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Abstract

The sine cosine algorithm (SCA) is a metaheuristic algorithm that employs the characteristics of sine and cosine
trigonometric functions. SCA’s deficiencies include a tendency to get trapped in local optima, exploration—exploitation
imbalance, and poor accuracy, which limit its effectiveness in solving complex optimization problems. To address these
limitations, a multi-trial vector-based sine cosine algorithm (MTV-SCA) is proposed in this study. In MTV-SCA, a
sufficient number of search strategies incorporating three control parameters are adapted through a multi-trial vector
(MTV) approach to achieve specific objectives during the search process. The major contribution of this study is employing
four distinct search strategies, each adapted to preserve the equilibrium between exploration and exploitation and avoid
premature convergence during optimization. The strategies utilize different sinusoidal and cosinusoidal parameters to
improve the algorithm’s performance. The effectiveness of MTV-SCA was evaluated using benchmark functions of CEC
2018 and compared to state-of-the-art, well-established, CEC 2017 winner algorithms and recent optimization algorithms.
The results demonstrate that the MTV-SCA outperforms the traditional SCA and other optimization algorithms in terms of
convergence speed, accuracy, and the capability to avoid premature convergence. Moreover, the Friedman and Wilcoxon
signed-rank tests were employed to statistically analyze the experimental results, validating that the MTV-SCA signifi-
cantly surpasses other comparative algorithms. The real-world applicability of this algorithm is also demonstrated by
optimizing six non-convex constrained optimization problems in engineering design. The experimental results indicate that
MTV-SCA can effectively handle complex optimization challenges.

Keywords Engineering optimization problems - Metaheuristic algorithms - Numerical optimization - Optimization
algorithms - Sine cosine algorithm

1 Introduction

Optimization is defined as the process of identifying the
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minimizes or maximizes a given problem. With the
advancement of science and technology, optimization dif-
ficulties have gotten more complicated, and new opti-
mization challenges have evolved, which must be solved
using the most suitable optimization algorithms. There are
two categories of algorithms for tackling optimization
problems: deterministic and stochastic [1]. Deterministic
algorithms, which are divided into gradient-based and non-
gradient-based categories, perform well when addressing
linear, convex, and uncomplicated optimization problems.
However, these algorithms are ineffective in solving
complex problems, objective functions that are not differ-
entiable, nonlinear search spaces, and non-convex
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problems [2]. Nonetheless, the aforementioned traits rep-
resent the main characteristics of optimization problems
encountered in practical applications. Owing to these
characteristics and the inadequacy of deterministic algo-
rithms to effectively address them, stochastic approaches,
such as metaheuristic algorithms, have been developed
[3, 4]. Effective solutions to optimization problems can be
generated by metaheuristic algorithms in a reasonable time.
The No-Free-Lunch (NFL) theorem [5], which states that
no single optimization algorithm can perform equally well
across all types of problems with varying levels of com-
plexity, has motivated the development of new and novel
optimization algorithms.

Metaheuristic algorithms’ prevalence and widespread
usage are credited to their simple concepts, easy imple-
mentation, and efficiency in solving high-dimensional,
non-linear, and non-convex problems. Moreover, the
absence of a need for a derivation process makes meta-
heuristic algorithms particularly useful in situations where
the objective function is not well-defined, or the problem is
complex and challenging to solve using traditional opti-
mization algorithms. Metaheuristic algorithms generate a
set of random solutions in the search space and iteratively
update and refine them based on the algorithm’s instruc-
tions. Once the iterative process is completed, the candi-
date solution exhibiting the highest degree of optimality is
designated as the identified solution to the problem [6]. It is
imperative to note that metaheuristic algorithms cannot
provide an assurance that the solution obtained represents
the globally optimal solution [7]. While the identified
solution may constitute a local optimum, the existence of a
superior global optimum cannot be definitively excluded.
The performance of metaheuristic algorithms can vary
greatly depending on the specific problem they are applied
to and the process used to seek and update potential solu-
tions. Numerous optimization algorithms have been
designed and developed to overcome this challenge and
enhance metaheuristic algorithms’ effectiveness.

Due to the rapid expansion of computational intelligence
tools, non-deterministic algorithms have made remarkable
strides in solving optimization issues in the past decades.
As an alternative, metaheuristic algorithms were utilized to
tackle optimization issues by mimicking biological, phys-
ical, or social phenomena. There are several metaheuristic
algorithms suggested, including genetic algorithm (GA)
[8], differential evolution (DE) [9], particle swarm opti-
mization (PSO) [10], grey wolf optimizer (GWO) [11],
whale optimization algorithm (WOA) [12], salp swarm
algorithm (SSA) [13], orca predation algorithm (OPA)
[14], special forces algorithm (SFA) [15], and Greylag
goose optimization (GGO) [16]. In many situations where
traditional algorithmic approaches are unable to solve the
problem, these algorithms have demonstrated remarkable
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success, such as in feature selection [17], multi-modal
medical image registration [18], and engineering problems
[19].

The sine cosine algorithm (SCA) [20] is derived from a
mathematical model based on the trigonometric charac-
teristics of sine and cosine curves. Using either the sine- or
cosine-based equation, each solution in the current popu-
lation is updated. To retain the algorithm’s stochastic nat-
ure, random parameters have been incorporated into its
equations to maintain a balance between the search stages.
The simplicity and efficacy of the SCA have garnered
significant attention from a variety of disciplines. It has
been utilized to address a number of optimization prob-
lems, such as power system damping controllers [21],
global  optimization [22], hydrothermal-solar-wind
scheduling [23], sequential clustering [24], network
reconfiguration [25], support vector regression parameter
optimization [26], and community detection [27]. Despite
concerns about its novelty, SCA updates the population
using a straightforward updating rule with a simple struc-
ture and minimal parameters. However, SCA is known to
suffer from issues such as low diversity, slow convergence
speed, stagnation in local optima, and low solution accu-
racy [28-30].

While nature-inspired algorithms like the sine cosine
algorithm (SCA) have demonstrated effectiveness in
specific applications, they often struggle with complex
optimization problems due to inherent limitations such as
poor solution accuracy, local optima trapping, slow con-
vergence speed, and stagnation in local optima. Therefore,
the need for a new algorithm or improvements to existing
ones stems from the evolving landscape of optimization
problems, where novel challenges require more robust and
efficient solutions. However, based on the No-Free-Lunch
(NFL) theorem, new metaheuristic algorithms and their
improvements almost suffer from the same inherited
weaknesses. Thus, to obtain optimal performance at vari-
ous phases of the search process, adding multi-movement
strategies to the SCA is beneficial to increase its potential
and effectiveness. This study aims to improve SCA by
integrating a satisfactory number of search strategies and
adapting them through a multi-trial vector (MTV) approach
[31]. Although the SCA is simple in implementation, it
possesses certain flaws of poor solution accuracy, a ten-
dency to become trapped in local optima, a lack of
exploitation, slow convergence speed, and stagnation in
local optimum, notably in tackling complex optimization
problems [32, 33]. By integrating multiple search strategies
through approaches like the multi-trial vector (MTV), the
improved algorithm aims to achieve better exploration and
exploitation of the search space, leading to improved
solution quality and convergence rates.
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This study presents a new variant of SCA named multi-
trial vector-based sine cosine algorithm (MTV-SCA). The
proposed MTV-SCA enhances the original SCA by
addressing its inherent limitations through a solid theoret-
ical foundation integrating multiple search strategies and
adaptive parameter adjustments. The theoretical framework
of MTV-SCA is rooted in the diversification and intensi-
fication of the search process, achieved by employing four
distinct trial vector producers (TVPs), each designed to
achieve a particular objective and their cooperation
throughout the search process. S1-TVP focuses on bal-
ancing exploration and exploitation to prevent local optima
trapping, S2-TVP emphasizes extensive exploration, S3-
TVP targets rapid convergence for unimodal problems, and
S4-TVP aims to maintain an equilibrium between explo-
ration and exploitation to mitigate premature convergence.
Furthermore, the algorithm dynamically adjusts control
parameters using a combination of sinusoidal and cosinu-
soidal functions, specifically through Chebyshev, Sinu-
soidal, and coefficients. These coefficients
modulate the search step sizes and directions, enabling
efficient navigation of the search space. The Chebyshev
coefficient is used to investigate the search space more
efficiently by taking larger steps in regions with flat fitness
landscapes and smaller steps in rugged areas. The Sinu-
soidal coefficient prevents premature convergence by
adjusting the search radius, and the sin-cos coefficient
maintains a balance between exploration and exploitation
by dynamically varying the control parameters.

To validate the efficacy of the proposed MTV-SCA, a
comprehensive set of experiments was conducted utilizing
test functions introduced in the CEC 2018 [34]. This
benchmark suite provided a rigorous framework for eval-
uating the performance of the algorithm across a diverse
array of optimization challenges. The gained results were
compared to state-of-the-art, well-established, CEC 2017
winner algorithms and recently proposed nature-inspired
metaheuristic algorithms, including krill herd (KH) [35],
grey wolf optimizer (GWO) [11], moth-flame optimization
(MFO) [36], whale optimization algorithm (WOA) [12],
sine—cosine algorithm (SCA) [20], salp swarm algorithm
(SSA) [13], henry gas solubility optimization (HGSO) [37],
fitness dependent optimizer (FDO) [38], chimp optimiza-
tion algorithm (ChOA) [39], Archimedes optimization
algorithm (AOA) [40], fox-inspired optimization (FOX)
[41], particle swarm optimization (PSO) [10], gravitational
search algorithm (GSA) [42], and adaptive differential
evolution with optional external archive (JADE) [43],
LSHADE-SPACMA [44] and LSHADE-cnEpSin [45].
Furthermore, the proposed algorithm was statistically
analyzed using two non-parametric tests, Wilcoxon signed-
rank and Friedman test [46]. Finally, the effectiveness of
MTV-SCA in addressing real-world engineering
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challenges was evaluated by applying six distinct non-
convex constrained optimization problems. Based on the
comparison of the results, it was found that the MTV-SCA
exhibited superior performance in the majority of test
problems.

The following is a condensed overview of the paper’s
contributions.

e Integration of multiple search strategies: The study
introduces MTV-SCA, which integrates multiple search
strategies through the MTV approach. This integration
allows the algorithm to utilize a diverse set of TVPs
tailored to specific objectives, promoting their cooper-
ation throughout the search process. The proposed
algorithm improves the efficiency of SCA in addressing
intricate optimization problems.

e Four distinct search strategies: The MTV-SCA incor-
porates four distinct search strategies, namely S1-TVP,
S2-TVP, S3-TVP, and S4-TVP, each designed to
address specific aspects of optimization. S1-TVP is
designed to establish an equilibrium between exploring
the search space and exploiting promising regions; S2-
TVP emphasizes facilitating an effective exploration
process. S3-TVP aims to achieve a balance between
exploration and exploitation for rotated problems, and
S4-TVP is formulated to mitigate the tendency for
premature convergence to suboptimal solutions. By
integrating these strategies, MTV-SCA demonstrates its
capability to address various optimization challenges
across various domains effectively.

e Sinusoidal and cosinusoidal function parameter adjust-
ment: The algorithm utilizes a combination of sinu-
soidal and cosinusoidal functions to adjust the
parameter values of the respective TVPs. This adjust-
ment allows the algorithm to maintain a trade-off
between exploiting previously discovered optimal solu-
tions and exploring unexplored regions of the search
space. The Chebyshev coefficient enables efficient
exploration by adapting step sizes to the landscape’s
ruggedness, the sinusoidal coefficient adjusts the search
radius and direction to prevent premature convergence,
and the sin-cos coefficient dynamically adjusts control
parameters to balance exploration and exploitation.

e Performance evaluation and comparison: MTV-SCA
was extensively evaluated using 29 test functions and
compared to state-of-the-art, well-established, CEC
2017 winner algorithms and recently proposed nature-
inspired metaheuristic algorithms. The evaluation
included statistical analysis using the Friedman and
Wilcoxon signed-rank tests. The results demonstrated
the superior performance of the MTV-SCA on the
majority of test problems. Additionally, the algorithm’s
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effectiveness in solving real-world engineering prob-
lems was assessed, further confirming its capabilities.

The subsequent structure of this paper is as follows:
Sect. 2 reviews related works, and Sect. 3 presents the
mathematical formulation of SCA. The proposed MTV-
SCA is introduced in Sect. 4. Section 5 outlines the per-
formance evaluation of the MTV-SCA and its comparison
with other optimization algorithms, while Sect. 6 eluci-
dates the statistical analysis conducted. The real-world
applicability of the MTV-SCA is investigated in Sect. 7
through its application to engineering design problems.
Section 8§ discusses the main reasons for the MTV-SCA’s
success. Finally, Sect. 9 concludes the work and offers
suggestions for future research.

2 Related work

Metaheuristic algorithms are a versatile set of problem-
solving techniques that can tackle a wide range of opti-
mization problems. These algorithms are used to find high-
quality solutions to complex problems, for which exact or
deterministic algorithms may be ineffective or inefficient
[47]. Metaheuristic algorithms are a class of optimization
algorithms inspired by natural processes, such as genetic
mutation and evolution, swarm behavior, biological phe-
nomena, and physical rules. These algorithms use a set of
rules and operations to identify the most effective solution
to an optimization problem, even when the problem is
complex and poorly defined. Metaheuristic algorithms are
utilized extensively in various fields due to their ability to
find good solutions quickly and their flexibility in handling
various optimization problems. As such, metaheuristic
algorithms are likely to continue to play an increasingly
important role in advancing these fields, and new appli-
cations and improvements to these algorithms are expected
to emerge.

Various fields have benefited from metaheuristic algo-
rithms, including engineering, health care and medicine,
business, and management, as well as optimization and
machine learning [48-53]. In engineering, metaheuristic
algorithms have been employed in several applications,
including the estimation of parameters in solar cell models
[54], optimizing design parameters in engineering prob-
lems [55, 56], optimization of multi-objective problems
[57], optimization of water resource management in envi-
ronmental engineering [58], feature selection in wind speed
forecasting systems [59], optimization of supply chain
management [60], optimize the design of aircraft structures
[61], parameter optimization of control systems in electri-
cal engineering [62], optimization of production scheduling
in industrial engineering [63], design optimization of
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structures in civil engineering [64], optimization of energy
performance of building [65], optimization of energy sys-
tems in energy engineering [66, 67], optimization of
community detection algorithms [68], workflow scheduling
in fog computing [69], and parameter optimization of
structural designs [70, 71].

Metaheuristic algorithms have found applications in
diverse medical areas, such as medical imaging [72], drug
discovery [73], and radiation therapy planning [74]. In
medical imaging, the segmentation and registration of
images are crucial for accurately diagnosing and treating
diseases. The other uses of metaheuristic algorithms in this
field are the prediction of drug efficacy and toxicity [75],
identification of disease biomarkers from large-scale data
[76], medical image segmentation [77], cancer classifica-
tion [78], identification of features for disease diagnosis
[79], optimization of surgical planning and execution [80],
optimization of EEG signal processing for detecting brain
disorders [81], radiation therapy planning to optimize the
treatment plan by adjusting the radiation dose [82], and
feature selection and classification [83].

In logistics and transportation, metaheuristics are
employed for solving various optimization problems, such
as vehicle routing [84], facility location [85], optimization
of slot allocation in air traffic flow management [86],
optimization of flight and crew scheduling for airlines [87],
traffic flow forecasting [63], and optimization of warehouse
layout and inventory management [88]. Other applications
of metaheuristic algorithms include botnet detection in IoT
[89], virtual machines allocation in cloud data centers [90],
signal processing of fiber SPR sensors [91], global opti-
mization [92, 93], anomaly-based intrusion detection sys-
tems in the internet of things [94], feature selection in data
classification [95], and malware detection [96].

The sine cosine algorithm (SCA), which is grounded in
the category of physics-based algorithms, has proven to be
effective in tackling a diverse range of optimization issues.
These include, but are not limited to, the optimization of
engineering designs, data mining, machine learning,
structural optimization, and power system optimization.
However, there are also some limitations to using the SCA.
One of the main challenges is that it can get trapped in
local optima, which can prevent it from finding the global
optimum. Additionally, it lacks a balance between explo-
ration and exploitation, so it cannot effectively search for
solutions in a large solution space and may quickly con-
verge to the optimal local solution. Thus, some enhance-
ments to its performance have been made during its
proposal.

Some hybridized variants, designed to enhance SCA’s
performance in solving optimization problems, are
reviewed. The paper [97] proposes a hybrid PSO algorithm
with sine cosine acceleration coefficients (H-PSO-SCAC)
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to overcome the limitations of particle swarm optimization
in solving complex optimization tasks, such as premature
convergence and exploration—exploitation balance. The
proposed algorithm incorporates several improvements,
including SCAC for controlling local search and conver-
gence, opposition-based learning for initialization, a sine
map for adjusting inertia weight, and a modified position
updating strategy. The experimental results on seven uni-
modal and five multimodal benchmark functions demon-
strate that H-PSO-SCAC outperforms comparative
algorithms.

In [98], the authors introduce a hybrid optimization
algorithm named PSOSCALF. This algorithm combines
the strengths of PSO, SCA, and Levy flight techniques. The
proposed algorithm is designed to improve the exploration
ability of the PSO while also avoiding the problem of being
stuck in local minima, leading to better outcomes for
constrained engineering issues. This study used 23 bench-
mark functions, including unimodal, multimodal, and
fixed-dimension multimodal functions, to evaluate the
proposed PSOSCALF algorithm. The results illustrate that
PSOSCALF surpasses other algorithms in finding the glo-
bal minimum and provides better solutions for constrained
engineering problems. A recent study presented a hybrid
forecasting approach for wind speed prediction. As
described in [99], the proposed algorithm utilized the
multi-objective sine cosine algorithm (MOSCA) and a
modified data decomposition technique to enhance the
forecasting performance. Furthermore, a hybrid wavelet
neural network model was developed by combining
MOSCA to achieve high prediction accuracy and strong
stability. The results showed that MOSCA outperformed
other models through an experimental analysis of four
typical multi-objective test functions and eight different
wind speed datasets.

In [100], the authors address the problem of feature
selection in large datasets with high dimensionality, which
can be time-consuming and complex. The proposed
improved version of the sine—cosine algorithm (ISCA) with
an elitism strategy and the new best solution update
mechanism is tested on ten benchmark datasets. The results
show that it yields superior classification performance
while utilizing fewer features compared to other algorithms
used for comparison. With its multitude of constraints, the
optimal power flow (OPF) is a challenging optimization
problem. To tackle this issue, a modified sine—cosine
algorithm (MSCA) has been suggested in [101]. MSCA has
been developed to enhance SCA’s capacity to identify the
global optimum while avoiding the issue of being stuck in
local optima. This is achieved through the incorporation of
Levy flights. The testing of the MSCA algorithm on several
benchmark test systems demonstrates its effectiveness and
potential as a powerful optimization method for the OPF

problem. In [102], a new optimization algorithm named
ASCA-PSO is introduced to improve pairwise local
sequence alignment, a crucial task in the field of bioin-
formatics. The proposed algorithm combines SCA and
PSO to improve the exploration abilities of SCA. The
performance of ASCA-PSO is then evaluated on twenty
benchmark functions of unimodal and multimodal func-
tions, and the results demonstrate its superior accuracy and
computational efficiency.

In [103], the SCA-PSO algorithm is proposed for opti-
mization problems and object tracking to overcome the
premature convergence limitation of SCA. The proposed
algorithm combines the strengths of PSO and SCA, such as
exploitation and exploration capabilities, respectively. The
effectiveness of the algorithm is evaluated using 23 clas-
sical benchmark functions, CEC 2005, and CEC 2014
benchmark functions and compared with state-of-the-art
metaheuristic algorithms. In addition, the proposed algo-
rithm is applied to object tracking and compared with other
trackers, demonstrating its robustness in challenging con-
ditions. Another proposed enhanced variant of SCA is in
[104], in which a population diversity-based local refine-
ment strategy helps to maintain diversity at a high level,
addressing the SCA’s struggle to find solutions for complex
problems. The proposed algorithm is evaluated using
twenty-nine test functions of the CEC 2017 benchmark
suite, showing its effectiveness in controlling diversity.

The limitations of SCA, such as low diversity and pre-
mature convergence, have resulted in the development of
modified versions of the algorithm. Two modified versions
of SCA, named m-SCA [105] and RFSCA [106], are pro-
posed in order to tackle the limitations of SCA, such as low
diversity and premature convergence. The m-SCA algo-
rithm uses a self-adaptive element to take advantage of
search regions already explored by SCA’s search equa-
tions, which may be productive. Simultaneously, it gener-
ates a contrasting population by using opposite values
predicated on a perturbation rate to overcome the local
optima. The RFSCA algorithm integrates a Riesz fractional
derivative mutation strategy that employs quasi-opposition
learning to initialize the population, as well as a novel
mutation methodology to update the optimal individual
based on the Riesz fractional derivative’s approximate
formula with second-order accuracy. The performance of
both algorithms is assessed across various classical
benchmark problems, CEC benchmark functions, and
engineering optimization problems, with promising out-
comes regarding exploration, exploitation, and solution
quality.

The development of the ISCA algorithm was motivated
by the need to tackle challenging global optimization
problems arising in high-dimensional settings, as explained
in [107]. To achieve this, ISCA relies on a position-
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updating equation that has been modified to incorporate
both an inertia weight and a Gaussian-based strategy. This
approach is designed to balance the opposing forces of
exploration and exploitation, thereby optimizing the algo-
rithm’s overall performance. The testing of ISCA on
twenty-four high-dimensional benchmark functions, large-
scale global optimization problems from the IEEE
CEC2010 competition, and real-world engineering appli-
cations has yielded results demonstrating its superior per-
formance compared to SCA. ISCA has exhibited faster
convergence and better escape from local optima. Another
alternative approach to address optimization challenges is
SCA-OPI [108], which introduces orthogonal parallel
information to enhance exploration while emphasizing
exploitation. Further, the algorithm utilizes a strategy of
opposition direction based on prior experience to maintain
the ability for exploration. The evaluation of SCA-OPI on
unconstrained optimization problems, including unimodal
and multimodal benchmark functions, and constrained
optimization, including quadratic and nonlinear functions,
demonstrates its superiority in optimality and reliability
compared to other algorithms.

To address the local optima issue of SCA, in [109], a
multi-strategy enhanced SCA named MSCA was proposed.
This memetic algorithm integrates various control mecha-
nisms to explore the search space effectively, leading to
better performance in finding optimal solutions for com-
plex problems. To verify the performance of MTV-SCA,
the CEC2014 benchmark problems, and 23 continuous
benchmark functions were employed, including seven
unimodal functions, six multimodal benchmark functions,
and ten diverse fixed-dimension multimodal functions.
Another SCA variant is the bare bones sine cosine algo-
rithm (BBSCA) [110], which improves exploitation ability
and maintains diversity well. BBSCA uses Gaussian search
equations, exponential decrement strategies, and a greedy
selection mechanism to generate new candidate individuals
and make full use of previously searched information. The
results of testing BBSCA on a classic set of 23 well-known
benchmark functions, standard IEEE CEC 2014 and CEC
2017 benchmark test functions, and engineering opti-
mization issues demonstrate that it outperforms other SCA
variants and generates better solutions for real-life global
optimization problems.

To address the issues of SCA, such as slow convergence
and lack of robustness, in [32], a new algorithm, the
dimension by dimension dynamic sine cosine algorithm
(DDSCA), is proposed. DDSCA enhances the SCA update
equation by integrating a dimensional and a greedy strategy
to produce novel solutions. Furthermore, a dynamic control
parameter is implemented to maintain exploration and
exploitation. The algorithm’s performance is evaluated
using 23 benchmark test functions, IEEE CEC 2010 large-
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scale functions, and engineering optimization problems.
The results show that DDSCA outperforms comparative
algorithms. In an effort to address the sluggish convergence
and high computational complexity of SCA, an algorithm
named chaotic sine cosine firefly (CSCF) [111] has been
proposed. By incorporating the chaotic forms of both the
SCA and firefly algorithms, the CSCF algorithm aims to
enhance convergence speed and efficiency while mini-
mizing computational complexity. This algorithm has been
evaluated using twenty benchmark functions, with simu-
lation results demonstrating its efficiency in addressing
engineering design problems.

The Q-learning embedded sine cosine algorithm
(QLESCA) [33] proposes a new variant of SCA that
employs a Q-learning algorithm to regulate the parameters
of SCA during runtime. QLESCA underwent evaluation
using 23 continuous benchmark functions, 20 large-scale
benchmark optimization functions, and three engineering
problems, demonstrating superior performance compared
to other optimization algorithms. The proposed algorithm
addresses the limitations of conventional SCA by providing
a balance between exploration and exploitation modes. In
[22], MAMSCA is proposed, which divides the population
into two halves, updates them using either sine or cosine
strategies, and uses a modified mutualism phase to add
further diversity to the population. The algorithm’s per-
formance was evaluated using classical benchmark func-
tions and IEEE CEC 2019 functions. EBSCA [112], on the
other hand, presents a position-updated equation that
highlights the positional information of the superior indi-
vidual to direct the updating of fresh candidates, thereby
enhancing the exploitation capability. Additionally, it
introduces a new integrated approach that fuses the quan-
tization orthogonal crossover strategy with SCA to aug-
ment the searching space’s utility efficiency. The efficacy
of EBSCA was assessed on 13 classical benchmark func-
tions, IEEE CEC 2015 problems, and four engineering
problems that demonstrate significant improvements com-
pared to other methods.

3 Sine cosine algorithm (SCA)

The sine cosine algorithm (SCA) is developed for global
optimization and inspired by two functions, sine and
cosine. As with other metaheuristic population-based
algorithms, SCA generates candidate solutions randomly
within the preset minimum and maximum boundaries of
the problem. Then, an updated solution for the exploration
and exploitation balance is calculated by applying two
distinct mathematical expressions shown in Eq. (1),
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(1)

where X! and P! in the rth iteration are the position of ith
solution and the destination solution, and r;, r,, and r; are
randomly generated. The choice of an expression from
Eq. (1) is determined by a random number r4, which fol-
lows a uniform distribution between 0 and 1.

Through the use of ry, rp, and r;3, the SCA regulates how
the algorithm is explored and used. Parameter r| can be
used to balance exploration and exploitation in both early
and late stages of the SCA. Depending on this parameter,
either the new solution will be directed toward the desti-
nation or outward from it. In order to identify the optimal
solution in the latter stages of the algorithm, it first directs
the search process to find solutions throughout the whole
search space or to exploit the vicinity of the destination
solution. When ry is greater than 0, the distance between
the destination solution and the solution will increase,
while when r; is smaller, the distance will decrease. The
calculation of 7, is performed using Eq. (2),

a
rlza—IX? (2)

where a is a constant value, ¢ is the current iteration, and
T is the number of maximum iterations. The value of the
solution’s distance from the position of the target solution
is represented by the random parameter r,. Generally, a
greater value of ry signifies increased exploration, given the
greater distance between the current solution and the des-
tination solution; conversely, a lesser value signifies
exploitation, given the shorter distance. The parameter r; is
used to demonstrate how much the distance calculation is
affected by the destination solution.

4 Proposed multi-trial vector-based sine
cosine algorithm (MTV-SCA)

Despite the simplicity and versatile usage of SCA for
solving optimization problems, its efficacy is constrained,
posing significant challenges when applied to complex
problems. SCA possesses weaknesses of poor solution
accuracy, a slow convergence speed, a tendency to become
trapped in local optima, a lack of exploitation, and an
inability to sustain a balance between exploitation and
exploration. These flaws stem from the SCA search strat-
egy, which leads to weak performance while dealing with
complex challenges. The best current solution is the only
solution used in the canonical SCA’s position-updating
equation to estimate the distance to the next searching area,
providing the SCA with excellent exploration capability

but limited exploitation. Furthermore, the SCA is not fully
utilizing the information provided by the current solution’s
position. This is while the performance of an algorithm
depends on the search strategies and control parameters
used to solve problems with a wide range of characteristics.
In addition, to get optimal performance at various phases of
the search process, it is beneficial to use a variety of
alternative strategies in conjunction with various parameter
values.

This paper introduces a multi-trial vector-based sine
cosine algorithm (MTV-SCA), in which the single SCA’s
search strategy is reinforced with a multi-trial vector
(MTV) approach. It is advantageous to use the MTV
approach in order to define a variety of different search
strategies, each customized to achieve a distinct objective,
as well as their cooperation throughout the search process.
Further, various sinusoidal and cosinusoidal functions are
supplied to adjust the parameters’ value of the corre-
sponding search strategies. The purpose of utilizing the
provided functions is to achieve a good equilibrium
between exploiting previously discovered good solutions
and discovering previously unvisited portions of the search
space. Furthermore, in the proposed MTV-SCA, each trial
vector producer (TVP) is assigned to apply to a specific
portion of the population based on the winner-based dis-
tributing policy of the MTV approach. This approach
ensures that the information is shared effectively among
the solutions from different subpopulations, ultimately
improving the algorithm’s performance during the popu-
lation distributing phase.

Figure 1 shows the flowchart of MTV-SCA, which
comprises four steps: initialization, distribution, multi-trial
vector production, and population evaluation and update.
Once N solutions have been initialized within the search
space, the subpopulation size of each TVP is computed for
every nlter iteration during the distribution step. Next, in
the multi-trial vector production step, a candidate solution
is generated for each solution by either SC-TVP or one of
the strategies from Pool-TVP. In the Pool-TVP, we
designed four new search strategies named S1-TVP, S2-
TVP, S3-TVP, and S4-TVP in order to perform an effective
search on the solutions of their subpopulations. To achieve
a balanced exploration and exploitation and avoid getting
trapped in local optima, S1-TVP was proposed. Addition-
ally, S2-TVP effectively explores the search space, while
S3-TVP sustains a state of equilibrium to search for new
solutions with the refinement of current solutions. More-
over, S4-TVP is designed to balance the exploration and
exploitation of the search space and prevent premature
convergence. Moreover, each TVP utilizes a sinusoidal and
cosinusoidal functions with the aim of maintaining a trade-
off between exploiting previously obtained optimal solu-
tions and discovering new unvisited areas of the search
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Fig. 1 The proposed MTV-
SCA flowchart
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space. The Chebyshev function used in S1-TVP introduces
a degree of randomness and variability in the search pro-
cess, which can help the algorithm explore different
regions of the search space more effectively. The Sinu-
soidal coefficient provides periodic adjustments to the
search radius and direction, allowing the algorithm to
search more thoroughly and avoid getting trapped in local
optima. The sin-cos coefficient balances exploration and
exploitation, helps to refine the solutions, and focuses the
search on promising areas of the search space. Then, in the
population evaluation and update step, the candidate
solutions’ fitness is computed and compared to their prior
values. As a final step, a candidate solution is replaced by
the solution’s current position if its fitness is less than that
of the solution. Other than that, a solution’s position and
fitness value remain unchanged. Table 1 contains the
parameter descriptions referenced in the subsequent
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Evaluating and population updating

section. Following is a detailed explanation of the proposed
MTV-SCA.

Initialization: N solutions are initialized at random in a
D-dimensional search space considering the lower (L) and
upper (U) boundaries using Eq. (3),

xj =L+ (U — L;) x rand(0, 1) (3)

where the value of the jth dimension of the ith solution is
represented by x; ;. The minimum and maximum boundaries
of the jth dimension are denoted by L; and Uj, respectively,
while rand is a random value uniformly distributed in the
range of [0,1]. The population size and dimension size of the
problem are represented by N and D, respectively. The
N x D matrix, known as X, is used to keep the positions of
the generated solutions. The fitness function, f{X;(t)), is used
to determine the fitness value of the solution X; after the
initialization of the population and at each iteration ¢.
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Table 1 The nomenclature used

in the MTV-SCA Parameter

Description

X

ImpRatesc ryp, ImpRatep,o1.1vp
Nsc.rve, Npoor.Tve

XSC, XPool

M,M

XS1, XS2, XS3, XS4

CS1, CS2, CS3, CS4

The solutions’ position matrix

The improved ratio rate

The subpopulation size of SC-TVP and Pool-TVP
The subpopulation of SC-TVP and Pool-TVP
The transformation matrix and its reverse

The subpopulation of each TVP

The candidate subpopulation of each TVP

Distribution: In order to determine the size of subpop-
ulations SC-TVP and Pool-TVP, it is essential to consider
the number of improved solutions after passing nlter iter-
ations, a specified number of iterations. ImpRate is the ratio
of improved solutions’ fitness to the total number of
function evaluations in the preceding nlter iterations. The
TVP ImpRate is determined by Eq. (4),

N ImprovedsolutionsbySC—TVP ( 4)

fmpRatesc-rvp = Nsc-1vp X NrE
- )

N ImprovedsolutionsbyPool—TVP

ImpRatepoor—ve = Npooi—1ve X NFEs

where the improved rates are denoted by ImpRategc.vp and
ImpRatep,,,.rvp, the subpopulation size of SC-TVP and Pool-
TVP are denoted by Ngc.7vp and Np,o..7vp, and the number of
function evaluations carried out by each TVP in the preceding
niter iterations is denoted by Ngg,, respectively.

The distribution rule that is stated in Eq. (5) is taken into
consideration for distribution policy in the MTV-SCA; as a
result, the TVP that has a higher ImpRate has a bigger
subpopulation.

If ImpRatesc_rvp > ImpRatep,,_1vp then

Nsc-1vp = Npooi—tvp = 2 X N

If ImpRatesc_rvp <ImpRatep,,_7vp then (3)
Nsc—rvp = (A X N)/2, Npoor—1ve = (4 X N)

+ (AxN)/2

where N is the total number of solutions, the subpopula-
tions’ size by considering the TVPs’ improved rate denoted
by Nsc.rvp and Np,..rvp, and the portion coefficient A is
considered 0.5. After the sizes of the subpopulations are
calculated, subpopulations XSC and XPool are created.
Multi-trial vector production: Search strategies and
parameter values have a significant influence in determin-
ing the efficiency of an algorithm when solving optimiza-
tion problem. However, the nature of the problem, i.e.
unimodality, multimodality, separability, and non-separa-
bility, imply that various search strategies and control pa-
rameter values are required for various optimization tasks.
In addition, multiple search strategies with varied control
parameters could be superior to a single search strategy
with unique parameter values at various periods of

development when addressing a particular problem. Moti-
vated by these observations, we propose a collection of
trial vector producers and control parameters for canonical
SCA in which trial vector producers compete to generate a
thriving population at each iteration. As the iteration pro-
gresses, the position of solution X; is adjusted by the
strategies SC-TVP and Pool-TVP, respectively. The SC-
TVP enhances the capability to search for promising
regions of the search space and find new solutions in a
localized area. The Pool-TVP is employed when it comes
to exploiting, escaping the local optima, and achieving a
balance between exploitation and exploration.

A piece of preliminary information is presented first, fol-
lowed by a comprehensive explanation of the proposed TVPs.
In the proposed S1-TVP and S2-TVP, two transformation
matrices, denoted as M and M to generate candidate trial
vectors for each subpopulation. Matrix M, having dimensions
N x D,iscreated fromaD x D lower triangular matrix with
all elements are equal to one. This D x D matrix is replicated
(N/D) times to form a square matrix. If there are any remaining
rows in M, they are filled with the first rows of the square
matrix. Then, a random permutation is applied to the rows of
M. Following this, the M matrix is obtained by replacing each
element in M with its inverse value.

Sine cosine trial vector producer (SC-TVP): In each
iteration ¢, a candidate solution is generated for the ith
solution of the SC-TVP’s subpopulation XSC; by Eq. (6),

CSCr+I XSC:+r1 Xsin(rz) X }}’3 XPt—XSC§|7r4<O.5
" | XSCH 41y x cos(ry) x |rs x P = XSCi|,r4>0.5

(6)

where CSC;/" represents the generated candidate solution
for XSC/, r, is calculated by Eq. (2), r,, r3, and ry are
random numbers, and P’ is the position of the destination
solution in rth iteration, respectively.

Pool trial vector producer (Pool-TVP): Pool-TVP is a
collection of different trial vector producers S1-TVP, S2-
TVP, S3-TVP, and S4-TVP with various sinusoidal and
cosinusoidal functions as the search strategies’ control
parameters. The suggested distribution policy for dividing
XPool among four TVPs involves the random allocation of
solutions in each iteration. The assignment of solutions to
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TVPs is determined by considering the size of XPool,
resulting in the creation of subpopulations XS1, XS2, XS3,
and XS4. The trial vector producers in a pool possess varied
qualities to demonstrate varying performance characteristics
at various phases of the search process while confronting a
specific problem. Proposing S1-TVP aims to help the
algorithm maintain a balance between exploration and
exploitation, so avoiding being trapped in local optima. S1-
TVP, has the fastest convergence speed and performs well
for solving unimodal problems. On the other hand, S2-TVP
is effective at exploring the search space and it shows a slow
convergence speed and a higher ability for exploration. S3-
TVP strikes a good balance between exploration and
exploitation, has a higher convergence rate, and it is effi-
ciently appropriate for solving rotated problems. S4-TVP is
intended for balancing the exploration and exploitation of
the search space and avoiding premature convergence.

SI1-TVP: The aim of proposing SI-TVP is to enable the
algorithm to maintain the balance between exploration and
exploitation and avoid getting stuck in local optima. This
reached by considering the population’s best solution and
the scaled difference between two randomly chosen solu-
tions. The strategy combines information from the current
best’s position, the differentiate of randomly selected solu-
tions, to produce a candidate solution and move it towards
potentially better solutions. Also, the Chebyshev and the
rand control parameters provide a balance between explo-
ration and exploitation, which results in a more directed
search towards the best regions of the search space.

For each solution XS1; belongs to the subpopulation of

XS1, a trial vector VSlﬁ+1 is calculated by Eq. (7),

VS1i™! = P' + Chebyshev(t) x (X, — X!,) + rand x (Xi3 — X.,)

(7)

where P' is the best solution so far, and X’, X’,, X’; and X',
are randomly selected solutions from the current population X.
Chebyshev, which is calculated by Eq. (8) [113], is a function
that generates a sequence of values that oscillate between -1
and 1, and the oscillation frequency increases with the itera-
tion number. The use of the Chebyshev function allows the
algorithm to explore the search space more effectively by
taking larger steps in regions where the fitness landscape is flat
and smaller steps in regions where it is rugged.

Chebyshev(t + 1) = cos(t x cos™ ' (Chebyshev(t))) (8)

The candidate trial vector of the ith solution XS 1§ is
calculated by Eq. (9),

CS1H = M; x XS + M; x VS1iH! 9)

where M; and M; are corresponding values of the ith
solution and CS 1§+l is the candidate trial vector generated
for the ith solution of S1-TVP subpopulation.

@ Springer

S2-TVP: The strategy involves selecting three individuals
randomly from the population and creating a new trial vector
by adding the scaled difference between two of the individuals
to the third individual. This strategy has been shown to be
effective at exploring the search space, which can be partic-
ularly useful when dealing with complex and high-dimen-
sional optimization problems. The mutation strategy allows
the algorithm to move away from the current population and
explore new regions of the search space. Also, its ability to
explore the search space efficiently leads to converging
quickly, which means it can find good solutions in a shorter
amount of time compared to other metaheuristic algorithms.

For each solution XS2] belongs to the subpopulation of

XS2, a trial vector VS2§+1 is calculated by Eq. (10),
VS22t = X!, + rand x (X5 — X'3) (10)

rl»

are randomly selected solutions from the current popula-
tion X. The candidate trial vector of the ith solution X2} is
calculated by Eq. (11),

rand is a randomly generated number, and X', X’,, and X',

CS2§+1 — Mi X st£+1 +Ml X V525+1 (11)

where M; and M, are corresponding values of the ith
solution and CS2§+l is the candidate trial vector generated
for the ith solution of S2-TVP subpopulation.

S3-TVP: S3-TVP strikes a good balance between explo-
ration and exploitation and has a higher convergence rate. It
achieves these by using both the current and random solu-
tions in the search process. This is because it uses a random
solution in the mutation process, which helps to explore
different regions of the search space. The current solution
XS3! from the subpopulation of XS3 is moved in the direction
of a random vector X%, before being disturbed by a scaled
difference between two other randomly chosen solutions X',
and X!; from the current population. The candidate trial
vector of the ith solution XS3! is calculated by Eq. (12),

CS3i™! = XS3! + sinusoidal(t) x (X!, — XS3!) + rand
X (X5, — Xi3)

(12)

where CS31’A+1 represents the candidate solution provided for
the ith solution XS3§, sinusoidal(t) is the coefficient which is
used to adjust the search radius and direction of the algorithm
calculated by Eq. (13), and X',, X!,, and X’ are randomly
selected solutions from the current population X.

Sinusoidal(t + 1) = C x (Sinusoidal())* x sin(n
x Sinusoidal(t)) (13)

The sinusoidal function [113] can help prevent prema-
ture convergence by allowing the algorithm to explore the
search space more thoroughly. By periodically increasing
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the search radius and changing the search direction, the
algorithm can avoid getting stuck in local optima and
continue searching for the global optimum.

S4-TVP: The goal of balancing the exploration and
exploitation of the search space and avoiding premature
convergence is maintained by this strategy. It updates the
position of XS4§, based on its current position, two ran-
domly chosen solutions, and a combination of sine and
cosine functions depend on the current iteration number
and the total number of iterations. The candidate trial
vector of the ith solution XS4/ is calculated by Eq. (14),

CS4™! = XS4! + (cos(t/Maxlter) x sin(rand
X (t/Maxlter))) x (XL, — X',) (14)

where t1s the current iteration, MaxlIter is the total number of
iterations, and X’ and X/, are randomly selected solutions
from the current population X. The role of cos(t/MaxlI-
ter) x sin(rand x (t/Maxlter)) is to provide a dynamic
adjustment of the control parameters to balance exploration
and exploitation and avoid premature convergence, thus
improving the efficiency of the proposed TVP. The former
part varies from 1 to — 1 as ¢ approaches Maxlter, which
allows the gradual reduction of the search radius, which
helps to refine the solutions and focus the search on
promising areas of the search space. The latter part presents a
random element into the control parameter adjustment. The
random value rand is uniformly distributed between 0 and 1,
which generates a random angle for the sine function. This
randomness helps to avoid getting trapped in local optima by
exploring different areas of the search space.

Population evaluation and update: Following each
optimization cycle, the objective function is computed for
the current population of candidate solutions and compared
to previous fitness values. The optimal candidate solutions
are then retained for subsequent iterations as they prove to
be the most effective. This process is important because it
helps to ensure that the population of candidate solutions
maintains diversity while also improving overall fitness. By
selecting the best solutions for the next iteration, the
algorithm is able to focus on exploring new areas of the
search space while also exploiting promising regions that
have already been identified.

4.1 The computational complexity of MTV-SCA

As shown in Algorithm 1, the MTV-SCA consists of four
main steps: initialization, distribution, multi-trial vector
production, and population evaluation and update. In the
initialization step, all N solutions are distributed in the D-
dimensional search space with a computational complexity
O(ND). The while-loop (lines 6-19), which includes dis-
tribution, multi-trial vector production, and population
evaluation and update, has a computational complexity of
O(N + NSC-TVPD + NPool-TVPD)~ Given that N = NSC—TVP—
+ N, . then the computational complexity of the
while-loop for each iteration is simplified to O(N + ND).
The movement step for all iterations (7) has a complexity
of O(T(N + ND)). Therefore, the overall computational
complexity of the MTV-SCA is OND + TN + TND) or
O(TND).

Algorithm 1 Multi-trial vector-based sine cosine algorithm (MTV-SCA)

Input: N, D, MaxlIter, nlter
Output: The global optimum (Xpesr)
Begin

iter=1.

Win-TVP =RTVP.

Evaluating fitness f(X;) and set the Xpes:.
While iter < MaxlIter
If mod (iter, nlter) ==

el e R A

9: End if

10: Population distribution using Eq. (5).
11: Do for each SC-TVP and Pool-TVP
12: Fori=1toN

13: Multi-trial vector production.

Randomly distribute N solutions in the search space.

Determining subpopulation size SC-TVP and Pool-TVP using Eq. (4).

14: Population evaluation and update.

15: End for

16: End do

17:  Updating Xpes:.

18: iter = iter + 1.

19 : End while

20 : Return the global optimum (Xpes).
21: End
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5 Performance evaluation

In this section, we present a comprehensive experimental
study and statistical analysis to evaluate the performance of
the proposed MTV-SCA. The algorithm’s performance was
evaluated through tests for exploration and exploitation,
local optima avoidance, and convergence assess-
ment. Various nature-inspired algorithms, including krill
herd (KH) [35], grey wolf optimizer (GWO) [11], moth-
flame optimization (MFO) [36], whale optimization algo-
rithm (WOA) [12], sine cosine algorithm (SCA) [20], salp
swarm algorithm (SSA) [13], henry gas solubility opti-
mization (HGSO) [37], and Archimedes optimization
algorithm (AOA) [40] were compared to the proposed
algorithm under consideration to assess its performance.
Additionally, we extend our comparative analysis to
include three algorithms: fitness-dependent optimizer
(FDO) [38], chimp optimization algorithm (ChOA) [39],
and fox-inspired optimization (FOX) [41], presenting their
performance in separate tables for clarity and comparison.
The proposed MTV-SCA is also evaluated against state-of-
the-art algorithms and well-established algorithms,
including particle swarm optimization (PSO) [10], gravi-
tational search algorithm (GSA) [42], adaptive differential
evolution with optional external archive (JADE) [43], and
the CEC 2017 winner algorithms LSHADE-SPACMA [44]
and LSHADE-cnEpSin [45].

5.1 Benchmark test functions and experimental
environment

The test functions utilized in the evaluation of the proposed
MTV-SCA are from the CEC 2018 benchmark suite [34],
comprising of (F1, F3), simple multimodal (F4-F10),
hybrid (F11-F20), and composition functions (F21-F30).
The purpose of the functions was to serve as an appropriate
benchmark for evaluating the algorithm’s exploration,

exploitation, convergence behavior, balance between
exploration and exploitation, and local optima avoidance
capabilities. The implementation of the MTV-SCA was
carried out using Matlab R2018a, and tested on a computer
with an Intel Core 17-3770 processor running at 3.4 GHz
with 8.00 GB of RAM.

5.2 Experimental setup

For this study, all comparative algorithms were established
utilizing the identical parameter values as recommended by
their respective works, as outlined in Table 2. To evaluate
each algorithm’s performance, 20 independent runs of the
benchmark functions were executed with dimensions of 10,
30, and 50. The maximum number of iterations (Maxlter)
was established based on the problem’s dimension (Dim)
and set to (Dim x 10,000)/N, where N is 100. The results
were reported based on the fitness error, f(Fbest) — f(X"),
where f(Fbest) represents the minimum fitness value
obtained, and f(X*) is the global optimum. The mean,
standard deviation, and minimum of the error value were
used to quantify algorithm performance. The detailed
experimental results are presented in Tables 4, 5, 6, 7, 8, 9,
where the best-obtained error values are bolded, and the
overall results are compared. The ‘I/t/w’ displayed in the
final three rows of each table signifies the number of losses
(1), ties (t), and wins (w).

5.3 Sensitivity analysis

In this subsection, the analysis delves into the diverse
values for the initial points of the Chebyshev and sinu-
soidal functions. The initial point is variable within the
range of 0 to 1, and its selection plays a crucial role in
shaping the fluctuation pattern of the functions. Specifi-
cally, we considered initial values spanning from 0.1 to 0.9.
The sensitivity analysis of different values for these two

Table 2 Parameter settings Algorithms

Parameters values

KH

GWO, WOA
MFO

SCA

SSA

HGSO

AOA
MTV-SCA

D™ = 0.005, N"* = 0.01, V;=0.02

a=1[20]

a=[2-1]

A=2

¢», ¢3 = random numbers in [0, 1]

a=pf=K=1, M, =0.1, M, =0.2, [, = 0.005, I, = 100,
I3 = 0.01, number of Clusters = 5
C1=2,0,=6,C;=1,C,=2,u=09,1=0.1

nlter = 20, Chebyshev(0) = Sinusoidal(0) = 0.7, C = 2.3
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parameters, as presented in Table 3, indicates that an initial
value of 0.7 is optimal for both points.

5.4 Exploration and exploitation evaluation

An algorithm’s ability to solve unimodal functions is
essential in optimization problems. Unimodal functions
have a single optimum solution, which is generally easier
to find than multimodal functions with multiple optimum
solutions. A good optimization algorithm should quickly
converge to the global optimum solution while avoiding
getting trapped in local optima. In this regard, algorithms
with a strong exploitation capability are preferred for
solving unimodal functions. Exploitation refers to the
process of fine-tuning the current best solution in the search
space to converge toward the global optimum. Algorithms
with strong exploitation capability achieve this by priori-
tizing the best candidate solutions in each iteration and
using them to explore the search space more intensely.
According to the results presented in Tables 4 and 6, the
suggested MTV-SCA achieves significantly more precise
results for unimodal functions of all dimensions than SCA.
This is primarily due to the exploitative nature of the SC-
TVP and the ability of SI-TVP to maintain the balance
between exploration and exploitation, which is an essential
factor in avoiding getting stuck in local optima, a common
problem when optimizing unimodal functions. The MTV-
SCA has been found to be more effective in employing the
optimal solution when compared SCA and benchmark
algorithms.

The ability of an algorithm to solve multimodal func-
tions is crucial for successful optimization in real-world
applications where the search space is often complex and
non-convex. Multimodal functions have multiple local
optima, which can trap the search process and hinder the
algorithm from finding the global optimum. Therefore, a
good multimodal optimization algorithm should possess
the ability to explore different areas of the search space and
avoid getting stuck in local optima while exploiting
promising regions. According to the results presented in
Tables 5 and 6, the suggested MTV-SCA achieves signif-
icantly more precise results for multimodal functions of all
dimensions than SCA and comparative algorithms.

S2-TVP is effective at exploring the search space, which
is essential when dealing with complex and high-dimen-
sional optimization problems, such as multimodal func-
tions. S3-TVP is designed to balance exploration and
exploitation well, leading to a higher convergence rate.
This characteristic is essential when optimizing multimodal
functions since finding the global optimum often requires a
balance between exploration and exploitation. Finally, S4-
TVP aims to balance the exploration and exploitation of the
search space and avoid premature convergence, another

common issue when optimizing multimodal functions. In
summary, the proposed MTV-SCA algorithm’s ability to
maintain a balance between exploration and exploitation,
combined with its ability to explore and converge effec-
tively, makes it an effective algorithm for solving both
unimodal and multimodal functions. In summary, the
proposed MTV-SCA algorithm’s ability to maintain a
balance between exploration and exploitation, combined
with its ability to explore and converge effectively, makes
it an effective algorithm for solving both unimodal and
multimodal functions.

5.5 Assessing the effectiveness of local optima
avoidance

The hybrid and composition functions of CEC 2018 are
designed to be challenging optimization problems that
combine multiple unimodal and multimodal functions.
Hybrid functions combine different unimodal or multi-
modal functions in a way that makes the search space
complex and difficult to explore, while composition func-
tions are constructed by combining multiple functions in a
nested way, where the output of one function serves as the
input for the next. These functions pose a challenge to
optimization algorithms due to their complex search
landscape, which includes multiple local optima.

The gained results are shown in Tables 7, 8, 9. Using the
proposed MTV-SCA for solving hybrid and composition
functions indicates that it effectively explores the search
space thoroughly to find promising regions and avoid
getting stuck in local optima, while also exploiting the
current best solution to refine its search. The S1-TVP
strategy implemented in the algorithm helps avoid local
optima and ensures that the algorithm explores the search
space efficiently. The S2-TVP strategy is also useful in
exploring complex and high-dimensional optimization
problems, which is crucial for solving hybrid and com-
posite functions. The S3-TVP strategy maintains a good
balance between exploration and exploitation, which leads
to a higher convergence rate for the algorithm. Addition-
ally, the S4-TVP strategy helps balance the exploration and
exploitation of the search space, reducing the likelihood of
premature convergence. Overall, the combination of these
strategies in the MTV-SCA helps in achieving better
results when solving hybrid and composite functions by
effectively exploiting, exploring, and maintaining a bal-
ance between them.

5.6 Comparison of MTV-SCA with state-of-the-
art and well-established algorithms

In this experiment, the proposed MTV-SCA is compared to
that of the state-of-the-art algorithm and well-established

@ Springer
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Table 10 The comparison of MTV-SCA with statE—of-thE—art and well-stablished algorithms

F Alg Alg Alg Alg Alg Alg
PSO GSA JADE LSHADE—SPACMA LSHADE — cnEpSin MTV-SCA

F1 4.4224E4-08 1.3345E4-02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
F3 3.0775E+03 1.0157E+04 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
F4 3.9140E+01 6.5617E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
F5 3.5604E+01 6.4136E+01 3.2612E+00 1.2088E+00 1.6322E+4-00 4.9190E4-00
F6 1.8216E+01 2.7456E4-01 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
F7 1.1527E4-02 1.3424E4-01 1.3537E+01 1.1111E+01 1.1698E+4-01 1.8200E+4-01
F8 4.7964E+-01 2.1143E4-01 3.6986E+00 7.0721E-01 1.8685E4-00 4.8170E4-00
F9 3.4860E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
F10 1.2032E+4-03 1.7860E+-03 8.7707E+01 5.0832E+00 9.2189E+00 3.0470E+02
F11 1.3798E+-02 5.4948E+-01 2.4495E+00 0.0000E+00 0.0000E+00 0.0000E+00
F12 1.4391E+4-07 1.0022E+-06 6.2150E+-01 1.0200E+02 3.0013E+01 7.2600E+-01
F13 3.1259E+04 9.9782E+03 3.7836E+00 3.4529E+00 4.2083E4-00 2.8060E+00
F14 1.1781E402 4.7876E4-03 5.7498E—01 0.0000E+00 3.9448E—-04 9.7640E—03
F15 9.8117E+4-02 1.5624E4-04 4.7198E—-01 3.4751E-01 1.0804E—01 4.2930E—02
Fl16 8.6093E+01 5.2504E+02 1.5207E4-00 7.7989E—01 8.3820E—-01 6.0840E—01
F17 9.0496E+-01 1.2819E4-02 5.0076E—01 1.8265E—-01 5.3922E-01 6.0840E—01
F18 4.8868E+04 6.6749E+03 1.0697E—01 4.4659E—01 1.9594E—01 1.6180E—01
F19 4.3338E+4-02 6.7054E+04 4.9069E—02 4.8829E—02 3.7289E—-02 2.7520E—-02
F20 8.8842E+01 2.8475E+02 7.4726E—11 9.3652E—02 2.0584E—01 0.0000E+00
F21 1.9905E+-02 2.4853E+02 1.4833E+02 1.0000E+02 1.3061E4-02 1.3140E4-02
F22 1.8207E4-02 1.0007E4-02 9.0605E+4-01 1.0000E+4-02 1.0000E+4-02 9.0580E+01
F23 3.2982E+02 4.6239E4-02 3.0497E+02 3.0067E+02 3.0116E+02 3.0290E+02
F24 3.6091E+02 3.5239E+02 2.7643E4-02 2.5563E+02 2.7188E+02 2.3300E+02
F25 4.6689E+4-02 4.4363E4-02 4.1639E+4-02 4.1840E+-02 4.1611E4-02 4.1400E+02
F26 4.2237E+402 8.3791E+02 3.0000E+02 3.0000E+02 3.0000E+02 2.8460E+02
F27 4.1132E+402 5.6555E+02 3.9991E+02 3.9852E+02 3.9278E+02 3.9040E+02
F28 5.3254E4-02 6.5463E+02 3.2978E+02 3.0000E+02 3.4061E+02 3.0000E+02
F29 2.9916E+4-02 5.4440E+02 2.4408E4-02 2.3572E+02 2.3361E+02 2.4710E+02
F30 7.6090E+4-05 1.2739E4-06 4.0844E4-02 4.0659E4-02 4.0412E+02 4.4640E4-02
Friedman rank 6 3 5 4 1 2

The best results among all algorithms are indicated in bold

algorithms particle swarm optimization (PSO) [10], grav-
itational search algorithm (GSA) [42], and adaptive dif-
ferential evolution with optional external archive (JADE)
[43], and CEC 2017 winner algorithms LSHADE-
SPACMA [44] and LSHADE—-cnEpSin [45]. The experi-
ments conducted here are based on a maximum population
size of 428 and a minimum size of 4 for the LSHADE-
SPACMA and LSHADE—-cnEpSin. The maximum number
of iterations and population size for the other algorithms
are set according to their previously defined values. The
results of the experiment, presented in terms of mean fit-
ness error, are tabulated in Table 10. These algorithms
were independently applied 20 times to the CEC 2018 test
functions with a dimensionality of 10. Moreover, the
Friedman test is utilized to illustrate the distinction in

@ Springer

performance achieved by the proposed MTV-SCA com-
pared to other algorithms.

5.7 Assessing convergence performance

The goal of this experiment is to evaluate the convergence
behavior and speed of MTV-SCA against other compara-
tive algorithms. Figure 2 shows the convergence curves for
different functions. Each curve represents the mean of the
best results from twenty runs of each algorithm. Conver-
gence analysis is important in population-based meta-
heuristic algorithms because it helps assess the
effectiveness and efficiency of the optimization process. In
these algorithms, a population of candidate solutions is
maintained and iteratively improved using various search
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Fig. 2 Convergence curves of selected functions

strategies. The convergence analysis provides insight into
how quickly the algorithm can find the optimal or near-
optimal solution and how stable the optimization process

is. It helps to determine whether the algorithm is pro-
gressing toward finding a good solution. If the algorithm is
converging too slowly or not at all, it may indicate that the

@ Springer
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algorithm’s parameters need to be adjusted or that the
algorithm is not well-suited for the specific optimization
problem. On the other hand, if the algorithm converges too
quickly, it may indicate that the algorithm has become
trapped in a local minimum or is not exploring the search
space thoroughly enough.

During the optimization process, the MTV-SCA exhibits
three convergence behaviors. Firstly, the algorithm expe-
riences early decreasing convergence, where a reasonably
good but not necessarily optimal solution is found in the
early iterations and then maintained for several iterations,
with only minor changes. Secondly, the algorithm under-
goes faster convergence in the first half of the iterations,
where more significant improvements are made to the
solution. Finally, the algorithm exhibits steady improve-
ment in the later iterations, where smaller improvements
are made to the solution until a stopping criterion is met.
Overall, the combination of these convergence behaviors
allows the MTV-SCA to strike a balance between explo-
ration and exploitation throughout the optimization pro-
cess. The algorithm achieves sufficient convergence,
exploitation, and diversity by utilizing the differences
between random and the best-obtained solutions. The
MTV-SCA’s ability to maintain diversity throughout the
optimization process is critical in dealing with complex
optimization problems. Moreover, the results show that the
MTV-SCA outperforms other comparative algorithms in
terms of faster convergence and maintaining diversity in
both multimodal and composition functions. Therefore, the
MTV-SCA is a promising candidate for solving various
optimization problems.

The proposed MTV-SCA surpasses other comparative
algorithms in terms of faster convergence on multimodal
and composition functions. The algorithm achieves this
feat by combining the best solutions obtained in the pro-
posed TVPs and the differences between random solutions,
resulting in a suitable equilibrium between exploration and
exploitation. The MTV-SCA sustains diversity during
optimization by leveraging differences between random
solutions. The convergence curves in Fig. 2 exhibit that the
MTV-SCA outperforms other algorithms in both hybrid
and composition functions. This suggests a balanced
exploration and exploitation process in these functions.
Additionally, the MTV-SCA effectively addresses chal-
lenges in complicated functions by maintaining essential
diversity.

6 Statistical analysis
While the experimental findings compared the overall

performance of MTV-SCA versus comparative algorithms,
they did not assess the statistical significance of these
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comparisons. Then, two non-parametric tests, Friedman
and Wilcoxon signed-rank, are conducted to prove the
statistical superiority of the MTV-SCA.

6.1 Friedman test

The Friedman test [46] was used to show that the proposed
MTV-SCA is statistically superior to other algorithms. The
Friedman test is a non-parametric test that ranks all algo-
rithms according to their performance based on their
obtained fitness values. The test does not assume any
specific distribution of data which makes it a suitable test
for comparing the performance of metaheuristic algorithms
while often having unpredictable search behavior and
producing diverse outcomes across different problems.
Another reason for using the Friedman test is that it takes
into account the rank ordering of the algorithms’ perfor-
mances across multiple problems. This is important
because the ranking of algorithms can vary significantly
across different problems. By considering the rank ordering
rather than the absolute values of the performance metrics,
the Friedman test can detect significant differences
between algorithms that may not be apparent through other
statistical tests. The Friedman test was conducted using
Eq. (15) to rank the algorithms based on their fitness
values.

_ 12 xn

Fy “kx (k1D (15)

ZRz_kx(kH)2
i 4

where k, n, and R; are the number of algorithms, case tests,
and the mean rank of the jth algorithm, respectively. The
evaluation process involves assigning numerical scores to
each algorithm/problem combination, with a score of 1
indicating the best-gained result and a score of k indicating
the worst-gained result. These scores are then averaged
across all problems to produce a comprehensive rating for
the algorithm. Algorithms that receive lower scores are
deemed superior.

Table 11 presents the results of the Friedman rank test,
conducted with a 95% confidence level. The results con-
firm that the MTV-SCA surpasses other algorithms in a
statistically significant manner with regards to dimensions
10, 30, and 50. The non-parametric test has further con-
firmed the importance of the findings, as indicated by the
p-value acquired.

6.2 Wilcoxon signed-rank test

The Wilcoxon signed-rank test is employed to show the
difference between the performance gained by the pro-
posed MTV-SCA and other algorithms. In Table 12, these
pair-wise statistical test results are demonstrated with a
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Table 11 The results of Friedman test

Algorithm  Dim  Fl F3 F4 F5 F6 F7 F8 Fo F10 F11 F12 F13 Fl14 FI5 Fl16 F17
KH 10 695 805 660 605 380 500 500 525 605 860 625 550 4.60 450 530 6.35
30 510 595 430 585 280 525 620 3.05 815 680 345 320 750 200 6.05 4.50
50 500 585 510 525 295 500 535 410 835 875 350 200 870 245 405 445
GWO 10 855 630 810 855 820 800 730 790 830 725 7.85 665 740 740 735 7.25
30 850 550 875 865 830 740 840 720 670 820 840 865 745 810 820 7.95
50 810 810 875 825 885 675 865 870 705 705 88 845 790 830 720 6.75
MFO 10 235 585 400 510 505 210 380 350 530 395 510 525 565 7.0 815 470
30 285 625 280 370 555 260 320 495 385 445 340 290 605 360 400 4.55
50 300 680 275 345 560 320 385 375 385 570 235 315 435 285 420 4.60
WOA 10 390 533 365 405 250 455 560 338 380 375 230 475 690 565 435 3.70
30 695 730 6.75 510 485 595 540 7.00 415 720 555 465 440 465 520 6.95
50 7.80 785 7.5 655 475 750 575 595 435 670 670 6.65 425 620 620 6.70
SCA 10 510 490 475 230 370 320 260 455 255 270 365 405 460 480 385 3.95
30 6.10 3.80 515 230 225 315 230 225 195 310 560 545 420 490 225 270
50 6.00 3.70 550 230 205 300 220 230 235 410 575 580 420 600 270 2.15
SSA 10 565 4.00 615 670 860 7.80 790 880 525 590 6.00 620 545 665 6.10 6.75
30 410 855 560 745 865 855 685 825 570 450 6.05 555 680 640 705 7.15
50 400 420 425 580 790 820 6.10 735 570 300 555 505 520 520 730 755
HGSO 10 305 240 270 365 515 470 400 335 530 560 480 515 355 400 420 4.60
30 220 200 255 325 495 345 375 440 275 230 295 525 225 545 345 3.65
50 200 2.00 245 405 465 290 39 430 375 210 320 455 230 440 370 345
AOA 10 845 7.15 805 760 685 795 775 7.00 7.15 625 805 645 585 390 470 6.70
30 820 465 810 770 665 750 790 690 875 745 860 835 535 890 765 6.55
50 810 550 805 835 725 745 820 755 860 6.60 810 835 7.10 860 865 835
MTV-SCA 10 1.00 1.02 100 100 115 170 1.05 127 130 1.00 100 1.00 1.00 1.00 1.00 1.00
30 1.00 1.00 100 100 100 115 1.00 1.00 300 100 100 100 100 1.00 115 1.00
50 1.00 1.00 100 100 100 100 1.00 1.00 1.00 100 100 100 100 1.00 1.00 1.00
Algorithm  Dim F18 F19 F20 F21 F22 F23 F24 F25 F26 F27 F28 F29 F30 Avgrank Overall rank
KH 10 320 580 3.80 525 7.00 570 490 670 770 7.05 595 6.70 3.50 5.76 6
30 6.05 205 530 590 795 550 480 6.5 560 125 495 270 170 4.83 5
50 545 210 6.15 3.85 830 420 505 555 525 135 515 255 195 475 5
GWO 10 815 675 7.15 520 825 890 225 625 770 7.65 510 7.00 3.50 7.11 9
30 745 790 640 835 495 885 860 850 7.60 175 7.10 630 850 7.54 8
50 795 830 565 865 545 845 875 855 7.00 1.65 7.00 7.70 850 7.63 8
MFO 10 415 475 690 350 280 535 395 335 415 750 480 590 6.75 4.86 5
30 365 410 550 335 255 565 645 320 545 830 3.00 570 4.65 4.35 4
50 465 335 525 390 485 625 690 325 6.05 830 335 555 475 448 4
WOA 10 495 635 370 620 3.65 390 660 520 405 240 595 445 535 451 4
30 525 410 595 530 565 375 395 700 420 510 825 490 3.60 548 6
50 505 575 595 610 485 455 380 7.00 405 535 855 525 375 590 6
SCA 10 580 435 455 600 435 245 480 395 405 335 695 3.10 6.00 4.17 3
30 460 460 355 240 485 230 290 465 260 485 555 280 560 3.75 3
50 480 525 245 265 255 225 250 565 255 535 580 275 595 3.81 3
SSA 10 410 7.70 725 805 630 670 735 630 725 670 520 855 7.10 6.64 7
30 620 695 695 745 630 740 735 410 795 735 490 840 6.65 6.73 7
50 565 570 730 7.60 585 795 725 370 885 750 435 795 650 6.16 7
HGSO 10 550 3.65 475 3.60 3.65 345 465 350 280 225 495 290 445 4.01 2
30 260 535 435 345 340 3.05 260 215 255 485 225 485 450 347 2
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Table 11 (continued)

Algorithm Dim F18 FI19 F20 F2I F22  F23 F24 F25 F26 F27 F28 F29 F30 Avgrank Overall rank

50 220 4385 3.15 365 350 3.00 270 215 200 430 230 4.15 4.10 3.30 2
AOA 10 8.15 465 590 490 740 755 820 770 6.05 560 510 510 7.05 6.66 8

30 820 895 6.00 780 835 750 735 7.85 755 830 800 835 850 7.65 9

50 825 870 810 7.60 8.65 735 7.05 815 775 820 750 8.10 845 7.88 9
MTV-SCA 10 1.00 1.00 1.00 230 1.60 1.00 230 2.05 125 250 1.00 130 130 1.28 1

30 1.00 1.00 1.00 1.00 1.00 1.00 100 140 150 325 1.00 1.00 130 1.20 1

50 1.00 1.00 1.00 1.00 100 1.00 100 1.00 150 3.00 1.00 1.00 1.05 1.09 1
The best results among all algorithms are indicated in bold
Table 12 Results of Wilcoxon signed-rank test on Dim = 10, 30, and 50
MTV-SCA vs  Dim = 10 Dim = 30 Dim = 50

Rt R p-value a=005 RY R~ p-value =005 RY R~ p-value o = 0.05

KH 432 3  3.5150E-06 YES 435 0 2.5631E—06  YES 435 0 2.5631E—-06 YES
GWO 435 0 25631E—06 YES 435 0 2.5631E—06  YES 435 0 2.5631E—06  YES
MFO 434 1 2.8489E—06  YES 435 0 2.5631E—06  YES 435 0 2.5631E—06  YES
WOA 435 0 25631E—06 YES 435 0 2.5631E—06  YES 435 0 2.5631E—06  YES
SCA 435 0 25631E-06 YES 435 0 2.5631E—06  YES 435 0 2.5631E—06  YES
SSA 422 13 9.7817E—06  YES 435 0 2.5631E—06  YES 435 0 2.5631E—06  YES
HGSO 424 11 7.9997E—06  YES 434 1 2.8489E—06  YES 434 1 2.8489E—06  YES
FDO 435 0 25631E—06 YES 435 0 2.5631E—06  YES 435 0 2.5631E—06  YES
ChOA 435 0 2.5631E—06 YES 435 0 2.5631E—06  YES 435 0 2.5631E—06  YES
AOA 435 0 25631E—06 YES 434 1 2.8489E—06  YES 434 1 2.8489E—06  YES
FOX 435 0 25631E—06 YES 433 2 3.1652E—-06  YES 435 0 2.5631E—06  YES

significance value of o = 0.05. The R column denotes the
sum of ranks in which the MTV-SCA outperforms its
competitor, while R™ represents the sum of ranks for the
functions that the MTV-SCA performs worse than the
competitor algorithm. The significant difference between
each pair of algorithms is denoted by the p-value column
and considered when the p-value < a. The p-value results
prove that the proposed MTV-SCA’s superiority is statis-
tically significant compared to the competitor algorithms.

7 Exploring the suitability of MTV-SCA
in solving constrained problems

Design optimization problems are prevalent in real-world
engineering applications, and solving them effectively can
significantly improve design quality and efficiency. Meta-
heuristic algorithms have become increasingly popular in
recent years for addressing such optimization problems due
to their ability to find high-quality solutions in complex,
multimodal search spaces, even in the presence of con-
straints. Compared to traditional optimization algorithms,
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metaheuristic algorithms can achieve better results in less
time and can handle problems with high levels of com-
plexity and uncertainty.

This section contains six non-convex constrained engi-
neering problems used to investigate MTV-SCA’s capa-
bility to solve real-world engineering problems. Pressure
vessel [114], three-bar truss [115], welded beam [116],
tension/compression spring [117], speed reducer [118], and
gas transmission compressor design problem [119] have all
been solved using MTV-SCA and other comparative
algorithms. As MTV-SCA is intended to be used for
optimization purposes, it should be able to handle the
equality and inequality constraints included in these engi-
neering design problems. In this paper, the death penalty
function [1] is used to handle constraints, which is one of
the most straightforward multi-constraint problem-solving
procedures among the many constraint-handling methods.
The death penalty function assigns a high fitness value to
solutions that violate one or more constraints, thus elimi-
nating infeasible solutions. Each algorithm was run 30
times with the maximum number of iterations and popu-
lation size (N) set to (D x 10%)/N and 20, respectively. The
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Table 13 The results of
pressure vessel problem

Table 14 The results of welded

beam problem

results of these engineering design problems are presented

Table 15 The results of tension/compression spring design problem

Algorithms Variables’ optimum values Optimal cost
T T, R L

KH 0.8583766 0.4364271 44.453874 149.5471 6083.908376
GWO 0.7793857 0.3860307 40.382404 199.17257 5890.677687
MFO 0.7813776 0.3862353 40.485885 197.69832 5890.840566
WOA 1.0063937 0.4946975 51.582689 86.264298 6440.856533
SCA 0.7971754 0.3917014 40.417832 200 6060.531773
SSA 0.8015534 0.3962081 41.53123 183.93233 5929.660895
HGSO 1.0994922 0.5369286 55.732089 59.148888 6784.349365
AOA 0.9926987 0.5278103 43.416379 200 8606.921991
MTV-SCA 0.7781917 0.3846622 40.320769 199.98418 5885.386998
The best results among all algorithms are indicated in bold

Algorithms Variables’ optimum values Optimal cost

h 1 t b

KH 0.1734644 4.3627088 9.0353546 0.2057877 1.787637756
GWO 0.2055208 3.475114 9.0365953 0.205778 1.725515235
MFO 0.2057296 3.4704903 9.0366239 0.2057296 1.724852409
WOA 0.1733243 4.3053194 9.0973158 0.2055779 1.789913641
SCA 0.2025877 3.3539285 9.5573795 0.2034842 1.775753362
SSA 0.2031367 3.5271823 9.0366275 0.2057296 1.728443415
HGSO 0.1595571 4.9309016 9.1759742 0.2067658 1.86665337
AOA 0.2071561 3.1785351 10 0.2092726 1.88023824
MTV-SCA 0.2057296 3.4704887 9.0366239 0.2057296 1.724852309

The best results among all algorithms are indicated in bold

Algorithms ~ Variables’ optimum values Optimal weight
d D N

KH 0.05163965 0.3555217 11.359813 0.012665813
GWO 0.05260798 0.3791175 10.091013 0.012686439
MFO 0.05198774 0.3639458 10.877455 0.012666852
WOA 0.05162934 0.3552827 11.3736 0.012665301
SCA 0.05 0.3170274 14.098058 0.012758813
SSA 0.05205656 0.3656234 10.785599 0.012667944
HGSO 0.05 0.3173935 14.255291 0.01289831
AOA 0.05 0.3104307 15 0.013193304
MTV-SCA 0.05164264 0.3556019 11.354686 0.012665272

The best results among all algorithms are indicated in bold

Table 16 The results of three-bar truss problem

Algorithms Variables’ optimum values Optimal weight
X1 X2

KH 0.7883914 0.4090514 263.8959074
GWO 0.7887794 0.4079744 263.897942
MFO 0.7885469 0.408611 263.8958555
WOA 0.7881841 0.409639 263.8960235
SCA 0.7883578 0.4092308 263.9043442
SSA 0.7885544 0.4085898 263.8958541
HGSO 0.7868361 0.4136147 263.9123383
AOA 0.7812819 0.4305652 264.0364105
MTV-SCA 0.7886751 0.4082483 263.8958434

The best results among all algorithms are indicated in bold
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Table 17 The results of speed reducer problem

Algorithms Optimum values Optimum cost
b m p I8 l d, d»
KH 3.5001803 0.7000238 17 7.3043334 7.7169708 3.3504269 5.28667677 2994.792113
GWO 3.5022791 0.7 17 7.4774786 7.7304194 3.3528629 5.28670568 2997.972556
MFO 35 0.7 17 7.3 7.7153199 3.3502147 5.28665446 2994.471066
WOA 3.5272386 0.7 17 7.5985484 7.9178682 3.4479791 5.28672379 3038.06415
SCA 3.5095504 0.7 17 7.6460229 8.0188604 3.4416384 5.30609963 3044.475047
SSA 3.5000618 0.7 17 7.3934209 7.7874134 3.3503973 5.2866792 2996.963749
HGSO 3.509275 0.7 17 7.3 7.7949563 3.4297587 5.30628658 3033.134989
AOA 3.6 0.7 17 8.3 8.3 3.358164 5.29783473 3064.616095
MTV-SCA 35 0.7 17 7.3 7.7153199 3.3502147 5.28665446 2994.4711
The best results among all algorithms are indicated in bold
Table 1.8 'The results of gas . Algorithms Variables’ optimum values Optimum
transmission compressor design
X1 X2 X3 X4 cost
KH 49.876349 1.1821134 24.560526 0.3973787 2.9651726245E+06
GWO 49.999695 1.1783846 24.586014 0.3885877 2.9649002713E4-06
MFO 50 1.1780074 24.601519 0.3877014 2.9648962776E4-06
WOA 50 1.1766581 24.645012 0.3845242 2.9649253929E4-06
SCA 50 1.1898313 23.704703 0.4156751 2.9667224748E4-06
SSA 4494133 1.1583555 25.277746 0.3417875 2.9687471719E+06
HGSO 50 1.1656722 25.181623 0.3585052 2.9673819640E+06
AOA 50 1.2239676 20 0.4966806 3.0031605313E4-06
MTV-SCA 50 1.1782839 24.59259 0.3883531 2.9648954144E+06
The best results among all algorithms are indicated in bold
L
—>
<l> | I
Th Ts i 2
Fig. 3 Design of pressure vessel \/\ I’
in Tables 13, 14, 15, 16, 17, 18 and demonstrate that MTV- oo
SCA outperformed other methods in addressing real-world d

mechanical engineering challenges.

o Pressure vessel design problem
The major aim of this problem, represented in Fig. 3,
is optimizing the cost of material, forming, and welding
a vessel. The problem has four variables Ty, Tj,, R, and
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Fig. 4 Design of welded beam

L. The mathematical representation of this problem is
provided in Eq. (16).

Consider X = [x;xyx3x4] = [TsT,RL]

(16)
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minimizef(?) = 0.6224x1x3x4 + 1.7781x2x§
+3.1661x3 x4 + 19.84x7x;

subject to g, (¥') = —x; +0.0193x3 <0, g, ()
—x2 + 0.00954x3; <0

4
g3 (?) = —nx§x4 — gnxg + 1,296,000 <0, g4 (7)
=x4 —240<0

where 0<x;<100 fori=1,2
10 <x; <200 for i = 3,4
Welded beam problem

Determining the minimum cost to fabricate a welded
beam is the subject of this design problem. It has four
design factors that need to be optimized as shown in
Fig. 4 and four restrictions that should be considered.
Equation (17) is the mathematical representation of this
problem.

and

Consider X = [x1xpx3x4] = [hith] (17)
minimize f( %) = 1.10471x3x, 4 0.0481 Lx;xs x (14.0
+ XQ)

subject to g; (¥) = 1(¥) — Tmax < 0,8, (%)

= 6(7 — Opax < 07

(%) =3(¥) -

Fig. 5 Design of tension/compression spring

Fig. 6 Design of three-bar truss

L

84(¥) =x1 — x4 <0,85(%)
=P—P(¥)<0,8(x) =0.125—x; <0

g7(T) = 1.10471:3 + 0.0481 Lxsxy X (14.0 + x7)
~05<0

where 01<x;<2fori=1,2
0.1<x;<10fori=3,4
Tension/compression spring design problem

The major goal of this design problem is to reduce
the weight of the tension/compression spring. This
problem has three design factors, as shown in Fig. 5.
Equation (18) is the mathematical representation of this
problem.

and

Consider X = [x;x,x3] = [dDN] (18)
minimize f (X)) = (x3 + 2)xox]
: 53
subject to g, (7) =1- 717285x% <0,8, (7)
2 —
_ 4x; x;xz - 1 <0
12566(xox; —x7)  5108x7
s 140.45)61 N X14X2
=1-——5—<0 = -1<0
8 (%) xox3 84(F) 1.5 -

where
0.25 <x,<1.30,2.00<x3<15.0
Three-bar truss problem

This issue’s purpose is to manufacture a truss with
the least weight while still adhering to three limitations.
Regarding Fig. 6, two design variables, x; and x,,
should be chosen while considering limits on stress,
deflection, and buckling. Equation (19) is the mathe-
matical representation of this problem.

0.05 <x; £2.00,

Consider X = [x1x,]

(19)

minimizef(?) = (2\/5)(1 —|—x2) x [

Fig. 7 Design of speed reducer
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Fig. 8 Design of gas
transmission compressor

Compressor station

R(X,): Compression ratio denoting
inlet pressure to the compressor

FﬂT =

D(X;): Pipe inside diameter

Compressor station

<«— L(X)): Length between compressor stations ———>»

V2x1 +x;
subject to X)=—"—""P-06<0,8(%
)] gl( ) \/zx%+2x1x2 = g2( )
X2
=——= P-06<0
\/Ex%—&—lexz -
1
N
gl x¥)=—P—-0<0
3( ) \/Exz-i-xl
where  0<x;,x, <1, [=100cm,P = 2kN/cm?
o =2kN/cm?.

o Speed reducer design problem

Taking into consideration the bending stress of the
gear teeth, the surface stress, the transverse deflections,
and the stresses in the shafts, the goal of this restricted
optimization issue is to minimize the weight of the
speed reducer. This problem has seven variables, as
shown in Fig. 7. The mathematical representation of
this problem shown in Eq. (20).

Consider X = [x1x2x3x4X5x6X7| = [bmpliladidy]  (20)

minimizef (X") =0.7854xx3 (3.3333x3 4 14.9334x3 —43.0934)
—1.508x; (x2 +23)
+7.4777 (xg+x3)
+0.7854 (x4xg +x5%7)

subject to g (¥

= 1<04(7) - 2150,
— 1.93x3
g3(x) xzx(‘x;‘— 1<0
N 1.93x§ N
- ~1<0
84 (¥X) el ,85(%)
- 12
(745(xa /x2x3))? + 16.9 x 106}
:_ 11023 —1=0
6
- 12
(745(xs /x2x3))? + 157.5 x 106}
g (X) ==+ —1<0

85x3
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gr(¥) =20 1<0,g(7) :5)%— 1<0.80(%)

A)LCO
:T;z—l 0
810(x) :w%c%w—lﬁ(),gu(?)
:1.1x7+1.9_1§0
Xs
where 2.6<x1<3.6,0.7<x,<0.8,

17 <x3 <28,7.3 <x4 <8.3,
7.3<x5<8.3,2.9<x5<3.9,5.0<x,<5.5

¢ Gas transmission compressor design problem

The design of gas transmission compressors aims to
minimize the daily cost of gas pipeline transmission
systems. This problem, depicted in Fig. 8, involves
optimizing four decision variables: x; for the distance
between compressor stations, X, representing the com-
pression ratio from inlet pressure to the compressor, X3
as the internal pipe diameter in inches, and x4. The total
annual cost of the transmission system and its operation
is defined by Eq. (21).

Consider X = [x1x2x3x4] (21)

minimize £(¥) = 8.61 x 10%x; % xox, 5, /% +3.69
x 10%x; 4+ 7.72 x 10%1 9219
—765.43 x 10%; !

subject to xzx, 2 +x,2 — 1 <0

with bounds 20 <x; <50, 1 <x; <10,20 <x3 <50,0.1 <x4 <60

8 Discussion

The proposal of an enhanced variant of metaheuristic
algorithms holds significant importance in advancing
optimization techniques and addressing the challenges
posed by complex real-world problems. The main objective
of this study is to enhance the effectiveness of the sine
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cosine algorithm (SCA) in solving complex optimization
problems by integrating multiple search strategies through
the multi-trial vector (MTV) approach. The SCA has been
found to exhibit limitations in solution accuracy, local
optima trapping, exploitation, convergence speed, and
stagnation in local optima when confronted with complex
optimization problems. The multi-trial vector-based sine
cosine algorithm (MTV-SCA) introduced in this study
integrates the MTV approach with the single SCA search
strategy, aiming to enhance the algorithm’s effectiveness in
solving complex optimization problems. MTV-SCA
incorporates four distinct search strategies, namely SI-
TVP, S2-TVP, S3-TVP, and S4-TVP, along with three
control parameters: Chebyshev, sinusoidal, and sin-cos.
SI-TVP aims to balance exploration and exploitation,
preventing the algorithm from becoming trapped in local
optima. It exhibits the fastest convergence speed and per-
forms well on unimodal problems. In contrast, S2-TVP is
effective in exploring the search space but has a slower
convergence speed and a notable ability for exploration.
S3-TVP balances exploration and exploitation and has a
higher convergence rate, making it suitable for solving
rotated problems. Finally, S4-TVP is designed to balance
exploration and exploitation to avoid premature
convergence.

The algorithm utilizes a combination of sinusoidal and
cosinusoidal functions to adjust the parameter values of the
respective TVPs. This adjustment aims to maintain a trade-
off between exploiting previously discovered optimal
solutions and exploring unexplored regions of the search
space. The Chebyshev coefficient enables more efficient
exploration by taking larger steps in flat fitness landscapes
and smaller steps in rugged regions. The sinusoidal coef-
ficient adjusts the search radius and direction to prevent
premature convergence and continue searching for the
global optimum. The sin-cos coefficient dynamically
adjusts the control parameters, progressively decreasing the
search radius and introducing randomness to balance
exploration and exploitation. The incorporation of these
coefficients improves the algorithm’s ability to explore the
search space, mitigate premature convergence, and refine
solutions during the search process.

The proposed MTV-SCA algorithm was evaluated using
29 benchmark test functions from the CEC 2018 special
session focused on real-parameter optimization problems.
Its performance was compared to several state-of-the-art,
well-established, CEC 2017 winner algorithms and
recently proposed nature-inspired metaheuristic algo-
rithms. The algorithm’s effectiveness was assessed through
statistical analysis using the Friedman test and Wilcoxon
signed-rank test. Additionally, the MTV-SCA’s capability
to solve real-world engineering problems was evaluated in
six different cases. The results revealed that the MTV-SCA

variant demonstrated superior performance on the majority
of test problems. The experimental evaluation, statistical
analysis, and solutions obtained for engineering design
problems led to the following conclusions:

e In the evaluation of unimodal functions with dimen-
sions 10, 30, and 50, the MTV-SCA demonstrated
notably improved accuracy compared to the SCA
algorithm. This improvement can be attributed to two
key factors: the exploitative nature of the SC-TVP
strategy and the ability of the S1-TVP strategy to
maintain a balance between exploration and exploita-
tion. By leveraging the exploitative nature of SC-TVP
and effectively managing the exploration—exploitation
trade-off with S1-TVP, the MTV-SCA algorithm was
able to avoid local optima and effectively utilize the
optimal solution.

e The MTV-SCA demonstrates its effectiveness in
exploring the search space for complex and high-
dimensional optimization problems through S2-TVP.
The MTV-SCA algorithm is able to converge more
quickly by effectively balancing exploration of the
solution space and exploitation of promising regions,
achieved through the S3-TVP. Additionally, S4-TVP
prevents premature convergence, a common issue in
multimodal function optimization. Overall, the MTV-
SCA’s strength lies in maintaining an adept balance
between exploring new areas and intensively exploiting
already-discovered good regions, along with its capa-
bilities for thorough exploration and rapid convergence,
making it a powerful solution for tackling multimodal
optimization problems.

e The evaluation of the MTV-SCA on hybrid and
composite functions showcased its effectiveness in
thoroughly exploring the search space, avoiding local
optima, and refining the search using the current best
solution. The S1-TVP strategy played a crucial role in
preventing local optima and ensuring efficient explo-
ration. S2-TVP proved beneficial for exploring complex
and high-dimensional optimization problems essential
for solving hybrid and composite functions. S3-TVP
achieved a balance between exploration and exploita-
tion, resulting in a higher convergence rate. Lastly, the
S4-TVP strategy helped maintain a balance between
exploration and exploitation, minimizing premature
convergence

e The MTV-SCA has demonstrated its efficacy in solving
real-world engineering design problems.
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9 Conclusions and future work

This study tackles the challenges stochastic algorithms face
when dealing with complex problems. It introduces the
multi-trial vector-based sine cosine algorithm (MTV-SCA)
to improve the traditional sine cosine algorithm (SCA). The
SCA often struggles with issues like unbalanced explo-
ration and exploitation, which can lead to premature con-
vergence. The study adapts the multi-trial vector (MTV)
approach to overcome these limitations, integrating four
trial vector producers to replace the SCA’s search strategy
to handle various problem types with differing
characteristics.

Through experimental validation using the CEC 2018
test suite, the study demonstrates the superior performance
of MTV-SCA compared to existing optimization algo-
rithms in terms of exploration, exploitation, avoidance of
local optima, and convergence speed. Statistical tests such
as the Friedman and Wilcoxon signed-rank tests confirm
the statistical significance of MTV-SCA’s performance,
validating its ability to effectively maintain a balanced
exploration—exploitation trade-off. Furthermore, the prac-
tical applicability of MTV-SCA is showcased through its
successful resolution of six engineering design problems,
consistently surpassing alternative algorithms in terms of
effectiveness and efficiency.

While the proposed algorithm exhibits strengths, it also
has specific limitations. The MTV-SCA is introduced to
excel in single-objective and continuous optimization
problems. However, it is essential to note a significant gap
in its capability regarding multi-objective and discrete
problems. One particular aspect that may require adjust-
ments is the winner-based distribution policy, which is
fine-tuned for the four TVPs utilized in this study. Adapt-
ing this policy to handle new trial vectors across diverse
problems will be important for maintaining optimal per-
formance. Additionally, it’s worth noting that the perfor-
mance evaluation of MTV-SCA has not yet encompassed
assessments for large-scale global optimization (LSGO)
problems. This limitation could potentially affect its
effectiveness as problem dimensionality increases.

In future studies, there are various potential directions to
explore using the proposed MTV-SCA for enhancing
continuous single-objective optimization. Adapting MTV-
SCA to tackle binary and multi-objective challenges could
extend its utility to address discrete and many-objective
optimization problems, broadening its applicability across
different domains. Additionally, investigating the use of
MTV-SCA in feature selection, clustering, community
detection, and scheduling could be advantageous. Lastly,
another promising direction for future research would be
proposing an aggregate MTV-SCA version. This version

@ Springer

would incorporate the search strategies of other algorithms,
allowing the trial vector producers of MTV-SCA to benefit
from the strengths and diversities of other optimization
approaches. Combining the best aspects of different algo-
rithms, the aggregate MTV-SCA could achieve enhanced
performance and robustness in solving optimization
problems.
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