
Shortest node-to-node disjoint paths algorithm for symmetric
networks

Hesham AlMansouri1 • Zaid Hussain2

Received: 7 March 2024 / Revised: 26 April 2024 / Accepted: 17 May 2024 / Published online: 15 June 2024
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Disjoint paths are defined as paths between the source and destination nodes where the intermediate nodes in any two paths

are disjoint. They are helpful in fault-tolerance routing and securing message distribution in the network. Several research

papers were proposed to solve the problem of finding disjoint paths for a variety of interconnection networks such as

Hypercube, Generalized Hypercube, Mesh, Torus, Gaussian, Eisenstein–Jacobi, and many other topologies. In this

research, we have developed a general algorithm that constructs maximal node-to-node disjoint paths for symmetric

networks where all paths are shortest. The algorithm presented in this paper outperforms other algorithms in finding not

only the disjoint paths but shortest and maximal disjoint paths with a complexity of Oðn2Þ. In addition, we have simulated

the proposed algorithm on different networks. The solution of unsolved problem in Cube-Connected-Cycles is given in the

simulation results.

Keywords Interconnection network � Symmetric network � Edge disjoint � Disjoint paths � Fault-tolerant �
Routing � Node-to-node

1 Introduction

Parallel computing is the computation of a program to

perform tasks simultaneously. It is an essential field in

computer science that advances the computation efficiency.

There are two memory architectures in parallel computing,

which are shared memory and distributed memory [1]. In

shared memory, processors have access to and communi-

cate through shared memories, whereas in distributed

memory each processor has its own memory and all pro-

cessors communicate by message passing. In distributed

memory architecture, the processor and the memory are

formed in a pair called Processing Element, PE [2]. Data is

shared between processors in both memory architectures of

parallel computing through an interconnection network.

The work in this paper is based on the distributed memory

architecture.

Interconnection networks play an essential role in the

efficiency of parallel and distributed computing. One of the

main characteristics of interconnection networks is their

topology. There are many topologies existing in intercon-

nection networks such as Hypercube [3], Mesh [4], k-ary n-

cube [5], Cube-Connected Cycles [6], Torus [7], Gaussian

[8, 9], Eisenstein–Jacobi [9, 10], and more can be found in

this domain. The topology of an interconnection network

determine how processors are connected. Each topology

has characteristics such as degree, symmetry, regularity,

diameter, and fault-tolerance. A symmetric network is a

network that is both edge- and node-transitive [11]. Some

application on interconnection networks are J-Machine

[12], Cray T3D and T3E [13], and Gaussian cluster-based

WSN [14].

Features of interconnection networks were and still are

studied to improve the communication for data sharing in

parallel computing. Many aspects are considered when

sending messages from one node to another node. Routing

is an essential communication method applied in computer
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networks. There have been extensive researches in devel-

oping various routing algorithms in interconnection net-

works. Mostly, routing algorithm between source and

destination nodes is provided with the proposed intercon-

nection network. Further studies on routing is finding the

disjoint paths between the given source and destination

nodes. Disjoint paths play an important part in the effi-

ciency of the message sharing in an interconnection net-

work. The problem of finding disjoint paths can be

classified into node-to-node, node-to-set, and set-to-set. In

node-to-node, a message is sent from a source node to a

destination node. In node-to-set, a message is sent from a

source node to multiple destination nodes. In set-to-set,

multiple source nodes send their messages to multiple

destination nodes. Disjoint paths have several applications

and benefits. For example, disjoint paths can improve

throughput and load balance in a network [15, 16]. Another

application is secured message routing, where disjoint

paths can be used to ensure the security from eavesdrop-

ping in a network [17]. In addition, disjoint paths are used

to ensure fault-tolerance in a network and make it more

reliable. For instance, faulty nodes or edges in one path do

not affect other disjoint paths, which makes the goal of

delivering the message to the destination node achievable.

The main contributions of this work are as follows. (1)

We provide a general algorithm that finds the disjoint paths

in symmetric interconnection networks. (2) The proposed

method is guaranteed to generate maximal shortest node-

disjoint paths for a given network. (3) Providing the solu-

tion of an unsolved problem in Connected-Cube-Cycles.

(4) Giving the results of applying the proposed algorithm

on some interconnection networks.

Throughout this paper, we use the following words

interchangeably: graph and network, vertices and nodes,

and edges and links.

The paper is organized as follows: in Sect. 2 we review

the related work. In Sect. 3, we demonstrate the required

background used in this work. The general disjoint paths

algorithms for symmetric networks is given in Sect. 4.

Simulation results are shown in Sect. 5. Finally, the paper

and its future work are concluded in Sect. 6.

2 Related work

In this section, we provide an overview of the existing

research on disjoint paths algorithms for various intercon-

nection network topologies. We briefly describe the key

features and limitations of each approach, which are rele-

vant to understanding the need for and contribution of our

proposed algorithm.

Suurballe’s algorithm, introduced in [18], is a popular

approach for finding disjoint paths in a weighted directed

graph. The algorithm works by first finding the shortest

path from the source to the destination using Dijkstra’s

algorithm, then modifying the edge weights and searching

for a second shortest path. While Suurballe’s algorithm is

efficient, it is limited to weighted directed graphs and does

not guarantee the maximal shortest disjoint paths.

Bhandari proposed an algorithm in [19], to find disjoint

paths in directed graphs with non-negative weights. Similar

to Suurballe’s algorithm, Bhandari’s algorithm first com-

putes the shortest path from the source to the destination

using Dijkstra’s algorithm. It then reverses the direction of

the edges in the shortest path and applies Dijkstra’s algo-

rithm again. Although Bhandari’s algorithm can find dis-

joint paths, maximal shortest disjoint paths between two

nodes are not guaranteed.

The Ford–Fulkerson algorithm, originally designed for

solving the maximum flow problem in a flow network [20],

can be adapted for finding disjoint paths between a source

and a destination node. By considering the paths as flows in

the network and the edges as having unit capacities, the

algorithm can identify the maximum number of edge-dis-

joint paths. However, the Ford–Fulkerson algorithm finds

edge-disjoint paths, which may not necessarily be node-

disjoint, and it does not guarantee the shortest paths.

Moreover, its time complexity is OðjVj2jEjÞ, where |V| is

the number of nodes in the network and |E| is the number of

edges in the network, where our proposed algorithm can

outperform the complexity of the Ford–Fulkerson algo-

rithm. Thereafter, while the Ford–Fulkerson algorithm can

be adapted for finding disjoint paths, it may not be the most

efficient or suitable approach for symmetric interconnec-

tion networks due to its limitations in providing node-dis-

joint paths, guaranteeing shortest paths, and its time

complexity. This further emphasizes the need for an

algorithm specifically designed to address the unique

challenges of finding maximal shortest disjoint paths in

symmetric interconnection networks.

Several algorithms were developed that are topology

specific, where for each topology different steps are fol-

lowed to get the disjoint paths between two nodes. There

are various research works on parallel and disjoint paths for

different topologies of interconnection networks. The

node-to-node disjoint paths problem has been solved for

Hypercube Network in [21–25]. Moreover, the problem

was solved for Torus Network in [26, 27]. In addition,

node-to-node disjoint routing for k-ary n-cube is presented

in [5, 28–31]. Furthermore, the problem was solved for

Hierarchical Hypercube, Dual-Cubes and WK Recursive in

[32–34] respectively. Another variation of the disjoint

paths problem is the node-to-set disjoint paths. This prob-

lem is solved for Folded Hypercube, Dual-Cube, Gaussian

Network, and WK Recursive in [34–37] respectively.
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Furthermore, the set-to-set disjoint paths is another varia-

tion of the disjoint paths problem. The set-to-set disjoint

paths routing is presented for Dual Cubes in [38], Hyper-

cube in [39, 40], Torus in [41], Torus-Connected Cycles in

[42], and Hierarchical Hypercube in [43].

3 Background

In this section, we review the terminologies used in graph

theory and then we briefly describe some interconnection

networks used in this work. At the end of this section, we

describe a mobile network protocol which is adopted in our

proposed algorithm.

3.1 Terminology and definitions

A graph, or undirected graph, is an essential concept in

graph theory to model interconnection networks. The net-

work is represented as G(V, E), where V is the set of nodes

and E is the set of edges. Considering two connected nodes

u and v in a network G, the edge between u and v is rep-

resented as (u, v). There are two types of edges in a net-

work, which are regular and wraparound edges. The regular

edges are the edges between two physically adjacent nodes,

while the wraparound edges are the edges between two

nodes that are not physically adjacent or two boundary

nodes. A path in a network is a set of nodes that are con-

nected through a sequence of edges, where it starts with a

source node and it ends with a destination node. If the

destination node is the source node, then it is called a cycle.

In a network, two nodes are called neighbors if and only if

there is an edge between them. An intermediate node is a

node in a path that is neither the source nor the destination

node. The hop count is the number of nodes passed in a

path excluding the starting node and including the cycles.

All path lengths are measured in terms of hop count. The

distance between two nodes in a network is the length of

the shortest path between them. The degree of a node in a

network is the number of edges incident with that node.

A network is called regular when all the nodes have the

same degree. The diameter of the network is distance

between two farthest nodes (i.e., the longest path) in the

network where the distance is minimized. Two nodes in a

network are called adjacent (i.e., neighbor) if the distance

between them is 1. In some interconnection networks, the

distance between two nodes is measured by Hamming

distance like in Hypercube network [3] and others are

measured by Lee distance like in k-ary n-cube network [5].

The Hamming distance (DH) between two nodes is the

number of different digits between the two nodes’

addresses. For example, given two nodes (122) and (131),

then the Hamming distance between them is

DHð122; 131Þ ¼ 2. Further, given two nodes’ addresses

a0; a1; a2; . . .; an and b0; b1; b2; . . .; bn, where nþ 1 is the

length of both addresses and having k-ary alphabet. The

Lee distance (DL) is defined by the following formula:

DL ¼
Xn

i¼0

minðjai � bij; k � jai � bijÞ:

Given a binary string, a bit-flip is the bit that changes. A

network is called connected if there is a path between every

pair of nodes in the network. A network cut is the sepa-

ration of the network to several sub-networks that are

disconnected, which is achieved by the removal of certain

number of nodes. The network connectivity is the minimum

number of nodes that form a network cut. A reserved node

is a node that is used once and cannot be used again, where

it is considered removed from the network.

3.2 Interconnection networks

In this subsection, we briefly illustrate the interconnection

networks used in our work.

3.2.1 Hypercube

The Hypercube network is a popular topology in inter-

connection networks. It can be formed in many dimen-

sions, for example, the 3D Hypercube is shown in Fig. 1.

The nodes in the n-dimensional Hypercube are labeled in

binary from 0 to 2n � 1, such that the Hamming distance

between any two adjacent nodes is 1. In a Hypercube with

N nodes, each node has a degree of log2 N ¼ n and the

diameter of the network is log2 N ¼ n. The distance

between two nodes in the Hypercube is the Hamming

distance between the addresses of the nodes.

3.2.2 2D torus

The 2D Torus (Tm�n) network consisting of N nodes can be

illustrated as N ¼ m� n, where m is the number of nodes

along x-axis and n is the number of nodes along y-axis.

Each node in the network has degree 4, i.e., Torus is 4-

regular network. All boundary nodes of the Torus topology

are connected to other boundary nodes on the same axis

with wraparound links, and the corner nodes are connected

000 010

100 110

100 110

101 111
Fig. 1 3-Dimensional

hypercube
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to the adjacent corners of the x and y axis with wraparound

links. Figure 2 shows an example of T4�4. The diameter of

the Torus topology is bm=2c þ bn=2c. Moreover, every

node t in the Torus topology is labeled as txy, where x is the

location of the node on the x-axis and y is the location of

the node along y-axis.

3.2.3 Gaussian

Gaussian networks were proposed in [8, 9]. They are based

on quotient ring of Gaussian integers formed as Z½i� ¼
xþ yi where i ¼

ffiffiffiffiffiffiffi
�1

p
. The network can be generated by

a ¼ aþ bi 6¼ 0, where 0� a� b, and represented as a

graph GaðV ;EÞ such that V ¼ Z½i�a is the set of nodes and

E ¼ fðb; cÞ 2 V � V j ðb� cÞ � �1;�i mod ag is the set

of edges. Gaussian networks are 4-regular networks having

a total number of nodes NðaÞ ¼ a2 þ b2 and the nodes are

labeled as xþ yi. Two nodes A and B in the network are

adjacent if and only if ðA� BÞ mod a ¼ �1 or �i. The

diameter of the network is k ¼ b if NðaÞ is even or k ¼
b� 1 if NðaÞ is odd. The wraparound link for the boundary

nodes can be computed with mod operation after adding

�1 or �i to the node address. Figure 3 illustrates the

Gaussian network generated by a ¼ 4þ 5i where the dot-

ted lines are the wraparound links.

3.2.4 Eisenstein–Jacobi

Similar to Gaussian networks, Eienstein–Jacobi (EJ) net-

works were proposed in [10] and [9]. They are based on

quotient ring of EJ integers formed as Z½q� ¼ xþ yq where

q ¼ ð1þ i
ffiffiffi
3

p
Þ=2 and i ¼

ffiffiffiffiffiffiffi
�1

p
. The network can be gen-

erated by a ¼ aþ bq 6¼ 0, where 0� a� b, and repre-

sented as a graph EJaðV;EÞ such that V ¼ Z½q�a is the set

of nodes and E ¼ fðb; cÞ 2 V � V j ðb� cÞ �
�1;�q;�q2 mod ag is the set of edges. EJ networks are

6-regular networks having a total number of nodes NðaÞ ¼

a2 þ b2 þ ab and the nodes are labeled as xþ yq. Two
nodes A and B in the network are adjacent if and only if

ðA� BÞ mod a ¼ �1, �q, or �q2. EJ networks are called

dense when they contain a maximum number of nodes at

distance k where k is the diameter of the network. Thus, the

diameter of the dense EJ network is k ¼ a. The wraparound

link for the boundary nodes can be computed with mod

operation after adding �1, �q, or �q2 to the node address.

Figure 4 illustrates the EJ network generated by a ¼
3þ 4q where the dotted lines are the wraparound links.

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

Fig. 2 2D torus network

-1 0 1-2-3 2 3 4-4

i 1+i 2+i-1+i-2+i 3+i-3+i

-i 1-i 2-i-1-i-2-i 3-i-3-i

1+2i 2+2i2i-1+2i-2+2i

1-2i 2-2i-2i-1-2i-2-2i

1+3i3i-1+3i

1-3i-3i-1-3i

-4i

4i

Fig. 3 Gaussian network generated by a ¼ 4þ 5i

Fig. 4 EJ network generated by a ¼ 3þ 4q
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3.2.5 Cube-connected cycles

The Cube-Connected Cycles is a topology similar to the

Hypercube introduced in [6]. It is a multidimensional

topology where the number of nodes is dependent on the

number of dimensions. Specifically, the number of nodes in

the Cube-Connected Cycles is n2n where n is the number of

dimensions. Given an n-dimensional Hypercube, the Cube-

Connected Cycles can be modeled by replacing each node

in the Hypercube with a cycle of n nodes. The degree of the

topology is 3, which is the main difference between the

Cube-Connected Cycles and the Hypercube. The diameter

of the topology is 6 for n ¼ 3 and equal to 2nþ bn=2c � 2

for n	 4 [44]. The nodes are labeled in the form of (x, y),

where x is an integer from 0 to 2n � 1 and y is an integer

from 0 to n� 1. Since each node is of degree 3, the

neighbors of the node (x, y) are obtained by

ðx; ðyþ 1Þ mod nÞ, ðx; ðy� 1Þ mod nÞ, and

ðx XOR 2y; yÞ. Figure 5 illustrates the 3D Cube-Connected

Cycles.

4 Disjoint paths algorithm

4.1 Overview

This algorithm is designed to find all distinct, non-over-

lapping paths within a network. It accomplishes this task

through two stages: a detailed ‘‘micro’’ stage and a com-

prehensive ‘‘macro’’ stage. Each stage is built to efficiently

traverse the network and identify individual paths extend-

ing from a start point (the source) to an end point (the

destination). On a more detailed scale, the ‘‘micro’’ level

begins at the source node and initiates a traversal of the

network. As it moves forward, the algorithm logs the nodes

it has visited and examines the neighbors of each node in

sequence. A key feature of this algorithm is its ability to

‘‘reserve’’ nodes that form part of an identified path,

ensuring each discovered path remains distinct as shown in

Fig. 8. Simultaneously, the algorithm uses a specialized

method to filter out any duplicate paths as illustrated in

Fig. 6. This method, which employs recursion, compares

each pair of paths to determine if they share nodes, ulti-

mately generating a set of paths where the only common

nodes are the source and destination as shown in Fig. 7. On

a wider scale, the ‘‘macro’’ level oversees multiple rounds

of these detailed traversals as demonstrated in Fig. 8. It

keeps a count of the total number of unique paths identified

and imposes a limit on the potential length of these paths.

The algorithm also includes a mechanism for handling

edge cases, such as a direct link between source and des-

tination, to prevent it from becoming trapped in a loop.

Contrary to certain protocols, this algorithm doesn’t oper-

ate based on communication between nodes. Instead, it

functions solely on the source node and uses a simulated

version of the network. This is feasible due to our initial

knowledge of the network topology, which differentiates it

from networks that can undergo random structural changes.

This characteristic improves the algorithm’s efficiency and

effectiveness in discovering unique paths.

The micro stage of the algorithm is similar to the well

known breadth-first-search (BFS) algorithm. However,

there are key differences between the both algorithms.

Unlike BFS, which is primarily designed to locate a target

node, our algorithm aims to identify all shortest disjoint

paths between nodes in a network. This is achieved through

a unique filtration process at each hop, which effectively

reduces the complexity of selecting disjoint paths from

exponential to polynomial. Additionally, our algorithm

employs a dual-flag system for each node—‘visited’ and

‘reserved’—which ensures the disjointness of paths across

multiple executions, a feature not present in traditional

BFS.

(0,0) (0,1)

(0,2)
(1,0) (1,1)

(2,1) (2,0)

(1,2)

(3,1)

(2,2)

(3,2)

(3,0)

(7,2)
(6,1)

(6,0)

(6,2)

(4,0)
(4,1)

)0,7()1,7()1,5()0,5(

(5,2)

(4,2)

Fig. 5 3D cube-connected cycles

S

D

Fig. 6 Path filtration
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In summary, this algorithm provides a systematic and

intelligent approach to identifying all possible unique paths

within a network. This could be highly beneficial in sce-

narios such as network routing or communications, where

the discovery of these paths could optimize system

performance.

4.2 Proposed Algorithm

Algorithm 1 performs the macro discovery and it takes

three parameters that are the network, source node, and

destination node. The Algorithm 1 calls Algorithm 2 to

perform the micro discovery, which resets the current node

attributes except the nodes reserved.

Algorithm 1 Macro discovery

Algorithm 2 takes the same parameters as Algorithm 1

and it also takes an empty queue in addition. Its major task

is to filter the paths that reached the destination by calling

Algorithm 5, and then it updates the disjoint paths list and

reserves the nodes of the discovered disjoint paths. The

algorithm starts by inserting the source node into the

queue, then managing the queue until the queue becomes

empty. The algorithm calls three other functions described

in Algorithms 3 and 5.

Algorithm 3 takes the network, a node, and the queue as

arguments and is used to discover the unvisited neighbors

of the given node. The neighbor is considered unvisited if

four conditions are met. The first two conditions are that

the node must not be reserved, and its hop count must not

exceed the network limit. The second two conditions are

that the node must not be visited or has been visited in an

equal hop count. The neighbor node is then flagged as

visited and the hop count is set to the hop count of the

sender incremented by one. In addition, all the paths of the

sender have the neighbor node added to them and then are

copied to be the paths to the neighbor. After that, if the

neighbor is not the destination node then it is added to the

queue. Finally, if the neighbor is the destination then set the

network limit to its hop count.

Algorithm 4 is used to decide whether any two paths

given of the same length are disjoint.

The disjoint paths filtering function in Algorithm 5 is

responsible for returning the maximal disjoint paths in the

iteration. It takes parameters an index equal to 0, an empty

set of paths, and all the paths to destination that are of the

same length to be compared against each other to generate

the required paths.

S

D

Fig. 7 Disjoint paths in the first macro iteration

S

D

Fig. 8 Node reservation and second macro iteration
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Algorithm 2 Micro discovery

4.3 Correctness of the algorithm

Let G(V, E) be a symmetric network, where V is the set of

nodes, and E is the set of edges. Let S and D be the source

and destination nodes, respectively, and A be the queue of

active nodes. Let v 2 V , NdðvÞ be the set of neighboring

nodes of v at distance d from the source node where

d 2 Zþ, and UNdðvÞ be the set of unvisited neighboring

nodes of v at distance d.

Lemma 1 Every intermediate node is reached via the

shortest available path from the originating source node S.

Proof During the execution of the route discovery algo-

rithm, each active node relays the route request to all its

unvisited neighboring nodes. Since the route discovery

process initiates from the source node S, all of S’s imme-

diate neighbors, denoted as N1ðSÞ, will receive this request

first. Therefore, these nodes are reached at a distance

d ¼ 1, which is the minimum achievable distance from S.

For every node u 2 N1ðSÞ, let’s assume it becomes a

new source node. We denote these new sources as

S0; S1; . . .; Sm where m ¼ jN1ðSÞj, and m represents the

total count of unvisited neighbors of the source node S.

Subsequently, each new source Si for 0� i�m, prop-

agates the route request to its own set of unvisited

neighbors, which we will denote as N1ðSiÞ. These neigh-

boring nodes will be reached at a distance d ¼ 1 from Si,

which is again the shortest possible distance from the

respective Si.

As we extend this process recursively, for any node

w 2 NlðSÞ, it can be established that l is indeed the shortest

distance from the original source node S due to the network

symmetry constraint. This confirms that every intermediate

node is reached via the shortest available path from the

source node S. h
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Algorithm 3 Add neighbors

Algorithm 4 Is Disjoint

Lemma 2 A node will not be reached by two paths of

different lengths.

Proof Let p be the distance a node x is reached. By

Lemma 1, any other path to x of length k we have k	 p. By

Algorithm 3 line 3, k� p. Thus, by joining the two

inequalities we get p� k� p. Therefore, k ¼ p. h

Lemma 3 In the route discovery process, a node v at a

distance d from the source node S will not become active

before another node u at a distance d0 from S, where d0\d.

h

Proof The route discovery process initiates by propagating

a route request from the source node S to its immediate

neighbors. These neighbors are at a distance d ¼ 1 from

S. This initial step results in a set of active nodes, denoted

as A, containing k nodes, where k equals the degree of the

source node S.

In the subsequent steps of the process, each currently

active node u identifies its unvisited neighbors, denoted as

UNdþ1ðuÞ, and appends them to the set A.

It is crucial to note that the activation of nodes within

the set A adheres to a first-come-first-serve rule. In other

words, the order of activation directly corresponds to the

order of their inclusion in A.
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Algorithm 5 Filter disjoint paths (FDP)

Given this mechanism, it can be inferred that a node v at

a distance d þ 1 from S cannot be activated prior to a node

u at a distance d from S. This is due to the fact that u would

have been included in A before v, and as per the first-come-

first-serve rule, u would be activated prior to v.

Therefore, the lemma is proved. h

Lemma 4 A node will not initiate or broadcast a route

request until it has been reached by all possible paths of

equivalent length.

Proof This statement can be supported by combining the

conclusions from Lemmas 1, 2, and 3.

From Lemmas 1 and 2, it is established that during any

given micro iteration, a node will not be reached by paths

shorter or longer than the shortest path from the source

node S. This implies that for a given node, all paths

reaching it during a micro iteration will have identical

lengths.

Additionally, Lemma 3 demonstrates that a node u at a

distance d from the source S will not become active before

a node v at a shorter distance d0, where d0\d. This

conclusion guarantees that nodes at a greater distance from

the source are not prematurely activated, thus ensuring all

shortest paths have time to reach the node.

With these considerations in mind, by the time a node

becomes active and is ready to broadcast a route request, it

would have been reached by all possible paths of equiv-

alent, shortest length from the source. This confirms the

statement in the lemma. h

Lemma 5 A node does not rebroadcast route request in

the same micro iteration.

Proof Given that a node only broadcasts when it is active,

i.e., it is a member of the queue of active nodes A. A node n

with distance d from the source node can be in A if and

only if it was an unvisited neighbor of u (n 2 UN1ðuÞ),
where u has shorter distance d0\d from the source node.

Since any unvisited neighbor of a node u in the network

have greater distance than u and by Lemma 3, the node u

will never be added to A if it was previously active.

Therefore, a node u never rebroadcasts the route request. h

Lemma 6 The algorithm will not generate non-disjoint

paths.
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Proof Algorithm 5 compares all passed paths to generate

all disjoint paths of the same length if they exist. Let R be

the set of paths passed to Algorithm 5. Let Pi ¼
vi;0; vi;1; vi;2; . . .; vi;l be a path and let Pj ¼
vj;0; vj;1; vj;2; . . .; vj;l be another path such that S ¼ vi;0 ¼ vj;0
and D ¼ vi;l ¼ vj;l, where l is the length of both paths such

that i 6¼ j, and Pi;Pj 2 R. For 0� n� l and 0�m� l, if

vi;n ¼ vj;m such that vi;n 6¼ S 6¼ D then by Lemma 2, n ¼ m.

In other words, if two paths are not disjoint, then the

common intermediate nodes will be of the same distances

from the source in both paths due to the network symmetry

constraint. h

Lemma 7 The algorithm will generate the maximal dis-

joint paths.

Proof Let G be a symmetric graph with degree d and let

S be the source node and D be the destination node. Let the

shortest distance between S and D be L.

Suppose the algorithm finds p number of disjoint paths

in the first iteration, which implies they are of length L by

Lemma 2, where p\d. Thus, there must be d � p unvisited

neighbors of D due to network symmetry.

Consider an unvisited neighbor N of D. By definition of

a shortest path, N must trivially be at distance at least

L from the source, else N would have been visited.

N has d � 1 neighbors excluding D, where their

distances from the source are at least L� 1. If all the

neighbors of N are visited, this suggests their distances

from the source are at most L� 1.

If a neighbor of N is used and has a distance L, it means

it is the destination, and if it has a distance greater than L, it

is outside the boundary of the paths of length L. Hence, if

all neighbors of N are used, they have a distance exactly

L� 1 from the source node.

Therefore, all the neighbors of N other than D are also

neighbors of D. This contradicts the principles of network

symmetry and Menger’s theorem, because it suggests that

there do not exist d disjoint paths from S to D.

By contradiction, then if all p paths are shortest, N must

have an unvisited neighbor. This implies inductively that it

remains connected to the graph and is reachable by S.

This lemma ultimately establishes that the algorithm

will always find the maximal disjoint paths. h

Lemma 8 The algorithm concludes its execution after at

most d macro iterations, where d is the degree of the

network.

Proof Our objective is to show that the algorithm halts

after no more than d macro iterations. A macro iteration is

understood as a full cycle of finding and eliminating node-

disjoint paths.

The continuation condition for the algorithm is the

discovery of new node-disjoint paths. As per Lemma 7, the

algorithm is designed to find the maximal set of node-

disjoint paths between the source and destination nodes.

Consequently, as the degree d of the network signifies

the maximum number of node-disjoint paths that could

exist from any node, it serves as an upper bound for the

number of macro iterations.

Once all possible disjoint paths are identified and

eliminated, the algorithm ceases to continue as there are

no new node-disjoint paths to be found. Therefore, the

algorithm’s termination is assured after at most d macro

iterations, which aligns with the maximum degree of the

network. h

Theorem 1 The given algorithm is guaranteed to yield the

maximal set of shortest node-disjoint paths between a

specified source node and destination node within a

network.

Proof The proof of this theorem depends on the successful

integration of several previously established and detailed

lemmas, as discussed below.

From Lemma 1, we can infer that the algorithm ensures

that each node in the network is reached via the shortest

available path originating from the source node S. Simul-

taneously, Lemma 2 certifies that a node cannot be reached

by two paths of differing lengths. As a result, we have a

concrete basis that every node within the network is

reached by the uniquely shortest path from the source node

S.

Lemma 3 offers a significant contribution to the

progression of the algorithm by establishing that the

activation of nodes is directly proportional to their

respective distances from the source node S. Complemen-

tarily, Lemma 4 asserts that a node will not initiate or

broadcast a route request until it has been reached by all

potential paths of equivalent length. Consequently, we can

assert that every node becomes aware of all shortest paths

leading to it before it propagates this information to its

neighboring nodes.

Lemma 5 further refines the behavior of the algorithm

by stating that a node does not rebroadcast a route request

within the same micro iteration.

Importantly, Lemma 6 affirms that the algorithm will

not generate non-disjoint paths, which is a crucial factor in

maintaining the integrity and the goal of the process.

Furthermore, Lemma 7 bolsters the robustness of the

algorithm by asserting its capacity to always identify the

maximal number of node-disjoint paths.

Finally, Lemma 8 provides an essential termination

guarantee, asserting that the algorithm will conclude in a

finite number of steps, more precisely, within d macro

iterations, with d representing the degree of the network.
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In synthesis, the collective implications and assertions

of these lemmas serve to confirm that the algorithm is

proficient in identifying the maximal set of shortest node-

disjoint paths between any designated source and destina-

tion nodes in the network. This cumulative reasoning

corroborates the theorem. h

4.4 Complexity of the algorithm

The proposed algorithm for discovering all shortest disjoint

paths in a symmetric network has five sub algorithms. The

complexity for each algorithm is denoted as

fA1;A2;A3;A4;A5g representing the Algorithm 1 to Algo-

rithm 5 in Sect. 4.2. Let n be the number of nodes in the

network, and d be the degree of the network, which is equal

to the regularity, connectivity, and the maximum number

of disjoint paths of the network. Let l ¼ n be the longest

path in the network, p ¼ d2 be the maximum number of

paths passed by the neighbours in the network, and a ¼ n

be the maximum number of active nodes (queue size) in the

network. The constant operations are denoted as c. The

complexity of the algorithm is calculated in Table 1.

In order to assess the computational efficiency of the

given algorithm, the complexity must be quantified. The

algorithmic complexity is formulated as n2 
 c, in which n

is indicative of the total nodes present within the network,

and c serves as a constant derived from the equation 2p,

with p representing the maximum number of paths passed

to the Algorithm 5 and is equal to d2, where d is the degree

of the network. When transposed into big O notation,

which serves as a universally recognized means of

expressing an algorithm’s complexity, this calculation

simplifies to Oðn2Þ. The rationale behind this simplification

is predicated on the fact that d, the degree of the network, is

a constant variable.

It is crucial to note that while the degree of most

interconnection networks remains a relatively small num-

ber, the constant c can potentially escalate significantly in

extreme scenarios of the algorithm. This escalation is

particularly noticeable in networks of higher degrees, such

as EJ network or the Hectagon network, where the potential

for a higher number of intersecting nodes exists. Contrar-

ily, in most pragmatic applications, the constant c remains

low due to physical hardware limitations such as pin con-

straint [45], thereby optimizing the algorithm’s efficiency.

The reduced value of c can be attributed to the relatively

infrequent occurrence of the worst-case scenario. This can

also be justified by the fact that the number of paths passed

to Algorithm 5 in a typical case is modest, as empirically

validated by the data represented in Table 2.

It is, therefore, incumbent upon those implementing this

algorithm to understand these dynamics thoroughly to

maximize the computational efficiency while also being

prepared for potential worst-case scenarios.

5 Simulation results

This section discusses the practical implementation and

tests of the algorithm in Python programming language

using the NetworkX library. Several networks are tested,

which are the 7� 7 Torus, Gaussian (with a ¼ 8þ 9i,

a ¼ 8þ 11i), EJ (with a ¼ 8þ 9q, a ¼ 5þ 12q and

a ¼ 7þ 10q), 5-dimensional Hypercube, and 4-dimen-

sional Cube-Connected Cycles networks. In the following

subsections, the source node is denoted as S and destination

node is denoted as D. Due to the space limitations, all

disjoint paths are summarized in Table 2, but the actual

paths and figures that illustrate the paths are omitted and

are provided in the GitHub repository.1

6 Conclusion and future work

There are many aspects for the efficiency of an intercon-

nection network. One of the most important aspects is the

topology of the network, where each topology has advan-

tages over another. Discovering disjoint paths in inter-

connection networks differ between topologies. In this

paper, an algorithm for discovering node-disjoint paths

between two nodes in symmetric networks is presented.

The general idea of the algorithm is that it traverse through

unvisited neighbors of each node starting with the source

node until the destination is reached. Then, all paths that

reached the destination are filtered to return the disjoint

paths of the same distance, if they exist. These paths are

then reserved and omitted from the next repetitions, and

then the algorithm repeats until the maximal disjoint paths

are discovered. The key of control in the algorithm is

having a queue that controls the order of nodes activated

and to limit each node to be active only once. The algo-

rithm runs on the source node only, since all the nodes have

Table 1 Complexity

Algorithm Complexity Big O notation

A1 d � ðA2Þ þ c Oðn2Þ
A2 n� ðA5 þ A3Þ þ A5 þ d þ c Oðn2Þ
A3 d þ c O(d)

A4 nþ c O(n)

A5 n� p� 2p þ c O(n)

1 https://github.com/KISRDevelopment/Disjoint-Paths-Algorithm.
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all the network information stored. The algorithm runs in a

complexity of Oðn2Þ.
In this paper, the algorithm presented is limited to

symmetric networks. Extending the algorithm to be more

general and applying it on any network regardless of its

symmetry is a research topic. The algorithm presented have

a complexity of Oðn2Þ, but with further future work it may

be possible to improve the performance and reduce the

complexity. Further, a worthy problem is altering the

algorithm to be run in a communication approach instead

of a computational one. Finaly, the proposed algorithm

discovers the node-to-node disjoint paths in symmetric

Table 2 Simulation

Topology Source Destination iteration Number of paths Path length Paths reached destination

5D Hypercube 00000 11001 1 3 3 6

2 2 5 2

7� 7 Torus 22 55 1 2 4 4

2 2 7 2

22 52 1 1 3 1

2 1 4 1

3 2 5 2

33 44 1 2 2 2

2 2 6 2

a ¼ 8þ 9i Gaussian 0 5þ 2i 1 2 7 4

2 2 10 4

0 3þ 3i 1 2 6 4

2 2 10 2

0 5 1 1 5 1

2 2 7 2

3 1 12 1

a ¼ 8þ 11i Gaussian 0 8þ 4i 1 2 12 4

2 2 13 2

a ¼ 8þ 9q EJ 0 2þ 3q 1 2 5 4

2 2 7 2

3 2 11 2

a ¼ 8þ 9q EJ 0 2þ 5q 1 2 7 4

2 2 9 2

3 2 10 4

a ¼ 8þ 9q EJ 0 5 1 1 5 1

2 2 6 2

3 2 9 2

4 1 12 1

a ¼ 5þ 12q EJ 0 8þ q 1 4 9 7

2 2 11 4

a ¼ 7þ 10q EJ 0 8þ q 1 6 9 9

4D CCC (0, 0) (0, 1) 1 1 1 0

2 1 3 1

3 1 7 1

(0, 0) (7, 3) 1 1 6 1

2 1 8 1

3 1 10 1

(0, 0) (14, 2) 1 2 7 4

2 1 9 1
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networks. Whereas, developing a general algorithms for

discovering the disjoint paths in node-to-set and set-to-set

are left to be investigated.

There are no new data associated with this article. The

source code of the simulation of this paper is available

upon request.
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