
PPFLV: privacy-preserving federated learning with verifiability

Qun Zhou1 • Wenting Shen1

Received: 21 January 2024 / Revised: 10 March 2024 / Accepted: 7 May 2024
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Federated learning, as an emerging framework for distributed machine learning, has received widespread attention. In

federated learning, the cloud server and the users cooperatively train a model by sharing gradients rather than local private

data. However, the users’ private data may still be exposed by the shared gradients. Furthermore, the cloud server may

perform incorrect aggregation operations on the gradients sent by users and send a forged or previous aggregated gradient

to the users. In this paper, we propose PPFLV, a privacy-preserving federated learning scheme with verifiability.

Specifically, to protect the users’ privacy, we design an efficient double gradient blinding and encryption method to blind

and encrypt the users’ local gradients. Furthermore, we propose a novel double gradient verification method that can

achieve secure verification while resisting replay attacks in the verification phase. With the proposed verification method,

the users only require to perform lightweight operations to verify the correctness of the aggregated encrypted gradients and

recover the aggregated gradient from the aggregated encrypted gradients. The experimental results show that PPFLV

achieves comparable classification accuracy to the basic federated learning scheme while providing privacy protection and

verifiability. Furthermore, PPFLV exhibits lower computation and communication overhead compared to related schemes.

Keywords Privacy-preserving � Verifiable � Federated learning � Cloud computing

1 Introduction

With the exponential growth of data, deep learning has

been rapidly developed in many fields, such as natural

language processing [1], autonomous driving [2], and

medical diagnosis [3]. In deep learning, a large amount of

data is collected, which is used to train a powerful and

accurate model. However, these collected data might

include some sensitive information [4–6]. For example, in

e-healthcare systems, the users’ health data include sensi-

tive information. If these health data are directly uploaded

to the cloud server for training and prediction, the users’

sensitive data and health status will be ineluctably leaked

to the cloud server.

Federated learning is an effective technology to solve

the privacy problem of user data [7–9]. In federated

learning, when training a neural network model, the users

only require to upload the local gradients obtained through

local training to the cloud server, instead of uploading and

sharing their original data. The cloud server is able to

obtain a global model by aggregating the gradients uploa-

ded by the users. However, a lot of researches have shown

that even if the users’ training data is not required to be

uploaded to the cloud server, the cloud server is still able to

infer the private training data based on the shared local

gradients [10–12]. To protect the users’ privacy, plenty of

privacy-preserving federated learning schemes have been

proposed [13–17]. Bonawitz et al. [18] designed a privacy-

preserving federated learning scheme by using secure

multi-party computation technique. Phong et al. [19] con-

structed a federated learning scheme supporting privacy

protection, in which the gradients are encrypted by using

two homomorphic encryption technologies. Jia et al. [20]

adopted differential privacy technology to achieve users’

privacy protection in federated learning. In the above

schemes, the cloud server can carry out the gradient

aggregation without exposing the privacy of the users’

local gradients.

Another important issue in federated learning is the

verification of the correctness of the aggregated result

& Wenting Shen

shenwentingmath@163.com

1 College of Computer Science and Technology, Qingdao

University, Qingdao 266071, China

123

Cluster Computing
https://doi.org/10.1007/s10586-024-04558-5(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-024-04558-5&domain=pdf
https://doi.org/10.1007/s10586-024-04558-5

[21, 22]. In practice, to reduce computation overhead, a

‘‘lazy’’ cloud server may not aggregate all gradients sent by

the users [23]. Even worse, a malicious cloud server may

generate and return an incorrect aggregated gradient to the

users for the sake of impacting the model updates [24]. To

solve the above problems, Xu et al. [4] proposed a verifi-

able and privacy-preserving federated learning scheme.

This scheme is able to guarantee the privacy of user data by

masking the local gradients and verifying the correctness of

the aggregated result by using the homomorphic hash

function. However, if the malicious users collude with the

cloud server, they can launch the brute force attack to

recover the users’ local gradients. Hahn et al. [11] proposed

a federated learning scheme supporting verifiability and

privacy preserving, which can resist brute force attacks.

Nevertheless, this scheme is vulnerable to replay attacks in

the verification phase, in which the cloud server may use

the previous aggregated gradient to trick the users into

passing the verification.

In this paper, we propose a privacy-preserving federated

learning scheme with verifiability (PPFLV), which is able

to resist replay attacks.

Contribution: Our contributions can be summarized as

follows:

1. We design a novel double gradient verification method,

which can resist replay attacks. With the two aggre-

gated encrypted gradients returned by the cloud server,

the users only need to perform the lightweight calcu-

lation to check whether the cloud server correctly

aggregates the users’ gradients. The users are able to

recover the aggregated gradient from the aggregated

encrypted gradients. Furthermore, by employing this

verification method, the cloud server cannot success-

fully pass the verification with the previous or wrong

aggregated gradients.

2. We design an efficient double gradient blinding and

encryption method to blind and encrypt the users’ local

gradients, which is compatible with our designed

verification method. We use the secret sharing tech-

nique to share the users’ private keys and noise. The

correctness of these secret shares can be verified by

employing the verification technology based on dis-

crete logarithms. In addition, when the users are offline

or the network is delayed, the online users can recover

the offline users’ private keys and the online users’

noises, while the correctness of the aggregated gradient

can still be guaranteed.

3. We provide the security analysis and performance

evaluation of the proposed PPFLV. The security

analysis demonstrates that the proposed PPFLV satis-

fies correctness, gradient privacy, immunity from

replay attack and unforgeability. The experiment

results show that the proposed PPFLV has high

accuracy and is efficient in terms of gradient encryp-

tion, gradient aggregation and verification.

Organization: The rest of this paper is organized as fol-

lows. Section 2 shows the related works. In Sect. 3, we

introduce the system model and the threat model. In Sect.

4, We present the preliminaries for PPFLV. In Sect. 5, we

present the construction of the proposed PPFLV. We give

the security analysis and performance evaluation of the

proposed PPFLV in Sects. 6 and 7, respectively. We con-

clude the paper in Sect. 8.

2 Related work

In recent years, federated learning has been used in a wide

range of industries. Privacy preserving and verifiability of

aggregated results in federated learning have received

considerable attention. In federated learning, the cloud

server can recover the users’ private data based on the local

gradients uploaded by the users. To protect user data pri-

vacy, plenty of privacy-preserving federated learning

schemes [25–29] have been proposed. Privacy-preserving

federated learning focuses on protecting users’ data privacy

and preventing users from exposing sensitive data. Phong

et al. [19] used Paillier homomorphic encryption technol-

ogy and LWE homomorphic encryption technology to

encrypt gradients for achieving privacy protection. Tang

et al. [30] proposed a robust privacy-preserving federated

learning scheme that protects the privacy of local gradients

and global models. Based on ElGamal multiplicative

homomorphic encryption technology, Fang et al. [31] put

forward a privacy-preserving federated learning scheme, in

which the gradients of the participants can be protected.

Using homomorphic encryption technology, the encrypted

gradients still can be aggregated. Jia et al. [20] and Wei

et al. [32] utilized differential privacy to protect users’ data

privacy in federated learning. In these two schemes

[20, 32], the noise is added to the gradients to achieve

differential privacy. By combining secure multi-party

computing with differential privacy technology, Mugun-

than et al. [33] designed a federated learning scheme sup-

porting privacy-preserving. Zhou et al. [34] introduced a

trusted blinding server to blind the gradient ciphertexts and

constructed a privacy-preserving federated learning

scheme. The problem of collusion between the cloud server

and the users can be solved in this scheme. Bonawitz et al.

[18] put forward a federated learning scheme with privacy

protection by using secret sharing. In this scheme, secure

multi-party computation technology is utilized to calculate

the sums of model parameters. The above schemes can

realize the users’ privacy protection and gradient

Cluster Computing

123

aggregation, but they cannot guarantee the correctness of

the aggregated results.

To verify the correctness of aggregated gradient gener-

ated by the cloud server, many verifiable federated learning

schemes [16, 35–38] have been proposed. Xu et al. [4]

utilized homomorphic hash function to check the correct-

ness of aggregated gradients. Peng et al. [39] constructed a

verifiable federated learning scheme based on blockchain,

which is able to optimize the training process in federated

learning by using the reward mechanism of blockchain. In

this scheme, the verifiable proofs are recorded in the

blockchain. Fu et al. [21] adopted Lagrange interpolation to

achieve the verification of aggregated gradients and used

Chinese remainder theorem to reduce communication

overhead. Zhang et al. [24] utilized bilinear aggregate

signature to construct a federated learning scheme sup-

porting secure verification. In this scheme, the participants

can check whether the aggregation server correctly aggre-

gates the gradients uploaded by the participants. Guo et al.

[40] also considered the problem of aggregated gradient

verification, and used homomorphic hash to guarantee the

correctness of the aggregated gradient. Xu et al. [41] put

forward a non-interactive verifiable federated learning

scheme, which introduces two servers to aggregate the

gradients. In this scheme, the users are able to verify the

correctness of aggregated gradient by cross-authentication.

Hahn et al. [11] proposed a double aggregation approach to

complete the verification of aggregated gradient. Only

lightweight primitives are used in this scheme, which

improves the computational efficiency of verification.

However, this scheme cannot resist replay attacks. The

cloud server can pass the verification of the participants by

using the previous aggregated gradient. Thus, it is mean-

ingful to explore a privacy-preserving and verifiable fed-

erated learning scheme with efficient encryption and

verification while resisting replay attacks.

3 System model and threat model

3.1 System model

The system model of PPFLV is shown in Fig. 1. It consists

of three kinds of entities: cloud server, user group and KGC

(Key Generation Center).

• Cloud server: The cloud server is in charge of aggre-

gating the encrypted gradients sent by users. The cloud

server generates and sends the aggregated encrypted

gradients to each user in the group. The aggregated

encrypted gradients are used to verify whether the cloud

server performs the aggregation operation correctly.

• User group: A user group consists of multiple users.

The users train the model locally, encrypt the local

gradients, and send the encrypted gradients to the cloud

server. After receiving the aggregated encrypted gradi-

ents sent by the cloud server, the users can check the

correctness of aggregated encrypted gradients. If the

aggregated encrypted gradients are correct, the users

can calculate the aggregated gradient and update the

model.

• KGC: KGC is responsible for initializing the model

parameters of the neural network, and generating

system parameters and public-private key pairs for the

users.

3.2 Threat model

In our threat model, KGC is a trustworthy entity and does

not collude with the users and the cloud server. The users

are regarded as an honest-but-curious entity. They honestly

perform the specified procedures based on the agreed

agreement, but are curious about other users’ data privacy.

The cloud server is considered to be a malicious entity. The

cloud server may attempt to infer the data privacy of all

users. The cloud server may also perform incomplete

aggregation operation, and falsify the wrong aggregated

encrypted gradients or use the previous aggregated

encrypted gradient to deceive the users.

4 Preliminaries

In this section, we introduce the preliminaries such as

Shamir’s secret sharing, authenticated encryption and key

agreement.

4.1 Shamir’s secret sharing

In Shamir’s t-out-of-n secret sharing technique [42], a

secret value s is split into n shares, where n indicates the

total number of shares and t is the threshold. The secret

value s can be reconstructed by more than t shares. The

Shamir’s secret sharing protocol consists of the following

algorithms:

1. ShamirS:shareðs; t;UÞ ! si: The secret share algo-

rithm takes as input the secret value s, a user group U

with logical identities ½0; 1; . . .; n� 1� and the threshold

t ðt\nÞ, and outputs the secret share si for each

member Ui ði 2 ½0; n� 1�Þ.
2. ShamirS:reconð sif gi2l; tÞ ! s: The secret reconstruc-

tion algorithm takes as input a set of secret shares

fsiji 2 l; l � ½0; n� 1�g and the threshold t ðt\nÞ,
and outputs a secret value s.

Cluster Computing

123

4.2 Authenticated encryption

Authenticated encryption (AE) is a symmetric encryption

algorithm, in which the encryption key and the decryption

key are the same. AE is used to ensure the confidentiality

and integrity of user data [43]. The algorithms of AE are as

follows:

1. AE:gen kð Þ ! j: Taking the key space k as input, this

algorithm samples a secret key j randomly and

uniformly from the key space k.

2. AE:enc m; jð Þ ! c: Taking the secret key j and the

plaintext m as input, this algorithm outputs the

ciphertext c.

3. AE:decðc; jÞ ! m: Taking the secret key j and a

ciphertext c as input, this algorithm outputs the

plaintext m.

4.3 Key agreement

Diffie-Hellman key agreement [44] is used in our PPFLV

to generate the shared encryption key of AE for any two

users. Let G be a group with prime order q and g be the

generator of the group G. The Diffie-Hellman key agree-

ment consists of the following algorithms:

1. KA:genðg; q;GÞ ! ðSKi;PKiÞ: This algorithm takes a

generator g, the order q and the group G as input, and

outputs the secret key SKi and the public key

PKi ¼ gSKi .

2. KA:agreeðSKi;PKjÞ ! ai;j: This algorithm takes the

secret key SKi of the user Ui and the public key PKj of

the user Uj as input, and output the shared encryption

key ai;j. In our PPFLV, the shared encryption key ai;j is

calculated as follows: ai;j ¼ HðPKj
SKiÞ, where H :

G! Z�q is cryptographic hash function. Note that

ai;j ¼ aj;i.

5 The proposed scheme

5.1 Overview

The main idea of our proposed scheme is to achieve the

verifiability of aggregated gradient on the basis of privacy

protection. To achieve privacy protection, we design a

novel double gradient blinding and encryption method to

blind and encrypt the users’ local gradients. The user Ui

ði 2 ½0; n� 1�Þ blinds the local gradient xi as ai ¼ xi þ
ps1
ðRÞ and bi ¼ xi � ps1

ðRÞ under a pseudo-random func-

tion ps1
ð�Þ, where R is the current iteration number. The

user Ui ði 2 ½0; n� 1�Þ uses his private key SKi and the

user Uj’s ðj 2 ½0; n� 1�; j � iðmod2Þ; j 6¼ iÞ public key PKj

to compute a secret value ai;j ¼ KA:agreeðSKi;PKjÞ. Note

that ai;j ¼ aj;i. The user Ui ði 2 ½0; n� 1�Þ utilizes ai;j to

calculate a random vector Fs2
ðai;jjjRÞ under a pseudo-ran-

dom function Fs2
ð�Þ, then encrypts the blinded gradients ai

and bi as follows:

âi ¼ai þ
X

j�iðmod2Þ;j[i

Fs2
ðai;jjjRÞ �

X

j�iðmod2Þ;j\i

Fs2
ðai;jjjRÞ

b̂i ¼bi þ
X

j�iðmod2Þ;j[i

Fs2
ðai;jjjRÞ �

X

j�iðmod2Þ;j\i

Fs2
ðai;jjjRÞ

In the encrypted gradients âi, âj ðj � iðmod2Þ; j[iÞ, the

Fig. 1 System model

Cluster Computing

123

random vectors Fs2
ðai;jjjRÞ and Fs2

ðaj;ijjRÞ respectively

generated by the users Ui and Uj can cancel each other out.

In the encrypted gradients b̂i, b̂j ðj � iðmod2Þ; j[iÞ, the

random vectors Fs2
ðai;jjjRÞ and Fs2

ðaj;ijjRÞ respectively

generated by the users Ui and Uj can also cancel each other

out. If the cloud server is able to successfully receive the

encrypted gradients from all users, the cloud sever aggre-

gates the encrypted gradients as follows:
X

i2½0;n�1�;i�0ðmod2Þ
âi þ

X

i2½0;n�1�;i�1ðmod2Þ
âi ¼

X

i2½0;n�1�
ai;

X

i2½0;n�1�;i�0ðmod2Þ
b̂i þ

X

i2½0;n�1�;i�1ðmod2Þ
b̂i ¼

X

i2½0;n�1�
bi:

Based on the aggregated encrypted gradients
P

i2½0;n�1�
ai and

P
i2½0;n�1�

bi, each user Ui ði 2 ½0; n� 1�Þ is able to obtain the

aggregated gradient through the equation:

X

i2½0;n�1�
ai � jnj � ps1

ðRÞ ¼
X

i2½0;n�1�
bi �

1

ps1
ðRÞ ¼

X

i2½0;n�1�
xi:

However, in practice, not all users send the gradients to the

cloud server. There are some users who go offline due to

external factors [18]. When some users are offline, the

online users cannot obtain the correct aggregated gradient

since the random vectors added in the encrypted gradients

of offline users cannot be cancelled out. To solve the user

offline problem, we use the secret sharing technique to

share the private keys of all users. We set the identity set of

all online users to Ionline and the identity set of all offline

users to Ioffline ¼ f0; 1; :::; n� 1g � Ionline. Each user Ui

ði 2 ½0; n� 1�Þ utilizes the secret sharing technique to share

his private key SKi to other users in the group. If the user

Uj ðj 2 IofflineÞ is offline during the training process, the

cloud server can recover the offline users Uj ðj 2 IofflineÞ’
private keys SKj ðj 2 IofflineÞ based on the secret shares

provided by more than t users. Then the cloud server can

calculate the secret values aj;v ¼ KA:agreeðSKj;PKvÞ ðj 2
Ioffline; v 2 ½0; n� 1�; v � jðmod2Þ; v 6¼ jÞ based on the

recovered private keys SKj ðj 2 IofflineÞ of the offline users

Uj ðj 2 IofflineÞ and the public keys PKv ðv 2 ½0; n� 1�; v �
jðmod2Þ; v 6¼ jÞ of the users Uv

ðv 2 ½0; n� 1�; v � jðmod2Þ; v 6¼ jÞ. In this way, the cloud

server is able to recover the random vectors Fs2
ðaj;vjjRÞ

ðj 2 Ioffline; v 2 ½0; n� 1�; v � jðmod2Þ; v 6¼ jÞ and removed

these random vectors from
P

i2½0;n�1�
ai and

P
i2½0;n�1�

bi during

the aggregation process.

Although the above method can solve the user offline

problem, there is still network latency issue. Due to net-

work latency, there are some users who did not upload the

encrypted gradients to the cloud server on time [4]. This

incurs that the cloud server identifies these users with

network latency as offline users. The cloud server recovers

the private keys of these users, calculates the corresponding

secret values, and recovers the random vectors. Once these

users with network latency successfully upload the

encrypted gradients to the cloud server, the cloud server

may be able to correctly recover these users’ local gradi-

ents by canceling out the random vectors.

To solve the problem of network latency, we add a noise

bi in the encrypted gradients âi, b̂i ði 2 ½0; n� 1�Þ. Each

user Ui ði 2 ½0; n� 1�Þ utilizes the secret sharing technique

to share the noise bi to other users in the group. The

encrypted gradients a0i, b0i ði 2 ½0; n� 1�Þ are computed as

follows: a0i ¼ âi þ Fs2
ðbiÞ and b0i ¼ b̂i þ Fs2

ðbiÞ. Using the

above method, the users’ local gradients will not be leaked

to the cloud server. Meanwhile, the users still can obtain

the correct aggregated gradient. After receiving the

encrypted gradients from the online users, the cloud server

recovers the noises bi ði 2 IonlineÞ and the private keys SKj

ðj 2 IofflineÞ based on the secret shares provided by more

than t users. With the recovered private keys SKj ðj 2
IofflineÞ of the offline users Uj ðj 2 IofflineÞ and the public

keys PKv ðv 2 ½0; n� 1�; v � jðmodÞ2; v 6¼ jÞ of the user

Uv ðv 2 ½0; n� 1�; v � jðmodÞ2; v 6¼ jÞ, the cloud server

can compute the secret values aj;v ¼ KA:agreeðSKj;PKvÞ
ðj 2 Ioffline; v 2 ½0; n� 1�; v � jðmodÞ2; v 6¼ jÞ and recovers

the random vectors Fs2
ðaj;vjjRÞ

ðj 2 Ioffline; v 2 ½0; n� 1�; v � jðmodÞ2; v 6¼ jÞ. The cloud

server performs the aggregation operation as below:

A ¼
X

i2Ionline

a0i �
X

i2Ionline

Fs2
ðbiÞ

�
X

j2Ioffline;v2½0;n�1�;v�jðmod2Þ;v[j

Fs2
ðaj;vjjRÞ

þ
X

j2Ioffline;v2½0;n�1�;v�jðmod2Þ;v\j

Fs2
ðaj;vjjRÞ

B ¼
X

i2Ionline

b0i �
X

i2Ionline

Fs2
ðbiÞ

�
X

j2Ioffline;v2½0;n�1�;v�jðmod2Þ;v[j;

Fs2
ðaj;vjjRÞ

þ
X

j2Ioffline;v2½0;n�1�;v�jðmod2Þ;v\j

Fs2
ðaj;vjjRÞ

As a result, the cloud server can remove the random vec-

tors Fs2
ðbiÞ ði 2 IonlineÞ of the online users and the random

vectors Fs2
ðaj;vjjRÞ ðj 2 Ioffline; v 2 ½0; n� 1�; v � jðmod2ÞÞ

of the offline users during the aggregation phase. The users

can obtain the correct aggregated encrypted gradients.

Based on the aggregated encrypted gradients, the users can

compute the aggregated gradient.

Cluster Computing

123

To verify the correctness of aggregated encrypted gra-

dients, we design a novel double gradient verification

method. Inspired of VerSA [11], we use the current itera-

tion round number to verify the correctness of aggregated

encrypted gradients to resist replay attacks. In VerSA [11],

the user u computes a ¼
P

v2l su;v, where l is the set of

current online users and su;v ðv 2 lÞ are the secret values

negotiated by the user u with other users. Then the user u

calculates two vectors a ¼ PRGðajj0Þ and b ¼ PRGðajj1Þ.
The user u uses a and b to encrypt the local gradient xu and

obtain a model verification code FðxuÞ ¼ a � xu þ b. Each

user u sends the masked gradient yu and the model verifi-

cation code FðxuÞ to the cloud server. The cloud server

respectively aggregates yu and FðxuÞ to obtain the aggre-

gated gradient z ¼
P

u2l yu and the aggregated model

verification code z0 ¼
P

u2l FðxuÞ. The cloud server returns

z and z0 to all users. Each user can verify the correctness of

the aggregated gradient z by checking whether the equation

z0 ¼ a � zþ jlj � b holds. However, when the online users

involved in two iterations are the same, a remains consis-

tent. Consequently, the verification parameters a and b also

remain unchanged. This implies that the cloud server could

exploit the previous aggregated gradient z and its corre-

sponding aggregated model verification code z0 to deceive

the users into passing the verification.

To resist replay attack, we use the current iteration

round number R to blind and encrypt the local gradients.

Consequently, the aggregated encrypted gradients A and

B contain the iteration round number R. In the verification

phase, the cloud server utilizes the current iteration round

number R to verify the correctness of aggregated encrypted

gradients A and B. Thus, the cloud server cannot use the

previous aggregated encrypted gradients to pass the

verification.

5.2 Description of the proposed scheme

Our proposed scheme contains the following four phase:

initialization phase, training phase, aggregation phase, and

verification and update phase. In the initialization phase,

KGC initializes the model parameters of the neural net-

work, then generates security parameters and public/private

key pairs for users. KGC sends the corresponding public/

private key pair to each user. Each user utilizes the secret

sharing technique to share his private key and the noise to

other users in the group. In the training phase, each user

trains the neural network by using his local dataset. Then

each user blinds the local gradient, encrypts the blinded

gradients, and sends the encrypted gradients to the cloud

server. In the aggregation phase, the cloud server aggre-

gates the encrypted gradients sent by the users and sends

the aggregated encrypted gradients to all online users. In

the verification and update phase, after receiving the

aggregated encrypted gradients from the cloud server, the

online users verify the correctness of the aggregated

encrypted gradients. If the aggregated encrypted gradients

can pass the verification, the users recover the aggregated

gradient from the aggregated encrypted gradients and

locally updates the trainable parameters. The specific flow

is shown in Fig. 2.

1. Initialization phase

(a) KGC initializes the model parameter W of the

neural network and setups the learning rate g
based on the neural network architecture nego-

tiated by the users. KGC generates two public-

private key pairs PKi; SKið Þ, spki; sskið Þ and a

noise bi for each user Ui ði 2 ½0; n� 1�Þ. The

first public-private key pair PKi; SKið Þ ði 2
½0; n� 1�Þ is utilized to generate the secret value,

and the second public-private key pair

spki; sskið Þ ði 2 ½0; n� 1�Þ is used to encrypt

the secret shares of the private key. KGC also

generates two secret seeds s1, s2 2 Z�q and two

pseudo-random functions ps1
ð�Þ and Fs2

ð�Þ. The

secret seed s1 is used to blind the local gradients

and verify the correctness of aggregated

encrypted gradients. The secret seed s2 is used

to encrypt the blinded gradients.

(b) KGC sends the secret seeds s1, s2 and the public-

private key pairs PKi; SKið Þ, spki; sskið Þ to each

user Ui ði 2 ½0; n� 1�Þ and publishes the pseudo-

random functions ps1
ð�Þ and Fs2

ð�Þ. KGC sends

the secret seed s2 to the cloud server.

(c) Each user Ui ði 2 ½0; n� 1�Þ sends his public key

PKi; spkið Þ and the identity i to the cloud server

and other users in the group U.

(d) Each user Ui ði 2 ½0; n� 1�Þ chooses a random

polynomial

hiðxÞ ¼ SKi þ
Xt�1

d¼1
qi;dxd mod q ðqi;d 2 Z�qÞ;

ð1Þ

where qi;d ðd 2 ½1; t � 1�Þ are the random values

used to generate the random polynomial hiðxÞ
and the commitment values. The user Ui ði 2
½0; n� 1�Þ caculates his private key SKi’s secret

share SKi;j ¼ hiðjÞ ðj 2 ½0; n� 1�; j 6¼ iÞ, then

generates and publishes the commitment values

gSKi and gqi;d ðd 2 ½1; t � 1�Þ. The user Ui ði 2
½0; n� 1�Þ selects the other random polynomial

f iðxÞ ¼ bi þ
Xt�1

d¼1
di;dxd mod q ðdi;d 2 Z�qÞ;

ð2Þ

Cluster Computing

123

where di;d ðd 2 ½1; t � 1�Þ are the random values

used to generate the random polynomial fiðxÞ and

the commitment values. The user Ui ði 2 ½0; n�
1�Þ computes the noise bi’s secret share bi;j ¼
f iðjÞ ðj 2 ½0; n� 1�Þ, then generates and pub-

lishes the commitment values gbi and gdi;d

ðd 2 ½1; t � 1�Þ.
(e) The user Ui ði 2 ½0; n� 1�Þ encrypts his secret

shares SKi;j ðj 2 ½0; n� 1�; j 6¼ iÞ and bi;j ðj 2
½0; n� 1�; j 6¼ iÞ in the authenticated encryption

manner:

ci;j AE:encðKA:agreeðspkj; sskiÞ; SKi;jkikjÞ

c0i;j AE:encðKA:agreeðspkj; sskiÞ; bi;jkikjÞ

The user Ui ði 2 ½0; n� 1�Þ sends the ciphertexts

ci;j ðj 2 ½0; n� 1�; j 6¼ iÞ and c0i;j ðj 2 ½0; n� 1�; j 6
¼ iÞ to the cloud server. The cloud server

broadcasts fci;j; c0i;jji 2 ½0; n� 1�; i 6¼ jg to each

user Uj in the group.

(f) After receiving the ciphertexts ci;j, c0i;j ði 2
½0; n� 1�; i 6¼ jÞ from the cloud server, each user

Uj ðj 2 ½0; n� 1�Þ respectively decrypts the

ciphertexts ci;j and c0i;j as follows:

SKi;j AE:decðKA:agreeðspki; sskjÞ; ci;jkikjÞ

bi;j AE:decðKA:agreeðspki; sskjÞ; c0i;jkikjÞ

The user Uj ðj 2 ½0; n� 1�Þ verifies whether the

secret shares SKi;j ði 2 ½0; n� 1�; i 6¼ jÞ and bi;j

ði 2 ½0; n� 1�; i 6¼ jÞ are correct by following the

equations:

gSKi;j ¼ gSKi

Yt�1

d¼1
ðgqi;dÞj

d ð3Þ

and

gbi;j ¼ gbi

Yt�1

d¼1
ðgdi;dÞj

d

ð4Þ

If the equations (3), (4) hold, the user Uj

believes SKi;j ði 2 ½0; n� 1�; i 6¼ jÞ and bi;j ði 2
½0; n� 1�; i 6¼ jÞ are correct. The user Uj ðj 2
½0; n� 1�Þ stores the secret shares SKi;j and bi;j

from the users Ui ði 2 ½0; n� 1�; i 6¼ jÞ.

2. Training phase

(a) Each user Ui ði 2 ½0; n� 1�Þ trains the neural

network with his local dataset Di ¼
f\xl; yl [gl2½1;K� and computes the local gradi-

ent xi. The user Ui computes the loss function in

the R-th iteration as follows:

LuðD0i;WÞ ¼ 1

jD0ij
X

ðxl;ylÞ2D0i

Cðuðxl;WÞ; ylÞ

where uðÞ represents neural network, W repre-

sents trainable parameters in uðÞ, D0i is the subset

of Di, and C() represents the criterion to compute

the discrepancy between the network’s output

uðxl;WÞ and the label data yl. The user Ui

computes the local gradient xi ¼ rLuðD0i;WÞ,
where r denotes the vector differential operator.

Fig. 2 Architecture of the PPFLV

Cluster Computing

123

(b) Algorithm 1 describes the processes of gradient

blinding and encryption. To protect privacy, the

user Ui ði 2 ½0; n� 1�Þ uses the secret seed s1 to

blind the local gradient xi as ai ¼ xi þ ps1
ðRÞ

and bi ¼ xi � ps1
ðRÞ under a pseudo-random

function ps1
ð�Þ, where R is the current iteration

number. The user Ui ði 2 ½0; n� 1�Þ computes

the secret value ai;j ¼ KA:agreeðSKi;PKjÞ with

his private key SKi and the public key PKj of the

user Uj ðj 2 ½0; n� 1�; j � iðmod2Þ; j 6¼ iÞ. Note

that ai;j ¼ aj;i. Based on the noise bi, the secret

value ai;j ðj 2 ½0; n� 1�; j � iðmod2Þ; j 6¼ iÞ, the

current iteration number R and pseudo-random

function Fs2
ð�Þ, the user Ui encrypts the blinded

gradients ai and bi as follows:

a0i ¼ai þ Fs2
ðbiÞ þ

X

j�iðmod2Þ;j[i

Fs2
ðai;jkRÞ

�
X

j�iðmod2Þ;j\i

Fs2
ðai;jkRÞ

ð5Þ

b0i ¼bi þ Fs2
ðbiÞ þ

X

j�iðmod2Þ;j[i

Fs2
ðai;jkRÞ

�
X

j�iðmod2Þ;j\i

Fs2
ðai;jkRÞ

ð6Þ

(c) The user Ui ði 2 ½0; n� 1�Þ sends the encrypted

gradients a0i, b0i to the cloud server.

3. Aggregation phase

(a) After receiving the encrypted gradients a0i, b0i
from the user Ui ði 2 ½0; n� 1�Þ, the cloud server

sets the identity set of all online users to Ionline,

and sets the identity set of all offline users to

Ioffline ¼ f0; 1; :::; n� 1g � Ionline. The cloud ser-

ver verifies whether Ionline	 t, where t is the

threshold value of the secret sharing. If Ionline	 t,

the cloud server broadcasts the identity sets

Ionline and Ioffline to all online users.

(b) The online user Ui ði 2 Ionline; v 2 IofflineÞ sends

the secret shares SKv;i ði 2 IonlineÞ of the private

keys SKv ðv 2 IofflineÞ of all offline users Uv ðv 2
IofflineÞ and the secret shares bi;j ði; j 2 Ionline; j 6¼
iÞ of the noise bi to the cloud server.

(c) The cloud server recovers the private keys SKv

ðv 2 IofflineÞ of all offline users Uv ðv 2 IofflineÞ
and the noises bi ði 2 IonlineÞ of all online users

Ui ði 2 IonlineÞ based on the received secret

shares SKv;i ðv 2 Ioffline; i 2 IonlineÞ and the secret

shares bi;j ði; j 2 Ionline; j 6¼ iÞ, respectively.

Then, the cloud server computes the secret

values av;j ¼ KA:agreeðSKv;PKjÞ ðv 2
Ioffline; j 2 ½0; n� 1�; j � vðmod2Þ; j 6¼ vÞ by

using the private keys SKv ðv 2 IofflineÞ of offline

users Uv ðv 2 IofflineÞ and the public keys PKj

ðj 2 ½0; n� 1�; j � vðmod2Þ; j 6¼ vÞ of the users

Uj ðj 2 ½0; n� 1�; j � vðmod2Þ; j 6¼ vÞ.
(d) The cloud server performs the double gradient

aggregation operation as follows:

Algorithm 1 Gradient blinding and encryption algorithm

Cluster Computing

123

A ¼
X

i2Ionline

a0i �
X

i2Ionline

Fs2
ðbiÞ�

X

v2Ioffline;j2½0;n�1�;j�vðmod2Þ;j[v

Fs2
ðav;jkRÞþ

X

v2Ioffline;j2½0;n�1�;j�vðmod2Þ;j\v

Fs2
ðav;jkRÞ

ð7Þ

B ¼
X

i2Ionline

b0i �
X

i2Ionline

Fs2
ðbiÞ�

X

v2Ioffline;j2½0;n�1�;j�vðmod2Þ;j[v

Fs2
ðav;jkRÞþ

X

v2Ioffline;j2½0;n�1�;j�vðmod2Þ;j\v

Fs2
ðav;jkRÞ

ð8Þ

The cloud sever sends the aggregated encrypted gra-

dients A and B to all online users Ui ði 2 IonlineÞ.
4. Verification and update phase Algorithm 2 describes

the processes of verification and update. After receiv-

ing the aggregated encrypted gradients A and B from

the cloud server, the online users Ui ði 2 IonlineÞ verify

whether the cloud server correctly performs the

aggregation operation through the following equation:

A� jIonlinej � ps1
ðRÞ ¼ B � 1

ps1
ðRÞ ð9Þ

If the equation (9) holds, it means that the aggregated

encrypted gradients A and B are correct. Then, the user

Ui ði 2 IonlineÞ calculates the aggregated gradient x ¼
A� jIonlinej � ps1

ðRÞ and locally updates the trainable

parameter W ¼ W � g � x
jIonlinej. The next round of fed-

erated learning will be executed until the termination

condition is satisfied.

6 Security analysis

Theorem 1 (Correctness) When the cloud server correctly

aggregates all online users’ encrypted gradients, the

aggregated encrypted gradients can pass the users’

verification.

Proof To simplify the following derivation, we suppose

that the cloud server is able to receive encrypted gradients

ða0i; b0iÞ sent by the online user Ui ði 2 IonlineÞ. Here, we

consider the cases of offline users and network latency. The

cloud server identifies the users with network latency as

offline users because these users cannot upload the

encrypted gradients to the cloud server on time.

The cloud server aggregates all online users’ a0i
ði 2 IonlineÞ as follows:
X

i2Ionline

ai
0 ¼

X

i2Ionline

ai þ
X

i2Ionline

Fs2
ðbiÞþ

X

i2Ionline;j2½0;n�1�;j�iðmod2Þ;j[i

Fs2
ðai;jkRÞ�

X

i2Ionline;j2½0;n�1�;j�iðmod2Þ;j\i

Fs2
ðai;jkRÞ

¼
X

i2Ionline

ai þ
X

i2Ionline

Fs2
ðbiÞþ

X

i2Ionline;j2Ionline;j�iðmod2Þ;j[i

Fs2
ðai;jkRÞþ

X

v2Ioffline

X

j2½0;n�1�;j�vðmod2Þ;j[v

Fs2
ðav;jkRÞ�

X

i2Ionline;j2Ionline;j�iðmod2Þ;j\i

Fs2
ðai;jkRÞ�

X

v2Ioffline

X

j2½0;n�1�;j�vðmod2Þ;j\v

Fs2
ðav;jkRÞ

Fs2
ðai;jkRÞ and Fs2

ðaj;ikRÞ generated by the users Ui

ði 2 IonlineÞ and Uj ðj 2 IonlineÞ can cancel each other out.

Fs2
ðav;jkRÞ between the offline users Uv ðv 2 IofflineÞ and

Algorithm 2 Verification and update algorithm

Cluster Computing

123

the users Uj ðj 2 ½0; n� 1�; j � vðmodÞ2; j[vÞ,
Fs2
ðav;jkRÞ between the offline users Uv ðv 2 IofflineÞ and

the users Uj ðj 2 ½0; n� 1�; j � vðmodÞ2; j\vÞ, and theP
i2Ionline

Fs2
ðbiÞ cannot be cancelled out. Thus,

X

i2Ionline

ai
0 ¼

X

i2Ionline

ai þ
X

i2Ionline

Fs2
ðbiÞþ

X

v2Ioffline

X

j2½0;n�1�;j�vðmod2Þ;j[v

Fs2
ðav;jkRÞ�

X

v2Ioffline

X

j2½0;n�1�;j�vðmod2Þ;j\v

Fs2
ðav;jkRÞ

The cloud server can recover the noise bi ði 2 IonlineÞ and

the private key SKv ðv 2 IofflineÞ based on the secret shares

provided by more than t users. With the recovered private

key SKv of the offline user Uv ðv 2 IofflineÞ and the public

key PKj of the user Uj ðj 2 ½0; n� 1�; j � vðmodÞ2; j[vÞ,
the cloud server can compute the secret value av;j ¼
KA:agreeðSKv;PKjÞ and recovers the random vectors

Fs2
ðav;jkRÞ ðv 2 Ioffline; j 2 ½0; n� 1�; j � vðmodÞ2; j[vÞ.

Similarly, with the recovered private key SKj of the offline

user Uv ðv 2 IofflineÞ and the public key PKj of the user Uj

ðj 2 ½0; n� 1�; j � vðmodÞ2; j\vÞ, the cloud server can

compute the secret value av;j ¼ KA:agreeðSKv;PKjÞ and

recovers the random vectors Fs2
ðav;jkRÞ

ðv 2 Ioffline; j 2 ½0; n� 1�; j � vðmodÞ2; j\vÞ. Thus, the

cloud server can remove the random vectors Fs2
ðav;jkRÞ

generated by the offline users Uv ðv 2 IofflineÞ and the users

Uj ðj 2 ½0; n� 1�; j � vðmodÞ2Þ and the noises Fs2
ðbiÞ as

follows.

A ¼
X

i2Ionline

ai
0 �

X

i2Ionline

Fs2
ðbiÞ

�
X

v2Ioffline

X

j2½0;n�1�;j�vðmod2Þ;j[v

Fs2
ðav;jkRÞ

þ
X

v2Ioffline

X

j2½0;n�1�;j�vðmod2Þ;j\v

Fs2
ðav;jkRÞ

¼
X

i2Ionline

ai þ
X

i2Ionline

Fs2
ðbiÞ

þ
X

v2Ioffline

X

j2½0;n�1�;j�vðmod2Þ;j[v

Fs2
ðav;jkRÞ�

X

v2Ioffline

X

j2½0;n�1�;j�vðmod2Þ;j\v

Fs2
ðav;jkRÞ

�
X

i2Ionline

Fs2
ðbiÞ

�
X

v2Ioffline

X

j2½0;n�1�;j�vðmod2Þ;j[v

Fs2
ðav;jkRÞ

þ
X

v2Ioffline

X

j2½0;n�1�;j�vðmod2Þ;j\v

Fs2
ðav;jkRÞ

¼
X

i2Ionline

ai ¼
X

i2Ionline

ðxi þ ps1
ðRÞÞ:

Similarly, the cloud server aggregates b0i ði 2 IonlineÞ as

follows:

X

i2Ionline

bi
0 ¼

X

i2Ionline

bi þ
X

i2Ionline

Fs2
ðbiÞþ

X

i2Ionline;j2½0;n�1�;j�iðmod2Þ;j[i

Fs2
ðai;jkRÞ�

X

i2Ionline;j2½0;n�1�;j�iðmod2Þ;j\i

Fs2
ðai;jkRÞ

¼
X

i2Ionline

bi þ
X

i2Ionline

Fs2
ðbiÞþ

X

i2Ionline;j2Ionline;j�iðmod2Þ;j[i

Fs2
ðai;jkRÞþ

X

v2Ioffline

X

j2½0;n�1�;j�vðmod2Þ;j[v

Fs2
ðav;jkRÞ�

X

i2Ionline;j2Ionline;j�iðmod2Þ;j\i

Fs2
ðai;jkRÞ�

X

v2Ioffline

X

j2½0;n�1�;j�vðmod2Þ;j\v

Fs2
ðav;jkRÞ

Fs2
ðai;jkRÞ and Fs2

ðaj;ikRÞ generated by the users Ui

ði 2 IonlineÞ and Uj ðj 2 IonlineÞ can cancel each other out.

Fs2
ðav;jkRÞ between the offline users Uv ðv 2 IofflineÞ and

the users Uj ðj 2 ½0; n� 1�; j � vðmodÞ2; j[vÞ,
Fs2
ðav;jkRÞ between the offline users Uv ðv 2 IofflineÞ and

the users Uj ðj 2 ½0; n� 1�; j � vðmodÞ2; j\vÞ, and theP
i2Ionline

Fs2
ðbiÞ cannot be cancelled out. Therefore,

X

i2Ionline

bi
0 ¼

X

i2Ionline

bi þ
X

i2Ionline

Fs2
ðbiÞþ

X

v2Ioffline

X

j2½0;n�1�;j�vðmod2Þ;j[v

Fs2
ðav;jkRÞ�

X

v2Ioffline

X

j2½0;n�1�;j�vðmod2Þ;j\v

Fs2
ðav;jkRÞ

The cloud server can recover the noise bi ði 2 IonlineÞ and

the private key SKv ðv 2 IofflineÞ based on the secret shares

provided by more than t users. With the recovered private

key SKv of the offline user Uv ðv 2 IofflineÞ and the public

key PKj of the user Uj ðj 2 ½0; n� 1�; j � vðmodÞ2; j[vÞ,
the cloud server can compute the secret value av;j ¼
KA:agreeðSKv;PKjÞ and recovers the random vectors

Fs2
ðav;jkRÞ ðv 2 Ioffline; j 2 ½0; n� 1�; j � vðmodÞ2; j[vÞ.

Similarly, with the recovered private key SKj of the offline

user Uv ðv 2 IofflineÞ and the public key PKj of the user Uj

ðj 2 ½0; n� 1�; j � vðmodÞ2; j\vÞ, the cloud server can

compute the secret value av;j ¼ KA:agreeðSKv;PKjÞ and

recovers the random vectors Fs2
ðav;jkRÞ

ðv 2 Ioffline; j 2 ½0; n� 1�; j � vðmodÞ2; j\vÞ. Thus, the

cloud server can remove the random vectors Fs2
ðav;jkRÞ

generated by the offline users Uv ðv 2 IofflineÞ and the users

Cluster Computing

123

Uj ðj 2 ½0; n� 1�; j � vðmodÞ2Þ and the noises Fs2
ðbiÞ as

follows.

B ¼
X

i2Ionline

bi
0 �

X

i2Ionline

Fs2
ðbiÞ

�
X

v2Ioffline

X

j2½0;n�1�;j�vðmod2Þ;j[v

Fs2
ðav;jkRÞ

þ
X

v2Ioffline

X

j2½0;n�1�;j�vðmod2Þ;j\v

Fs2
ðav;jkRÞ

¼
X

i2Ionline

bi þ
X

i2Ionline

Fs2
ðbiÞ

þ
X

v2Ioffline

X

j2½0;n�1�;j�vðmod2Þ;j[v

Fs2
ðav;jkRÞ

�
X

v2Ioffline

X

j2½0;n�1�;j�vðmod2Þ;j\v

Fs2
ðav;jkRÞ

�
X

i2Ionline

Fs2
ðbiÞ�

X

v2Ioffline

X

j2½0;n�1�;j�vðmod2Þ;j[v

Fs2
ðav;jkRÞþ

X

v2Ioffline

X

j2½0;n�1�;j�vðmod2Þ;j\v

Fs2
ðav;jkRÞ

¼
X

i2Ionline

bi ¼
X

i2Ionline

ðxi � ps1
ðRÞÞ:

If the equation A� jIonlinej � ps1
ðRÞ ¼ B � 1

ps1
ðRÞ ¼

P
i2Ionline

xi

holds, all online users are convinced that the cloud server

correctly aggregates all users’ encrypted gradients. h

Theorem 2 (Gradient privacy) The cloud server cannot

obtain the users’ local gradients from the encrypted gra-

dients sent by the users.

Proof In our scheme, we adopt double gradient blinding

and encryption method to blind and encrypt the local gra-

dient xi as follows:

a0i ¼ai þ Fs2
ðbiÞ þ

X

j�iðmod2Þ;j[i

Fs2
ðai;jkRÞ

�
X

j�iðmod2Þ;j\i

Fs2
ðai;jkRÞ

b0i ¼bi þ Fs2
ðbiÞ þ

X

j�iðmod2Þ;j[i

Fs2
ðai;jkRÞ

�
X

j�iðmod2Þ;j\i

Fs2
ðai;jkRÞ;

where ai ¼ xi þ ps1
ðRÞ and bi ¼ xi � ps1

ðRÞ, ps1
ðRÞ is a

random vector produced by the user based on the current

iteration number R. The local gradient xi is blinded by the

random vector ps1
ðRÞ. Then, the blinded gradients ai and bi

are encrypted by the random vectors Fs2
ðai;jkRÞ and

Fs2
ðbiÞ, where the secret value ai;j ¼ KA:agreeðSKi;PKjÞ

can be calculated based on the user Ui ði 2 ½0; n� 1�Þ’s
private key SKi and the user Uj

ðj 2 ½0; n� 1�; j � iðmod2Þ; j 6¼ iÞ’s public key PKj and the

noise bi is randomly generated by the GM.

The cloud server receives the encrypted gradients a0i and

b0i from the online users Ui ði 2 IonlineÞ and aslo receives

the encrypted gradients a0j and b0j from the the users Uj

ðj 2 IlatencyÞ with network latency. In the aggregation

phase, the cloud server is able to recover the private keys

SKj of the users Uj ðj 2 IlatencyÞ with network latency and

the noise bi of all online users Ui ði 2 IonlineÞ based on the

received secret shares. However, the cloud server cannot

recover the private keys SKi of online users Ui ði 2 IonlineÞ
and the noise bj of the users Uj ðj 2 IlatencyÞ with network

latency since the cloud server cannot collude with more

than t users to recover SKi ði 2 IonlineÞ and bj ðj 2 IlatencyÞ.
As a result, the cloud server cannot caculate the random

vectors Fs2
ðbjÞ of the user Uj ðj 2 IlatencyÞ with network

latency without the noises bj ðj 2 IlatencyÞ and aslo cannot

compute the online user Ui ði 2 IonlineÞ’s secret value ai;j ¼
KA:agreeðSKi;PKjÞ ðj 2 ½0; n� 1�; j � iðmod2Þ; j 6¼ iÞ
without the private key SKi ði 2 IonlineÞ. Further, the cloud

server cannot caculate the random vectors Fs2
ðai;jkRÞ

ði 2 Ionline; j 2 ½0; n� 1�; j � iðmod2Þ; j 6¼ iÞ. Thus, even if

the cloud server can obtain the random vectors Fs2
ðbiÞ of

all online users Ui ði 2 IonlineÞ, without the random vectors

Fs2
ðai;jkRÞ ði 2 Ionline; j 2 ½0; n� 1�; j � iðmod2Þ; j 6¼ iÞ, it

still cannot obtain the blinded gradients ai and bi from the

encrypted gradients a0i and b0i sent by the online users Ui

ði 2 IonlineÞ, let alone the local gradients xi ði 2 IonlineÞ. In

addition, even if the cloud server can calculate the random

vectors Fs2
ðaj;ikRÞ ðj 2 Ilatency; i 2 ½0; n� 1�; i �

jðmod2Þ; i 6¼ jÞ of the user Uj ðj 2 IlatencyÞ with network

latency based on the recovered private key SKj

ðj 2 IlatencyÞ, without the noises bj ðj 2 IlatencyÞ, it still

cannot obtain the blinded gradients aj and bj from the

encrypted gradients a0j and b0j from the users Uj

ðj 2 IlatencyÞ, let alone the local gradients xj ðj 2 IlatencyÞ. h

Theorem 3 (Immunity from replay attacks) In PPFLV, the

cloud server is not able to pass the verification of the users

by utilizing the previous aggregated gradients.

Proof We prove that PPFLV can resist replay attacks

through the following game. Specially, in the R2-th itera-

tion, the user Ui ði 2 ½0; n� 1�Þ sends the new encrypted

gradients fa�i ; b�i g to the cloud server, which are different

from the previous encrypted gradients fa0i; b0ig in the pre-

vious R1-th iteration. Then, the cloud server transmits the

previous aggregated encrypted gradients A;Bf g to the user

Ui ði 2 ½0; n� 1�Þ, where A;Bf g are the aggregated

Cluster Computing

123

encrypted gradients corresponding to the previous

encrypted gradients fa0i; b0ig. During the verification phase,

if A;Bf g are able to pass the verification of the users, the

cloud server wins this game; otherwise, it fails.

For the previous aggregated encrypted gradients A;Bf g
in the R1-th iteration, the following verification equation

holds based on the iteration number R1:

A� jIonlinej � ps1
ðR1Þ ¼ B � 1

ps1
ðR1Þ

: ð10Þ

In the new R2-th iteration, if the cloud server can use

A;Bf g to pass the verification, then the following equation

also holds:

A� jIonlinej � ps1
ðR2Þ ¼ B � 1

ps1
ðR2Þ

: ð11Þ

h

From the above two verification equations (10), (11), we

have

A ¼ B � 1

ps1
ðR1Þ

þ jIonlinej � ps1
ðR1Þ

¼ B � 1

ps1
ðR2Þ

þ jIonlinej � ps1
ðR2Þ

Further, we have R1 ¼ R2, which is in contradiction with

the assumption that R1 6¼ R2. Therefore, the cloud server

cannot win this game. In VerSA [11], if the online users in

any two rounds are the same, then the parameters of the

verification equation will become the same. In this case, the

cloud server has the opportunity to launch a replay attack.

The difference from VerSA [11] is that the equation

parameters used to verify the correctness of the aggregate

gradient in any round of PPFLV are different. This ensures

that the cloud server does not have any chance to launch a

replay attack in PPFLV.The PPFLV is able to resist the

replay attacks.

Theorem 4 (Unforgeability) In the PPFLV scheme, if the

cloud server does not correctly aggregate the users’

encrypted gradients, it cannot pass the verification of the

users.

Proof If A, B are the correct aggregated encrypted gradi-

ents sent by the cloud server, then the following verifica-

tion equation holds: A� jIonlinej � ps1
ðRÞ ¼ B 1

ps1
ðRÞ. Assume

that the cloud server forges aggregated encrypted gradients

A0;B0 which are different from A, B. If the cloud server is

able to pass the verification of the users, we have:

A0 � jIonlinej � ps1
ðRÞ¼B0 � 1

ps1
ðRÞ.

Further, we can deduce that A0 must be satisfy A0 ¼
numfake þ jIonlinej � ps1

ðRÞ and B0 must satisfy

B0 ¼ numfake � ps1
ðRÞ, where numfake is a random vector

chosen by the cloud server. It means that if the cloud server

can forge successfully, it needs to know the secret seed s1

of the pseudo-random function ps1
ð�Þ. Only knowing s1, the

cloud server can compute A0 ¼ numfake þ jIonlinej � ps1
ðRÞ

and B0 ¼ numfake � ps1
ðRÞ, which can make the equation

A0 � jIonlinej � ps1
ðRÞ¼B0 � 1

ps1
ðRÞ hold. However, the secret

seed s1 is randomly selected by the GM, which is kept

secret from the cloud server. In the finite field Z�q, the

probability of the cloud server obtaining the correct secret

seed is 1
q, which is negligible since q is large prime.

Therefore, it is computationally infeasible for the cloud

server to forge the aggregated encrypted gradients to pass

the verificaiton. h

7 Performance evaluation

In this section, we evaluate the performance of the PPFLV

in terms of classification accuracy, computation overhead

and communication overhead. The simulation experiment

is conducted on a Linux server with Intel(R) Core(TM) i9-

10980XE, 3.0GHZ, and 32GB memory. All experiments

are implemented using Pytorch.

7.1 Classification accuracy

We use two datasets (CIFAR10 and MNIST) to evaluate

the classification accuracy of two models :

• CIFAR10 [45] is a dataset consisting of three-channel

RGB color images categorized into 10 classes. The

images in this dataset have a size of 32
 32 pixels. It

contains a total of 60,000 images. We pick 50,000

images for training, while the remaining images are

reserved for test.

• MNIST [46] is a handwritten digital dataset. It contains

a total of 70,000 images. Each image in this dataset has

a size of 28
 28 pixels and features handwritten

numbers ranging from 0 to 9 in white color against a

black background. We select 60,000 images for training

and the rest for test.

We select FedAvg [47], which is a plaintext federated

learning scheme without privacy protection, as a bench-

mark for comparison with the proposed PPFLV in terms of

classification accuracy. To evaluate the performance of the

proposed PPFLV, we choose two well-known classical

networks: Multilayer Perceptron (MLP) [48] and Convo-

lutional Neural Networks (CNN) [49]. In our experiment,

MLP consists of an input layer, two hundred hidden layers

and an output layer. CNN trained with the CIFAR dataset is

composed of two convolutional layers, one pooling layer

Cluster Computing

123

and three fully connected layers. The CNN trained with the

MNIST dataset is composed of three convolutional layers

and two fully connected layers. We split the MNIST

dataset into IID (independent and identically distributed)

dataset and non-IID (non-Independent Identically Distri-

bution) dataset.

As depicted in Fig. 3a and c, when utilizing the MNIST

dataset under IID, the classification accuracies obtained by

PPFLV using both CNN and MLP neural networks for

training exceed 90%. Furthermore, from Fig. 3a and c, we

can find that, the classification accuracy of PPFLV is

similar to that of FedAvg [47]. Figure 3b and d show that

two model accuracy in MNIST non-IID database, the

proposed PPFLV achieves comparable accuracy to the

plaintext FedAvg [47]. Hence, data heterogeneity is con-

nected to federated learning itself, but it does not impact

the security design of our scheme. Thus, compared to

plaintext federated learning scheme, our PPFLV hardly

losses the classification accuracy while maintaining data

privacy protection.

7.2 Computation overhead

To evaluate the performance of the proposed PPFLV on the

user side, VerSA [11] and VCD-FL[50], which are the

state-of-the-art verifiable federated learning schemes with

privacy preserving, are selected as the benchmarks. We

give the comparison of PPFLV, VerSA[11] and VCD-FL

[50] in terms of users’ computation overhead for gradient

encryption and verification.

We set the number of gradients per user to vary from

1000 to 10000, and the number of users to vary from 100 to

1000. The size of each gradient entry is 64bit. Figure 4

shows the computation overhead comparison of encrypting

gradients among the proposed PPFLV, VerSA [11] and

VCD-FL [50] for different number of gradients per user

and different number of users. Most of the computation

overhead of the user for encrypting gradients is generated

by the pseudo-random function and the key agreement. The

pseudo-random function is used to generate the random

vectors and the key agreement is utilized to generate the

secret values between the users. Figure 4a and b show that

the computation overhead of gradient encryption increases

linearly with the number of users and the number of gra-

dients per user in the proposed PPFLV, VerSA [11], and

VCD-FL [50]. The computation overhead of gradient

encryption in the proposed PPFLV is much lower than that

in VCD-FL [50].

We also evaluate the computation overhead of the user

during the verification phase. Both the proposed PPFLV

and VerSA [11] only require to perform the lightweight

calculation to verify the correctness of aggregated gradient.

Figure 5a and b show that the computation overhead of

verification in the proposed PPFLV, VerSA [11], and

VCD-FL [50] is proportional to number of users and the

number of gradients per user. In the phase of verification,

the computation overhead of the proposed PPFLV is much

lower than that in VCD-FL [50], and approximately the

same as that of VerSA [11]. However, VerSA [11] cannot

resist the replay attack in the verification phase. Thus, the

Fig. 3 Classification accuracy

comparison of PPFLV and

FedAvg [47] a CNN using

MNIST dataset under IID,

b CNN using MNIST dataset

under non-IID, c MLP using

MNIST dataset under IID,

d MLP using MNIST dataset

under non-IID

Cluster Computing

123

proposed PPFLV is able to achieve efficient verification

while resisting replay attack.

To evaluate the aggregation performance of the cloud

server, we set the number of users to 500 and the gradient

entries of each user to 5K and 10K, respectively. The size

of each entry is 64bit.

Figure 6 shows the computation overhead of aggregat-

ing gradients on the cloud server side when all users are

online. In Fig. 6, we have the observation that as the

number of iterations increases, the computation overhead

of aggregating gradients grows linearly. Furthermore, the

computation overhead of aggregating gradients is also

related to the number of gradient entries of each user,

which increases with the number of gradient entries of each

user.

We set the user offline rate from 10% to 50%. As dis-

cussed in Sect. 5.2, the cloud server needs to recover the

private keys of the offline users when the users are offline.

Figure 7a and b show that in PPFLV and VerSA [11], the

computation overhead of aggregating gradients is affected

by the number of gradient entries of each user when the

user offline rate is fixed. The computation overhead of

aggregating gradients in PPFLV and VerSA [11] grow

linearly as the user offline rate increases. Furthermore, the

computation overhead of aggregating gradients in PPFLV

is significantly lower than VerSA [11]. This advantage

becomes increasingly evident as the user offline rate

increases. When the user offline rate reaches 50%, the

computation overhead of aggregating gradients in PPFLV

is just under half that of VerSA [11]. Thus, we can con-

clude that the performance of the proposed PPFLV sur-

passes that of VerSA [11] on the cloud server side.

7.3 Communication overhead

We compare the total communication overhead of our

scheme with VerSA [11] and VerifyNet [4]. VerSA [11]

and VerifyNet [4] are the state-of-the-art privacy-preserv-

ing and verifiable federated learning schemes. The com-

munication overhead mainly comes from the phases of

initialization, aggregation and verification. The keys and

seeds are distributed in the initialization phase. The

encrypted gradients are uploaded in the aggregation phase

and the aggregated encrypted gradients are downloaded in

the verification phase.

Fig. 4 Comparison of gradient

encryption computation

overhead a with different

number of gradients per user,

b with different number of users

Fig. 5 Comparison of

verification computation

overhead a with different

number of gradients per user,

b with different number of users

Fig. 6 Computation overhead of aggregating gradients for all users

online

Cluster Computing

123

Figure 8a shows the communication overhead compar-

ison of PPFLV, VerifyNet [4] and VerSA [11] by gradually

increasing the number of gradients per user with a fixed

number of 100 users. Figure 8b illustrates the communi-

cation overhead comparison of PPFLV, VerifyNet [4] and

VerSA [11] when the number of users increases and the

number of gradients per user is fixed at 1000 entries. From

Fig.8a and b, we can find that the communication overhead

of PPFLV, VerifyNet [4] and VerSA [11] increase linearly

as the number of gradients per user and the number of users

increases. Furthermore, with an increasing number of

gradients per user, the communication overhead of PPFLV

is significantly lower than that of VerifyNet [4], and is

essentially comparable to VerSA [11]. As the number of

users grows, the communication overhead of PPFLV is

lower than that of VerifyNet [4] and VerSA [11].

8 Conclusion

To solve the problems of the users’ private data leakage

and the aggregated gradients verification in federated

learning, in this paper, we propose PPFLV, a privacy-

preserving federated learning scheme with verifiability. In

PPFLV, the double gradient blinding and encryption

method is used to blind and encrypt the users’ local gra-

dients and guarantee the users’ privacy. The double gra-

dient verification method is utilized to verify the

correctness of the aggregated encrypted gradients calcu-

lated by the cloud server. Each user can independently

verify the correctness of the aggregated encrypted gradi-

ents and recovers the aggregated gradient. The experiments

show that PPFLV is efficient in terms of privacy protection

and secure verification.

Acknowledgements This work is supported by National Natural

Science Foundation of China (62102211), Shandong Provincial Nat-

ural Science Foundation (ZR2021QF018), and Shandong Province

Higher Education Institutions Youth Innovation and Technology

Support Program (2023KJ365).

Author contributions Qun Zhou wrote the main manuscript text and

Wenting Shen modified and reviewed the manuscript.

Funding Funding were provided by National Natural Science Foun-

dation of China (Grant No. 62102211) and Shandong Provincial

Natural Science Foundation (Grant No. ZR2021QF018).

Data availability No datasets were generated or analysed during the

current study.

Declarations

Competing interest The authors declare no competing interests.

References

1. Feng, Q., He, D., Liu, Z., Wang, H., Choo, K.-K.R.: Securenlp: a

system for multi-party privacy-preserving natural language pro-

cessing. IEEE Trans. Inf. Forensics Secur. 15, 3709–3721 (2020)

Fig. 7 Computation overhead of

aggregating gradients for

different user offline rates a 5K-

entry gradients per user, b 10K-

entry gradients per user

Fig. 8 Communication

overhead comparison of

PPFLV, VerSA [11] and

VerifyNet [4] a with different

number of gradients per user,

b with different number of users

Cluster Computing

123

2. Xiong, Z., Li, W., Han, Q., Cai, Z.: Privacy-preserving auto-

driving: a gan-based approach to protect vehicular camera data.

In: 2019 IEEE International Conference on Data Mining (ICDM),

pp. 668–677. IEEE (2019)

3. Bakator, M., Radosav, D.: Deep learning and medical diagnosis:

a review of literature. Multimodal Technol. Interact. 2(3), 47

(2018)

4. Xu, G., Li, H., Liu, S., Yang, K., Lin, X.: Verifynet: secure and

verifiable federated learning. IEEE Trans. Inf. Forensics Secur.

15, 911–926 (2019)

5. Chen, Y., Zhao, Q., Duan, P., Zhang, B., Hong, Z., Wang, B.:

Verifiable privacy-preserving association rule mining using dis-

tributed decryption mechanism on the cloud. Expert Syst. Appl.

201, 117086 (2022)

6. Wang, B., Chen, Y., Li, F., Song, J., Lu, R., Duan, P., Tian, Z.:

Privacy-preserving convolutional neural network classification

scheme with multiple keys. IEEE Trans. Serv. Comput. (2024)

7. Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh,

A.T., Bacon, D.: Federated learning: strategies for improving

communication efficiency. arXiv preprint arXiv:1610.05492

(2016)

8. Lu, S., Li, R., Liu, W., Guan, C., Yang, X.: Top-k sparsification

with secure aggregation for privacy-preserving federated learn-

ing. Comput. Secur. 124, 102993 (2023)

9. Dasu, V.A., Sarkar, S., Mandal, K.: PROV-FL: Privacy-Pre-

serving Round Optimal Verifiable Federated Learning. In: Pro-

ceedings of the 15th ACM Workshop on Artificial Intelligence

and Security, pp. 33–44 (2022)

10. Zhou, H., Yang, G., Dai, H., Liu, G.: PFLF: privacy-preserving

federated learning framework for edge computing. IEEE Trans.

Inf. Forensics Secur. 17, 1905–1918 (2022). https://doi.org/10.

1109/TIFS.2022.3174394

11. Hahn, C., Kim, H., Kim, M., Hur, J.: VerSA: verifiable secure

aggregation for cross-device federated learning. IEEE Trans.

Dependable Secure Comput. (2021)

12. Wang, Z., Song, M., Zhang, Z., Song, Y., Wang, Q., Qi, H.:

Beyond inferring class representatives: User-level privacy leak-

age from federated learning. In: IEEE INFOCOM 2019-IEEE

Conference on Computer Communications, pp. 2512–2520. IEEE

(2019)

13. Mo, F., Haddadi, H., Katevas, K., Marin, E., Perino, D.,

Kourtellis, N.: PPFL: privacy-preserving federated learning with

trusted execution environments. In: Proceedings of the 19th

Annual International Conference on Mobile Systems, Applica-

tions, and Services, pp. 94–108 (2021)

14. Fang, H., Qian, Q.: Privacy preserving machine learning with

homomorphic encryption and federated learning. Future Internet

13(4), 94 (2021)

15. Ma, J., Naas, S.-A., Sigg, S., Lyu, X.: Privacy-preserving feder-

ated learning based on multi-key homomorphic encryption. Int.

J. Intell. Syst. 37(9), 5880–5901 (2022)

16. Zhang, X., Fu, A., Wang, H., Zhou, C., Chen, Z.: A privacy-

preserving and verifiable federated learning scheme. In: ICC

2020-2020 IEEE International Conference on Communications

(ICC), pp. 1–6. IEEE (2020)

17. Wang, W., Li, X., Qiu, X., Zhang, X., Zhao, J., Brusic, V.: A

privacy preserving framework for federated learning in smart

healthcare systems. Inf. Process. Manag. 60(1), 103167 (2023)

18. Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan,

H.B., Patel, S., Ramage, D., Segal, A., Seth, K.: Practical secure

aggregation for privacy-preserving machine learning. In: Pro-

ceedings of the 2017 ACM SIGSAC Conference on Computer

and Communications Security, pp. 1175–1191 (2017)

19. Phong, L.T., Aono, Y., Hayashi, T., Wang, L., Moriai, S.: Pri-

vacy-preserving deep learning via additively homomorphic

encryption. IEEE Trans. Inf. Forensics Secur. 13(5), 1333–1345

(2018). https://doi.org/10.1109/TIFS.2017.2787987

20. Jia, B., Zhang, X., Liu, J., Zhang, Y., Huang, K., Liang, Y.:

Blockchain-enabled federated learning data protection aggrega-

tion scheme with differential privacy and homomorphic encryp-

tion in IIoT. IEEE Trans. Ind. Inform. 18(6), 4049–4058 (2021)

21. Fu, A., Zhang, X., Xiong, N., Gao, Y., Wang, H., Zhang, J.: VFL:

a verifiable federated learning with privacy-preserving for big

data in industrial IoT. IEEE Trans. Ind. Inform. 18(5), 3316–3326

(2020)

22. Zhang, Y., Yu, H.: Towards verifiable federated learning. arXiv

preprint arXiv:2202.08310 (2022)
23. Gao, H., He, N., Gao, T.: SVeriFL: successive verifiable feder-

ated learning with privacy-preserving. Inf. Sci. 622, 98–114

(2023)

24. Zhang, C., Li, S., Xia, J., Wang, W., Yan, F., Liu, Y.: Batchcrypt:

efficient homomorphic encryption for cross-silo federated learn-

ing. In: Proceedings of the 2020 USENIX Annual Technical

Conference (USENIX ATC 2020) (2020)

25. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In:

Proceedings of the 22nd ACM SIGSAC Conference on Computer

and Communications Security, pp. 1310–1321 (2015)

26. Truex, S., Baracaldo, N., Anwar, A., Steinke, T., Ludwig, H.,

Zhang, R., Zhou, Y.: A hybrid approach to privacy-preserving

federated learning. In: Proceedings of the 12th ACM Workshop

on Artificial Intelligence and Security, pp. 1–11 (2019)

27. Zhou, Z., Tian, Y., Xiong, J., Ma, J., Peng, C.: Blockchain-en-

abled secure and trusted federated data sharing in IIoT. IEEE

Trans. Ind. Inform. (2022)

28. Hu, R., Guo, Y., Li, H., Pei, Q., Gong, Y.: Personalized federated

learning with differential privacy. IEEE Internet Things J. 7(10),

9530–9539 (2020)

29. Chen, J., Xue, J., Wang, Y., Huang, L., Baker, T., Zhou, Z.:

Privacy-preserving and traceable federated learning for data

sharing in industrial IoT applications. Expert Syst. Appl. 213,

119036 (2023)

30. Tang, X., Shen, M., Li, Q., Zhu, L., Xue, T., Qu, Q.: Pile: robust

privacy-preserving federated learning via verifiable perturbations.

IEEE Trans. Depend. Secure Comput. (2023)

31. Fang, C., Guo, Y., Wang, N., Ju, A.: Highly efficient federated

learning with strong privacy preservation in cloud computing.

Comput. Secur. 96, 101889 (2020)

32. Wei, K., Li, J., Ding, M., Ma, C., Yang, H.H., Farokhi, F., Jin, S.,

Quek, T.Q., Poor, H.V.: Federated learning with differential

privacy: algorithms and performance analysis. IEEE Trans. Inf.

Forensics Secur. 15, 3454–3469 (2020)

33. Mugunthan, V., Polychroniadou, A., Byrd, D., Balch, T.H.:

SMPAI: secure multi-party computation for federated learning.

In: Proceedings of the NeurIPS 2019 Workshop on Robust AI in

Financial Services (2019)

34. Zhou, C., Fu, A., Yu, S., Yang, W., Wang, H., Zhang, Y.: Pri-

vacy-preserving federated learning in fog computing. IEEE

Internet Things J. 7(11), 10782–10793 (2020)

35. Lin, L., Zhang, X.: PPVerifier: a privacy-preserving and verifi-

able federated learning method in cloud-edge collaborative

computing environment. IEEE Internet Things J. (2022)

36. Zhao, J., Zhu, H., Wang, F., Lu, R., Liu, Z., Li, H.: PVD-FL: a

privacy-preserving and verifiable decentralized federated learning

framework. IEEE Trans. Inf. Forensics Secur. 17, 2059–2073

(2022)

37. Wang, Y., Zhang, A., Wu, S., Yu, S.: Vosa: verifiable and

oblivious secure aggregation for privacy-preserving federated

learning. IEEE Trans. Depend. Secure Comput. (2022)

38. Ren, Y., Li, Y., Feng, G., Zhang, X.: Privacy-enhanced and

verification-traceable aggregation for federated learning. IEEE

Internet Things J. 9(24), 24933–24948 (2022)

Cluster Computing

123

http://arxiv.org/abs/1610.05492
https://doi.org/10.1109/TIFS.2022.3174394
https://doi.org/10.1109/TIFS.2022.3174394
https://doi.org/10.1109/TIFS.2017.2787987
http://arxiv.org/abs/2202.08310

39. Peng, Z., Xu, J., Chu, X., Gao, S., Yao, Y., Gu, R., Tang, Y.:

VFChain: enabling verifiable and auditable federated learning via

blockchain systems. IEEE Trans. Netw. Sci. Eng. 9(1), 173–186

(2021)

40. Guo, X., Liu, Z., Li, J., Gao, J., Hou, B., Dong, C., Baker, T.:

VeriFL: communication-efficient and fast verifiable aggregation

for federated learning. IEEE Trans. Inf. Forensics Secur. 16,

1736–1751 (2020)

41. Xu, Y., Peng, C., Tan, W., Tian, Y., Ma, M., Niu, K.: Non-

interactive verifiable privacy-preserving federated learning.

Future Gener. Comput. Syst. 128, 365–380 (2022)

42. Shamir, A.: How to share a secret. Commun. ACM 22(11),

612–613 (1979)

43. Qin, B., Chen, Y., Huang, Q., Liu, X., Zheng, D.: Public-key

authenticated encryption with keyword search revisited: security

model and constructions. Inf. Sci. 516, 515–528 (2020)

44. Blake-Wilson, S., Johnson, D., Menezes, A.: Key agreement

protocols and their security analysis. Lect. Notes Comput. Sci.

1355, 30–45 (1997)

45. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of

features from tiny images (2009)

46. Deng, L.: The mnist database of handwritten digit images for

machine learning research [best of the web]. IEEE Signal Pro-

cess. Mag. 29(6), 141–142 (2012). https://doi.org/10.1109/MSP.

2012.2211477

47. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas,

B.A.: Communication-efficient learning of deep networks from

decentralized data. In: Artificial Intelligence and Statistics,

pp. 1273–1282. PMLR (2017)

48. Gardner, M.W., Dorling, S.: Artificial neural networks (the

multilayer perceptron)-a review of applications in the atmo-

spheric sciences. Atmos. Environ. 32(14–15), 2627–2636 (1998)

49. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classifica-

tion with deep convolutional neural networks. Adv. Neural Inf.

Process. Syst. 25 (2012)

50. Menegatti, D., Giuseppi, A., Manfredi, S., Pietrabissa, A.: A

discrete-time multi-hop consensus protocol for decentralized

federated learning. IEEE Access (2023)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Qun Zhou received the B.S.

degrees from the college of

Computer Science and Tech-

nology, Qingdao University,

China, in 2021. He is currently

pursuing the M.S. degree in

Computer Technology of the

College of Computer Science

and Technology at Qingdao

University. His research inter-

ests include privacy protection

and federated learning.

Wenting Shen received Ph. D.

degree in School of Mathemat-

ics from Shandong University,

in 2020. She is currently an

associate professor of the Col-

lege of Computer Science and

Technology at Qingdao

University. She has published

several research papers in ref-

ereed international journals

including IEEE Transactions on

Information Forensics and

Security and IEEE Transactions

on Dependable and Secure

Computing. Her research inter-

ests include cloud computing security, privacy computing and big

data security.

Cluster Computing

123

https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.1109/MSP.2012.2211477

	PPFLV: privacy-preserving federated learning with verifiability
	Abstract
	Introduction
	Related work
	System model and threat model
	System model
	Threat model

	Preliminaries
	Shamir’s secret sharing
	Authenticated encryption
	Key agreement

	The proposed scheme
	Overview
	Description of the proposed scheme

	Security analysis
	Performance evaluation
	Classification accuracy
	Computation overhead
	Communication overhead

	Conclusion
	Author contributions
	Data availability
	References

