to statis-

tical comparison outcomes, SAR outperforms or is highly

competitive with the analyzed models on most of the tasks

being studied [36]. Additionally, the turbulent flow of

water-based optimization (TFWO) algorithm is proposed

based on the natural search phenomenon. This method

obtains global solutions to genuine benchmark routines of

varying measures. Furthermore, to further study the effi-

cacy of TFWO, it was used to address different types of

nonlinear ELD optimization issues in energy systems, and

reliability–redundancy allocation optimization (RRAO) for

a highly protected gas turbine system, as two practical

engineering optimization issues. The results of TFWO are

compared with existing algorithms, which offer proof of

the effective operation of the proposed TFWO algorithm

with superior solution precision in addressing several real

benchmarks and practical engineering issues [37]. Table 1

lists the above-mentioned works. Additionally, Fig. 1a

illustrates the statistics for SO metaheuristic algorithm

issuance and related studies from 2012 to 2021, according

to information from Scopus databases. Also, Fig. 1b clar-

ifies the distribution of SO metaheuristic algorithms in

various research areas.

2.2 Multi-objective metaheuristic algorithms

Different MO metaheuristic algorithms are proposed to

deal with and address various MO optimization issues in

different study fields [38, 39]. SO metaheuristic algorithms

are modified to generate MO versions. Accordingly, an

outer archive needs to be integrated with the algorithm and

an efficient target selection technique. An outer archive to

keep Pareto optimal (PO) solutions is needed, as here the

concept of a single optimal solution to an issue does not

exist because the objectives of MO issues conflict with

each other and, consequently, multiple solutions to an MO

issue are produced, which are known as PO solutions or

alternatives [40]. These PO solutions achieve a trade-off.

They are solutions where each bit of progress on one goal

wreaks havoc on at least one other goal. The target selec-

tion technique can be performed by many procedures, such

as an elitist non-dominated sorting mechanism [41], a

roulette wheel selection mechanism [42], a grid-based

approach [43], and a leader selection mechanism [44].

The literature has many proposed MO metaheuristic

algorithms, such as the MO artificial bee colony (MOABC)

algorithm, which was proposed in [45]. The MOABC

employs a grid-based method to flexibly evaluate the Par-

eto front kept in an outer archive. The outer archive is used

to manage individual flying behaviors and to structure bee

colonies. The hired bees use the non-dominated solutions

stored in the outer archive to adjust their route. In contrast,

observer bees choose the food supplies of the hired bees to

update their locations. The Pareto dominance principle is

used to calculate the characteristics of these food supplies.

The suggested method was assessed against existing con-

temporary methods on a set of typical investigation tasks.

The experimental findings show that the suggested method

is competitive compared to the other methods discussed in

this study. Moreover, the MO artificial immune algorithm

for fuzzy clustering based on multiple kernels (MAFC) is

proposed in [46]. This method enhances the standard fuzzy

C-Means method and solves some of its significant short-

comings, such as vulnerability to local optima conver-

gence, which can cause poor grouping accuracy. Multi-

kernel learning and MO optimization are combined in a

grouping strategy that retains the dataset’s geometric

information. Furthermore, using kernel functions, the

multikernel technique translates data from feature space to

kernel space [47, 48]. MAFC is compared with robust lit-

erature approaches in studies using UCI and face datasets.

According to the findings, MAFC is substantially more

efficient for grouping and has a wider range of applications.

The MO water cycle algorithm (MOWCA) is introduced

to tackle limited MO issues. MOWCA is based on simu-

lating the natural water cycle mechanism. Here, several
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non-dominated alternatives acquired by the suggested

method are archived to demonstrate the MOWCA’s

exploratory ability compared with other efficient approa-

ches in the literature. Furthermore, the resulting opti-

mization outcomes are compared with other frequently

used optimizers for limited engineering design issues to

fully assess the resilience and efficiency of the suggested

algorithm. Comparisons are presented in tabular, detailed,

and graphical formats [49]. Additionally, the MO copy of a

recently designed spotted hyena optimizer (SHO) known as

MO spotted hyena optimizer (MOSHO) is introduced.

MOSHO is used to address issues with multiple objectives.

A fixed-sized archive is used in the suggested approach to

save PO solutions. Furthermore, to imitate spotted hyenas’

social and hunting activities, the roulette wheel mechanism

is used to determine appropriate solutions from an archive.

The proposed technique is investigated for 24 benchmark

routines from CEC 2009 (MO CEC) and compared with six

recently established metaheuristic approaches. Therefore,

to demonstrate its applicability to real-world issues, the

suggested method is applied to six constrained engineering

design issues, including welded beam, multiple disk clutch

brake, pressure vessel, speed reducer, gear train, and 25-bar

truss designs. The experimental findings show that the

suggested method outperforms the others in producing PO

solutions with premium convergence [50].

In [51], the MO grasshopper optimization algorithm

(MOGOA) was proposed, which selects the target from the

archive using an appropriate selection method based on the

probability of the roulette wheel. Also, the MO grey wolf

optimizer (MOGWO) is presented to address MO diffi-

culties [52]. Additionally, the proposed MOGWO is

Table 1 Recent single-objective metaheuristic models suggested in the literature

Metaheuristic

algorithm

Author Publication

year

Inspiration References

NNA Ali Sadollah 2018 Biological nervous systems [27]

AEFA Anita 2019 Coulomb’s law of electrostatic force [28]

SOA Gaurav Dhiman 2019 Migration and attacking behaviors of seagulls [29]

AEO Weiguo Zhao 2020 Flow of the ecosystem’s energy on the earth [30]

GTO Benyamin

Abdollahzadeh

2021 Gorilla troops’ social intelligence [31]

OPA Yuxin Jiang 2022 Hunting behavior of orcas [33]

HGS Yutao Yang 2021 Hunger-driven actions and behavioural preferences of animals [34]

MA Konstantinos

Zervoudakis

2020 Flight behavior and mating procedure of mayflies [35]

SAR Amir Shabani 2020 Investigation techniques of humans during search and rescue

processes

[36]

TFWO Mojtaba Ghasemi 2020 Phenomenon of natural search [37]

Fig. 1 Single-objective metaheuristic algorithms researches achieved in the last decade (2012–2021) based on the Scopus database
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compared with two familiar metaheuristic algorithms, the

MO evolutionary algorithm based on decomposition

(MOEA/D) and MO PSO (MOPSO), on 10 MO benchmark

challenges, including CEC 2009. The recommended opti-

mization model beats other competing algorithms using

descriptive and inferential statistical data. The MO slime

mould algorithm (MOSMA) was created by merging the

slime mould algorithm (SMA) with an auxiliary archive

[53]. MOSMA applies the crowding distance method and

elitist non-dominated sorting principles. Regarding Pareto

proximity and reversed exponential distance in the decision

zone, the recommended approach produced PO choices

better than the familiar current approaches based on CEC

2020. The MO sine-cosine algorithm (MOSCA), presented

in [54], has been used to solve MO engineering challenges

involving spring designs, four-bar trusses, multi-plate disk

brakes, gear trains and welded beam designs. According to

the trial’s findings, the suggested technique works better

than other current algorithms. The MO volleyball premier

league approach (MOVPL) is introduced in [55] to deal

with global optimization problems that involve many target

activities. Teams participating in an elite volleyball league

inspired this optimization approach. Therefore, to assess

how well the new technique performs, 10 MO benchmark

test scenarios, including CEC 2009 with complex objec-

tives, were conducted and compared with two familiar MO

models, MOPSO and MOEA/D. According to the trial’s

findings, the MOVPL outperforms the two state-of-the-art

optimization models on MO investigation routines.

Meanwhile, MOMVO, a multi-verse optimizer-based MO

approach, was evaluated in an 80-case study, including

unconstrained MO investigation routines, restricted MO

investigation routines, and MO engineering design issues

in [56]. Reference [57] introduced the MO ALO

(MOALO), which is used to address engineering opti-

mization challenges. Unlike the non-dominated sorting

genetic algorithm version 2 (NSGA-II) and the MO ant

colony optimization (MOACO) approaches, the MO

gravitational search algorithm (MOGSA) was developed in

[58]. In [59], the MO WOA (MOWOA) is created and

investigated for six IEEE CEC 2009 unrestricted bi-ob-

jective investigation challenges. The acquired outcomes

indicated that the suggested optimization approach out-

performs other familiar and currently developed methods.

Similarly, MO moth flame optimization (MOMFO) with

the same archiving process as MOWOA is introduced in

[60].

One of the most well-known modern MO algorithms,

the MOPSO, was created in [61]. In [62], the MO salp

swarm approach (MSSA) is also introduced to address and

resolve issues with MO optimization, such as airfoil design

and marine propellers. It should be highlighted that both

qualitative and quantitative findings supported the

effectiveness of MSSA. Additionally, MO optimization

challenges are addressed with the MO seagull optimization

method (MOSOA). This method is based on the dynamic

archive concept, which can cache non-dominated solutions.

The roulette wheel selection mechanism is used to identify

the most successful archival solutions by simulating seag-

ull migration and attacking behaviors. The proposed

approach is validated by running it through 24 test routines

from CEC 2009 and evaluating its effectiveness compared

to current MO techniques. The created method is investi-

gated for six restricted structural engineering issues,

including multiple-disk clutch brake, welded beam, pres-

sure vessel, speed reducer, 25-bar truss, and gear train

designs, to determine its suitability to solve real-world

challenges. Empirical analyzes show that the suggested

method outperforms other MO algorithms [63]. Further-

more, the MO GTO (MOGTO) is also suggested in [64] to

solve concerns with MO optimization. The MOGTO stores

the PO solutions it finds in an external repository. The

archive was used to mimic the collective attitude of the

gorilla groups in the MO search region. Using the CEC

2020 investigation suite, the proposed method is statisti-

cally and subjectively assessed to address different MO

concerns. The ten well-known and effective optimization

models that are contrasted with the suggested algorithm

include MOPSO, NSGA-II, MOGWO, MOWOA,

MOSCA, MOSMA, hybrid NSGAII-MOPSO, MOEA/D,

MOPSO with ring topology and special crowding distance

(MO_Ring_PSO_SCD), and improved MO manta-ray

foraging optimization.

The suggested MOGTO can deliver outstanding results

compared to previous optimization models with respect to

Pareto set proximity, inverted generational distance in

decision space (IGDX), and hypervolume (HV) indicators,

according to simulation findings in the CEC 2020 investi-

gation routines. Table 2 reports on the metaheuristic MO

algorithms mentioned above with their various archiving

processes. Furthermore, Fig. 2a illustrates the statistics for

the issuance of MO metaheuristic algorithms and related

studies from 2012 to 2021 based on information from the

Scopus databases. Furthermore, Fig. 2b clarifies the dis-

tribution of MO metaheuristic algorithms in various

research areas.

2.3 Evaluation criteria of metaheuristic
algorithms

Metaheuristic algorithms are a class of adaptable and

flexible search frameworks that draw their inspiration from

physical or natural events. Additionally, because they uti-

lize the idea of training a computer to think and select the

best option from a range of options in a manner similar to

Cluster Computing

123



that of a person, these algorithms are considered one of the

most significant applications of artificial intelligence [65].

Various factors are used to evaluate the performance of

these algorithms, including:

• The CEC test suite is a collection of test routines,

including unimodal, multimodal, and composite issues,

expressed in mathematical forms that are used to

validate the algorithm by running the algorithm on it

through the objective function for measuring both

quantitative and qualitative performance of the algo-

rithm, as well as how the algorithm performs compared

to other algorithms in terms of achieving equilibrium

between diversification and intensification, escapement

of local optima, diversification capacity, and intensifi-

cation capability [66, 67].

Table 2 Recent multi-objective metaheuristic models suggested in the literature

Metaheuristic

algorithm

Author Publication

year

Archiving process References

MOABC Reza Akbari 2012 Grid-based approach [45]

MAFC Ronghua Shang 2019 Clone selection mechanism & Uniformity maintaining mechanism [46]

MOWCA Ali Sadollah 2015 Crowding distance mechanism [49]

MOSHO Gaurav Dhiman 2018 Roulette wheel selection mechanism [50]

MOGOA Seyedeh Zahra

Mirjalili

2018 Roulette wheel selection mechanism [51]

MOGWO Seyedali Mirjalili 2016 Grid-based approach [52]

MOSMA Essam H. Houssein 2022 Elitist non-dominated sorting mechanism & Crowding distance

mechanism

[53]

MOSCA Mohamed A.

Tawhid

2019 Elitist non-dominated sorting mechanism & Crowding distance

mechanism

[54]

MOVPL Reza Moghdani 2020 Leader selection mechanism [55]

MOMVO S. Mirjalili 2017 Leader selection mechanism [56]

MOALO Seyedali Mirjalili 2017 Roulette wheel selection mechanism [57]

MOGSA Hossein Hemmatian 2014 Uniform mutation operator & Elitist policy [58]

MOWOA Ishwar Ram

Kumawat

2017 Grid-based approach [59]

MOMFO Vikas 2016 Grid-based approach [60]

MOPSO Carlos A. Coello 2004 Adaptive grid-based approach & Mutation operator [61]

MSSA Seyedali Mirjalili 2017 Roulette wheel selection mechanism [62]

MOSOA Gaurav Dhiman 2021 Roulette wheel selection mechanism [63]

MOGTO Essam H. Houssein 2022 Elitist non-dominated sorting mechanism & Crowding distance

mechanism

[64]

Fig. 2 Multi-objective metaheuristic algorithms researches achieved in the last decade (2012–2021) based on the Scopus database

Cluster Computing

123



• Results of statistics based on CEC values, including

mean, standard deviation, best, and worst. The mean is

the average of the objective scores acquired from the

implementation of the algorithm M times, the standard

deviation represents the variation in the objective

function scores acquired after the algorithm M times,

the best denotes the lowest objective score, and the

worst denotes the highest objective score [68].

• The Wilcoxon check is a type of statistical test that is

used to statistically validate the algorithm’s perfor-

mance. It is considered a nonparametric statistical test

and is conducted to establish the significance of the

algorithm’s output, with p-values typically less than

0.05. Furthermore, the Friedman rank test is also used

and achieved [69].

• The convergence curve is a graphical test (diagram) that

visualizes the relationship between the algorithm’s

capacity to maximize or minimize the objective func-

tion and the number of iterations. It also shows how

quickly a solution can be reached [70].

• Engineering issues are a collection of traditional

engineering issues that have various constraints that

are addressed by utilizing metaheuristic algorithms,

such as the welded beam design in SO optimization and

the disk brake design in MO optimization. In fact, these

issues are considered a type of constraint optimization

test [71].

3 Wireless sensor networks (WSN)

WSN can be described as a system comprising a set of

sensor nodes that are geographically scattered in some

region of interest (ROI) to detect and sense some envi-

ronmental parameters, such as temperature, humidity,

sound, wind and pollution levels, among others [72, 73];

for momentary surveillance and feedback, as depicted in

Fig. 3. These sensors gather data and deliver it to the sink

node for processing and organizing. The sink node

becomes in charge of transmitting the result information to

the user through the Internet or satellite. WSNs are often

composed of hundreds or thousands of nodes linked to each

other. Processing, sensing, transmitter and receiver, and

power units are the four major components of each sensor

node (Fig. 4) [2]. GPS, packers, and power generators are

examples of application-dependent plugins.

Analog to digital converters (ADC) and sensors are

generally present in a sensing unit. The ADC transforms

the analog signals produced by the sensors due to the

observed phenomena into digital signals, which are sub-

sequently sent to the processing unit. The processing unit,

which is usually linked to a small storage unit, controls the

tasks that permit the sensor node to operate with other

nodes to achieve the sensor’s specific duties. The node is

connected to the network via the transceiver. One of the

most essential parts of a sensor node is the power unit.

Power scanning units, such as solar cells, may be used to

assist power units. Therefore, it may be necessary to use

the fill tool to shift the sensor nodes when performing

certain operations. A matchbox module may be required in

these subunits [2]. Moreover, the needed capacity might be

as little as one cubic centimeter, allowing light to float in

the air.

The Zigbee protocol (IEEE 802.15.4) communicates

among nodes in WSNs. It features a bit rate of 250 kbps

and a frequency of 2.4 GHz. Therefore, it employs a lower

frequency to extend the radio range. Every node has a

communication range Rc (usually � 100 m) and a detec-

tion range Rs (the space to be tracked by the sensor)

[74, 75]. WSN provides several advantages, including

eliminating many cables, accepting additional devices at

any time, and the flexibility to travel through the real

section. It is accessible via a centralized screen and/or an

architecture [76]. Industrial tracking, water quality track-

ing, landslide detection, air pollution tracking, forest fire

detection, area tracking, health care monitoring, natural

disaster prevention, and other applications are all possible

with a WSN [77, 78].

The star, mesh, and tree are the three most prevalent

topologies for WSNs that must be built correctly using
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appropriate methodologies. Additionally, topology control

is the most fundamental approach in dispersed techniques.

Topology control is a distributed computing strategy that

involves making changes to the fundamental network,

which may be represented as a graph, to reduce the cost of

dispersed techniques compared to modern topologies [79].

It is one of the most essential distributed algorithm

approaches and is mostly used to create sensors and

wireless ad-hoc networks. More recent arguments have

been made to split topology control methods into two sub-

strategies. First, topology-building techniques, such as A3

[80], EECDS [81], and CDS-Rule K [82], are responsible

for the first network reduction. Second, topology mainte-

nance techniques, such as SGTRot, DGTRec, and

HGTRotRec, can achieve some adjustments to the first

reduced topology when they cannot complete their role and

maintain the reduced topology in terms of coverage and

connectivity. Topology control’s key goals are to lengthen

network lifespan by preserving energy, decreasing inter-

ference among sensor nodes, and producing a well-linked

topology.

Several methods are available to accomplish the topol-

ogy building, which is followed by topology-building

techniques, such as adjusting the sensor nodes’ communi-

cation range; creating a communication framework;

removing some nodes from the network; introducing

additional nodes to the network to ensure connectivity; and

clustering. However, the primary problem with topology-

building techniques is that they initially lack a mechanism

for deploying sensor nodes. Therefore, these techniques

place sensor nodes at random, causing significant network

damage, such as redundant areas, which happens when

many sensor nodes are placed in the same ROI subarea. In

this context, sensor node redundancy is one of the most

frequent reasons for message collisions and transmitting

multiple copies of the same data to the base (sink) node. In

addition, blind areas (areas that do not have sufficient

sensor nodes to detect or cover events) may appear due to

the use of these techniques. However, the network

administrator has no control over the placement of the

sensor nodes and cannot rearrange them to reduce redun-

dancy or blindness. Therefore, metaheuristic algorithms

play a vital role in repositioning sensor nodes to reduce

redundancy [83].

4 Applications of metaheuristic algorithms
in WSNs

Because of their diverse uses and incorporation into more

complicated network systems, WSNs are a stimulating

subject of study. WSN difficulties are frequently related to

its stringent limitations, such as deployment, localization,

placement of sink nodes, energy efficiency, and clustering.

The basic challenges of area coverage, node localization,

sink node placement, energy efficiency, and clustering are

examined and modeled as independent optimization issues

in this survey [84, 85]. Meta-heuristic optimization algo-

rithms are used to propose solution techniques. The rela-

tionship is also drawn with traditional optimization issues.

WSN deployment, localization, placement of sink nodes,

energy efficiency, and clustering concerns are represented

as NP-hard [86]. As a result, metaheuristic algorithms are

used to overcome or mitigate some of the shortcomings of

these difficulties. As is known, the WSN is made up of a

number of sensor nodes, each of which is emulated as a

single search agent in the optimization process, and the

method optimizes the goal, whether it is location or energy,

after a given number of iterations.

MO optimization is used to address a variety of real-

world issues that have multiple objectives that must be met

simultaneously. Studying MO optimization is undeniably

an important topic for theorists and engineers to study

[87, 88]. However, occasionally, issues with multiple

objectives are in direct conflict with each other. As a result,

finding the global ideal is practically impossible [89].

Unlike optimization for SO, in MO optimization, there are

several optimal solutions, and the decision maker deter-

mines the viable options according to the order of priority

given to various competing objectives. When the decision

maker enforces the preference on several competing

objectives, a MO optimization issue may be stated using

various methodologies [90]. The most common method is

to assign various weights to distinct objectives and then use

an MO optimization algorithm to combine several objec-

tives into one number of merits. In WSNs, objectives such

as coverage vs. cost, throughput vs. rate of packet faults,

delay vs. throughput, battery life vs. coverage, rate of

packet faults vs. cost, and so on can clash [14].

A list of earlier investigations into metaheuristic algo-

rithms and their use in WSNs will be presented in the

following subsections.

4.1 Deployment challenge in WSNs using
metaheuristic algorithms

In WSNs, deployment refers to the practical process of

efficiently deploying sensor nodes (optimal distance among

sensor nodes =
ffiffiffi

3
p

* detection range) to provide enough

ROI coverage as shown in Fig. 5. Because WSNs have

limited radio capacity, users must adopt and apply good

node placement tactics to compensate for this. A good

deployment ensures that deployment costs are reduced

while WSN detection capabilities are improved. It can also
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increase the goodness of surveillance in WSNs by

expanding the ROI.

Several metaheuristic algorithms have been designed in

recent years to address tough and complex nonlinear situ-

ations. However, the deployment architecture for WSNs

has received a lot of attention in recent years. For example,

reference [91] presented two metaheuristic algorithms to

overcome the deployment issue, namely an improved

cuckoo search (ICS) and a chaotic flower pollination

algorithm (CFPA). In previous studies, the two methods

were able to perform better, with the aid of an insightful

local search and the idea of computational flexibility. The

experiments in 15 cases demonstrated a significant

improvement in computational effort, solution quality, and

reliability. The work in [92] developed a sensor deploy-

ment strategy based on glowworm swarm optimization

(GSO) to improve coverage after random sensor deploy-

ment. Each sensor node is modeled as a single glowworm

that releases a luminant material called luciferin, the

intensity of which is proportional to the distance between

the sensor node and its neighbors. A sensor node is drawn

to neighbors with lower luciferin intensities and decides to

travel towards one of them. As a result of the sensor nodes

gravitating toward areas with lower sensor density, the

sensing field’s coverage is maximized. This deployment

strategy demonstrated that it can offer enough coverage

with minimal motion, implying a low energy travel

distance.

The dense deployment and power assignment issue (d-

DPAP) in WSNs was introduced in [93], a hybrid MOEA/

D and a generalized subproblem dependent heuristic (GSH)

was suggested. The d-DPAP was split into a series of

numerical sub-problems utilizing this approach. Through

the use of local knowledge and problem-specific informa-

tion, the subproblems were optimized concurrently. Six

d-DPAP-specific techniques, developed in accordance with

the subproblems’ goal preferences and a variety of WSN

notions, are alternated deterministically utilizing the sug-

gested GSH. The suggested hybrid problem-specific

MOEA/D outperforms the general-purpose MOEA/D and

NSGA-II in numerous WSN scenarios, according to sim-

ulation findings, offering a variety of high-quality near-

optimal network architectures to aid in decision-making.

Also mentioned was the MOEA/D-attitude GSH in the

target space. The ant colony optimization (ACO) technique

was introduced in [94] as a natural and inherent means of

exploring the search space for the multiple-knapsack

problem (MKP). The problem of sensor placement was

studied in this work to obtain extensive coverage of the

service zone and improve the lifespan of the network. The

deployment challenge was modeled as the multiple knap-

sack problem in this work. This work presented a deploy-

ment technique based on the ACO algorithm to extend the

life of the network while ensuring complete ROI coverage.

The simulations suggest that the proposed technique can

extend the useful life of the network. The artificial fish

swarm algorithm (AFSA) was upgraded to the optimized

artificial fish swarm algorithm (OAFSA) for use in the

deployment of WSN in [95]. In this study, the network is

seen as a group of stationary sensors. The scavenging and

rearing attitudes of the original algorithm are passed down

to the improved algorithm. Discussions and numerical

simulations demonstrate that the OAFSA suggested

schema outperforms the original AFSA in terms of WSN

area coverage by improving network efficiency.

Reference [96] investigated the issue of maximum

coverage deployment in WSNs. Specifically, how to deploy

a given number of sensors with varying detection ranges in

a particular domain such that their coverage is maximized.

This is considered an NP-complete issue. This study

offered a new genetic algorithm that improved on an

existing genetic algorithm. Among the enhancements are

the specification of a new overlapping notion for the

objective function, the utilization of a heuristic approach to

initialize the population, and the utilization of dynamic

mutation. The suggested approach was tested in 15

instances built for this challenge. The experimental find-

ings demonstrate that the suggested method was successful

in all aspects of computational complexity, solution qual-

ity, and reliability. Furthermore, the virtual force algorithm

(VFA) was used to address the issue of area coverage in

WSN, and it was improved with the improved virtual force

algorithm (IVFA) and the exponential virtual force algo-

rithm (EVFA) to increase the efficiency of the WSN in

terms of coverage rate, energy consumption of moving

objects and convergence of the deployment strategy [97].

Coevolutionary PSO (CPSO) was combined with the vir-

tual force algorithm (VFA) to deploy network sensor nodes

in installation regions with no blind or duplicated sub-areas

Fig. 5 Optimal sensor nodes deployment schema
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in order to achieve the highest feasible coverage ratio. The

results showed that the hybrid algorithm (VFCPSO) beat

the VF, PSO and VFPSO algorithms in terms of efficacy

and computation time [98].

In [99], node deployment based on the bat algorithm

(BA) was developed to improve the node coverage rate.

Each bat provides a distinct solution for sensor node

placement. Grid locations covered by one sensor node are

eliminated for the residual sensor nodes in the BA-based

node deployment. Eliminating points from the grid reduces

the pressure on remaining nodes and eliminates the possi-

bility of overlap. Simulations of node placement using BA

and the fruit fly optimization algorithm (FOA) are also

shown. To improve the coverage of the sensor nodes, the

performance of several BA parameters such as the pulse

emission rate, the maximum frequency, the loudness, the

sensing radius and the points of the grid was adjusted in

this study. In terms of mean coverage rate, calculation

time, and standard deviation, the simulation results of node

deployment according to the improved BA are also com-

pared with node deployment based on BA and FOA. The

findings indicated the efficiency of the improved BA,

which produced a higher coverage rate than the BA and

FOA algorithms. The artificial bee colony technique (ABC)

was used in [100] to dynamically install stationary and

mobile sensor networks in an effort to enhance efficiency

by broadening the network coverage. To obtain more

accurate findings when calculating the successfully cov-

ered region, a probabilistic detection strategy was taken

into consideration. The program’s performance was com-

pared with that of the PSO, another swarm-based opti-

mization method that was once employed in the WSN

deployment. Based on the results obtained, the ABC

algorithm might be recommended for dynamically

deployed WSNs.

The region coverage issue was addressed using two

metaheuristics, the genetic algorithm and particle swarm

optimization, in [101]. This study adds an identical slow-

down to the computation of the inertia weight as well as the

effect of subpopulations’ head individuals. It also intro-

duces a new objective function and modifies the virtual

force method. The suggested methods are thoroughly tested

and evaluated against the state of the art for a similar issue

without constraints. The findings of the experiments reveal

not only which algorithms should be used in which situa-

tions but also shed light on parameter choices, the impact

of heuristic initialization, and the impact of the virtual

force algorithm in each situation. These findings have

implications for future studies on connection and WSN

lifespan issues related to hurdles in restricted region cov-

erage. An energy efficient coverage optimization method

utilizing the Voronoi glowworm swarm optimization

K-means algorithm (Voronoi-GSO-K-means) was reported

in [102]. Glowworm swarm optimization, Voronoi cell

structure, and the K-means algorithm are used in this

method to increase the coverage area while utilizing the

fewest possible active nodes. For effective sensor deploy-

ment, this method takes into account the determination of

the optimal sensing radius. By utilizing multi-hop trans-

mission and the sleep-wake mechanism to decrease the

energy consumed by the deployed sensor nodes. The sim-

ulation results showed that the suggested strategy can cover

the area with an ideal number of active nodes. Eventually,

the deployment challenge of a WSN is without a doubt a

key issue because the tactics used will have a significant

impact not only on the overall efficiency but also on the

energy used by the sensors in such a system. This means

that a solid deployment solution can not only improve

performance, but also conserve energy, extending the

lifespan of a WSN. Acquiring an optimal solution for most

deployment challenges with limited computation resources

remains a difficult research issue, particularly for hard NP

optimization issues. Compared to extensive search and

deterministic methods, metaheuristics offers an alternate

approach to solving these optimization issues by searching

for a near optimal solution while utilizing limited compu-

tation resources in a fair amount of time [103]. Table 3 lists

the studies mentioned above. Furthermore, Fig. 6a illus-

trates the statistics for WSN deployment research publi-

cations related to metaheuristic algorithms from 2012 to

2021 based on information from the Scopus databases.

Furthermore, Fig. 6b clarifies the various types of publi-

cations of WSN deployment research related to meta-

heuristic algorithms.

4.1.1 Evaluation criteria

Gage proposed the coverage rate Cr in [104], which is

defined as the ratio of the area covered by all sensor nodes

to the entire ROI area. Cr is a measure of coverage quality.

Because the entire area covered by the sensor nodes is

measured in units, the coverage rate is always less than or

equal to one, as computed by Eq. (1).

Cr ¼
S

i¼1...num Zi
Z

ð1Þ

where Zi is the area covered by the sensor node i, num is

the total number of sensor nodes and Z is the total ROI

area.
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4.2 Localization challenge in WSNs using
metaheuristic algorithms

The node localization challenge in WSNs attempts to know

the spatial location of each sensor node with an unknown

location (target node/nonanchor) in ROI utilizing evolu-

tionary methods as shown in Fig. 7, particularly meta-

heuristic algorithms [105, 106], rather than using global

positioning systems (GPS) because it consumes a lot of

energy, which is not commensurate with the limited energy

resources of WSNs. In other words, if it is necessary to

know the location of sensor nodes in the ROI without using

any additional device such as GPS, it must utilize meta-

heuristic algorithms to perform localization. Localization is

often beneficial for indicating the location of unexpected

circumstances. Many recent studies have addressed the

localization challenge in WSNs and solved it with new,

enhanced, or hybrid metaheuristic algorithms [107, 108].

A brief series of studies related to localization chal-

lenges in WSNs employing metaheuristic techniques is

described below. In [109], the current bat algorithm (BA)

was upgraded to the modified bat algorithm (MBA) by

Table 3 Recent metaheuristic models used in the literature for the WSN deployment challenge

Metaheuristic

algorithm

Author Publication

year

Network size (sensor

nodes)

ROI References

ICS & CFPA Huynh Thi Thanh 2018 17–130 10,000 m2 [91]

GSO Wen-Hwa Liao 2011 50–200 10,000 m2 [92]

MOEA/D-GSH Andreas

Konstantinidis

2011 25–250 2500–10,000 m2 [93]

ACO Wen-Hwa Liao 2011 10,000 Nodes are dispersed over a six-layer

square area

[94]

OAFSA Wang Yiyue 2012 50 2500 m2 [95]

IGA Dinh Thi Ha 2015 17–130 10,000 m2 [96]

VFA & IVFA &

EVFA

Jiming Chen 2007 50–200 10,000 m2 [97]

VFCPSO Xue Wang 2007 100 (20 Mobile, 80

Stationary)
10,000 m2 [98]

BA Satinder Singh

Mohar

2021 50 2500 m2 [99]

ABC Celal Ozturk 2011 100 (20 Mobile, 80

Stationary)
10,000 m2 [100]

GA & PSO Huynh Thi Thanh 2020 23–130 10,000 m2 [101]

Voronoi-GSO-K-

means

Aparajita

Chowdhury

2021 100, 200, 500, 1000 2500 m2 [102]

Fig. 6 Metaheuristic algorithms publications used in the literature for the WSN deployment challenge and their types achieved in the last decade

(2012–2021) based on the Scopus database
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combining it with the chemical movement of bacteria

found in the bacterial foraging algorithm (BFO) [110] in an

effort to identify the best solution in the direction where bat

motion is not possible. Because the improved method

searches the search space more effectively, it outperformed

the original BA in terms of the success rate of localized

nodes (low mean localization error) and computing per-

formance. PSO was enhanced to MOPSO in [111], result-

ing in a modern localization technique known as the

MOPSO localization algorithm (MOPSOLA). This tech-

nique was used to handle the MO difficulties related to

localization in WSNs. There are MO difficulties that must

be addressed, which are made up of a geometric topology

limitation and a spatial distance limitation. The MOPSO

technique was then used to identify the optima. The results

of the simulation revealed significant advancements in

terms of localization precision and convergence rate.

According to elephant herding optimization (EHO), a

modern way to address the issue of node localization in

WSNs was proposed [112]. In general, the localization

issue in WSNs is considered an NP-hard issue, and as a

result, the EHO method is used as a metaheuristic algo-

rithm capable of producing proper solutions when dealing

with NP-hard situations. Additionally, for the first time in

this study, the implementation of the EHO was described.

The EHO method outperformed other state-of-the-art

methods evaluated in the same issue scope in simulation

outcomes.

In [113] a better localization method was introduced

called MAOADV-Hop based on the modified Archimedes

optimization algorithm (MAOA) and DV-Hop to address

the issue of the low localization precision of the distance

vector hop (DV-Hop) localization technique in WSNs. This

algorithm can achieve a dynamic equilibrium between

localization precision and localization speed. In order to

enhance the initial population variety and alter the rules for

intensity and magnitude, the tent chaotic mapping and PSO

were first incorporated into the AOA. This improved the

algorithm’s ability to achieve global convergence and

accelerated convergence. To increase the localization

accuracy of the method, the least square component of the

DV-Hop localization technique is replaced by MAOA.

Ultimately, MAOADV-Hop was compared with DE_DV-

Hop, BOA_DV-Hop, and DV-Hop after being confirmed in

four distinct network scenarios. According to the simula-

tion findings, the suggested technique localizes the data

faster than DE_DV-Hop and BOA_DV-Hop and with a

lower localization error than DV-Hop, DE_DV-Hop, and

BOA_DV-Hop. Furthermore, an analysis of the effective-

ness of metaheuristic algorithms was performed, including

the suggested Buffalo optimization algorithm (BOA), ant

colony optimization algorithms, and opportunity routing

algorithms in [114]. With these metaheuristic algorithms,

the BOA’s performance was compared. Throughput,

packet forwarding rate, residual energy, packet loss rate,

cost, and latency were among the performance parameters

evaluated. The method was then turned into a hardware

system for instantaneous monitoring of system perfor-

mance. In the end, the thorough analysis of the effective-

ness of metaheuristic algorithms in WSNs showed that the

buffalo method offers improved performance and effi-

ciency in WSN applications.

In [115] an intrusion detection system (IDS) was pre-

sented to protect the integrity, security, and confidentiality

of Internet of Things (IoT) networks and their data. State-

of-the-art IDSs have limited detection capabilities and

considerable communication and device overhead, making

them unsuitable for IoT applications that require secure and

timely processing. In [116] a method was suggested for

efficiently encrypting data streams in a 5 G-enabled IoT

context and establishing their proof of hardness and secu-

rity against quantum attacks, eavesdropping, selected

plaintext attacks, chosen ciphertext attacks, and public key

attacks. In [117] a hybrid latency and power-aware strategy

was developed for B5G-IoT networks (HLPA B5G-IoT) to

decrease latency with minimal overhead on battery-con-

strained IoT nodes while also providing a power-efficient

solution for B5G-IoT-edge networks. In [118] an energy-

efficient binary PSO-based routing and clustering method

Fig. 7 Localization procedure for the target node/non-anchor using

neighboring anchor nodes
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was described that employs an intuitive matrix-like particle

representation. In addition, a unique particle update

approach and an efficient linear transfer function were

suggested, outperforming previously used particle update

strategies and several traditional transfer functions.

Detailed testing confirmed that the proposed routing and

clustering technique outperforms existing algorithms in

terms of network longevity. Furthermore, the study in [119]

suggested a distance-based, stable connected dominating

set approach employing an MA GWO (DBSCDS-GWO) to

achieve a stable, balanced, and energy-efficient CDS-based

WSN. Similarly, utilizing GWO, the study in [120] offered

a new approach to optimum placement of vision sensors for

maximum coverage of the predefined surveillance area.

The monitoring space is divided into priority areas (PAs),

impediments, and possible camera placement sites. The

authors of [121] used MA biogeography-based optimiza-

tion to solve the challenge of efficiently allocating data

relay burden to numerous cluster heads (CHs) and situating

mobile sinks (MS) near these multiple CHs. Likewise, the

authors of [122] suggested an event-based efficient

deployment algorithm (EEDA) for relocating redundant

sensors to the event site to obtain full coverage. They

partition the deployment region into small square cells,

allowing individual cells to be efficiently monitored rather

than treating the entire scenario as a single entity. IoT

devices vary in nature and can connect sensors to simple,

restricted devices. Software and hardware threats are a

serious concern in this field. These attacks may result in

breaches of privacy, confidentiality, and malware. To

address this issue, a new security technique was developed

in [123]. Moreover, in [124] a novel load balancing strat-

egy was developed that uses biogeography-based opti-

mization (LB-BBO) to reduce sensor node energy usage

while maximizing WSN lifetime. LB-BBO balances equal

and unequal loads using two distinct target functions.

Reference [125] suggested an MO evolutionary method

that simultaneously considers the localization precision and

some topological limitations brought on by connection

implications throughout the evolutionary process. The

suggested strategy was evaluated utilizing various network

settings and sensor arrangements, and its normalized

localization error performance was compared with that of

another Metaheuristic Algorithm called SAL, which is

based on simulated annealing. The findings demonstrated

the usefulness and stability of the suggested MO method,

which in all cases outperforms SAL and produces high

accuracy gains. Moreover, an efficient cuckoo search (CS)

technique for node localization was presented in [126].

This method allowed the population to quickly approach

the global optimal solution based on the alteration of the

step size, and the fitness score of each solution was used to

create the mutation probability to prevent local conver-

gence. Additionally, the method confined the population to

a specific range to avoid wasting resources on pointless

searches. Numerous tests were performed to determine

how node density, anchor density, and communication

range affected the mean localization error and the local-

ization success rate of the suggested method. To achieve

the same localization objective using the same network

deployment, a comparison research was also carried out.

Experimental findings demonstrated that the suggested CS

algorithm, when compared with the traditional CS method

and the PSO, may not only enhance the convergence rate

but also decrease the mean localization error. Furthermore,

in [127], the distributed weighted search-based localization

method (WSLA) and its refinement algorithm (WSRA) for

WSN were proposed. In practical applications, WSLA and

WSRA need to run repeatedly to perform node location and

location exploration. Each node determines its location and

type based on the distribution of its optimal computed

locations in each iteration of the WSLA after first obtaining

the location and distance information of its 1-hop neigh-

bors and utilizing weighted 2-D logarithmic search to

determine its optimal computed location. Analysis of the

WSLA experiment findings revealed various inaccuracies,

leading to the eventual proposal of the geometrically based

WSRA. The simulation results demonstrated that WSLA

and WSRA have low computing complexity and compar-

atively good localization precision. The application of

metaheuristic algorithms for the optimal determination of

the positioning of sensor nodes was explored in [128]. In

terms of computation time, number of localized nodes, and

localization precision, the performance of metaheuristic

algorithms such as the firefly algorithm (FA), FPA, PSO,

and GWO for localization issues in WSN was analyzed. In

contrast to FA, PSO, and GWO, the comparison study

revealed that FPA is more adept at finding the nodes’

locations by decreasing the inaccuracy of the location.

Butterfly optimization algorithm (BOA), a Metaheuristic

Algorithm, is also applied in [129] to suggest a modern

node localization strategy. The suggested technique is

tested using simulations on sensor networks of varying

sizes, from 25 to 100–50 nodes, whose distance estimations

are tainted by Gaussian noise. A few well-known schemes,

including the PSO algorithm and FA, are used to compare

the performance of the innovative scheme that has been

suggested. Based on the modeling findings, the suggested

node localization scheme outperforms current PSO-based

and FA-based node localization techniques in terms of

consistency and precision. Ultimately, the study in [130]

provided a review of the most common localization

approaches to minimize localization errors. Establish a new

taxonomy of approaches used in this subject, such as
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machine learning, mobile anchors, metaheuristics, and

mathematical models. The authors present their various

algorithms in this later section, including genetic opti-

mization, ant colony optimization, particle swarm opti-

mization, firefly optimization, bat optimization, flower

pollination optimization, artificial bee colony optimization,

grey wolf optimization, fish swarm optimization, and oth-

ers. Furthermore, a comparison of various metaheuristic-

based localization optimization techniques was performed.

Finally, a detailed examination of performance

characteristics such as precision, energy use, convergence

rate, and number of localized nodes was provided. Table 4

lists the studies mentioned above. Furthermore, Fig. 8a

illustrates the statistics for WSN localization research

publications related to metaheuristic algorithms from 2012

to 2021 based on information from the Scopus databases.

Furthermore, Fig. 8b clarifies the various types of publi-

cation of WSN localization research related to meta-

heuristic algorithms.

Table 4 Recent metaheuristic models used in the literature for the WSN localization challenge

Metaheuristic

algorithm

Author Publication

year

Network size

(sensor nodes)

ROI Localization

measurement

Technique

References

MBA Sonia Goyal 2016 30 anchor/170

non-anchor
40,000 m2 Received Signal

Strength (RSS)

[109]

MOPSOLA Ziwen Sun 2015 32 anchor/128

non-anchor
10,000 m2 Received Signal

Strength (RSS)

[111]

EHO Ivana

Strumberger

2018 100 anchor/900

non-anchor
10,000 m2 Received Signal

Strength (RSS)

[112]

MAOADV-Hop Mangmang

Cheng

2022 20 anchor/80

non-anchor
10,000 m2 Distance Vector Hop

(DV-Hop)

[113]

BOA G. Hemanth

Kumar

2022 Hardware

system

Hardware system Opportunity routing

algorithm

[114]

MOEA Massimo

Vecchio

2012 20 anchor/180

non-anchor

Uniformly placing 200 nodes in T ¼
½0; 1� � ½0; 1� � R2

Received signal

strength (RSS)

[125]

CS Jing Cheng 2016 40 anchor/360

non-anchor
10,000 m2 Received signal

Strength (RSS)

[126]

WSLA &

WSRA

Yingbiao Yao 2015 8 anchor/92

non-anchor

100 nodes are deployed in a square

region of 1� 1; xi, yi 2 ½0; 1�
Received signal

strength (RSS)

[127]

FA & FPA &

PSO & GWO

Ranjit Kaur 2017 15 anchor/50

non-anchor
10,000 m2 Received signal

strength (RSS)

[128]

BOA Sankalap

Arora

2017 35 anchor/150

non-anchor
10,000 m2 Received signal

strength (RSS)

[129]

Fig. 8 Metaheuristic algorithms publications used in the literature for the WSN localization challenge and their types achieved in the last decade

(2012–2021) based on the Scopus database
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4.2.1 Evaluation criteria

The performance of the used localization techniques is

assessed using Eq. (2), which determines the localization

error LE. The estimation error between the true node

coordinates and the estimated node coordinates is known as

LE.

LE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a0 � að Þ2þ b0 � bð Þ2
q

Rc
� 100% ð2Þ

where a0; b0ð Þ are the estimated coordinates of the node,

(a, b) are the true coordinates of the node and Rc refers to

the communication range of the node.

4.3 Sink node placement and energy efficiency
challenge in WSNs using metaheuristic
algorithms

Identifying the best location for the sink (base) node in any

WSN environment is crucial, since base node placement is

one of the typical and trending problems in WSNs. Since

the goal is to collect data for real-time monitoring, rapid

action may be taken when necessary. The aforementioned

base node, which is responsible for processing and inter-

preting the gained data, is one of the most significant

sensor nodes used in a WSN. It functions as a hub between

the administrator and the network sensor nodes. In addi-

tion, it is responsible for managing the entire network.

Obtaining the optimal base node position in a WSN is

difficult, since doing so is essential to the network’s

longevity and maintaining the highest level of network

activity. Most researchers resort to search algorithms,

especially metaheuristic algorithms, whether SO or MO, to

determine the optimal location of the base node in various

WSN scenarios [131, 132]. In fact, determining the optimal

base node position will positively affect the power usage of

the entire network, consequently prolonging the network

lifespan as the number of message hops from the sensor

node to another to reach the base node will be decreased as

a result of using Prim’s greedy algorithm [133] in finding

the minimum spanning tree (MST) [134] via establishing

the shortest communication routes from the sensor nodes to

the determined base node. Furthermore, the central place of

the base node, as shown in Fig. 9, which is followed in

many WSN scenarios by the suggested P-Median Problem

(PMP) model [86, 135], will not exist because the coor-

dinates of the base node will be determined according to

other criteria such as the number of neighbors, neighbors’

residual energy, number of active nodes around the base

node, the distance from the center of the ROI, etc.

The literature has several works which address the issue

of base node allocation and energy usage in WSNs, such as

the work in [5], in this study, the HHO metaheuristic model

was used to address the optimal base node location issue,

and the Prim’s shortest route technique was used to rebuild

the network by taking the shortest communication lines

from the base node to the remaining sensor nodes. HHO

outperformed other familiar techniques such as FPA, PSO,

SCA, GWO, WOA, and MVO. In this study, the simulation

outcomes of various network sizes, with single and multi-

ple base nodes, demonstrated the sufficiency of the strategy

used in terms of localization error and power usage, thus

prolonging the network’s lifespan in an efficient manner.

Reference [136] proposed a strategy based on the cat

swarm optimization (CSO) algorithm [137] to handle the

challenge of identifying the location of the base node.

Compared with PSO, the authors argue that the new tech-

nique demonstrates efficacy by prolonging the life of the

network. Furthermore, the use of the greedy method to

efficiently create minimal transmission pathways from the

base node to the remaining sensor nodes contributed sig-

nificantly to reducing the power consumption of the

transmission and receiving process of the gathered data.

In [138], another implementation of PSO in this scope

was provided. Researchers suggested an energy-aware

topology control protocol that utilizes a technique to select

the optimal location of the base node in the entire network

to extend the lifespan of the network. To validate the

potential of the suggested solution to reduce the power

consumption of sensor nodes, it is compared with various

topology creation methods. The simulation results showed

that the suggested technique was superior in terms of

functional network lifespan, number of topology, and

number of active nodes during the topology creation and

maintenance stages of the topological control protocols.

Srinivasa et al. in [139] used a PSO-based algorithm (PSO-

MSPA) to best locate base nodes in WSNs, and the findings

show that the suggested technique outperforms the
Fig. 9 Central location of the sink node in a WSN of 200 sensor

nodes and ROI = 360,000 m2
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exhaustive grid search technique. In [140], an MOPSO was

used to address a variety of optimization issues related to

WSNs and their general applicability in various industries

to discover the optimal coordinates of the base node in

WSNs with consistent nodes. The authors focused on

determining the ideal location of the base node in relation

to the relay nodes to extend the lifespan of the network. In

[141], an adaptive PSO (APSO) was presented for the

optimal allocation of base nodes in WSNs. Based on the

data, APSO beats PSO in terms of obtaining an extended

network lifespan for a significant amount of operating time.

In addition to PSO, a classic metaheuristic approach, a

genetic algorithm (GA) [142], has been applied in [143] for

optimal base node allocation. The study claimed to have

achieved the optimal base position in short generations

using several mutations and crossover tuning.

In [144], another cutting-edge metaheuristic approach

was presented called ant colony optimization (ACO) for

base node allocation. The authors used ACO to discover

the optimal communication route with a technique to

increase the single base lifespan of the WSN in this study.

This study claimed to have obtained greater results than the

energy-oriented method [145]. The study in [146] descri-

bed another implementation of ACO to increase the useful

life of heterogeneous WSNs. The authors suggested a

procedure for determining the greatest coverage of the

sensor network by constructing the optimal route on the

building graph. Similar to this, reference [147] suggested

an ACO-based method to develop an energy-efficient

solution to improve WSN longevity and reduce packet loss.

The authors of [148] used fuzzy logic in an ACO-based

method to construct a heuristic rule for route categorization

to improve the overall energy efficiency of the network.

Similarly, the findings of [149] confirm the usefulness of

ACO in tackling optimization challenges in WSNs. In

addition to ACO, the authors of [126] used another well-

constructed method, CS [150], for sensor node localization

in WSNs. In this paper, the CS method was changed using

a mutation technique to improve its global search capa-

bility. On the basis of comprehensive experimental

research, the suggested technique demonstrates that it may

successfully expand sensor node coverage while reducing

localization errors. When tackling the best base node

localization issue in large-scale WSNs, a modern swarm

intelligence-based metaheuristic approach was devised in

[72]. To reduce energy usage and increase network long-

evity, the authors used the MOWOA to address the issue of

selecting the smallest number of base nodes that can feed

the entire network in the case of large-scale WSNs. The

suggested approach outperformed other familiar MO

algorithms such as MOGOA [151], MSSA [62], MOGWO

and MOPSO in a range of network sizes, according to a

specified number of trials. Brainstorm optimization (BSO)

[152], a powerful swarm-based Metaheuristic Algorithm,

was used in [131] to deploy base nodes in WSNs in the best

possible way. The findings revealed that BSO was able to

arrange base nodes in networks with longer lifetimes and

greater energy efficiency compared to PSO and grid

search-based techniques.

The authors of [153] employed GWO to address the

issue of the central base node location of the topology

creation methods. The qualitative and quantitative perfor-

mance of the established approach was further assessed by

contrasting it with the topology control methods. Based on

several tests with various network sizes and deployment

circumstances, it was determined that the proposed model

was effective in terms of energy usage, the number of

active nodes, and the time needed to build a smaller

topology. Unlike previous research, the study conducted in

[154] discovered that GWO produced worse results com-

pared to chicken swarm optimization (CSO) [155], while

building the little active nodes for the WSN procedure. The

study claimed that, based on practical findings, CSO

exceeds GWO in terms of demonstrating the capacity to

create a smaller set of active nodes with significantly

higher energy. In the relevant literature, several additional

strategies have also been published. To enhance the lifes-

pan of the network, the authors of [156] created an ideal

clustering topology, energy-conscious cluster head rota-

tion, and a routing protocol. PSO recruitment created a

deactivation strategy to regulate excessive particle trans-

formation by keeping copies of the position vectors of

particles with higher valuation outcomes. In a similar vein,

an effective method for allocating N base nodes in a 2-D

space was presented in [157]. However, studies in [86] and

[135] suggested using the PMP model to identify the base

node. Additionally, in [135], the authors showed that the

ROI center is the best place for a base node of WSN,

although the finding was only applicable for nodes that

were distributed equally. According to [158], the location

of the junction node was chosen to minimize power usage

by maximizing the weight of the data streams.

In [159], PSO was used to create a clustering-based

technique to increase the lifespan of WSNs. By assigning a

small number of sensor nodes, the suggested system han-

dles all cluster heads (CHs), whose energy is gruellingly

rapid. Additionally, another distributed strategy was cre-

ated to prevent CHs from dying quickly as a consequence

of the overall power exhaustion. The suggested strategy

was thoroughly modeled, with the results compared with

various current schemes to determine its strength. An

energy-efficient self-stabilizing structure control technique

for WSN was presented in [160]. Each node’s transmission

energy was decreased to preserve network connectivity

while making the most possible energy savings. This

research also suggested an approximation approach for the
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minimally weighted connected dominant set, which creates

a virtual network of energy-efficient sensors. This back-

bone serves as an effective means of routing. The results of

the simulations demonstrated the effectiveness of the sug-

gested solution and validated the accuracy of the algorithm.

Additionally, [161] suggested an energy-efficient cluster-

ing and tree-based routing protocol based on a hybrid ACO

and PSO architecture. Clusters were first created based on

available energy, and to further enhance inter-cluster data

aggregation, hybrid ACOPSO-based data aggregation will

be put into use. The thorough investigation revealed that

the proposed strategy greatly extends the longevity of the

network compared to alternative methods. Moreover, in

[64], the MOGTO was also employed in large-scale WSNs

to identify the possible fewest base nodes with the lowest

localization error, which would nourish the entire network

and prolong the lifespan of the network. On the basis of

simulation outcomes in large-scale WSNs, the MOGTO

can achieve the smallest number of base nodes and

diminish the network’s power usage. Eventually, the work

in [162] improved the WOA to WOTC, which is based on a

discrete copy of the original method in which the location

of each whale is recomputed and expressed in binary

sequence. In addition, a novel objective function was pre-

sented to target two key goals: minimizing the number of

active nodes and maintaining a low power usage rate inside

these nodes in order to overcome topology control issues

and extend the lifespan of WSNs. In this study simulations

were carried out using the Attaraya simulator [163]. Sub-

sequently, the experimental findings revealed that,

according to the number of neighbors and their residual

energies for active nodes, the final architecture of the WSN

generated by WOTC was superior to the A3 topology

building technique. Table 5 lists the studies mentioned

above. Furthermore, Fig. 10a illustrates the statistics for

WSN base node placement and energy efficiency research

publications related to metaheuristic algorithms from 2012

to 2021 based on information from the Scopus databases.

Furthermore, Fig. 10b clarifies the various types of publi-

cation of WSN base node placement and energy efficiency

research related to metaheuristic algorithms.

Table 5 Recent metaheuristic models used in the literature for the WSN base node placement and energy efficiency challenges

Metaheuristic algorithm Author Publication year Network size (sensor nodes) ROI References

HHO Essam H. Houssein 2020 100–500 & 1000–5000 360,000 & 1,000,000 m2 [5]

CSO Vaclav Snasel 2016 100–600 40,000 m2 [136]

PSO Mohamed Mostafa Fouad 2015 100–700 360,000 m2 [138]

PSO-MSPA C. Srinivasa Rao 2016 300 40,000 m2 [139]

MOPSO MN Rahman 2011 676 1,000,000 m2 [140]

APSO Mohamed Mostafa Fouad 2016 100–900 360,000 m2 [141]

GA Soumitra Ghosh 2016 17 904,401 km2 [143]

ACO Fengchao Chen 2013 100 & 370 10,000 & 360,000 m2 [145]

ACO-MNCC Ying Lin 2011 200–1000 2500 m2 [146]

ACO Ahmed M. Shamsan 2012 100 360,000 m2 [147]

DD-ACO-Fuzzy Jose V. V. Sobral 2013 100 360,000 m2 [148]

ACO Jingjing Zhang 2011 100 250,000 m2 [149]

MOWOA Mohammed M. Ahmed 2019 1000–10,000 1,000,000 m2 [72]

BSO Eva Tuba 2018 300 40,000 m2 [131]

GWO Mohamed Mostafa Fouad 2015 100, 300, 500, 700, 900 360,000 m2 [153]

GWO & CSO Mohamed Mostafa Fouad 2019 100–1000 360,000 m2 [154]

SPSO Hidehiro Nakano 2010 1000 250,000 m2 [157]

PSO Md Azharuddin 2016 300–600 250,000 m2 [159]

Hybrid ACOPSO Supreet Kaur 2018 100 10,000 m2 [161]

MOGTO Essam H. Houssein 2022 1000–10,000 1,000,000 m2 [64]

WOTC Mohammed M. Ahmed 2017 100–1000 360,000 m2 [162]
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4.3.1 Evaluation criteria

The network lifetime is defined as the total number of

rounds till the last node is alive. The last node death (LND)

can be determined by charting the number of dead nodes

versus the number of rounds. Network lifetime also

increases as energy efficiency improves.

4.4 Clustering challenge in WSNs using
metaheuristic algorithms

Clustering is regarded as one of the most primitive strate-

gies for extending the lifespan of WSNs [164]. However,

the strategy of cluster head (CH) selection for power

control with the goal of extending network life anticipation

remains a serious challenge in WSNs. The main idea of

clustering in WSNs is to divide the sensor nodes of the

network into subparts and then assign a CH to each part.

These CHs will be in charge of package transmission of

gathered data from sensor nodes to the base node and

receiving the controlling instructions from the base node to

the sensor nodes rather than transmitting and receiving via

the sensor nodes. This will reduce the number of message

hops among sensor nodes and rationalize the power usage

of the whole network, as the operation of transmitting and

receiving data via each sensor node in the network will

expend a huge amount of power, consequently decreasing

the network lifespan, and this is absolutely not desirable to

happen [165, 166]. Figure 11 illustrates the concept of

clustering in WSNs.

A brief series of studies related to clustering challenges

in WSNs employing metaheuristic techniques is described

below. In [7], a hybrid grey wolf and crow search opti-

mization algorithm-based optimal CH selection

(HGWCSOA-OCHS) method was presented for increasing

network lifespan expectation by focusing on latency

reduction, distance decreasing among nodes, and power

stability. The GWO was hybridized with the CSO to

address the challenge of precocious convergence, which

hinders it from effectively discovering the search zone.

This combination of the GWO and CSO algorithms in the

CH selection procedure maintains the equilibrium between

the degree of diversification and intensification in the

search zone. The suggested HGWCSOA-OCHS scheme’s

outcomes were compared with tested CH selection tech-

niques with ABC, FA, firefly cyclic GWO (FCGWO), and

GWO. By equalizing the proportion of active and inactive

sensor nodes in the network, the suggested HGWCSOA-

OCHS strategy confirmed reduced energy usage and

increased network lifespan expectancy. In [167], an effi-

cient tunicate swarm butterfly optimization algorithm

(TSBOA) for choosing CHs was devised in order to

achieve effective data transmission among sensor nodes.

The suggested TSBOA was created by combining the

tunicate swarm algorithm and the butterfly optimization

method. As a result, the CH was chosen based on objective

Fig. 10 Metaheuristic algorithms publications used in the literature for the WSN base node placement and energy efficiency challenges and their

types achieved in the last decade (2012–2021) based on the Scopus database

Fig. 11 Clustering concept in WSNs

Cluster Computing

123



parameters such as inter-cluster distance, intra-cluster dis-

tance, node energy usage, anticipated energy, connection

lifespan, and latency. The deep long-short-term memory

classifier was used to forecast energy by taking into

account the preliminary energy of nodes. The suggested

TSBOA outperformed utilizing criteria like superfluity

energy and packet generation (throughput), which were

0.1118 J and 82.101 percent, respectively.

Reference [168] described a novel strategy for extending

the network lifespan based on an enhanced PSO, which is a

Metaheuristic Algorithm for selecting target nodes. The

proposed protocol considers both energy economy and

transmission distance, and relay nodes are employed to

reduce the CHs’ excessive power usage. The proposed

protocol produces better dispersed sensors and a well-bal-

anced clustering structure, which increases the network’s

lifespan. The suggested protocol was compared with

comparable protocols by adjusting a variety of factors, such

as network space size, number of nodes, and base station

position. The simulation outcomes demonstrated that the

suggested protocol exceeds other comparable protocols in a

variety of conditions. Therefore, to choose the best meeting

places, a new method called PSO-based selection (PSOBS)

was proposed in [169]. Using PSO, the suggested method

was able to locate optimal or near-optimal rendezvous

places for efficient network resource management. In the

suggested method, the weight magnitude was generated for

each sensor node according to the number of data packets

received from other sensor nodes. The suggested method

was compared with the weighted rendezvous planning

based selection (WRPBS) method in terms of validation

measures like power usage, throughput, hop count, and

number of rendezvous spots. The simulation outcomes

revealed that PSOBS outperformed WRPBS, but had a

higher packet loss rate. The study in [170] developed an

energy efficient CH selection method based on WOA

clustering (WOA-C). As a result, the suggested approach

aids in the selection of energy-aware CHs according to the

objective function that takes into account the superfluity

energy of the node and the total of surrounding nodes. The

stability of the suggested algorithm overall, energy effi-

ciency, throughput, and network longevity were assessed.

Additionally, the effectiveness of WOA-C was validated

compared with other common modern routing techniques

such as Low-Energy Adaptive Clustering Hierarchy

(LEACH). Numerous simulations proved the higher effi-

ciency of the suggested algorithm in terms of residual

energy, network lifespan, and extended stability duration.

In [171], the metaheuristic algorithms indicated by the

harmony search algorithm (HSA) and the PSO were

combined to handle local search issues with slow conver-

gence and diversification-intensification trade-offs for each

other individually, as well as to extend the WSN lifespan

by developing an energy-efficient CH selection methodol-

ogy. The suggested hybrid HSA-PSO algorithm outper-

formed the PSO, HSA, and LEACH algorithms in terms of

throughput and superfluity energy reduction by 29.00 per-

cent and 83.89 percent, respectively. A clustering-based

routing technique for WSNs was suggested in [172]. Seven

goal functions are presented for the MO metheuristic

algorithm known as NSGA-II, which was used for clus-

tering. Using the MO model was intended to achieve

numerous objectives simultaneously. While attempting to

reduce communication costs between the goal functions

and CH and sink, as well as CH and non-CH, it was also

tried to avoid selecting CHs exclusively from nodes close

to the sink, and it was also taken into account for clusters to

contain as many nodes as feasible. Each solution pointed

out a new network architecture in the set of solutions

produced by the NSGA-II. According to certain of the

target functions, each solution in the solution set is the

optimal solution. The sink was specified to mimic each

solution in a set of solutions based on a specific situation

and to select one that meets the needed criteria. In the

suggested technique, the NSGA-II as well as the emulation

and evaluation of the acquired solutions are carried out in

an environment with adequate operational and power

supplies. According to the findings, the proposed technique

may extend network life five times longer than LEACH,

the most well-known clustering technique. Additionally, it

is seen that the suggested strategy increases the amount of

packets reaching the sink twice more than LEACH, even if

it extends the network’s lifespan. Compared with LEACH,

the data provided by the suggested technique contains

information on larger areas.

The study in [173] offered a performance comparison of

PSO and GA using a novel target function with the goal of

simultaneously lowering the distance between clusters and

improving the use of network power. In addition, the

familiar cluster-based techniques designed for WSNs,

LEACH, and LEACH-C, the latter being an upgraded copy

of LEACH, as well as the classic K-means clustering

technique, were compared. The simulation findings showed

that the suggested protocol employing the PSO algorithm is

more efficient and can fulfilll a longer network lifespan and

more data throw at the base node than its competitors. Two

techniques, GP-LEACH and HS-LEACH, were proposed

in [174], based on GA and HSA. The energy usage was

reduced by splitting the network and employing meta-

heuristic algorithms (GA and HSA) for the optimum

selection of CH based on WSN node location information

and superfluity energy. The MATLAB simulation findings

revealed that the suggested techniques were more effective

and extended the network’s lifespan. The work in [175]

was concerned with the selection of the ideal path in

routing, which enhances network lifespan and energy
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efficiency. Several metaheuristic approaches, particularly

PSO, were applied efficiently, albeit with poor local

optima. The PSO and Tabu search algorithms were used to

develop the proposed method. The results demonstrated the

high adequacy of the suggested Tabu PSO by increasing

the number of clusters created, the proportion of active

nodes, and lowering the average packet loss rate and

average end-to-end delay.

The work in [176] introduced a unique hybrid GWO-

based sunflower optimization (HGWSFO) method for

optimum CH selection given specific factor limitations like

energy expenditure and separation distance, hence

increasing network lifespan. Sunflower optimization (SFO)

was used for a larger search (diversification), in which

changing the step size parameter gets the plant closer to the

Sun in search of global redaction, boosting diversification

efficiency. GWO was used for a narrow search (intensifi-

cation), with the parameter coefficient dimensions neces-

sary to ensure intensification. This balances the

diversification-intensification trade-off, extends network

lifespan, increases energy efficiency, and improves net-

work performance in terms of total throughput, node

superfluity energy, alive nodes, lifeless nodes, network

livability index, and convergence rate. Ultimately, due to

technological advancements and the need for machine-to-

machine connectivity, WSNs play a larger role than other

wireless networks. In this context, many WSN-based

applications must be implemented effectively in terms of

energy and connectivity. To do this, many devices at dif-

ferent levels must interact. This may be accomplished by

grouping these devices together, also known as clustering.

Cluster-based routing is the best solution to support fault

tolerance, load balancing, and reliable communication to

extend WSN performance parameters. These performance

values are obtained at the expense of a shorter lifespan for

CH. To address the constraints of the clustering-based

hierarchical method, an effective CH selection method and

an improved routing technique are required to develop an

effective solution for larger networks. To prolong the

duration of network stability, a fuzzy-enhanced FPA-based

threshold-sensitive energy-efficient clustering technique

(EFPA-FIS) was developed in [177]. The suggested

method beat competitive clustering methods in terms of

stability duration, power usage, and system lifespan,

according to analysis and simulation findings. Two well-

known optimization issues, energy-efficient clustering and

routing, have been extensively explored to increase the

lifespan of WSNs. The work in [178] gives formulations of

these issues using linear and nonlinear programming (LP

and NLP), followed by two suggested algorithms based on

PSO. The MO target function and an effective particle

encoding strategy were used in the development of the

routing algorithm. The clustering approach is provided

while taking load balancing into account for node energy

rationalization. Comprehensive testing is done with them to

show the suggested algorithms’ superiority in terms of

network lifespan, energy usage, dead sensor nodes, and

transmission of all data packets to the base node. The

outcomes are then compared with those obtained with the

existing algorithms. Table 6 lists the studies mentioned

above. Furthermore, Fig. 12a illustrates the statistics for

WSN clustering research publications related to meta-

heuristic algorithms from 2012 to 2021 based on infor-

mation from the Scopus databases. Furthermore, Fig. 12b

clarifies the various types of WSN clustering research

publications related to metaheuristic algorithms.

4.4.1 Evaluation criteria

Throughput TP is defined as the number of packets trans-

mitted from the source to the destination per unit of second.

Equation (3) shows how it is computed.

TP ¼ d
t

ð3Þ

where d denotes successfully transferred packets and t de-

notes time.

5 Open issues and challenges

This section includes open issues, challenge paths, and

future trends that can be applied to metaheuristic algo-

rithms (SO and MO) and WSN difficulties, as well as

significant efforts that are necessary to improve WSN

efficiency. Despite the favorable outcomes of the examined

literature, there are still certain limitations and challenges

regarding SO and MO approaches to improving WSN

efficiency that must be addressed. The review found

numerous important difficulties, as well as future trends,

prospective research areas, and challenges, which are

mentioned below.

5.1 Open issues

• The first open issue we noticed in the articles we

reviewed was the use of 1-D and 2-D approaches to

deploy sensor nodes in simulation environments, but in

particular genuine environments of heterogeneous

domains with obstacles, the conventional 1-D and 2-D

placement techniques of sensor nodes deteriorate the

efficiency of coverage appreciation and optimization.

These 1-D and 2-D techniques also fail to address

several difficult problems that emerge as a result of

particular observation and monitoring needs. When
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sensor nodes are placed in a 3-D area rather than uti-

lizing traditional 2-D placement methodologies, for

instance, object surveillance, tracking of moving

objects, and human activity monitoring may be opti-

mally covered.

• Due to gaps between simulation outcomes and appli-

cations, the second open issue is how to apply

Table 6 Recent metaheuristic models used in the literature for the WSN clustering challenge

Metaheuristic

algorithm

Author Publication

year

Network size

(sensor

nodes)

ROI Sink node position Initial energy of node References

HGWCSOA-

OCHS

P. Subramanian 2020 1000 160,000 m2 [200, 200] 0.5 J [7]

TSBOA Jesline Daniel 2021 100 10,000 m2 [0.5, 0.5] 0.6 J [167]

PSO Yuan Zhou 2016 100 & 400 &

1000

10,000 &

10,000 &

40,000 m2

[50, 175] & [50,

200] & [100,

350]

2 J [168]

PSOBS Shamineh

Tabibi

2019 20 & 30 10,000 m2 Mobile Sink 0.5 J [169]

WOA-C Ashwin. R.

Jadhav

2017 100 & 500 10,000 m2 [50, 100] &

[50,200]

0.5 J [170]

Hybrid HSA-

PSO

T. Shankar 2016 100 20,000 m2 [50, 150] 0.5 J [171]

NSGA-II Gokce Hacioglu 2016 100 10,000 m2 Center of ROI 0.5 J [172]

PSO & GA N. M. Abdul

Latiff

2007 100 250,000 m2 [250, 575] [5 J for 20% of Nodes, 2

J for other 80% of

Nodes]

[173]

GA & HSA Mohammad

Karimi

2012 100 10,000 m2 [50, 50] 0.5 J [174]

Tabu PSO K.

Vijayalakshmi

2019 600 10,000 m2 [50, 50] 0.5 J [175]

HGWSFO Lavanya

Nagarajan

2021 100 40,000 m2 Center of ROI 0.5 J [176]

EFPA-FIS Nitin Mittal 2020 100 10,000 m2 [50, 50] 0.25 J, 0.5 J, 1 J [177]

PSO Pratyay Kuila 2014 200–700 250,000 m2 [500, 250]/

WSN#1,

[250,250]/

WSN#2

2 J [178]

Fig. 12 Metaheuristic algorithms publications used in the literature for the WSN clustering challenge and their types achieved in the last decade

(2012–2021) based on the Scopus database
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metaheuristic-based algorithms to a real WSN deploy-

ment system. Although the metaheuristic algorithm can

find better results than the topology construction

algorithm or the rule-based algorithm, it is typically

more complex than these two algorithms for the

challenge of deployment in WSNs. Therefore, when

we wish to use the metaheuristic algorithm in the real

world, it is more challenging to implement than

conventional deployment methods (such as A3,

EECDS, and CDS-Rule K). Our finding is that some

tools and libraries for metaheuristic algorithms have

been released recently, which could make it simpler to

develop a metaheuristic algorithm. Therefore, a crucial

study area will be how to implement a metaheuristic

algorithm to improve a WSN’s performance and offer a

more comfortable atmosphere.

• Although the coverage gap was taken into account in a

number of reviewed articles related to the WSN

deployment challenge, the majority of them concen-

trated on ways to reduce the number of coverage gaps.

In fact, they are unsure whether there are enough

sensors deployed to cover every target in the ROI.

According to our observations, the metaheuristic algo-

rithm must first determine how many sensors are

required to cover all the targets in the ROI in order to

solve the coverage gap issue; Under this useful and

meaningful condition, the optimal or suitable deploy-

ment solution can then be found rather than continu-

ously adding resources (sensors) to meet the

requirement.

• Most of the reviewed articles were evaluated using

metaheuristic algorithms to WSN challenges in basic

geographic environments, including flat areas or areas

with a few barriers. In the real-world setting, many

more considerations are required, such as signal inter-

ference, varying sensor lifetimes, or uncharted geo-

graphic terrain. Multiple factors being taken into

account at once, or the so-called MO optimization

approach in WSNs, is a promising research trend. The

accuracy of the results will generally decline in studies

that do not take into account the geographical environ-

ment, and there will be a difference between simulation

results and real-world applications. As a result, a crucial

open issue will be how to increase the accuracy rate of

the outcomes, particularly when real-world applications

are involved.

• The setup of WSN simulation parameters such as the

sensing range, the communication range, the initial

energy, the number of nodes, the deployment area, the

location of the sink node, the number of multiple sink

nodes, the routing protocol and the sensor node model

are different from one article to another in the articles

reviewed. This causes some difficulty in determining

the performance evaluation between articles, such as

the coverage ratio in the deployment articles, the

localization error in the location articles, and the energy

usage rate in the energy articles.

• Another limitation in some publications is the use of

initial random deployment techniques such as A3,

EECDS, and CDS-Rule K (topology building tech-

niques) rather than LFD, GSO, and VF techniques that

diminish the existence of redundant and blind areas in

the ROI.

• In general, an optimization issue has input parameters,

outputs, constraints, and a target function. In most WSN

optimization issues, these constituent pieces can be

mixed in a variety of ways, resulting in a wide range of

optimization issues. As a result, no one-solution

metaheuristic algorithm (no free lunch theorem) exists

that may provide an optimal solution to many opti-

mization difficulties linked to WSN.

• Similarly, the setup of execution parameters for the

metaheuristic algorithms that are used in the articles

reviewed, including the number of solutions, solutions

lower bound, solutions upper bound, maximum number

of cycles, and default parameters, is different from one

article to another, especially for articles that use the

same metaheuristic algorithm, such as PSO and ACO.

Also, this causes some difficulty in determining the

performance evaluation between articles in the same

WSN issue.

• From the optimization concept point of view, articles

that make some improvements to metaheuristic algo-

rithms such as improved GA, improved CS, chaotic

FPA, multiobjective PSOLA, optimized BA, optimized

AFSA, hybrid ACOPSO, and hybrid HSA-PSO have a

lack of CEC benchmark evaluations for these improved

methods, and this is considered a challenge and a lack

of flexibility.

• In the articles reviewed, the time complexity achieved

by metaheuristic algorithms to address WSN challenges

is large compared to other algorithms, as is the

computational cost.

5.2 Challenges of metaheuristic algorithms
in WSNs

• Address different WSN scenarios from the existing

ones in the literature, including large-scale WSNs

(more than 1000 nodes) and 3-D placement approaches.

• Employing multi-objective metaheuristic algorithms in

WSN issues more extensively, as WSNs have many

competing objectives such as quality of service vs.

network/battery life, throughput vs. packet error rate,
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coverage vs. cost, delay vs. quality of service, coverage

vs. network/battery life, and so on.

• Employing many-objective optimization approaches in

addressing various WSN issues, as these approaches

can address and solve more than three objectives (no. of

objectives[ 3) at the same time.

• Although they can offer a high-performance solution to

an optimization problem, hyperheuristic algorithms

have not yet been used in research on WSN difficulties.

Therefore, using hyper-heuristic-based algorithms to

solve WSN problems may prove to be a fruitful

research direction.

5.3 Future trends

• Remote sensing has numerous novel and intriguing

application areas thanks to WSNs’ flexibility, fault

tolerance, high sensing quality, rapid deployment, and

low cost features. This wide range of potential appli-

cations will make WSNs a crucial component of our

lives in the future. However, to realize sensor networks,

it must be possible to work within the limitations

imposed by variables such as fault tolerance, scalabil-

ity, cost, topology change, environment, hardware, and

power usage. Modern wireless ad hoc networking

strategies are needed because these restrictions are quite

strict and unique to WSNs.

• Designing the technologies required for various layers

of WSNs, such as distributed query processing, scalable

coordination architectures, information networking

architectures, mathematical frameworks, task manage-

ment planes, and data dissemination protocols.

• WSNs will be crucial to the Internet of Things, and the

data they gather will likely turn into what is known as

big data. How to effectively obtain the felt data is the

crucial factor we need to address. In more detail, we

need to think about the data routing path from the

sensor nodes to the base nodes or from one sensor node

to another sensor node. Furthermore, one area that

deserves more attention from a practical point of view

is data flow optimization.

• Handling huge-dimensional data: A large volume of

data is generated by multiple sensing devices. Further-

more, the ‘‘curse of dimensionality’’ arises when the

dimensions and size of data expand. As a result, smart

infrastructure is required for data processing, analysis,

and storage in order to automate numerous processes.

However, in a non-stationary environment, when the

data is not static, some additional procedures are

necessary. These key measures will assist metaheuristic

approaches in solving several satisfactorily dynamic

situations.

• Covering some other swarm based applications such as

block-chain and big data.

6 Conclusion

Metaheuristic algorithms are a fascinating and essential

topic of scientific inquiry due to their exceptional capacity

to tackle any optimization or search issue in engineering or

industry in general. In addition, these algorithms can pro-

duce many plausible solutions and are responsible for

determining the optimal one. In this review, we enumerated

the many sources of inspiration for metaheuristic algo-

rithms, whether SO or MO, and discussed the presence of

these algorithms in WSNs and the associated issues. These

algorithms demonstrate a competent capability to solve

WSNs’ challenges, such as deployment, localization, sink

node placement, energy efficiency, and clustering. Fur-

thermore, we emphasized the definitions of these terms and

the structural clarification of the WSN. Additionally, we

advocate the development of additional metaheuristic

algorithms, both new and enhanced, to address and solve

more challenges in real-world applications. Furthermore, it

is abundantly evident that metaheuristic algorithms are

among the effective paradigms that are helpful in providing

trustworthy and durable solutions for WSN-based systems.

There are three ways to convey this review. First, a review

of the range of metaheuristic algorithm types and their

corresponding assessment standards. The second fold

documents and discusses the use of metaheuristic algo-

rithms in WSNs for deployment, localization, sink node

placement, energy efficiency, and clustering. The final fold

outlines the challenges, outstanding concerns, and future

directions pertaining to WSNs and metaheuristic algo-

rithms. Generally, the research categorized the various

metaheuristic solutions used to address optimization issues

related to WSNs via SO and MO approaches. Therefore,

considering the proposed SO and MO metaheuristic solu-

tions for WSNs, it is reasonable to predict that this work

will pave new study areas in SO and MO optimization for

WSNs.
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