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Abstract
The sine cosine algorithm (SCA) is a metaheuristic algorithm that employs the characteristics of sine and cosine

trigonometric functions. SCA’s deficiencies include a tendency to get trapped in local optima, exploration–exploitation

imbalance, and poor accuracy, which limit its effectiveness in solving complex optimization problems. To address these

limitations, a multi-trial vector-based sine cosine algorithm (MTV-SCA) is proposed in this study. In MTV-SCA, a

sufficient number of search strategies incorporating three control parameters are adapted through a multi-trial vector

(MTV) approach to achieve specific objectives during the search process. The major contribution of this study is employing

four distinct search strategies, each adapted to preserve the equilibrium between exploration and exploitation and avoid

premature convergence during optimization. The strategies utilize different sinusoidal and cosinusoidal parameters to

improve the algorithm’s performance. The effectiveness of MTV-SCA was evaluated using benchmark functions of CEC

2018 and compared to state-of-the-art, well-established, CEC 2017 winner algorithms and recent optimization algorithms.

The results demonstrate that the MTV-SCA outperforms the traditional SCA and other optimization algorithms in terms of

convergence speed, accuracy, and the capability to avoid premature convergence. Moreover, the Friedman and Wilcoxon

signed-rank tests were employed to statistically analyze the experimental results, validating that the MTV-SCA signifi-

cantly surpasses other comparative algorithms. The real-world applicability of this algorithm is also demonstrated by

optimizing six non-convex constrained optimization problems in engineering design. The experimental results indicate that

MTV-SCA can effectively handle complex optimization challenges.

Keywords Engineering optimization problems � Metaheuristic algorithms � Numerical optimization � Optimization

algorithms � Sine cosine algorithm

1 Introduction

Optimization is defined as the process of identifying the

optimal solution among the feasible set of solutions that

minimizes or maximizes a given problem. With the

advancement of science and technology, optimization dif-

ficulties have gotten more complicated, and new opti-

mization challenges have evolved, which must be solved

using the most suitable optimization algorithms. There are

two categories of algorithms for tackling optimization

problems: deterministic and stochastic [1]. Deterministic

algorithms, which are divided into gradient-based and non-

gradient-based categories, perform well when addressing

linear, convex, and uncomplicated optimization problems.

However, these algorithms are ineffective in solving

complex problems, objective functions that are not differ-

entiable, nonlinear search spaces, and non-convex
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problems [2]. Nonetheless, the aforementioned traits rep-

resent the main characteristics of optimization problems

encountered in practical applications. Owing to these

characteristics and the inadequacy of deterministic algo-

rithms to effectively address them, stochastic approaches,

such as metaheuristic algorithms, have been developed

[3, 4]. Effective solutions to optimization problems can be

generated by metaheuristic algorithms in a reasonable time.

The No-Free-Lunch (NFL) theorem [5], which states that

no single optimization algorithm can perform equally well

across all types of problems with varying levels of com-

plexity, has motivated the development of new and novel

optimization algorithms.

Metaheuristic algorithms’ prevalence and widespread

usage are credited to their simple concepts, easy imple-

mentation, and efficiency in solving high-dimensional,

non-linear, and non-convex problems. Moreover, the

absence of a need for a derivation process makes meta-

heuristic algorithms particularly useful in situations where

the objective function is not well-defined, or the problem is

complex and challenging to solve using traditional opti-

mization algorithms. Metaheuristic algorithms generate a

set of random solutions in the search space and iteratively

update and refine them based on the algorithm’s instruc-

tions. Once the iterative process is completed, the candi-

date solution exhibiting the highest degree of optimality is

designated as the identified solution to the problem [6]. It is

imperative to note that metaheuristic algorithms cannot

provide an assurance that the solution obtained represents

the globally optimal solution [7]. While the identified

solution may constitute a local optimum, the existence of a

superior global optimum cannot be definitively excluded.

The performance of metaheuristic algorithms can vary

greatly depending on the specific problem they are applied

to and the process used to seek and update potential solu-

tions. Numerous optimization algorithms have been

designed and developed to overcome this challenge and

enhance metaheuristic algorithms’ effectiveness.

Due to the rapid expansion of computational intelligence

tools, non-deterministic algorithms have made remarkable

strides in solving optimization issues in the past decades.

As an alternative, metaheuristic algorithms were utilized to

tackle optimization issues by mimicking biological, phys-

ical, or social phenomena. There are several metaheuristic

algorithms suggested, including genetic algorithm (GA)

[8], differential evolution (DE) [9], particle swarm opti-

mization (PSO) [10], grey wolf optimizer (GWO) [11],

whale optimization algorithm (WOA) [12], salp swarm

algorithm (SSA) [13], orca predation algorithm (OPA)

[14], special forces algorithm (SFA) [15], and Greylag

goose optimization (GGO) [16]. In many situations where

traditional algorithmic approaches are unable to solve the

problem, these algorithms have demonstrated remarkable

success, such as in feature selection [17], multi-modal

medical image registration [18], and engineering problems

[19].

The sine cosine algorithm (SCA) [20] is derived from a

mathematical model based on the trigonometric charac-

teristics of sine and cosine curves. Using either the sine- or

cosine-based equation, each solution in the current popu-

lation is updated. To retain the algorithm’s stochastic nat-

ure, random parameters have been incorporated into its

equations to maintain a balance between the search stages.

The simplicity and efficacy of the SCA have garnered

significant attention from a variety of disciplines. It has

been utilized to address a number of optimization prob-

lems, such as power system damping controllers [21],

global optimization [22], hydrothermal-solar-wind

scheduling [23], sequential clustering [24], network

reconfiguration [25], support vector regression parameter

optimization [26], and community detection [27]. Despite

concerns about its novelty, SCA updates the population

using a straightforward updating rule with a simple struc-

ture and minimal parameters. However, SCA is known to

suffer from issues such as low diversity, slow convergence

speed, stagnation in local optima, and low solution accu-

racy [28–30].

While nature-inspired algorithms like the sine cosine

algorithm (SCA) have demonstrated effectiveness in

specific applications, they often struggle with complex

optimization problems due to inherent limitations such as

poor solution accuracy, local optima trapping, slow con-

vergence speed, and stagnation in local optima. Therefore,

the need for a new algorithm or improvements to existing

ones stems from the evolving landscape of optimization

problems, where novel challenges require more robust and

efficient solutions. However, based on the No-Free-Lunch

(NFL) theorem, new metaheuristic algorithms and their

improvements almost suffer from the same inherited

weaknesses. Thus, to obtain optimal performance at vari-

ous phases of the search process, adding multi-movement

strategies to the SCA is beneficial to increase its potential

and effectiveness. This study aims to improve SCA by

integrating a satisfactory number of search strategies and

adapting them through a multi-trial vector (MTV) approach

[31]. Although the SCA is simple in implementation, it

possesses certain flaws of poor solution accuracy, a ten-

dency to become trapped in local optima, a lack of

exploitation, slow convergence speed, and stagnation in

local optimum, notably in tackling complex optimization

problems [32, 33]. By integrating multiple search strategies

through approaches like the multi-trial vector (MTV), the

improved algorithm aims to achieve better exploration and

exploitation of the search space, leading to improved

solution quality and convergence rates.
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This study presents a new variant of SCA named multi-

trial vector-based sine cosine algorithm (MTV-SCA). The

proposed MTV-SCA enhances the original SCA by

addressing its inherent limitations through a solid theoret-

ical foundation integrating multiple search strategies and

adaptive parameter adjustments. The theoretical framework

of MTV-SCA is rooted in the diversification and intensi-

fication of the search process, achieved by employing four

distinct trial vector producers (TVPs), each designed to

achieve a particular objective and their cooperation

throughout the search process. S1-TVP focuses on bal-

ancing exploration and exploitation to prevent local optima

trapping, S2-TVP emphasizes extensive exploration, S3-

TVP targets rapid convergence for unimodal problems, and

S4-TVP aims to maintain an equilibrium between explo-

ration and exploitation to mitigate premature convergence.

Furthermore, the algorithm dynamically adjusts control

parameters using a combination of sinusoidal and cosinu-

soidal functions, specifically through Chebyshev, Sinu-

soidal, and sin-cos coefficients. These coefficients

modulate the search step sizes and directions, enabling

efficient navigation of the search space. The Chebyshev

coefficient is used to investigate the search space more

efficiently by taking larger steps in regions with flat fitness

landscapes and smaller steps in rugged areas. The Sinu-

soidal coefficient prevents premature convergence by

adjusting the search radius, and the sin-cos coefficient

maintains a balance between exploration and exploitation

by dynamically varying the control parameters.

To validate the efficacy of the proposed MTV-SCA, a

comprehensive set of experiments was conducted utilizing

test functions introduced in the CEC 2018 [34]. This

benchmark suite provided a rigorous framework for eval-

uating the performance of the algorithm across a diverse

array of optimization challenges. The gained results were

compared to state-of-the-art, well-established, CEC 2017

winner algorithms and recently proposed nature-inspired

metaheuristic algorithms, including krill herd (KH) [35],

grey wolf optimizer (GWO) [11], moth-flame optimization

(MFO) [36], whale optimization algorithm (WOA) [12],

sine–cosine algorithm (SCA) [20], salp swarm algorithm

(SSA) [13], henry gas solubility optimization (HGSO) [37],

fitness dependent optimizer (FDO) [38], chimp optimiza-

tion algorithm (ChOA) [39], Archimedes optimization

algorithm (AOA) [40], fox-inspired optimization (FOX)

[41], particle swarm optimization (PSO) [10], gravitational

search algorithm (GSA) [42], and adaptive differential

evolution with optional external archive (JADE) [43],

LSHADE-SPACMA [44] and LSHADE–cnEpSin [45].

Furthermore, the proposed algorithm was statistically

analyzed using two non-parametric tests, Wilcoxon signed-

rank and Friedman test [46]. Finally, the effectiveness of

MTV-SCA in addressing real-world engineering

challenges was evaluated by applying six distinct non-

convex constrained optimization problems. Based on the

comparison of the results, it was found that the MTV-SCA

exhibited superior performance in the majority of test

problems.

The following is a condensed overview of the paper’s

contributions.

• Integration of multiple search strategies: The study

introduces MTV-SCA, which integrates multiple search

strategies through the MTV approach. This integration

allows the algorithm to utilize a diverse set of TVPs

tailored to specific objectives, promoting their cooper-

ation throughout the search process. The proposed

algorithm improves the efficiency of SCA in addressing

intricate optimization problems.

• Four distinct search strategies: The MTV-SCA incor-

porates four distinct search strategies, namely S1-TVP,

S2-TVP, S3-TVP, and S4-TVP, each designed to

address specific aspects of optimization. S1-TVP is

designed to establish an equilibrium between exploring

the search space and exploiting promising regions; S2-

TVP emphasizes facilitating an effective exploration

process. S3-TVP aims to achieve a balance between

exploration and exploitation for rotated problems, and

S4-TVP is formulated to mitigate the tendency for

premature convergence to suboptimal solutions. By

integrating these strategies, MTV-SCA demonstrates its

capability to address various optimization challenges

across various domains effectively.

• Sinusoidal and cosinusoidal function parameter adjust-

ment: The algorithm utilizes a combination of sinu-

soidal and cosinusoidal functions to adjust the

parameter values of the respective TVPs. This adjust-

ment allows the algorithm to maintain a trade-off

between exploiting previously discovered optimal solu-

tions and exploring unexplored regions of the search

space. The Chebyshev coefficient enables efficient

exploration by adapting step sizes to the landscape’s

ruggedness, the sinusoidal coefficient adjusts the search

radius and direction to prevent premature convergence,

and the sin-cos coefficient dynamically adjusts control

parameters to balance exploration and exploitation.

• Performance evaluation and comparison: MTV-SCA

was extensively evaluated using 29 test functions and

compared to state-of-the-art, well-established, CEC

2017 winner algorithms and recently proposed nature-

inspired metaheuristic algorithms. The evaluation

included statistical analysis using the Friedman and

Wilcoxon signed-rank tests. The results demonstrated

the superior performance of the MTV-SCA on the

majority of test problems. Additionally, the algorithm’s
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effectiveness in solving real-world engineering prob-

lems was assessed, further confirming its capabilities.

The subsequent structure of this paper is as follows:

Sect. 2 reviews related works, and Sect. 3 presents the

mathematical formulation of SCA. The proposed MTV-

SCA is introduced in Sect. 4. Section 5 outlines the per-

formance evaluation of the MTV-SCA and its comparison

with other optimization algorithms, while Sect. 6 eluci-

dates the statistical analysis conducted. The real-world

applicability of the MTV-SCA is investigated in Sect. 7

through its application to engineering design problems.

Section 8 discusses the main reasons for the MTV-SCA’s

success. Finally, Sect. 9 concludes the work and offers

suggestions for future research.

2 Related work

Metaheuristic algorithms are a versatile set of problem-

solving techniques that can tackle a wide range of opti-

mization problems. These algorithms are used to find high-

quality solutions to complex problems, for which exact or

deterministic algorithms may be ineffective or inefficient

[47]. Metaheuristic algorithms are a class of optimization

algorithms inspired by natural processes, such as genetic

mutation and evolution, swarm behavior, biological phe-

nomena, and physical rules. These algorithms use a set of

rules and operations to identify the most effective solution

to an optimization problem, even when the problem is

complex and poorly defined. Metaheuristic algorithms are

utilized extensively in various fields due to their ability to

find good solutions quickly and their flexibility in handling

various optimization problems. As such, metaheuristic

algorithms are likely to continue to play an increasingly

important role in advancing these fields, and new appli-

cations and improvements to these algorithms are expected

to emerge.

Various fields have benefited from metaheuristic algo-

rithms, including engineering, health care and medicine,

business, and management, as well as optimization and

machine learning [48–53]. In engineering, metaheuristic

algorithms have been employed in several applications,

including the estimation of parameters in solar cell models

[54], optimizing design parameters in engineering prob-

lems [55, 56], optimization of multi-objective problems

[57], optimization of water resource management in envi-

ronmental engineering [58], feature selection in wind speed

forecasting systems [59], optimization of supply chain

management [60], optimize the design of aircraft structures

[61], parameter optimization of control systems in electri-

cal engineering [62], optimization of production scheduling

in industrial engineering [63], design optimization of

structures in civil engineering [64], optimization of energy

performance of building [65], optimization of energy sys-

tems in energy engineering [66, 67], optimization of

community detection algorithms [68], workflow scheduling

in fog computing [69], and parameter optimization of

structural designs [70, 71].

Metaheuristic algorithms have found applications in

diverse medical areas, such as medical imaging [72], drug

discovery [73], and radiation therapy planning [74]. In

medical imaging, the segmentation and registration of

images are crucial for accurately diagnosing and treating

diseases. The other uses of metaheuristic algorithms in this

field are the prediction of drug efficacy and toxicity [75],

identification of disease biomarkers from large-scale data

[76], medical image segmentation [77], cancer classifica-

tion [78], identification of features for disease diagnosis

[79], optimization of surgical planning and execution [80],

optimization of EEG signal processing for detecting brain

disorders [81], radiation therapy planning to optimize the

treatment plan by adjusting the radiation dose [82], and

feature selection and classification [83].

In logistics and transportation, metaheuristics are

employed for solving various optimization problems, such

as vehicle routing [84], facility location [85], optimization

of slot allocation in air traffic flow management [86],

optimization of flight and crew scheduling for airlines [87],

traffic flow forecasting [63], and optimization of warehouse

layout and inventory management [88]. Other applications

of metaheuristic algorithms include botnet detection in IoT

[89], virtual machines allocation in cloud data centers [90],

signal processing of fiber SPR sensors [91], global opti-

mization [92, 93], anomaly-based intrusion detection sys-

tems in the internet of things [94], feature selection in data

classification [95], and malware detection [96].

The sine cosine algorithm (SCA), which is grounded in

the category of physics-based algorithms, has proven to be

effective in tackling a diverse range of optimization issues.

These include, but are not limited to, the optimization of

engineering designs, data mining, machine learning,

structural optimization, and power system optimization.

However, there are also some limitations to using the SCA.

One of the main challenges is that it can get trapped in

local optima, which can prevent it from finding the global

optimum. Additionally, it lacks a balance between explo-

ration and exploitation, so it cannot effectively search for

solutions in a large solution space and may quickly con-

verge to the optimal local solution. Thus, some enhance-

ments to its performance have been made during its

proposal.

Some hybridized variants, designed to enhance SCA’s

performance in solving optimization problems, are

reviewed. The paper [97] proposes a hybrid PSO algorithm

with sine cosine acceleration coefficients (H-PSO-SCAC)
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to overcome the limitations of particle swarm optimization

in solving complex optimization tasks, such as premature

convergence and exploration–exploitation balance. The

proposed algorithm incorporates several improvements,

including SCAC for controlling local search and conver-

gence, opposition-based learning for initialization, a sine

map for adjusting inertia weight, and a modified position

updating strategy. The experimental results on seven uni-

modal and five multimodal benchmark functions demon-

strate that H-PSO-SCAC outperforms comparative

algorithms.

In [98], the authors introduce a hybrid optimization

algorithm named PSOSCALF. This algorithm combines

the strengths of PSO, SCA, and Levy flight techniques. The

proposed algorithm is designed to improve the exploration

ability of the PSO while also avoiding the problem of being

stuck in local minima, leading to better outcomes for

constrained engineering issues. This study used 23 bench-

mark functions, including unimodal, multimodal, and

fixed-dimension multimodal functions, to evaluate the

proposed PSOSCALF algorithm. The results illustrate that

PSOSCALF surpasses other algorithms in finding the glo-

bal minimum and provides better solutions for constrained

engineering problems. A recent study presented a hybrid

forecasting approach for wind speed prediction. As

described in [99], the proposed algorithm utilized the

multi-objective sine cosine algorithm (MOSCA) and a

modified data decomposition technique to enhance the

forecasting performance. Furthermore, a hybrid wavelet

neural network model was developed by combining

MOSCA to achieve high prediction accuracy and strong

stability. The results showed that MOSCA outperformed

other models through an experimental analysis of four

typical multi-objective test functions and eight different

wind speed datasets.

In [100], the authors address the problem of feature

selection in large datasets with high dimensionality, which

can be time-consuming and complex. The proposed

improved version of the sine–cosine algorithm (ISCA) with

an elitism strategy and the new best solution update

mechanism is tested on ten benchmark datasets. The results

show that it yields superior classification performance

while utilizing fewer features compared to other algorithms

used for comparison. With its multitude of constraints, the

optimal power flow (OPF) is a challenging optimization

problem. To tackle this issue, a modified sine–cosine

algorithm (MSCA) has been suggested in [101]. MSCA has

been developed to enhance SCA’s capacity to identify the

global optimum while avoiding the issue of being stuck in

local optima. This is achieved through the incorporation of

Levy flights. The testing of the MSCA algorithm on several

benchmark test systems demonstrates its effectiveness and

potential as a powerful optimization method for the OPF

problem. In [102], a new optimization algorithm named

ASCA-PSO is introduced to improve pairwise local

sequence alignment, a crucial task in the field of bioin-

formatics. The proposed algorithm combines SCA and

PSO to improve the exploration abilities of SCA. The

performance of ASCA-PSO is then evaluated on twenty

benchmark functions of unimodal and multimodal func-

tions, and the results demonstrate its superior accuracy and

computational efficiency.

In [103], the SCA-PSO algorithm is proposed for opti-

mization problems and object tracking to overcome the

premature convergence limitation of SCA. The proposed

algorithm combines the strengths of PSO and SCA, such as

exploitation and exploration capabilities, respectively. The

effectiveness of the algorithm is evaluated using 23 clas-

sical benchmark functions, CEC 2005, and CEC 2014

benchmark functions and compared with state-of-the-art

metaheuristic algorithms. In addition, the proposed algo-

rithm is applied to object tracking and compared with other

trackers, demonstrating its robustness in challenging con-

ditions. Another proposed enhanced variant of SCA is in

[104], in which a population diversity-based local refine-

ment strategy helps to maintain diversity at a high level,

addressing the SCA’s struggle to find solutions for complex

problems. The proposed algorithm is evaluated using

twenty-nine test functions of the CEC 2017 benchmark

suite, showing its effectiveness in controlling diversity.

The limitations of SCA, such as low diversity and pre-

mature convergence, have resulted in the development of

modified versions of the algorithm. Two modified versions

of SCA, named m-SCA [105] and RFSCA [106], are pro-

posed in order to tackle the limitations of SCA, such as low

diversity and premature convergence. The m-SCA algo-

rithm uses a self-adaptive element to take advantage of

search regions already explored by SCA’s search equa-

tions, which may be productive. Simultaneously, it gener-

ates a contrasting population by using opposite values

predicated on a perturbation rate to overcome the local

optima. The RFSCA algorithm integrates a Riesz fractional

derivative mutation strategy that employs quasi-opposition

learning to initialize the population, as well as a novel

mutation methodology to update the optimal individual

based on the Riesz fractional derivative’s approximate

formula with second-order accuracy. The performance of

both algorithms is assessed across various classical

benchmark problems, CEC benchmark functions, and

engineering optimization problems, with promising out-

comes regarding exploration, exploitation, and solution

quality.

The development of the ISCA algorithm was motivated

by the need to tackle challenging global optimization

problems arising in high-dimensional settings, as explained

in [107]. To achieve this, ISCA relies on a position-
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updating equation that has been modified to incorporate

both an inertia weight and a Gaussian-based strategy. This

approach is designed to balance the opposing forces of

exploration and exploitation, thereby optimizing the algo-

rithm’s overall performance. The testing of ISCA on

twenty-four high-dimensional benchmark functions, large-

scale global optimization problems from the IEEE

CEC2010 competition, and real-world engineering appli-

cations has yielded results demonstrating its superior per-

formance compared to SCA. ISCA has exhibited faster

convergence and better escape from local optima. Another

alternative approach to address optimization challenges is

SCA-OPI [108], which introduces orthogonal parallel

information to enhance exploration while emphasizing

exploitation. Further, the algorithm utilizes a strategy of

opposition direction based on prior experience to maintain

the ability for exploration. The evaluation of SCA-OPI on

unconstrained optimization problems, including unimodal

and multimodal benchmark functions, and constrained

optimization, including quadratic and nonlinear functions,

demonstrates its superiority in optimality and reliability

compared to other algorithms.

To address the local optima issue of SCA, in [109], a

multi-strategy enhanced SCA named MSCA was proposed.

This memetic algorithm integrates various control mecha-

nisms to explore the search space effectively, leading to

better performance in finding optimal solutions for com-

plex problems. To verify the performance of MTV-SCA,

the CEC2014 benchmark problems, and 23 continuous

benchmark functions were employed, including seven

unimodal functions, six multimodal benchmark functions,

and ten diverse fixed-dimension multimodal functions.

Another SCA variant is the bare bones sine cosine algo-

rithm (BBSCA) [110], which improves exploitation ability

and maintains diversity well. BBSCA uses Gaussian search

equations, exponential decrement strategies, and a greedy

selection mechanism to generate new candidate individuals

and make full use of previously searched information. The

results of testing BBSCA on a classic set of 23 well-known

benchmark functions, standard IEEE CEC 2014 and CEC

2017 benchmark test functions, and engineering opti-

mization issues demonstrate that it outperforms other SCA

variants and generates better solutions for real-life global

optimization problems.

To address the issues of SCA, such as slow convergence

and lack of robustness, in [32], a new algorithm, the

dimension by dimension dynamic sine cosine algorithm

(DDSCA), is proposed. DDSCA enhances the SCA update

equation by integrating a dimensional and a greedy strategy

to produce novel solutions. Furthermore, a dynamic control

parameter is implemented to maintain exploration and

exploitation. The algorithm’s performance is evaluated

using 23 benchmark test functions, IEEE CEC 2010 large-

scale functions, and engineering optimization problems.

The results show that DDSCA outperforms comparative

algorithms. In an effort to address the sluggish convergence

and high computational complexity of SCA, an algorithm

named chaotic sine cosine firefly (CSCF) [111] has been

proposed. By incorporating the chaotic forms of both the

SCA and firefly algorithms, the CSCF algorithm aims to

enhance convergence speed and efficiency while mini-

mizing computational complexity. This algorithm has been

evaluated using twenty benchmark functions, with simu-

lation results demonstrating its efficiency in addressing

engineering design problems.

The Q-learning embedded sine cosine algorithm

(QLESCA) [33] proposes a new variant of SCA that

employs a Q-learning algorithm to regulate the parameters

of SCA during runtime. QLESCA underwent evaluation

using 23 continuous benchmark functions, 20 large-scale

benchmark optimization functions, and three engineering

problems, demonstrating superior performance compared

to other optimization algorithms. The proposed algorithm

addresses the limitations of conventional SCA by providing

a balance between exploration and exploitation modes. In

[22], MAMSCA is proposed, which divides the population

into two halves, updates them using either sine or cosine

strategies, and uses a modified mutualism phase to add

further diversity to the population. The algorithm’s per-

formance was evaluated using classical benchmark func-

tions and IEEE CEC 2019 functions. EBSCA [112], on the

other hand, presents a position-updated equation that

highlights the positional information of the superior indi-

vidual to direct the updating of fresh candidates, thereby

enhancing the exploitation capability. Additionally, it

introduces a new integrated approach that fuses the quan-

tization orthogonal crossover strategy with SCA to aug-

ment the searching space’s utility efficiency. The efficacy

of EBSCA was assessed on 13 classical benchmark func-

tions, IEEE CEC 2015 problems, and four engineering

problems that demonstrate significant improvements com-

pared to other methods.

3 Sine cosine algorithm (SCA)

The sine cosine algorithm (SCA) is developed for global

optimization and inspired by two functions, sine and

cosine. As with other metaheuristic population-based

algorithms, SCA generates candidate solutions randomly

within the preset minimum and maximum boundaries of

the problem. Then, an updated solution for the exploration

and exploitation balance is calculated by applying two

distinct mathematical expressions shown in Eq. (1),
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Xtþ1
i ¼ Xt

i þ r1 � sin r2ð Þ � r3 � Pt
i � Xt

i

�
�

�
�; r4\0:5

Xt
i þ r1 � cos r2ð Þ � r3 � Pt

i � Xt
i

�
�

�
�; r4 � 0:5

�

ð1Þ

where Xt
i and Pt

i in the tth iteration are the position of ith

solution and the destination solution, and r1, r2, and r3 are

randomly generated. The choice of an expression from

Eq. (1) is determined by a random number r4, which fol-

lows a uniform distribution between 0 and 1.

Through the use of r1, r2, and r3, the SCA regulates how

the algorithm is explored and used. Parameter r1 can be

used to balance exploration and exploitation in both early

and late stages of the SCA. Depending on this parameter,

either the new solution will be directed toward the desti-

nation or outward from it. In order to identify the optimal

solution in the latter stages of the algorithm, it first directs

the search process to find solutions throughout the whole

search space or to exploit the vicinity of the destination

solution. When r1 is greater than 0, the distance between

the destination solution and the solution will increase,

while when r1 is smaller, the distance will decrease. The

calculation of r1 is performed using Eq. (2),

r1 ¼ a� t � a

T
ð2Þ

where a is a constant value, t is the current iteration, and

T is the number of maximum iterations. The value of the

solution’s distance from the position of the target solution

is represented by the random parameter r2. Generally, a

greater value of r1 signifies increased exploration, given the

greater distance between the current solution and the des-

tination solution; conversely, a lesser value signifies

exploitation, given the shorter distance. The parameter r3 is

used to demonstrate how much the distance calculation is

affected by the destination solution.

4 Proposed multi-trial vector-based sine
cosine algorithm (MTV-SCA)

Despite the simplicity and versatile usage of SCA for

solving optimization problems, its efficacy is constrained,

posing significant challenges when applied to complex

problems. SCA possesses weaknesses of poor solution

accuracy, a slow convergence speed, a tendency to become

trapped in local optima, a lack of exploitation, and an

inability to sustain a balance between exploitation and

exploration. These flaws stem from the SCA search strat-

egy, which leads to weak performance while dealing with

complex challenges. The best current solution is the only

solution used in the canonical SCA’s position-updating

equation to estimate the distance to the next searching area,

providing the SCA with excellent exploration capability

but limited exploitation. Furthermore, the SCA is not fully

utilizing the information provided by the current solution’s

position. This is while the performance of an algorithm

depends on the search strategies and control parameters

used to solve problems with a wide range of characteristics.

In addition, to get optimal performance at various phases of

the search process, it is beneficial to use a variety of

alternative strategies in conjunction with various parameter

values.

This paper introduces a multi-trial vector-based sine

cosine algorithm (MTV-SCA), in which the single SCA’s

search strategy is reinforced with a multi-trial vector

(MTV) approach. It is advantageous to use the MTV

approach in order to define a variety of different search

strategies, each customized to achieve a distinct objective,

as well as their cooperation throughout the search process.

Further, various sinusoidal and cosinusoidal functions are

supplied to adjust the parameters’ value of the corre-

sponding search strategies. The purpose of utilizing the

provided functions is to achieve a good equilibrium

between exploiting previously discovered good solutions

and discovering previously unvisited portions of the search

space. Furthermore, in the proposed MTV-SCA, each trial

vector producer (TVP) is assigned to apply to a specific

portion of the population based on the winner-based dis-

tributing policy of the MTV approach. This approach

ensures that the information is shared effectively among

the solutions from different subpopulations, ultimately

improving the algorithm’s performance during the popu-

lation distributing phase.

Figure 1 shows the flowchart of MTV-SCA, which

comprises four steps: initialization, distribution, multi-trial

vector production, and population evaluation and update.

Once N solutions have been initialized within the search

space, the subpopulation size of each TVP is computed for

every nIter iteration during the distribution step. Next, in

the multi-trial vector production step, a candidate solution

is generated for each solution by either SC-TVP or one of

the strategies from Pool-TVP. In the Pool-TVP, we

designed four new search strategies named S1-TVP, S2-

TVP, S3-TVP, and S4-TVP in order to perform an effective

search on the solutions of their subpopulations. To achieve

a balanced exploration and exploitation and avoid getting

trapped in local optima, S1-TVP was proposed. Addition-

ally, S2-TVP effectively explores the search space, while

S3-TVP sustains a state of equilibrium to search for new

solutions with the refinement of current solutions. More-

over, S4-TVP is designed to balance the exploration and

exploitation of the search space and prevent premature

convergence. Moreover, each TVP utilizes a sinusoidal and

cosinusoidal functions with the aim of maintaining a trade-

off between exploiting previously obtained optimal solu-

tions and discovering new unvisited areas of the search
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space. The Chebyshev function used in S1-TVP introduces

a degree of randomness and variability in the search pro-

cess, which can help the algorithm explore different

regions of the search space more effectively. The Sinu-

soidal coefficient provides periodic adjustments to the

search radius and direction, allowing the algorithm to

search more thoroughly and avoid getting trapped in local

optima. The sin-cos coefficient balances exploration and

exploitation, helps to refine the solutions, and focuses the

search on promising areas of the search space. Then, in the

population evaluation and update step, the candidate

solutions’ fitness is computed and compared to their prior

values. As a final step, a candidate solution is replaced by

the solution’s current position if its fitness is less than that

of the solution. Other than that, a solution’s position and

fitness value remain unchanged. Table 1 contains the

parameter descriptions referenced in the subsequent

section. Following is a detailed explanation of the proposed

MTV-SCA.

Initialization: N solutions are initialized at random in a

D-dimensional search space considering the lower (L) and

upper (U) boundaries using Eq. (3),

xij ¼ Lj þ Uj � Lj
� �

� randð0; 1Þ ð3Þ

where the value of the jth dimension of the ith solution is

represented by xi,j. The minimum and maximum boundaries

of the jth dimension are denoted by Lj and Uj, respectively,

while rand is a random value uniformly distributed in the

range of [0,1]. The population size and dimension size of the

problem are represented by N and D, respectively. The

N 9 D matrix, known as X, is used to keep the positions of

the generated solutions. The fitness function, f(Xi(t)), is used

to determine the fitness value of the solution Xi after the

initialization of the population and at each iteration t.

Fig. 1 The proposed MTV-

SCA flowchart
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Distribution: In order to determine the size of subpop-

ulations SC-TVP and Pool-TVP, it is essential to consider

the number of improved solutions after passing nIter iter-

ations, a specified number of iterations. ImpRate is the ratio

of improved solutions’ fitness to the total number of

function evaluations in the preceding nIter iterations. The

TVP ImpRate is determined by Eq. (4),

ImpRateSC�TVP ¼ NImprovedsolutionsbySC�TVP

NSC�TVP � NFEs
ð4Þ

ImpRatePool�TVP ¼ NImprovedsolutionsbyPool�TVP

NPool�TVP � NFEs

where the improved rates are denoted by ImpRateSC-TVP and

ImpRatePool-TVP, the subpopulation size of SC-TVP and Pool-

TVP are denoted byNSC-TVP and NPool-TVP, and the number of

function evaluations carried out by each TVP in the preceding

nIter iterations is denoted by NFEs, respectively.

The distribution rule that is stated in Eq. (5) is taken into

consideration for distribution policy in the MTV-SCA; as a

result, the TVP that has a higher ImpRate has a bigger

subpopulation.

If ImpRateSC�TVP [ ImpRatePool�TVP then

NSC�TVP ¼ NPool�TVP ¼ k� N

If ImpRateSC�TVP\ImpRatePool�TVP then

NSC�TVP ¼ ðk� NÞ=2; NPool�TVP ¼ k� Nð Þ
þ ðk� NÞ=2

ð5Þ

where N is the total number of solutions, the subpopula-

tions’ size by considering the TVPs’ improved rate denoted

by NSC-TVP and NPool-TVP, and the portion coefficient k is

considered 0.5. After the sizes of the subpopulations are

calculated, subpopulations XSC and XPool are created.

Multi-trial vector production: Search strategies and

parameter values have a significant influence in determin-

ing the efficiency of an algorithm when solving optimiza-

tion problem. However, the nature of the problem, i.e.

unimodality, multimodality, separability, and non-separa-

bility, imply that various search strategies and control pa-

rameter values are required for various optimization tasks.

In addition, multiple search strategies with varied control

parameters could be superior to a single search strategy

with unique parameter values at various periods of

development when addressing a particular problem. Moti-

vated by these observations, we propose a collection of

trial vector producers and control parameters for canonical

SCA in which trial vector producers compete to generate a

thriving population at each iteration. As the iteration pro-

gresses, the position of solution Xi is adjusted by the

strategies SC-TVP and Pool-TVP, respectively. The SC-

TVP enhances the capability to search for promising

regions of the search space and find new solutions in a

localized area. The Pool-TVP is employed when it comes

to exploiting, escaping the local optima, and achieving a

balance between exploitation and exploration.

A piece of preliminary information is presented first, fol-

lowed by a comprehensive explanation of the proposed TVPs.

In the proposed S1-TVP and S2-TVP, two transformation

matrices, denoted as M and M to generate candidate trial

vectors for each subpopulation. Matrix M, having dimensions

N 9 D, is created from aD 9 D lower triangular matrix with

all elements are equal to one. ThisD 9 Dmatrix is replicated

(N/D) times to form a square matrix. If there are any remaining

rows in M, they are filled with the first rows of the square

matrix. Then, a random permutation is applied to the rows of

M. Following this, the M matrix is obtained by replacing each

element in M with its inverse value.

Sine cosine trial vector producer (SC-TVP): In each

iteration t, a candidate solution is generated for the ith

solution of the SC-TVP’s subpopulation XSCi
t by Eq. (6),

CSCtþ1
i ¼

XSCt
i þ r1 � sin r2ð Þ � r3 � Pt � XSCt

i

�
�

�
�; r4\0:5

XSCt
i þ r1 � cos r2ð Þ � r3 � Pt � XSCt

i

�
�

�
�; r4 � 0:5

(

ð6Þ

where CSCi
t?1 represents the generated candidate solution

for XSCi
t, r1 is calculated by Eq. (2), r2, r3, and r4 are

random numbers, and Pt is the position of the destination

solution in tth iteration, respectively.

Pool trial vector producer (Pool-TVP): Pool-TVP is a

collection of different trial vector producers S1-TVP, S2-

TVP, S3-TVP, and S4-TVP with various sinusoidal and

cosinusoidal functions as the search strategies’ control

parameters. The suggested distribution policy for dividing

XPool among four TVPs involves the random allocation of

solutions in each iteration. The assignment of solutions to

Table 1 The nomenclature used

in the MTV-SCA
Parameter Description

X The solutions’ position matrix

ImpRateSC-TVP, ImpRatePool-TVP The improved ratio rate

NSC-TVP, NPool-TVP The subpopulation size of SC-TVP and Pool-TVP

XSC, XPool The subpopulation of SC-TVP and Pool-TVP

M, M The transformation matrix and its reverse

XS1, XS2, XS3, XS4 The subpopulation of each TVP

CS1, CS2, CS3, CS4 The candidate subpopulation of each TVP
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TVPs is determined by considering the size of XPool,

resulting in the creation of subpopulations XS1, XS2, XS3,

and XS4. The trial vector producers in a pool possess varied

qualities to demonstrate varying performance characteristics

at various phases of the search process while confronting a

specific problem. Proposing S1-TVP aims to help the

algorithm maintain a balance between exploration and

exploitation, so avoiding being trapped in local optima. S1-

TVP, has the fastest convergence speed and performs well

for solving unimodal problems. On the other hand, S2-TVP

is effective at exploring the search space and it shows a slow

convergence speed and a higher ability for exploration. S3-

TVP strikes a good balance between exploration and

exploitation, has a higher convergence rate, and it is effi-

ciently appropriate for solving rotated problems. S4-TVP is

intended for balancing the exploration and exploitation of

the search space and avoiding premature convergence.

S1-TVP: The aim of proposing S1-TVP is to enable the

algorithm to maintain the balance between exploration and

exploitation and avoid getting stuck in local optima. This

reached by considering the population’s best solution and

the scaled difference between two randomly chosen solu-

tions. The strategy combines information from the current

best’s position, the differentiate of randomly selected solu-

tions, to produce a candidate solution and move it towards

potentially better solutions. Also, the Chebyshev and the

rand control parameters provide a balance between explo-

ration and exploitation, which results in a more directed

search towards the best regions of the search space.

For each solution XS1t
i belongs to the subpopulation of

XS1, a trial vector VS1tþ1
i is calculated by Eq. (7),

VS1tþ1
i ¼ Pt þ Chebyshev tð Þ � Xt

r1 � Xt
r2

� �

þ rand � ðXt
r3 � Xt

r4Þ
ð7Þ

where Pt is the best solution so far, and Xt
r1, Xt

r2, Xt
r3 and Xt

r4

are randomly selected solutions from the current populationX.

Chebyshev, which is calculated by Eq. (8) [113], is a function

that generates a sequence of values that oscillate between -1

and 1, and the oscillation frequency increases with the itera-

tion number. The use of the Chebyshev function allows the

algorithm to explore the search space more effectively by

taking larger steps in regions where the fitness landscape is flat

and smaller steps in regions where it is rugged.

Chebyshev t þ 1ð Þ ¼ cosðt � cos�1ðChebyshev tð ÞÞÞ ð8Þ

The candidate trial vector of the ith solution XS1t
i is

calculated by Eq. (9),

CS1tþ1
i ¼ Mi � XS1tþ1

i þMi � VS1tþ1
i ð9Þ

where Mi and Mi are corresponding values of the ith

solution and CS1tþ1
i is the candidate trial vector generated

for the ith solution of S1-TVP subpopulation.

S2-TVP: The strategy involves selecting three individuals

randomly from the population and creating a new trial vector

by adding the scaled difference between two of the individuals

to the third individual. This strategy has been shown to be

effective at exploring the search space, which can be partic-

ularly useful when dealing with complex and high-dimen-

sional optimization problems. The mutation strategy allows

the algorithm to move away from the current population and

explore new regions of the search space. Also, its ability to

explore the search space efficiently leads to converging

quickly, which means it can find good solutions in a shorter

amount of time compared to other metaheuristic algorithms.

For each solution XS2t
i belongs to the subpopulation of

XS2, a trial vector VS2tþ1
i is calculated by Eq. (10),

VS2tþ1
i ¼ Xt

r1 þ rand � ðXt
r2 � Xt

r3Þ ð10Þ

rand is a randomly generated number, and Xt
r1, Xt

r2, and Xt
r3

are randomly selected solutions from the current popula-

tion X. The candidate trial vector of the ith solution XS2t
i is

calculated by Eq. (11),

CS2tþ1
i ¼ Mi � XS2tþ1

i þMi � VS2tþ1
i ð11Þ

where Mi and Mi are corresponding values of the ith

solution and CS2tþ1
i is the candidate trial vector generated

for the ith solution of S2-TVP subpopulation.

S3-TVP: S3-TVP strikes a good balance between explo-

ration and exploitation and has a higher convergence rate. It

achieves these by using both the current and random solu-

tions in the search process. This is because it uses a random

solution in the mutation process, which helps to explore

different regions of the search space. The current solution

XS3t
i from the subpopulation ofXS3 is moved in the direction

of a random vector Xt
r1 before being disturbed by a scaled

difference between two other randomly chosen solutions Xt
r2

and Xt
r3 from the current population. The candidate trial

vector of the ith solution XS3t
i is calculated by Eq. (12),

CS3tþ1
i ¼ XS3t

i þ sinusoidal tð Þ � Xt
r1 � XS3t

i

� �

þ rand
� ðXt

r2 � Xt
r3Þ

ð12Þ

where CS3tþ1
i represents the candidate solution provided for

the ith solution XS3t
i, sinusoidal(t) is the coefficient which is

used to adjust the search radius and direction of the algorithm

calculated by Eq. (13), and Xt
r1, Xt

r2, and Xt
r3 are randomly

selected solutions from the current population X.

Sinusoidal t þ 1ð Þ ¼ C � ðSinusoidal tð ÞÞ2 � sinðp
� Sinusoidal tð ÞÞ ð13Þ

The sinusoidal function [113] can help prevent prema-

ture convergence by allowing the algorithm to explore the

search space more thoroughly. By periodically increasing
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the search radius and changing the search direction, the

algorithm can avoid getting stuck in local optima and

continue searching for the global optimum.

S4-TVP: The goal of balancing the exploration and

exploitation of the search space and avoiding premature

convergence is maintained by this strategy. It updates the

position of XS4t
i, based on its current position, two ran-

domly chosen solutions, and a combination of sine and

cosine functions depend on the current iteration number

and the total number of iterations. The candidate trial

vector of the ith solution XS4t
i is calculated by Eq. (14),

CS4tþ1
i ¼ XS4t

i þ ðcosðt=MaxIterÞ � sinðrand
� ðt=MaxIterÞÞÞ � ðXt

r1 � Xt
r2Þ ð14Þ

where t is the current iteration, MaxIter is the total number of

iterations, and Xt
r1 and Xt

r2 are randomly selected solutions

from the current population X. The role of cos(t/MaxI-

ter) 9 sin(rand 9 (t/MaxIter)) is to provide a dynamic

adjustment of the control parameters to balance exploration

and exploitation and avoid premature convergence, thus

improving the efficiency of the proposed TVP. The former

part varies from 1 to - 1 as t approaches MaxIter, which

allows the gradual reduction of the search radius, which

helps to refine the solutions and focus the search on

promising areas of the search space. The latter part presents a

random element into the control parameter adjustment. The

random value rand is uniformly distributed between 0 and 1,

which generates a random angle for the sine function. This

randomness helps to avoid getting trapped in local optima by

exploring different areas of the search space.

Population evaluation and update: Following each

optimization cycle, the objective function is computed for

the current population of candidate solutions and compared

to previous fitness values. The optimal candidate solutions

are then retained for subsequent iterations as they prove to

be the most effective. This process is important because it

helps to ensure that the population of candidate solutions

maintains diversity while also improving overall fitness. By

selecting the best solutions for the next iteration, the

algorithm is able to focus on exploring new areas of the

search space while also exploiting promising regions that

have already been identified.

4.1 The computational complexity of MTV-SCA

As shown in Algorithm 1, the MTV-SCA consists of four

main steps: initialization, distribution, multi-trial vector

production, and population evaluation and update. In the

initialization step, all N solutions are distributed in the D-

dimensional search space with a computational complexity

O(ND). The while-loop (lines 6–19), which includes dis-

tribution, multi-trial vector production, and population

evaluation and update, has a computational complexity of

O(N ? NSC-TVPD ? NPool-TVPD). Given that N = NSC-TVP-

? N
Pool-TVP

, then the computational complexity of the

while-loop for each iteration is simplified to O(N ? ND).

The movement step for all iterations (T) has a complexity

of O(T(N ? ND)). Therefore, the overall computational

complexity of the MTV-SCA is O(ND ? TN ? TND) or

O(TND).

Input: N, D, MaxIter, nIter
Output:  The global optimum (Xbest)

1 : Begin   
2 : iter = 1. 

3 : Win-TVP = RTVP.

4 : Randomly distribute N solutions in the search space. 

5 : Evaluating fitness f(Xi) and set the Xbest. 

6 : While iter MaxIter
7 : If mod (iter, nIter) == 0 

8 : Determining subpopulation size SC-TVP and Pool-TVP using Eq. (4).
9 : End if 
10 :       Population distribution using Eq. (5).     

11 : Do for each SC-TVP and Pool-TVP   
12 : For i = 1 to N
13 :                  Multi-trial vector production.    

14 :          Population evaluation and update. 
15 :    End for 
16 :  End do 
17 :  Updating Xbest.

18 :       iter = iter + 1. 

19 : End while
20 : Return the global optimum (Xbest). 

21 : End 

Algorithm 1 Multi-trial vector-based sine cosine algorithm (MTV-SCA)
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5 Performance evaluation

In this section, we present a comprehensive experimental

study and statistical analysis to evaluate the performance of

the proposed MTV-SCA. The algorithm’s performance was

evaluated through tests for exploration and exploitation,

local optima avoidance, and convergence assess-

ment. Various nature-inspired algorithms, including krill

herd (KH) [35], grey wolf optimizer (GWO) [11], moth-

flame optimization (MFO) [36], whale optimization algo-

rithm (WOA) [12], sine cosine algorithm (SCA) [20], salp

swarm algorithm (SSA) [13], henry gas solubility opti-

mization (HGSO) [37], and Archimedes optimization

algorithm (AOA) [40] were compared to the proposed

algorithm under consideration to assess its performance.

Additionally, we extend our comparative analysis to

include three algorithms: fitness-dependent optimizer

(FDO) [38], chimp optimization algorithm (ChOA) [39],

and fox-inspired optimization (FOX) [41], presenting their

performance in separate tables for clarity and comparison.

The proposed MTV-SCA is also evaluated against state-of-

the-art algorithms and well-established algorithms,

including particle swarm optimization (PSO) [10], gravi-

tational search algorithm (GSA) [42], adaptive differential

evolution with optional external archive (JADE) [43], and

the CEC 2017 winner algorithms LSHADE-SPACMA [44]

and LSHADE-cnEpSin [45].

5.1 Benchmark test functions and experimental
environment

The test functions utilized in the evaluation of the proposed

MTV-SCA are from the CEC 2018 benchmark suite [34],

comprising of (F1, F3), simple multimodal (F4–F10),

hybrid (F11–F20), and composition functions (F21–F30).

The purpose of the functions was to serve as an appropriate

benchmark for evaluating the algorithm’s exploration,

exploitation, convergence behavior, balance between

exploration and exploitation, and local optima avoidance

capabilities. The implementation of the MTV-SCA was

carried out using Matlab R2018a, and tested on a computer

with an Intel Core i7-3770 processor running at 3.4 GHz

with 8.00 GB of RAM.

5.2 Experimental setup

For this study, all comparative algorithms were established

utilizing the identical parameter values as recommended by

their respective works, as outlined in Table 2. To evaluate

each algorithm’s performance, 20 independent runs of the

benchmark functions were executed with dimensions of 10,

30, and 50. The maximum number of iterations (MaxIter)

was established based on the problem’s dimension (Dim)

and set to (Dim 9 10,000)/N, where N is 100. The results

were reported based on the fitness error, f(Fbest) - f(X*),

where f(Fbest) represents the minimum fitness value

obtained, and f(X*) is the global optimum. The mean,

standard deviation, and minimum of the error value were

used to quantify algorithm performance. The detailed

experimental results are presented in Tables 4, 5, 6, 7, 8, 9,

where the best-obtained error values are bolded, and the

overall results are compared. The ‘l/t/w’ displayed in the

final three rows of each table signifies the number of losses

(l), ties (t), and wins (w).

5.3 Sensitivity analysis

In this subsection, the analysis delves into the diverse

values for the initial points of the Chebyshev and sinu-

soidal functions. The initial point is variable within the

range of 0 to 1, and its selection plays a crucial role in

shaping the fluctuation pattern of the functions. Specifi-

cally, we considered initial values spanning from 0.1 to 0.9.

The sensitivity analysis of different values for these two

Table 2 Parameter settings
Algorithms Parameters values

KH Dmax = 0.005, Nmax = 0.01, Vf = 0.02

GWO, WOA a = [2 0]

MFO a = [-2 -1]

SCA A = 2

SSA c2, c3 = random numbers in [0, 1]

HGSO a = b = K = 1, M1 = 0.1, M2 = 0.2, l1 = 0.005, l2 = 100,

l3 = 0.01, number of Clusters = 5

AOA C1 = 2, C2 = 6, C3 = 1, C4 = 2, u = 0.9, l = 0.1

MTV-SCA nIter = 20, Chebyshev(0) = Sinusoidal(0) = 0.7, C = 2.3
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parameters, as presented in Table 3, indicates that an initial

value of 0.7 is optimal for both points.

5.4 Exploration and exploitation evaluation

An algorithm’s ability to solve unimodal functions is

essential in optimization problems. Unimodal functions

have a single optimum solution, which is generally easier

to find than multimodal functions with multiple optimum

solutions. A good optimization algorithm should quickly

converge to the global optimum solution while avoiding

getting trapped in local optima. In this regard, algorithms

with a strong exploitation capability are preferred for

solving unimodal functions. Exploitation refers to the

process of fine-tuning the current best solution in the search

space to converge toward the global optimum. Algorithms

with strong exploitation capability achieve this by priori-

tizing the best candidate solutions in each iteration and

using them to explore the search space more intensely.

According to the results presented in Tables 4 and 6, the

suggested MTV-SCA achieves significantly more precise

results for unimodal functions of all dimensions than SCA.

This is primarily due to the exploitative nature of the SC-

TVP and the ability of S1-TVP to maintain the balance

between exploration and exploitation, which is an essential

factor in avoiding getting stuck in local optima, a common

problem when optimizing unimodal functions. The MTV-

SCA has been found to be more effective in employing the

optimal solution when compared SCA and benchmark

algorithms.

The ability of an algorithm to solve multimodal func-

tions is crucial for successful optimization in real-world

applications where the search space is often complex and

non-convex. Multimodal functions have multiple local

optima, which can trap the search process and hinder the

algorithm from finding the global optimum. Therefore, a

good multimodal optimization algorithm should possess

the ability to explore different areas of the search space and

avoid getting stuck in local optima while exploiting

promising regions. According to the results presented in

Tables 5 and 6, the suggested MTV-SCA achieves signif-

icantly more precise results for multimodal functions of all

dimensions than SCA and comparative algorithms.

S2-TVP is effective at exploring the search space, which

is essential when dealing with complex and high-dimen-

sional optimization problems, such as multimodal func-

tions. S3-TVP is designed to balance exploration and

exploitation well, leading to a higher convergence rate.

This characteristic is essential when optimizing multimodal

functions since finding the global optimum often requires a

balance between exploration and exploitation. Finally, S4-

TVP aims to balance the exploration and exploitation of the

search space and avoid premature convergence, another

common issue when optimizing multimodal functions. In

summary, the proposed MTV-SCA algorithm’s ability to

maintain a balance between exploration and exploitation,

combined with its ability to explore and converge effec-

tively, makes it an effective algorithm for solving both

unimodal and multimodal functions. In summary, the

proposed MTV-SCA algorithm’s ability to maintain a

balance between exploration and exploitation, combined

with its ability to explore and converge effectively, makes

it an effective algorithm for solving both unimodal and

multimodal functions.

5.5 Assessing the effectiveness of local optima
avoidance

The hybrid and composition functions of CEC 2018 are

designed to be challenging optimization problems that

combine multiple unimodal and multimodal functions.

Hybrid functions combine different unimodal or multi-

modal functions in a way that makes the search space

complex and difficult to explore, while composition func-

tions are constructed by combining multiple functions in a

nested way, where the output of one function serves as the

input for the next. These functions pose a challenge to

optimization algorithms due to their complex search

landscape, which includes multiple local optima.

The gained results are shown in Tables 7, 8, 9. Using the

proposed MTV-SCA for solving hybrid and composition

functions indicates that it effectively explores the search

space thoroughly to find promising regions and avoid

getting stuck in local optima, while also exploiting the

current best solution to refine its search. The S1-TVP

strategy implemented in the algorithm helps avoid local

optima and ensures that the algorithm explores the search

space efficiently. The S2-TVP strategy is also useful in

exploring complex and high-dimensional optimization

problems, which is crucial for solving hybrid and com-

posite functions. The S3-TVP strategy maintains a good

balance between exploration and exploitation, which leads

to a higher convergence rate for the algorithm. Addition-

ally, the S4-TVP strategy helps balance the exploration and

exploitation of the search space, reducing the likelihood of

premature convergence. Overall, the combination of these

strategies in the MTV-SCA helps in achieving better

results when solving hybrid and composite functions by

effectively exploiting, exploring, and maintaining a bal-

ance between them.

5.6 Comparison of MTV-SCA with state-of-the-
art and well-established algorithms

In this experiment, the proposed MTV-SCA is compared to

that of the state-of-the-art algorithm and well-established
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algorithms particle swarm optimization (PSO) [10], grav-

itational search algorithm (GSA) [42], and adaptive dif-

ferential evolution with optional external archive (JADE)

[43], and CEC 2017 winner algorithms LSHADE-

SPACMA [44] and LSHADE–cnEpSin [45]. The experi-

ments conducted here are based on a maximum population

size of 428 and a minimum size of 4 for the LSHADE-

SPACMA and LSHADE–cnEpSin. The maximum number

of iterations and population size for the other algorithms

are set according to their previously defined values. The

results of the experiment, presented in terms of mean fit-

ness error, are tabulated in Table 10. These algorithms

were independently applied 20 times to the CEC 2018 test

functions with a dimensionality of 10. Moreover, the

Friedman test is utilized to illustrate the distinction in

performance achieved by the proposed MTV-SCA com-

pared to other algorithms.

5.7 Assessing convergence performance

The goal of this experiment is to evaluate the convergence

behavior and speed of MTV-SCA against other compara-

tive algorithms. Figure 2 shows the convergence curves for

different functions. Each curve represents the mean of the

best results from twenty runs of each algorithm. Conver-

gence analysis is important in population-based meta-

heuristic algorithms because it helps assess the

effectiveness and efficiency of the optimization process. In

these algorithms, a population of candidate solutions is

maintained and iteratively improved using various search

Table 10 The comparison of MTV-SCA with statE-of-thE-art and well-stablished algorithms

F Alg

PSO

Alg

GSA

Alg

JADE

Alg

LSHADE-SPACMA

Alg

LSHADE - cnEpSin

Alg

MTV-SCA

F1 4.4224E?08 1.3345E?02 0.0000E100 0.0000E100 0.0000E100 0.0000E100

F3 3.0775E?03 1.0157E?04 0.0000E100 0.0000E100 0.0000E100 0.0000E100

F4 3.9140E?01 6.5617E?00 0.0000E100 0.0000E100 0.0000E100 0.0000E100

F5 3.5604E?01 6.4136E?01 3.2612E?00 1.2088E100 1.6322E?00 4.9190E?00

F6 1.8216E?01 2.7456E?01 0.0000E100 0.0000E100 0.0000E100 0.0000E100

F7 1.1527E?02 1.3424E?01 1.3537E?01 1.1111E101 1.1698E?01 1.8200E?01

F8 4.7964E?01 2.1143E?01 3.6986E?00 7.0721E201 1.8685E?00 4.8170E?00

F9 3.4860E?02 0.0000E100 0.0000E100 0.0000E100 0.0000E100 0.0000E100

F10 1.2032E?03 1.7860E?03 8.7707E?01 5.0832E100 9.2189E?00 3.0470E?02

F11 1.3798E?02 5.4948E?01 2.4495E?00 0.0000E100 0.0000E100 0.0000E100

F12 1.4391E?07 1.0022E?06 6.2150E?01 1.0200E?02 3.0013E101 7.2600E?01

F13 3.1259E?04 9.9782E?03 3.7836E?00 3.4529E?00 4.2083E?00 2.8060E100

F14 1.1781E?02 4.7876E?03 5.7498E-01 0.0000E100 3.9448E-04 9.7640E-03

F15 9.8117E?02 1.5624E?04 4.7198E-01 3.4751E-01 1.0804E-01 4.2930E202

F16 8.6093E?01 5.2504E?02 1.5207E?00 7.7989E-01 8.3820E-01 6.0840E201

F17 9.0496E?01 1.2819E?02 5.0076E-01 1.8265E201 5.3922E-01 6.0840E-01

F18 4.8868E?04 6.6749E?03 1.0697E201 4.4659E-01 1.9594E-01 1.6180E-01

F19 4.3338E?02 6.7054E?04 4.9069E-02 4.8829E-02 3.7289E-02 2.7520E202

F20 8.8842E?01 2.8475E?02 7.4726E-11 9.3652E-02 2.0584E-01 0.0000E100

F21 1.9905E?02 2.4853E?02 1.4833E?02 1.0000E102 1.3061E?02 1.3140E?02

F22 1.8207E?02 1.0007E?02 9.0605E?01 1.0000E?02 1.0000E?02 9.0580E101

F23 3.2982E?02 4.6239E?02 3.0497E?02 3.0067E102 3.0116E?02 3.0290E?02

F24 3.6091E?02 3.5239E?02 2.7643E?02 2.5563E?02 2.7188E?02 2.3300E102

F25 4.6689E?02 4.4363E?02 4.1639E?02 4.1840E?02 4.1611E?02 4.1400E102

F26 4.2237E?02 8.3791E?02 3.0000E?02 3.0000E?02 3.0000E?02 2.8460E102

F27 4.1132E?02 5.6555E?02 3.9991E?02 3.9852E?02 3.9278E?02 3.9040E102

F28 5.3254E?02 6.5463E?02 3.2978E?02 3.0000E?02 3.4061E?02 3.0000E102

F29 2.9916E?02 5.4440E?02 2.4408E?02 2.3572E?02 2.3361E102 2.4710E?02

F30 7.6090E?05 1.2739E?06 4.0844E?02 4.0659E?02 4.0412E102 4.4640E?02

Friedman rank 6 3 5 4 1 2

The best results among all algorithms are indicated in bold
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strategies. The convergence analysis provides insight into

how quickly the algorithm can find the optimal or near-

optimal solution and how stable the optimization process

is. It helps to determine whether the algorithm is pro-

gressing toward finding a good solution. If the algorithm is

converging too slowly or not at all, it may indicate that the

Fig. 2 Convergence curves of selected functions
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algorithm’s parameters need to be adjusted or that the

algorithm is not well-suited for the specific optimization

problem. On the other hand, if the algorithm converges too

quickly, it may indicate that the algorithm has become

trapped in a local minimum or is not exploring the search

space thoroughly enough.

During the optimization process, the MTV-SCA exhibits

three convergence behaviors. Firstly, the algorithm expe-

riences early decreasing convergence, where a reasonably

good but not necessarily optimal solution is found in the

early iterations and then maintained for several iterations,

with only minor changes. Secondly, the algorithm under-

goes faster convergence in the first half of the iterations,

where more significant improvements are made to the

solution. Finally, the algorithm exhibits steady improve-

ment in the later iterations, where smaller improvements

are made to the solution until a stopping criterion is met.

Overall, the combination of these convergence behaviors

allows the MTV-SCA to strike a balance between explo-

ration and exploitation throughout the optimization pro-

cess. The algorithm achieves sufficient convergence,

exploitation, and diversity by utilizing the differences

between random and the best-obtained solutions. The

MTV-SCA’s ability to maintain diversity throughout the

optimization process is critical in dealing with complex

optimization problems. Moreover, the results show that the

MTV-SCA outperforms other comparative algorithms in

terms of faster convergence and maintaining diversity in

both multimodal and composition functions. Therefore, the

MTV-SCA is a promising candidate for solving various

optimization problems.

The proposed MTV-SCA surpasses other comparative

algorithms in terms of faster convergence on multimodal

and composition functions. The algorithm achieves this

feat by combining the best solutions obtained in the pro-

posed TVPs and the differences between random solutions,

resulting in a suitable equilibrium between exploration and

exploitation. The MTV-SCA sustains diversity during

optimization by leveraging differences between random

solutions. The convergence curves in Fig. 2 exhibit that the

MTV-SCA outperforms other algorithms in both hybrid

and composition functions. This suggests a balanced

exploration and exploitation process in these functions.

Additionally, the MTV-SCA effectively addresses chal-

lenges in complicated functions by maintaining essential

diversity.

6 Statistical analysis

While the experimental findings compared the overall

performance of MTV-SCA versus comparative algorithms,

they did not assess the statistical significance of these

comparisons. Then, two non-parametric tests, Friedman

and Wilcoxon signed-rank, are conducted to prove the

statistical superiority of the MTV-SCA.

6.1 Friedman test

The Friedman test [46] was used to show that the proposed

MTV-SCA is statistically superior to other algorithms. The

Friedman test is a non-parametric test that ranks all algo-

rithms according to their performance based on their

obtained fitness values. The test does not assume any

specific distribution of data which makes it a suitable test

for comparing the performance of metaheuristic algorithms

while often having unpredictable search behavior and

producing diverse outcomes across different problems.

Another reason for using the Friedman test is that it takes

into account the rank ordering of the algorithms’ perfor-

mances across multiple problems. This is important

because the ranking of algorithms can vary significantly

across different problems. By considering the rank ordering

rather than the absolute values of the performance metrics,

the Friedman test can detect significant differences

between algorithms that may not be apparent through other

statistical tests. The Friedman test was conducted using

Eq. (15) to rank the algorithms based on their fitness

values.

Ff ¼
12 � n

k � ðk þ 1Þ
X

j

R2
j �

k � ðk þ 1Þ2

4

" #

ð15Þ

where k, n, and Rj are the number of algorithms, case tests,

and the mean rank of the jth algorithm, respectively. The

evaluation process involves assigning numerical scores to

each algorithm/problem combination, with a score of 1

indicating the best-gained result and a score of k indicating

the worst-gained result. These scores are then averaged

across all problems to produce a comprehensive rating for

the algorithm. Algorithms that receive lower scores are

deemed superior.

Table 11 presents the results of the Friedman rank test,

conducted with a 95% confidence level. The results con-

firm that the MTV-SCA surpasses other algorithms in a

statistically significant manner with regards to dimensions

10, 30, and 50. The non-parametric test has further con-

firmed the importance of the findings, as indicated by the

p-value acquired.

6.2 Wilcoxon signed-rank test

The Wilcoxon signed-rank test is employed to show the

difference between the performance gained by the pro-

posed MTV-SCA and other algorithms. In Table 12, these

pair-wise statistical test results are demonstrated with a

Cluster Computing

123



Table 11 The results of Friedman test

Algorithm Dim F1 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17

KH 10 6.95 8.05 6.60 6.05 3.80 5.00 5.00 5.25 6.05 8.60 6.25 5.50 4.60 4.50 5.30 6.35

30 5.10 5.95 4.30 5.85 2.80 5.25 6.20 3.05 8.15 6.80 3.45 3.20 7.50 2.00 6.05 4.50

50 5.00 5.85 5.10 5.25 2.95 5.00 5.35 4.10 8.35 8.75 3.50 2.00 8.70 2.45 4.05 4.45

GWO 10 8.55 6.30 8.10 8.55 8.20 8.00 7.30 7.90 8.30 7.25 7.85 6.65 7.40 7.40 7.35 7.25

30 8.50 5.50 8.75 8.65 8.30 7.40 8.40 7.20 6.70 8.20 8.40 8.65 7.45 8.10 8.20 7.95

50 8.10 8.10 8.75 8.25 8.85 6.75 8.65 8.70 7.05 7.05 8.85 8.45 7.90 8.30 7.20 6.75

MFO 10 2.35 5.85 4.00 5.10 5.05 2.10 3.80 3.50 5.30 3.95 5.10 5.25 5.65 7.10 8.15 4.70

30 2.85 6.25 2.80 3.70 5.55 2.60 3.20 4.95 3.85 4.45 3.40 2.90 6.05 3.60 4.00 4.55

50 3.00 6.80 2.75 3.45 5.60 3.20 3.85 3.75 3.85 5.70 2.35 3.15 4.35 2.85 4.20 4.60

WOA 10 3.90 5.33 3.65 4.05 2.50 4.55 5.60 3.38 3.80 3.75 2.30 4.75 6.90 5.65 4.35 3.70

30 6.95 7.30 6.75 5.10 4.85 5.95 5.40 7.00 4.15 7.20 5.55 4.65 4.40 4.65 5.20 6.95

50 7.80 7.85 7.15 6.55 4.75 7.50 5.75 5.95 4.35 6.70 6.70 6.65 4.25 6.20 6.20 6.70

SCA 10 5.10 4.90 4.75 2.30 3.70 3.20 2.60 4.55 2.55 2.70 3.65 4.05 4.60 4.80 3.85 3.95

30 6.10 3.80 5.15 2.30 2.25 3.15 2.30 2.25 1.95 3.10 5.60 5.45 4.20 4.90 2.25 2.70

50 6.00 3.70 5.50 2.30 2.05 3.00 2.20 2.30 2.35 4.10 5.75 5.80 4.20 6.00 2.70 2.15

SSA 10 5.65 4.00 6.15 6.70 8.60 7.80 7.90 8.80 5.25 5.90 6.00 6.20 5.45 6.65 6.10 6.75

30 4.10 8.55 5.60 7.45 8.65 8.55 6.85 8.25 5.70 4.50 6.05 5.55 6.80 6.40 7.05 7.15

50 4.00 4.20 4.25 5.80 7.90 8.20 6.10 7.35 5.70 3.00 5.55 5.05 5.20 5.20 7.30 7.55

HGSO 10 3.05 2.40 2.70 3.65 5.15 4.70 4.00 3.35 5.30 5.60 4.80 5.15 3.55 4.00 4.20 4.60

30 2.20 2.00 2.55 3.25 4.95 3.45 3.75 4.40 2.75 2.30 2.95 5.25 2.25 5.45 3.45 3.65

50 2.00 2.00 2.45 4.05 4.65 2.90 3.90 4.30 3.75 2.10 3.20 4.55 2.30 4.40 3.70 3.45

AOA 10 8.45 7.15 8.05 7.60 6.85 7.95 7.75 7.00 7.15 6.25 8.05 6.45 5.85 3.90 4.70 6.70

30 8.20 4.65 8.10 7.70 6.65 7.50 7.90 6.90 8.75 7.45 8.60 8.35 5.35 8.90 7.65 6.55

50 8.10 5.50 8.05 8.35 7.25 7.45 8.20 7.55 8.60 6.60 8.10 8.35 7.10 8.60 8.65 8.35

MTV-SCA 10 1.00 1.02 1.00 1.00 1.15 1.70 1.05 1.27 1.30 1.00 1.00 1.00 1.00 1.00 1.00 1.00

30 1.00 1.00 1.00 1.00 1.00 1.15 1.00 1.00 3.00 1.00 1.00 1.00 1.00 1.00 1.15 1.00

50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Algorithm Dim F18 F19 F20 F21 F22 F23 F24 F25 F26 F27 F28 F29 F30 Avg rank Overall rank

KH 10 3.20 5.80 3.80 5.25 7.00 5.70 4.90 6.70 7.70 7.05 5.95 6.70 3.50 5.76 6

30 6.05 2.05 5.30 5.90 7.95 5.50 4.80 6.15 5.60 1.25 4.95 2.70 1.70 4.83 5

50 5.45 2.10 6.15 3.85 8.30 4.20 5.05 5.55 5.25 1.35 5.15 2.55 1.95 4.75 5

GWO 10 8.15 6.75 7.15 5.20 8.25 8.90 2.25 6.25 7.70 7.65 5.10 7.00 3.50 7.11 9

30 7.45 7.90 6.40 8.35 4.95 8.85 8.60 8.50 7.60 1.75 7.10 6.30 8.50 7.54 8

50 7.95 8.30 5.65 8.65 5.45 8.45 8.75 8.55 7.00 1.65 7.00 7.70 8.50 7.63 8

MFO 10 4.15 4.75 6.90 3.50 2.80 5.35 3.95 3.35 4.15 7.50 4.80 5.90 6.75 4.86 5

30 3.65 4.10 5.50 3.35 2.55 5.65 6.45 3.20 5.45 8.30 3.00 5.70 4.65 4.35 4

50 4.65 3.35 5.25 3.90 4.85 6.25 6.90 3.25 6.05 8.30 3.35 5.55 4.75 4.48 4

WOA 10 4.95 6.35 3.70 6.20 3.65 3.90 6.60 5.20 4.05 2.40 5.95 4.45 5.35 4.51 4

30 5.25 4.10 5.95 5.30 5.65 3.75 3.95 7.00 4.20 5.10 8.25 4.90 3.60 5.48 6

50 5.05 5.75 5.95 6.10 4.85 4.55 3.80 7.00 4.05 5.35 8.55 5.25 3.75 5.90 6

SCA 10 5.80 4.35 4.55 6.00 4.35 2.45 4.80 3.95 4.05 3.35 6.95 3.10 6.00 4.17 3

30 4.60 4.60 3.55 2.40 4.85 2.30 2.90 4.65 2.60 4.85 5.55 2.80 5.60 3.75 3

50 4.80 5.25 2.45 2.65 2.55 2.25 2.50 5.65 2.55 5.35 5.80 2.75 5.95 3.81 3

SSA 10 4.10 7.70 7.25 8.05 6.30 6.70 7.35 6.30 7.25 6.70 5.20 8.55 7.10 6.64 7

30 6.20 6.95 6.95 7.45 6.30 7.40 7.35 4.10 7.95 7.35 4.90 8.40 6.65 6.73 7

50 5.65 5.70 7.30 7.60 5.85 7.95 7.25 3.70 8.85 7.50 4.35 7.95 6.50 6.16 7

HGSO 10 5.50 3.65 4.75 3.60 3.65 3.45 4.65 3.50 2.80 2.25 4.95 2.90 4.45 4.01 2

30 2.60 5.35 4.35 3.45 3.40 3.05 2.60 2.15 2.55 4.85 2.25 4.85 4.50 3.47 2
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significance value of a = 0.05. The R? column denotes the

sum of ranks in which the MTV-SCA outperforms its

competitor, while R- represents the sum of ranks for the

functions that the MTV-SCA performs worse than the

competitor algorithm. The significant difference between

each pair of algorithms is denoted by the p-value column

and considered when the p-value\ a. The p-value results

prove that the proposed MTV-SCA’s superiority is statis-

tically significant compared to the competitor algorithms.

7 Exploring the suitability of MTV-SCA
in solving constrained problems

Design optimization problems are prevalent in real-world

engineering applications, and solving them effectively can

significantly improve design quality and efficiency. Meta-

heuristic algorithms have become increasingly popular in

recent years for addressing such optimization problems due

to their ability to find high-quality solutions in complex,

multimodal search spaces, even in the presence of con-

straints. Compared to traditional optimization algorithms,

metaheuristic algorithms can achieve better results in less

time and can handle problems with high levels of com-

plexity and uncertainty.

This section contains six non-convex constrained engi-

neering problems used to investigate MTV-SCA’s capa-

bility to solve real-world engineering problems. Pressure

vessel [114], three-bar truss [115], welded beam [116],

tension/compression spring [117], speed reducer [118], and

gas transmission compressor design problem [119] have all

been solved using MTV-SCA and other comparative

algorithms. As MTV-SCA is intended to be used for

optimization purposes, it should be able to handle the

equality and inequality constraints included in these engi-

neering design problems. In this paper, the death penalty

function [1] is used to handle constraints, which is one of

the most straightforward multi-constraint problem-solving

procedures among the many constraint-handling methods.

The death penalty function assigns a high fitness value to

solutions that violate one or more constraints, thus elimi-

nating infeasible solutions. Each algorithm was run 30

times with the maximum number of iterations and popu-

lation size (N) set to (D 9 104)/N and 20, respectively. The

Table 12 Results of Wilcoxon signed-rank test on Dim = 10, 30, and 50

MTV-SCA vs Dim = 10 Dim = 30 Dim = 50

R? R- p-value a = 0.05 R? R- p-value a = 0.05 R? R- p-value a = 0.05

KH 432 3 3.5150E-06 YES 435 0 2.5631E-06 YES 435 0 2.5631E-06 YES

GWO 435 0 2.5631E-06 YES 435 0 2.5631E-06 YES 435 0 2.5631E-06 YES

MFO 434 1 2.8489E-06 YES 435 0 2.5631E-06 YES 435 0 2.5631E-06 YES

WOA 435 0 2.5631E-06 YES 435 0 2.5631E-06 YES 435 0 2.5631E-06 YES

SCA 435 0 2.5631E-06 YES 435 0 2.5631E-06 YES 435 0 2.5631E-06 YES

SSA 422 13 9.7817E-06 YES 435 0 2.5631E-06 YES 435 0 2.5631E-06 YES

HGSO 424 11 7.9997E-06 YES 434 1 2.8489E-06 YES 434 1 2.8489E-06 YES

FDO 435 0 2.5631E-06 YES 435 0 2.5631E-06 YES 435 0 2.5631E-06 YES

ChOA 435 0 2.5631E-06 YES 435 0 2.5631E-06 YES 435 0 2.5631E-06 YES

AOA 435 0 2.5631E-06 YES 434 1 2.8489E-06 YES 434 1 2.8489E-06 YES

FOX 435 0 2.5631E-06 YES 433 2 3.1652E-06 YES 435 0 2.5631E-06 YES

Table 11 (continued)

Algorithm Dim F18 F19 F20 F21 F22 F23 F24 F25 F26 F27 F28 F29 F30 Avg rank Overall rank

50 2.20 4.85 3.15 3.65 3.50 3.00 2.70 2.15 2.00 4.30 2.30 4.15 4.10 3.30 2

AOA 10 8.15 4.65 5.90 4.90 7.40 7.55 8.20 7.70 6.05 5.60 5.10 5.10 7.05 6.66 8

30 8.20 8.95 6.00 7.80 8.35 7.50 7.35 7.85 7.55 8.30 8.00 8.35 8.50 7.65 9

50 8.25 8.70 8.10 7.60 8.65 7.35 7.05 8.15 7.75 8.20 7.50 8.10 8.45 7.88 9

MTV-SCA 10 1.00 1.00 1.00 2.30 1.60 1.00 2.30 2.05 1.25 2.50 1.00 1.30 1.30 1.28 1

30 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.40 1.50 3.25 1.00 1.00 1.30 1.20 1

50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.50 3.00 1.00 1.00 1.05 1.09 1

The best results among all algorithms are indicated in bold
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results of these engineering design problems are presented

Table 13 The results of

pressure vessel problem
Algorithms Variables’ optimum values Optimal cost

Ts Th R L

KH 0.8583766 0.4364271 44.453874 149.5471 6083.908376

GWO 0.7793857 0.3860307 40.382404 199.17257 5890.677687

MFO 0.7813776 0.3862353 40.485885 197.69832 5890.840566

WOA 1.0063937 0.4946975 51.582689 86.264298 6440.856533

SCA 0.7971754 0.3917014 40.417832 200 6060.531773

SSA 0.8015534 0.3962081 41.53123 183.93233 5929.660895

HGSO 1.0994922 0.5369286 55.732089 59.148888 6784.349365

AOA 0.9926987 0.5278103 43.416379 200 8606.921991

MTV-SCA 0.7781917 0.3846622 40.320769 199.98418 5885.386998

The best results among all algorithms are indicated in bold

Table 14 The results of welded

beam problem
Algorithms Variables’ optimum values Optimal cost

h l t b

KH 0.1734644 4.3627088 9.0353546 0.2057877 1.787637756

GWO 0.2055208 3.475114 9.0365953 0.205778 1.725515235

MFO 0.2057296 3.4704903 9.0366239 0.2057296 1.724852409

WOA 0.1733243 4.3053194 9.0973158 0.2055779 1.789913641

SCA 0.2025877 3.3539285 9.5573795 0.2034842 1.775753362

SSA 0.2031367 3.5271823 9.0366275 0.2057296 1.728443415

HGSO 0.1595571 4.9309016 9.1759742 0.2067658 1.86665337

AOA 0.2071561 3.1785351 10 0.2092726 1.88023824

MTV-SCA 0.2057296 3.4704887 9.0366239 0.2057296 1.724852309

The best results among all algorithms are indicated in bold

Table 15 The results of tension/compression spring design problem

Algorithms Variables’ optimum values Optimal weight

d D N

KH 0.05163965 0.3555217 11.359813 0.012665813

GWO 0.05260798 0.3791175 10.091013 0.012686439

MFO 0.05198774 0.3639458 10.877455 0.012666852

WOA 0.05162934 0.3552827 11.3736 0.012665301

SCA 0.05 0.3170274 14.098058 0.012758813

SSA 0.05205656 0.3656234 10.785599 0.012667944

HGSO 0.05 0.3173935 14.255291 0.01289831

AOA 0.05 0.3104307 15 0.013193304

MTV-SCA 0.05164264 0.3556019 11.354686 0.012665272

The best results among all algorithms are indicated in bold

Table 16 The results of three-bar truss problem

Algorithms Variables’ optimum values Optimal weight

x1 x2

KH 0.7883914 0.4090514 263.8959074

GWO 0.7887794 0.4079744 263.897942

MFO 0.7885469 0.408611 263.8958555

WOA 0.7881841 0.409639 263.8960235

SCA 0.7883578 0.4092308 263.9043442

SSA 0.7885544 0.4085898 263.8958541

HGSO 0.7868361 0.4136147 263.9123383

AOA 0.7812819 0.4305652 264.0364105

MTV-SCA 0.7886751 0.4082483 263.8958434

The best results among all algorithms are indicated in bold
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in Tables 13, 14, 15, 16, 17, 18 and demonstrate that MTV-

SCA outperformed other methods in addressing real-world

mechanical engineering challenges.

• Pressure vessel design problem

The major aim of this problem, represented in Fig. 3,

is optimizing the cost of material, forming, and welding

a vessel. The problem has four variables Ts, Th, R, and

L. The mathematical representation of this problem is

provided in Eq. (16).

Consider x!¼ x1x2x3x4½ � ¼ ½TsThRL� ð16Þ

Table 17 The results of speed reducer problem

Algorithms Optimum values Optimum cost

b m p l1 l2 d1 d2

KH 3.5001803 0.7000238 17 7.3043334 7.7169708 3.3504269 5.28667677 2994.792113

GWO 3.5022791 0.7 17 7.4774786 7.7304194 3.3528629 5.28670568 2997.972556

MFO 3.5 0.7 17 7.3 7.7153199 3.3502147 5.28665446 2994.471066

WOA 3.5272386 0.7 17 7.5985484 7.9178682 3.4479791 5.28672379 3038.06415

SCA 3.5095504 0.7 17 7.6460229 8.0188604 3.4416384 5.30609963 3044.475047

SSA 3.5000618 0.7 17 7.3934209 7.7874134 3.3503973 5.2866792 2996.963749

HGSO 3.509275 0.7 17 7.3 7.7949563 3.4297587 5.30628658 3033.134989

AOA 3.6 0.7 17 8.3 8.3 3.358164 5.29783473 3064.616095

MTV-SCA 3.5 0.7 17 7.3 7.7153199 3.3502147 5.28665446 2994.4711

The best results among all algorithms are indicated in bold

Table 18 The results of gas

transmission compressor design
Algorithms Variables’ optimum values Optimum

x1 x2 x3 x4 cost

KH 49.876349 1.1821134 24.560526 0.3973787 2.9651726245E?06

GWO 49.999695 1.1783846 24.586014 0.3885877 2.9649002713E?06

MFO 50 1.1780074 24.601519 0.3877014 2.9648962776E?06

WOA 50 1.1766581 24.645012 0.3845242 2.9649253929E?06

SCA 50 1.1898313 23.704703 0.4156751 2.9667224748E?06

SSA 44.94133 1.1583555 25.277746 0.3417875 2.9687471719E?06

HGSO 50 1.1656722 25.181623 0.3585052 2.9673819640E?06

AOA 50 1.2239676 20 0.4966806 3.0031605313E?06

MTV-SCA 50 1.1782839 24.59259 0.3883531 2.9648954144E106

The best results among all algorithms are indicated in bold

Fig. 3 Design of pressure vessel

Fig. 4 Design of welded beam
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minimize f x!
� �

¼ 0:6224x1x3x4 þ 1:7781x2x
2
3

þ 3:1661x2
1x4 þ 19:84x2

1x3

subject to g1 x!
� �

¼ �x1 þ 0:0193x3 � 0; g2 x!
� �

¼ �x2 þ 0:00954x3 � 0

g3 x!
� �

¼ �px2
3x4 �

4

3
px3

3 þ 1,296,000� 0; g4 x!
� �

¼ x4 � 240� 0

where 0� xi � 100 for i ¼ 1; 2 and

10� xi � 200 for i ¼ 3; 4

• Welded beam problem

Determining the minimum cost to fabricate a welded

beam is the subject of this design problem. It has four

design factors that need to be optimized as shown in

Fig. 4 and four restrictions that should be considered.

Equation (17) is the mathematical representation of this

problem.

Consider x~¼ x1x2x3x4½ � ¼ hltb½ � ð17Þ

minimize f x!
� �

¼ 1:10471x2
1x2 þ 0:04811x3x4 � ð14:0

þ x2Þ

subject to g1 x!
� �

¼ s x!
� �

� smax � 0; g2 x!
� �

¼ r x!
� �

� rmax � 0;

g3 x!
� �

¼ d x!
� �

� dmax � 0

g4 x!
� �

¼ x1 � x4 � 0; g5 x!
� �

¼ P � Pc x!
� �

� 0; g6 x!
� �

¼ 0:125 � x1 � 0

g7 x!
� �

¼ 1:10471x2
1 þ 0:04811x3x4 � 14:0 þ x2ð Þ

� 0:5� 0

where 0:1� xi � 2 for i ¼ 1; 2 and

0:1� xi � 10 for i ¼ 3; 4

• Tension/compression spring design problem

The major goal of this design problem is to reduce

the weight of the tension/compression spring. This

problem has three design factors, as shown in Fig. 5.

Equation (18) is the mathematical representation of this

problem.

Consider x!¼ x1x2x3½ � ¼ ½dDN� ð18Þ

minimize f x!
� �

¼ ðx3 þ 2Þx2x
2
1

subject to g1 x!
� �

¼ 1 � x3
2x3

71785x2
1

� 0; g2 x!
� �

¼ 4x2
2 � x1x2

12566ðx2x
3
1 � x4

1Þ
þ 1

5108x2
1

� 0

g3 x!
� �

¼ 1 � 140:45x1

x2
2x3

� 0; g4 x!
� �

¼ x1þx2

1:5
� 1� 0

where 0:05� x1 � 2:00,

0:25� x2 � 1:30,2:00� x3 � 15:0

• Three-bar truss problem

This issue’s purpose is to manufacture a truss with

the least weight while still adhering to three limitations.

Regarding Fig. 6, two design variables, x1 and x2,

should be chosen while considering limits on stress,

deflection, and buckling. Equation (19) is the mathe-

matical representation of this problem.

Consider x!¼ x1x2½ � ð19Þ

minimize f x!
� �

¼ 2
ffiffiffi

2
p

x1 þ x2

� �

� l

Fig. 5 Design of tension/compression spring

Fig. 6 Design of three-bar truss Fig. 7 Design of speed reducer
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subject to g1 x!
� �

¼
ffiffiffi

2
p

x1 þ x2
ffiffiffi

2
p

x2
1 þ 2x1x2

P � r� 0; g2 x!
� �

¼ x2
ffiffiffi

2
p

x2
1 þ 2x1x2

P � r� 0

g3 x!
� �

¼ 1
ffiffiffi

2
p

x2 þ x1

P � r� 0

where 0� x1; x2 � 1, l ¼ 100 cm;P ¼ 2 kN=cm2,

r ¼ 2 kN=cm2.

• Speed reducer design problem

Taking into consideration the bending stress of the

gear teeth, the surface stress, the transverse deflections,

and the stresses in the shafts, the goal of this restricted

optimization issue is to minimize the weight of the

speed reducer. This problem has seven variables, as

shown in Fig. 7. The mathematical representation of

this problem shown in Eq. (20).

Consider x!¼ x1x2x3x4x5x6x7½ � ¼ ½bmpl1l2d1d2� ð20Þ

minimize f x!
� �

¼0:7854x1x
2
2 3:3333x2

3þ14:9334x3�43:0934
� �

�1:508x1 x2
6þx2

7

� �

þ7:4777 x3
6þx3

7

� �

þ0:7854 x4x
2
6þx5x

2
7

� �

subject to g1 x!
�

Þ ¼ 27
x1x

2
2
x3
� 1� 0,g2 x!

� �

¼ 397:5
x1x

2
2
x2

3

� 1� 0;

g3 x!
� �

¼ 1:93x3
4

x2x
4
6
x3
� 1� 0

g4 x!
� �

¼ 1:93x3
5

x2x
4
7x3

� 1� 0; g5 x!
� �

¼
745ðx4=x2x3Þð Þ2 þ 16:9 � 106

h i1=2

110x3
6

� 1� 0

g6 x!
� �

¼
745ðx5=x2x3Þð Þ2 þ 157:5 � 106

h i1=2

85x3
7

� 1� 0

g7 x!
� �

¼ x2x3

40
� 1� 0; g8 x!

� �

¼ 5x2

x1

� 1� 0; g9 x!
� �

¼ x1

12x2

� 1� 0

g10 x!
� �

¼ 1:5x6 þ 1:9

x4

� 1� 0; g11 x!
� �

¼ 1:1x7 þ 1:9

x5

� 1� 0

where 2:6� x1 � 3:6; 0:7� x2 � 0:8;

17� x3 � 28; 7:3� x4 � 8:3;

7:3� x5 � 8:3; 2:9� x6 � 3:9; 5:0� x7 � 5:5

• Gas transmission compressor design problem

The design of gas transmission compressors aims to

minimize the daily cost of gas pipeline transmission

systems. This problem, depicted in Fig. 8, involves

optimizing four decision variables: x1 for the distance

between compressor stations, x2 representing the com-

pression ratio from inlet pressure to the compressor, x3

as the internal pipe diameter in inches, and x4. The total

annual cost of the transmission system and its operation

is defined by Eq. (21).

Consider x!¼ x1x2x3x4½ � ð21Þ

minimize f x!
� �

¼ 8:61 � 105x
1=2
1 x2x

�2=3
3 x

�1=2
4 þ 3:69

� 104x3 þ 7:72 � 108x�1
1 x0:219

2

� 765:43 � 106x�1
1

subject to x4x
�2
2 þ x�2

2 � 1� 0

with bounds 20� x1 � 50; 1� x2 � 10; 20� x3 � 50,0.1� x4 � 60

8 Discussion

The proposal of an enhanced variant of metaheuristic

algorithms holds significant importance in advancing

optimization techniques and addressing the challenges

posed by complex real-world problems. The main objective

of this study is to enhance the effectiveness of the sine

Fig. 8 Design of gas

transmission compressor
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cosine algorithm (SCA) in solving complex optimization

problems by integrating multiple search strategies through

the multi-trial vector (MTV) approach. The SCA has been

found to exhibit limitations in solution accuracy, local

optima trapping, exploitation, convergence speed, and

stagnation in local optima when confronted with complex

optimization problems. The multi-trial vector-based sine

cosine algorithm (MTV-SCA) introduced in this study

integrates the MTV approach with the single SCA search

strategy, aiming to enhance the algorithm’s effectiveness in

solving complex optimization problems. MTV-SCA

incorporates four distinct search strategies, namely S1-

TVP, S2-TVP, S3-TVP, and S4-TVP, along with three

control parameters: Chebyshev, sinusoidal, and sin-cos.

S1-TVP aims to balance exploration and exploitation,

preventing the algorithm from becoming trapped in local

optima. It exhibits the fastest convergence speed and per-

forms well on unimodal problems. In contrast, S2-TVP is

effective in exploring the search space but has a slower

convergence speed and a notable ability for exploration.

S3-TVP balances exploration and exploitation and has a

higher convergence rate, making it suitable for solving

rotated problems. Finally, S4-TVP is designed to balance

exploration and exploitation to avoid premature

convergence.

The algorithm utilizes a combination of sinusoidal and

cosinusoidal functions to adjust the parameter values of the

respective TVPs. This adjustment aims to maintain a trade-

off between exploiting previously discovered optimal

solutions and exploring unexplored regions of the search

space. The Chebyshev coefficient enables more efficient

exploration by taking larger steps in flat fitness landscapes

and smaller steps in rugged regions. The sinusoidal coef-

ficient adjusts the search radius and direction to prevent

premature convergence and continue searching for the

global optimum. The sin-cos coefficient dynamically

adjusts the control parameters, progressively decreasing the

search radius and introducing randomness to balance

exploration and exploitation. The incorporation of these

coefficients improves the algorithm’s ability to explore the

search space, mitigate premature convergence, and refine

solutions during the search process.

The proposed MTV-SCA algorithm was evaluated using

29 benchmark test functions from the CEC 2018 special

session focused on real-parameter optimization problems.

Its performance was compared to several state-of-the-art,

well-established, CEC 2017 winner algorithms and

recently proposed nature-inspired metaheuristic algo-

rithms. The algorithm’s effectiveness was assessed through

statistical analysis using the Friedman test and Wilcoxon

signed-rank test. Additionally, the MTV-SCA’s capability

to solve real-world engineering problems was evaluated in

six different cases. The results revealed that the MTV-SCA

variant demonstrated superior performance on the majority

of test problems. The experimental evaluation, statistical

analysis, and solutions obtained for engineering design

problems led to the following conclusions:

• In the evaluation of unimodal functions with dimen-

sions 10, 30, and 50, the MTV-SCA demonstrated

notably improved accuracy compared to the SCA

algorithm. This improvement can be attributed to two

key factors: the exploitative nature of the SC-TVP

strategy and the ability of the S1-TVP strategy to

maintain a balance between exploration and exploita-

tion. By leveraging the exploitative nature of SC-TVP

and effectively managing the exploration–exploitation

trade-off with S1-TVP, the MTV-SCA algorithm was

able to avoid local optima and effectively utilize the

optimal solution.

• The MTV-SCA demonstrates its effectiveness in

exploring the search space for complex and high-

dimensional optimization problems through S2-TVP.

The MTV-SCA algorithm is able to converge more

quickly by effectively balancing exploration of the

solution space and exploitation of promising regions,

achieved through the S3-TVP. Additionally, S4-TVP

prevents premature convergence, a common issue in

multimodal function optimization. Overall, the MTV-

SCA’s strength lies in maintaining an adept balance

between exploring new areas and intensively exploiting

already-discovered good regions, along with its capa-

bilities for thorough exploration and rapid convergence,

making it a powerful solution for tackling multimodal

optimization problems.

• The evaluation of the MTV-SCA on hybrid and

composite functions showcased its effectiveness in

thoroughly exploring the search space, avoiding local

optima, and refining the search using the current best

solution. The S1-TVP strategy played a crucial role in

preventing local optima and ensuring efficient explo-

ration. S2-TVP proved beneficial for exploring complex

and high-dimensional optimization problems essential

for solving hybrid and composite functions. S3-TVP

achieved a balance between exploration and exploita-

tion, resulting in a higher convergence rate. Lastly, the

S4-TVP strategy helped maintain a balance between

exploration and exploitation, minimizing premature

convergence

• The MTV-SCA has demonstrated its efficacy in solving

real-world engineering design problems.
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9 Conclusions and future work

This study tackles the challenges stochastic algorithms face

when dealing with complex problems. It introduces the

multi-trial vector-based sine cosine algorithm (MTV-SCA)

to improve the traditional sine cosine algorithm (SCA). The

SCA often struggles with issues like unbalanced explo-

ration and exploitation, which can lead to premature con-

vergence. The study adapts the multi-trial vector (MTV)

approach to overcome these limitations, integrating four

trial vector producers to replace the SCA’s search strategy

to handle various problem types with differing

characteristics.

Through experimental validation using the CEC 2018

test suite, the study demonstrates the superior performance

of MTV-SCA compared to existing optimization algo-

rithms in terms of exploration, exploitation, avoidance of

local optima, and convergence speed. Statistical tests such

as the Friedman and Wilcoxon signed-rank tests confirm

the statistical significance of MTV-SCA’s performance,

validating its ability to effectively maintain a balanced

exploration–exploitation trade-off. Furthermore, the prac-

tical applicability of MTV-SCA is showcased through its

successful resolution of six engineering design problems,

consistently surpassing alternative algorithms in terms of

effectiveness and efficiency.

While the proposed algorithm exhibits strengths, it also

has specific limitations. The MTV-SCA is introduced to

excel in single-objective and continuous optimization

problems. However, it is essential to note a significant gap

in its capability regarding multi-objective and discrete

problems. One particular aspect that may require adjust-

ments is the winner-based distribution policy, which is

fine-tuned for the four TVPs utilized in this study. Adapt-

ing this policy to handle new trial vectors across diverse

problems will be important for maintaining optimal per-

formance. Additionally, it’s worth noting that the perfor-

mance evaluation of MTV-SCA has not yet encompassed

assessments for large-scale global optimization (LSGO)

problems. This limitation could potentially affect its

effectiveness as problem dimensionality increases.

In future studies, there are various potential directions to

explore using the proposed MTV-SCA for enhancing

continuous single-objective optimization. Adapting MTV-

SCA to tackle binary and multi-objective challenges could

extend its utility to address discrete and many-objective

optimization problems, broadening its applicability across

different domains. Additionally, investigating the use of

MTV-SCA in feature selection, clustering, community

detection, and scheduling could be advantageous. Lastly,

another promising direction for future research would be

proposing an aggregate MTV-SCA version. This version

would incorporate the search strategies of other algorithms,

allowing the trial vector producers of MTV-SCA to benefit

from the strengths and diversities of other optimization

approaches. Combining the best aspects of different algo-

rithms, the aggregate MTV-SCA could achieve enhanced

performance and robustness in solving optimization

problems.
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