
Fault-tolerant allocation of deadline-constrained tasks through
preemptive migration in heterogeneous cloud environments

Medha Kirti1 • Ashish Kumar Maurya1 • Rama Shankar Yadav1

Received: 19 October 2023 / Revised: 9 April 2024 / Accepted: 26 April 2024 / Published online: 27 May 2024
� The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
In recent years, the occurrence of task failures are becoming prevalent in cloud computing due to various factors such as

the increasing complexity of cloud environments, heterogeneity of resources, resource limitations and inadequate allo-

cation. Task failure due to insufficient allocation poses a significant challenge in cloud computing. When tasks are not

allocated effectively, they may not be completed within their deadlines which ultimately leads to failure. Hence, effective

allocation strategies combined with appropriate fault tolerance measures are vital for addressing these challenges and

mitigating the risk of task failures. This paper proposes a fault-tolerant task allocation algorithm (FTTA) for independent

tasks with deadline through preemptive migration in heterogeneous cloud environments to reduce task failure. The

proposed algorithm involves three phases: the initial phase decides the priority of tasks in the ready list to minimize the

execution time and meet task deadlines, the second phase includes the selection of a suitable virtual machine with

minimum execution time and the last phase assigns task on available or non-available (which may available in future)

virtual machines to find the best execution time within the deadline limit. During the task allocation process, the algorithm

adopts fault-tolerant strategy that includes preemptive migration if necessary which allows the migration of tasks to

identify the best suitable virtual machine. An analysis of the proposed algorithm reveals that the overall time complexity is

Oðn log nþ nm2Þ where n is the number of tasks and m is the number of virtual machines. Further, the performance of the

algorithm is evaluated for different sets of tasks (small to large) while varying the number of virtual machines. The

experimental results demonstrate that FTTA outperforms First Come First Served (FCFS), Priority based algorithm,

Shortest Job First (SJF), Dynamic Maximum Minimum (Dy max min) and RADL algorithms in terms of number of

rejected tasks, makespan, speedup and efficiency.

Keywords Task allocation � Task failure � Fault tolerance � Preemptive migration � Cloud computing

1 Introduction

Cloud computing has become exceptionally popular and in

high demand because of its services like higher scalability,

higher availability, accessibility, cost efficiency and rapid

deployment of resources [1]. Cloud computing provides

services in two primary forms: software applications and

hardware infrastructure. These services are offered through

a pricing model where users pay based on their actual

usage and are accessible over the Internet [2]. Cloud pro-

vides three different services, such as Infrastructure as a

Service (IaaS), Platform as a service (PaaS), and Software

as a Service (SaaS) [3] as shown in Fig. 1. IaaS provides all

the infrastructure services like storage, servers, processing

power, etc. PaaS offers a development environment to

cloud users for deploying and managing applications, while

SaaS provides software to the cloud user that can be used

directly from the cloud. Cloud users can demand resources

from the cloud service provider at any time [4]. The cloud

provider assesses these requests and selects the best

& Ashish Kumar Maurya

ashishmaurya@mnnit.ac.in

Medha Kirti

medha.2020rcs10@mnnit.ac.in

Rama Shankar Yadav

rsy@mnnit.ac.in

1 Department of Computer Science and Engineering, Motilal

Nehru National Institute of Technology Allahabad,

Prayagraj 211004, India

123

Cluster Computing (2024) 27:11427–11454
https://doi.org/10.1007/s10586-024-04538-9(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-024-04538-9&domain=pdf
https://doi.org/10.1007/s10586-024-04538-9

resource that fulfills the user’s predetermined deadline and

other constraints. The user then effortlessly receives the

desired on-demand services from the cloud resource broker

[5].

In order to meet the requirements of cloud users, the

service provider introduces various methods including task

allocation, fault tolerance, resource monitoring, load bal-

ancing etc. in cloud computing. These methods are essen-

tial for efficient utilization of resources in cloud

computing, which offers multiple advantages such as

increased scalability, cost-efficiency, and flexibility.

As the number of cloud users continues to grow steadily,

the volume of tasks is experiencing exponential growth

while the number of available virtual machines (VMs)

remains constant. One of the main problems in cloud

computing is allocation of such a huge number of tasks

with varying lengths and deadlines among virtual machines

with different computation power. Inefficient allocation

may lead to task failure which minimizes the overall per-

formance of the system. Hence, task failure is one of the

significant challenges in meeting the requirements of cloud

users. Task failure occurs in the system due to several

reasons, such as hardware or software issues, resource

constraints, poor allocation, network problems, or even due

to the failure of the cloud provider’s infrastructure. Effi-

ciently allocating tasks is a key strategy for mitigating task

failure in cloud computing environments. Task allocation is

the process of assigning deadline-based tasks to suit-

able virtual machines (VMs) based on their respective

deadlines within a given set of VMs [6, 7]. The goal of task

allocation is to improve the performance of the system,

typically measured in terms of makespan, speedup, and

other relevant metrics. When tasks are not assigned to

appropriate resources or not scheduled efficiently, it can

lead to various issues, such as resource contention, missed

deadlines, task starvation, insufficient resource utilization,

etc., leading to the failure of deadline constrained tasks.

Hence, an efficient fault tolerant task allocation strategy is

required to allocate maximum tasks to the virtual machine

[8]. Ensuring fault tolerance of tasks in a cloud environ-

ment is another challenge that cloud service providers and

users must address to maintain cloud service performance

[9]. Fault tolerance allows the system to persist in its

functionality even in the presence of failures or errors. It

guarantees that services and applications are accessible and

dependable even in the presence of partial failure in cloud

computing. Fault tolerance in cloud computing can be

achieved using various strategies such as reactive, proac-

tive, and adaptive approaches [10]. Reactive approaches

are based on conventional fault tolerance approaches in

cloud computing. It includes replication, checkpointing,

retry, message logging, task resubmission, etc. Proactive

approaches reduce the chances of system failure by pre-

dicting the failure in advance. software rejuvenation, self-

healing, preemptive migration, load balancing, prediction

and monitoring come under proactive approach. The

adaptive approach includes machine learning and fault

induction which are like proactive approaches except their

ability to learn and adapt. The system learns and adapts the

changes based on artificial intelligence and machine

learning in adaptive approach.

In this paper, we consider preemptive migration to

provide fault tolerance while allocating tasks to suit-

able virtual machines. Preemptive migration is a proactive

task allocation strategy in cloud computing. It mitigates

potential issues, such as resource constraints and task

failures, by relocating tasks from one virtual machine (VM)

or computing resource to another before any failures occur.

By relocating tasks from VMs, preemptive migration

enhances fault tolerance and minimizes the risk of task

failures in task allocation process. Various scheduling

algorithms have been developed in the literature for task

allocation in cloud computing environments. These include

traditional approaches like First Come First Served (FCFS)

[11], Priority based algorithm [12], Shortest Job First (SJF)

[13], Dynamic Maximum Minimum (Dy max min) algo-

rithm [14] etc. However, these conventional algorithms

exhibit certain limitations, such as inefficient utilization of

resources, high task rejection, longer makespan, etc. which

hinder their overall performance. To address these limita-

tions, there is a need of an efficient fault tolerant task

allocation approach which efficiently utilizes the resources,

Fig. 1 Cloud service model

11428 Cluster Computing (2024) 27:11427–11454

123

reduces makespan, minimizes number of rejected tasks,

improves speedup, efficiency and enhances overall per-

formance. Hence, we propose a fault tolerant task alloca-

tion algorithm for heterogeneous cloud computing that

minimizes task failure. The proposed algorithm combined

task allocation with a proactive fault tolerance strategy i.e.,

preemptive migration. The algorithm allows tasks to be

allocated on available and non-available virtual machines.

The primary objectives are to minimize task rejections,

reduce makespan [15], and enhance speedup and effi-

ciency. The performance of the proposed task allocation

approach is evaluated based on some existing task alloca-

tion algorithms such as FCFS, SJF, Priority-based, Dy max

min and RADL [16] algorithms. Contribution of paper

includes:

1. We propose a novel fault-tolerant task allocation

algorithm for deadline constrained tasks in a hetero-

geneous cloud environment. It uses a proactive fault

tolerant approach i.e., preemptive migration which

migrates tasks from one virtual machine to another to

reduce the number of rejected tasks.

2. The proposed algorithm allocates tasks to available and

non-available virtual machines, which minimizes the

number of rejected tasks, makespan, and enhances

speedup and efficiency. It uses preemptive migration

for allocating maximum tasks to virtual machines.

3. We demonstrate the working of the proposed algorithm

for task allocation through illustrative examples.

4. We analyze the time complexity and perform simula-

tions to evaluate the effectiveness of the proposed

algorithm for different sets of tasks while varying

virtual machines.

5. We evaluate the FTTA performance with state-of-the-

art algorithms such as FCFS, SJF, Priority, Dy max

min and RADL algorithms in terms of rejected task,

makespan, speedup and efficiency. The proposed

algorithm shows an improved performance as com-

pared to state-of-the-art algorithms.

The rest of the paper is organized as follows: Sect. 2 dis-

cusses the existing work of the task allocation algorithms.

Section 3 presents the system model, application model

and formulation of the problem. Section 4 shows the pro-

posed task allocation algorithm, time complexity analysis

and an illustrative example. Section 5 provides simulation

results and analysis of the proposed algorithm. Section 6

provides the conclusion of the paper along with future

works.

2 Related work

This section presents a literature review of deadline con-

strained task allocation algorithms. Various algorithms

have been introduced in the existing literature to provide

the solution of task allocation to a suitable virtual machine

with minimum task rejection and makespan in heteroge-

neous cloud computing. Each of these algorithms has its

advantages and disadvantages. In this context, we delve

into several task scheduling methods [17–23] associated

with deadline-based task scheduling within the domain of

cloud computing.

Nayak et al. [18] presented a scheduling algorithm based

on backfilling concept for deadline sensitive tasks to reduce

the task rejection in cloud computing. The algorithm

schedules tasks based on their arrival time, start time and

deadline. The proposed algorithm in this work tried to

resolve the conflict of existing backfilling algorithm.

Dubey et al. [19] discussed a hybrid task scheduling

algorithm based on chemical reaction optimization and

PSO to minimize the makespan and average execution

time. The algorithm works in two phases. In the first phase,

modified chemical reaction optimization is used, while

modified partial swarm optimization maps tasks on virtual

machines. In [24], authors presented a task scheduling

algorithm for deadline based tasks in two phases. In the

first phase, a global scheduling technique, i.e., Enhanced

Ant Colony Optimization is introduced, which allocates the

cloud task to the appropriate VM. In the later phase, cloud

tasks are rearranged in the waiting queue of the virtual

machine to enhance the completion rate. The authors in

[25] discussed allocation algorithm which allocates dead-

line constrained independent tasks to resources at runtime

in cloud. The algorithm schedules the tasks to the virtual

machine with minimum competition time. The completion

time of virtual machine in the proposed algorithm is

computed based on execution time of current tasks and

previous load assigned. Zhang et al. [26] proposed a

deadline constrained allocation algorithm to reduce the

finish time of tasks. It introduced working in two steps i.e.,

deciding the priority of parallel tasks and mapping virtual

machine based on relative distance. The priority of parallel

tasks is calculated using downward rank and max slack

values. Kumar et al. [27] discussed a deadline constrained

dynamic task scheduling algorithm with elasticity property

to minimize the makespan time. Authors in this work

discussed three algorithms for task sorting, task allocation

to VMs and load balancing. The task sorting algorithm

sorts the tasks based on deadline value. The sorting of tasks

Cluster Computing (2024) 27:11427–11454 11429

123

is done on the basis of shorter deadline values. In task

scheduling, the highest priority tasks are scheduled on a

virtual machine with minimum execution time and dead-

line constraints. The authors also gave the concept of

elasticity for the tasks which do not meet the deadline. In

[28], authors proposed a task scheduling algorithm based

on the deadline and budget to reduce the execution time

and cost of executed tasks. The algorithm works in two

levels for mapping the tasks to suitable resources. The first

level infers the type of task constraint and based on the

type; tasks are assigned to suitable clusters. In the second

level, the algorithm finds the requirement of tasks based on

task attributes defined in the paper. Nabi and Ahmed in

[29] discussed a deadline based task scheduling algorithm

using modified PSO to enhance resource utilization and

reduce task rejection. The algorithm optimizes the perfor-

mance by meeting the deadline and minimizes the execu-

tion time. The performance results show that the algorithm

outperforms existing task scheduling algorithms for uti-

lization of resources, makespan, response time of tasks,

meeting deadline, and total cost of execution. In [30], the

authors evaluated performance of different scheduling

algorithms for deadline constrained tasks in cloud com-

puting. The authors concluded that chicken swarm opti-

mization outperforms other algorithm on Montage and

CyberShake workflows. Sahoo et al. [31] discussed dead-

line based task scheduling as a bi-objective minimization

problem to reduce the makespan. The authors introduced a

Scheduling algorithm based on LA (LAS) for solving the

bi-objective minimization problem. This algorithm incor-

porates reinforcement learning to determine the allocation

of tasks to VMs. Authors in [32] discussed an approach for

allocating independent tasks having deadline constraints to

VMs. The approach uses an optimization method to map

tasks efficiently. The authors introduced two methods of

allocation i.e., Linear Weighted Sum technique and Ant

colony. The proposed approach minimizes task rejection

and makespan. Nabi et al.[16] proposed a dynamic dead-

line aware task scheduling algorithm to minimize the

makespan and task rejection. This algorithm schedules the

task according to the minimum finish time for the task. The

completion time considered here includes the execution

time of tasks and the current load on the VMs. The tasks

are scheduled if they satisfy the deadline constraints. The

authors discovered that this algorithm cannot facilitate

workflow-based dynamic task scheduling.

Fault tolerant task allocation is widley used nowadays to

minimize the task failures. Various fault tolerance strate-

gies have been proposed for task allocation such as repli-

cation, resubmission, checkpointing prediction etc. The

authors in [33] discussed a fault tolerant scheduling

approach which maps tasks to virtual machine within

deadline even in the presence of failure. The authors have

introduced two approach such that replication and resub-

mission to ensure fault tolerance while mapping tasks.

Replication maintains several backups of tasks and resub-

mission re allocates the tasks to different virtual machine

when fault occurs. The authors in [34] proposed fault tol-

erant task allocation algorithm using genetic algorithm.

The algorithm schedules tasks to virtual machine in three

phases including virtual machine selection phase, local

phase and global phase. The proposed algorithm again

finds the optimal virtual machine in case of failure and

allocates the scheduled tasks to another suitable VM. Malik

et al. [35] discussed a task scheduling algorithm based on

grey wolf algorithm and ant lion. The algorithm provides

tolerance against host failure during task processing time

using lively standby replication. To address host failures,

the checkpoint strategy is employed as a rollback mecha-

nism. Xu et al. [36] proposed best fit decreasing algorithm

for task allocation based on greedy approach. The algo-

rithm assumes that all failures are independent and handles

only failure in cloud datacentre. Authors in [37] proposed a

proactive fault tolerant approach for task allocation. The

proposed approach includes two stages including task

prediction and task allocation. In the first stage, tasks are

classified into failure prone and non-failure prone tasks

based on prediction model. In later phase, the failure and

non-failure prone tasks are scheduled separately. The fault

tolerance is provided using replication strategy. Authors in

[38] discussed allocating independent tasks on heteroge-

neous and distributed resources in cloud environments. The

authors introduced a population-based approach based on

an enhanced differential evolution algorithm to assign tasks

in suitable virtual machines. The authors in [39] discussed

the task allocation approach in two stages. In the first stage,

the tasks are prioritized based on the arrival time and

allocated on the idle virtual machines. The failed tasks are

detected and rescheduled in the second stage based on the

proposed fault tolerance strategies. The authors concluded

that the proposed approach is effective and provides a

better solution to workload issues in cloud computing.

Nanjappan et al. [40] introduced an algorithm for allocat-

ing tasks to VMs and ensuring the balanced utilization of

each VM. The proposed approach first categorizes virtual

machine into underloaded, balanced and overloaded. To

reduce the probability of task failure, higher priority tasks

are preempted from the overloaded VMs and checkpoint-

ing is used to save the current state. In the algorithm,

lightweight tasks are allocated to virtual machines with

high CPU utilization, whereas other tasks are given to low

CPU utilization.

Li et al. [2] discussed a fault tolerant algorithm for

scheduling deadline based tasks to virtual machine to

minimize the cost and ensure reliability. The algorithm

works in two stages including fault tolerant allocation of

11430 Cluster Computing (2024) 27:11427–11454

123

tasks and virtual machine adjustment. Fault tolerance in the

algorithm is incorporated using primary backup replication

technique. Authors in [41] discussed a comprehensive

cloud architecture designed to efficiently handle failures

both before and after their occurrence. This architecture

integrates various fault tolerance strategies, including fault

prediction, migrations, virtual machine management, and

load balancing. To further enhance fault tolerance, the

authors implemented a prediction-based load balancing

approach. This approach utilizes a heuristic model that

incorporates restore techniques and checkpoints, supported

by a statistical model that predicts the optimal checkpoint

interval and monitors price fluctuations for efficient

resource allocation. Sheikh et al. [42] discussed a fault

tolerant model for resource allocation for tasks in grid

environment. The tasks are allocated to the resources

having least execution time and least workload history.

Authors in [43] presennted a scheduling and checkpointing

algorithm for tolerating Byzantine faults. This algorithm

efficiently detects failed virtual machines and initiates task

migration to another operational virtual machines. The

algorithm also initiates migration of entire batch of tasks

that comprise the job to minimize the overhead. Saidi and

Bardou [44] discussed a state-of-the-art literature on

resource allocation in cloud computing. The paper focussed

challenges of resource allocation, especially task schedul-

ing and virtual machine placement. The paper also identify

the factors influencing energy consumption in resource

allocation (RA) and investigate potential optimization

strategies. Authors in [40] proposed a task scheduling

algorithm aims to optimize fault tolerance, response time,

efficiency, and makespan. The algorithm enhances fault

tolerance capability by assigning tasks to suitable resources

according to peak resource loads. The algorithm assigns the

lightweight tasks to the resources with high CPU utilization

and the computation-intensive tasks to the resources with

low CPU utilization. Haidri et al. [45] introduced a recei-

ver-initiated, deadline-aware load balancing strategy which

aimed at migrating incoming cloudlets to suitable virtual

machines (VMs) that can meet their deadlines. The strategy

optimizes turnaround time by utilizing the remaining pro-

cessing capacities of VMs. Yao et al. [46] presented a fault

tolerant scheduling algorithm of deadline constrained

independent tasks. The algorithm provides fault tolerance

based on replication and resubmission to enhance the

resource utilization. The proposed algorithm consists of

two phases including scheduling and resource provision-

ing. The first phase allocates tasks to suitable resources

based on deadline while later phase adjusts the resource

accordingly.

In the literature, various algorithms have been discussed

for task allocation of independent tasks with deadline. The

literature also includes fault tolerant allocation of tasks in

cloud computing. These algorithms are evaluated based on

various metrics, including the number of rejected tasks,

makespan, speedup, efficiency, throughput, and resource

utilization. We can observe that most allocation algorithms

experience challenges such as an increase in the number of

rejected tasks, a longer makespan, fault tolerance. Very few

research have been explored on fault tolerance using pre-

emptive migration. Furthermore, none of the existing

algorithms considered all the parameters like number of

rejected tasks, makespan, speedup and efficiency simulta-

neously for performance evaluation. Our approach intro-

duced a fault tolerant alllocation of tasks using preemptive

migration, including all the performance metrics to evalu-

ate overall performance. Table 1 presents a summary of

various contributions made by the authors, along with the

problems they have addressed.

3 System model and problem definition

This section includes system model and defines the task

allocation problem. Table 2 presents basic notations and

their respective definitions that have been used in the

proposed task allocation algorithm.

3.1 Cloud computing model

A cloud computing model consists of a cloud broker and

cloud provider. Whenever a user submits a request, the

broker processes tasks, including task prioritization,

resource allocation, scheduling and submits the request to

the nearest datacenter in the cloud provider. A cloud dat-

acenter consists of a finite number of hosts and each cloud

host includes m number of heterogeneous virtual machines

VM = (VM1, VM2,.....VMm). The virtual machines are

heterogeneous in terms of processing speed, execution time

and computational capabilities. The computational power

of the virtual machine is represented in MIPS (Million

Instruction Per Second). The communication latency in the

virtual machine is considered negligible. Since all tasks are

scheduled in the same data center, there is no need for

virtual machine communication. It is considered that ini-

tially, tasks are allocated to virtual machines based on the

earliest ready time. Figure 2 illustrates the cloud comput-

ing model, in which users submit tasks to a cloud broker.

Cloud broker acts as an intermediate between cloud users

and cloud service providers. When the cloud broker gets

these tasks, it analyzes the constraints and requirements of

tasks regarding allocation, resource utilization etc. The

cloud broker then communicates with the cloud provider to

execute the tasks on the appropriate virtual machines.

Cluster Computing (2024) 27:11427–11454 11431

123

Table 1 Summary of existing works

References Contributions Pros Cons

[18] � Scheduling problem based on maximizing the

task acceptance ratio and minimizing the task

rejection ratio

Improved lease acceptance ratio Limited no of virtual machines and

leases, with no consideration given

to the switching cost of the VM

[19] � Hybrid task scheduling algorithm aimed at

addressing multi-objective optimization

objectives, including minimizing computation

cost, makespan time, average execution time,

and energy consumption

The algorithm generates optimal

solutions in lesser execution time,

cost, and makespan

Not considered, task rejection ratio,

load balancing, and turnaround time

parameters as performance

evaluation

[24] � Ant Colony Optimization approach

incorporating deadline constraints to achieve a

near-optimal task scheduling scheme that

balances energy consumption and task

completion rates

Reduced makespan and energy

consumption

Inconsistent results

[25] � The proposed approach minimizes the load

imbalance issue, support deadline-based tasks,

and improve the overall Cloud performance

Enhance load balancing, and improve

the overall performance gain

Task rejection can be reduced

[26] � Introduced efficient priority and relative

distance algorithm designed to minimize task

scheduling duration for precedence-

constrained workflow applications while

ensuring compliance with end-to-end deadline

constraints

Minimizes makespan Lacks optimal resource utilization or

workload balance

[27] � A scheduling algorithm has been devised

leveraging the concept of the last optimal

k-interval, which ensures workload balance

across all virtual machines through elastic

resource provisioning and deprovisioning

Provides better elasticity and reduce

the rejection ratio of task in

comparison to FCFS, SJF and min-

min algorithms

Some important QoS parameters are

not considered like the cost for

ensuring the high priority requests

[28] � The paper presents the deadline budget

scheduling model, where users submit their

tasks along with associated budgets and

deadlines to the data centres

Minimizes makespan and monetary

costs

Not considered parameter like number

of rejected tasks for performance

evaluation

[29] � An enhanced and adaptive dynamic load-

balancing scheduler for non-preemptive,

independent, and compute-intensive tasks in

the cloud workload is proposed which aims to

achieve lower task execution times, improved

resource utilization, reduced task rejection,

and minimized response times

Minimizes makespan, resource

utilization, task response time

Simulated on limited number of hosts

and vms

[30] � This paper assessed the effectiveness of four

algorithms, two are heuristic algorithms-

ICPCP and SCS-while the other two are meta-

heuristic algorithms-PSO and CSO in cloud

computing environments

Compared heuristic and meta heuristic

scheduling algorithms

Very limited research

[31] � Introduced a scheduling algorithm based on

learning automata for tasks with time

constraints in cloud environments

Minimize energy consumption and

makespan

Rejection ration of tasks can be

minimized

[32] � Introduced two methods that prioritize energy

efficiency and makespan optimization when

scheduling independent tasks with deadlines

in the Cloud

Reduces energy consumption,

Improves scheduling success

Not considered QoS-aware scheduling

for workflow applications

[33] � Introduced a fault-tolerant mechanism that

strategically and dynamically selects between

traditional resubmission and replication

schemes

Achieves both fault tolerance and

resource utilization efficiency

Static threshold Load imbalance

Accuracy can be improved

[34] � The proposed method utilizes the fundamental

principles of Genetic Algorithms for optimal

scheduling of VMs and tasks based on multi-

user requirements

Efficient energy consumption, cost,

utilization, execution time

Load imbalance

11432 Cluster Computing (2024) 27:11427–11454

123

Table 1 (continued)

References Contributions Pros Cons

[35] � Introduced scheduling algorithm along with a

lively standby replication (LSR) strategy, has

been proposed to enhance the cloud

computing paradigm

High throughput Less makespan Chances of false prediction

[36] � Introduced a heuristic algorithm, known as the

Greedy-based Best Fault Tolerance (FT)

Decreasing Scheduling Algorithm to meet

users’ Quality of Service (QoS) requirements

Fault tolerant scheduling In multiple

geographical Regions

Possibility that VM requests fail will

increase greatly

[37] � Initially, a machine learning-based prediction

model is trained to categorize incoming tasks

as either ‘‘failure-prone’’ or ‘‘non-failure-

prone’’ based on the predicted failure rate.

Subsequently, two effective scheduling

strategies are introduced to assign these task

types to the most suitable hosts

Achieves better fault tolerance and

reduces total energy consumption

better than the existing schemes

Chances of inaccurate prediction

result

[38] � A population-based method is suggested to

assign tasks to appropriate resources, aiming

to minimize the overall time cost and

minimizes makespan

Better performance in terms of

makespan, convergence, and load

balance

Experimented with limited number of

tasks

[39] � Designed a fault-tolerant mechanism to

reschedule tasks upon the detection of task

failure

Fault tolerant scheduling, Better

performance

The accuracy and reliability of fault

detection mechanisms may vary

depending on the complexity of the

system

[40] � Introduced a hybrid firebug and Tunicate

Optimization (HFTO) algorithm for task

scheduling and load balancing in the cloud

Higher load balancing efficiency and

improved cloud task scheduling

performance

Overhead of cpu utilization

computation

[41] � Implemented a prediction-based load

balancing approach. This strategy integrates a

heuristic model featuring restore techniques

and checkpoints, complemented by a

statistical model

Reduces the execution time No fault masking

[42] � Introduced a fault-tolerant model for

allocating resources to tasks within a grid

environment

Better performance Work can be further evaluated by real

experiments in the dynamic grid

environment

[43] � Introduced an algorithm which identifies

failed virtual machines and triggers the

migration of tasks to other operational virtual

machines

reduces fault tolerance overhead

exponentially

Results can be improved by

integrating fault detection with fault

tolerance

[44] � The main aim of this study is to review the

current literature to gain understanding into

the existing methods, strategies, and

algorithms utilized for task scheduling and

virtual machine (VM) placement

Review of Task scheduling and VM

placement to resource allocation

Limited collection from 2016 to 2023

[45] � The algorithm focuses on migrating incoming

cloudlets to appropriate virtual machines

(VMs) capable of meeting their deadlines

Better performance Migration overhead

[46] � The algorithm integrates fault tolerance

through replication and resubmission

strategies to improve resource utilization. It

comprises two main phases: scheduling and

resource provisioning

High resource utilization Performance degradation of VMs due

to migration

Cluster Computing (2024) 27:11427–11454 11433

123

3.2 Application model

In this work, we represent the application model using n �
m cost computation matrix where n is total number of

application tasks i.e., T= (T1, T2.......,Tn) having different

execution time on m number of virtual machines VM =

(VM1, VM2,.....VMm). Each task is considered independent,

non-preemptive and deadline constrained. The number of

tasks is considered more than the number of virtual

machines (n � m). Tasks are ordered according to their

arrival time. It is assumed that only one task is allowed to

run on the available virtual machine at a particular time.

Each task is prioritized based on criteria such as execution

time and deadline. The deadline of the tasks are

represented by DTi for task Ti; 1 � i\n. For allocation of

tasks on virtual machines, tasks must meet the deadline.

Each task is quantified in terms of its computational

complexity, measured in Million Instructions (MI). The

execution time [31] ETðTi;VMjÞ for task Ti on virtual

machine VMj with computation power in Million Instruc-

tions per Second (MIPS) is computed using Eq. 1.

ETðTi;VMjÞ ¼
LTi
CPj

ð1Þ

where, LTi represents the length of task Ti, measured in

million instructions (MI), while CPj corresponds to the

computation cost of virtual machine VMj, measured in

million instructions per second (MIPS). The cost compu-

tation matrix calculates the execution time for tasks based

on Eq. 1. For example, consider a cost computation matrix

with 11 tasks and three virtual machines. The length of task

T0 is assumed to be 1200 MI and the computation power of

virtual machines VM1, VM2, VM3 are 600, 300 and 400

respectively. The execution time of each task is computed

Fig. 2 Cloud computing model

Table 3 Cost computation

matrix of tasks on each virtual

machine

Tasks VM1 VM2 VM3

T0 2 4 3

T1 4 3 5

T2 12 7 8

T3 10 9 11

T4 3 2 4

T5 7 8 9

T6 2 7 3

T7 4 3 5

T8 8 12 7

T9 7 15 8

T10 5 4 6

Table 2 Notations and their meaning

Notations Description

n Number of tasks

m Number of virtual machines

Ti and VMj ith task and jth virtual machine

LTi Length of task Ti

CPj Computation power of virtual machine VMj

DTi Deadline of task Ti

PTi Priority of task Ti

RTi Rank of task Ti

ETi Average execution time of task Ti

ET(Ti, VMj) Execution time of task Ti on VMj

T list List of tasks

VM list Virtual machines list

ready list Sorted list of tasks after priority assignment

VM listj List of jth virtual machine

Tlj Last task assigned on VMj

DTðTljÞ Deadline of last task assigned on VMj

RJi Rejected list of task Ti

11434 Cluster Computing (2024) 27:11427–11454

123

in the cost computation matrix as shown in Table 3 using

Eq. 1.

3.3 Problem formulation

In this subsection, we present some definitions that attri-

bute characteristics to deadline constrained task allocation.

Subsequently, we articulate the problem of task allocation.

Definition 1 (Average execution time: ETi). It is com-

puted by taking the mean of the execution time of tasks on

each virtual machine. Average execution time of task Ti on

virtual machine VMj is defined using Eq. 2.

ETi ¼
1

m
�
Xm

j¼1

ETðTi;VMjÞ ð2Þ

Definition 2 (Actual Completion Time: ACTi) It is defined

as the finish time of the last task Ti completed by some

assigned virtual machine.

Definition 3 (Rank) The rank of a task is a parameter that

signifies its relative priority in a ready list. A lower rank

implies higher priority or an earlier execution order.

Definition 4 (Deadline: DTi) Deadline for task Ti is

defined as the time constraint that determines when a

particular task should finish.

Further, our problem can be formulated as follows.

Considering a set of n independent tasks T =(T1,

T2.......,Tn) in a cloud system arriving at time 0 and m

heterogeneous virtual machines VM = (VM1,

VM2,.....VMm). Each task Ti has a set of attributes such as Ti
2 \LTi;DTi [where LTi denotes the length of task Ti
and DTi represents the task’s deadline where (i 2 1,...,n).

We compute the execution time of tasks based on the

varying computation power of virtual machines. Our aim is

to map maximum tasks to virtual machines while meeting

deadline constraint of tasks and ensuring fault tolerance.

We consider three task allocation aspects: task priority

computation, virtual machine selection and task allocation.

The main objective of the proposed work is to allocate

independent tasks to minimize the makespan and number

of rejected tasks while achieving the deadline for accept-

able VMs in the data center.

4 Proposed approach for task allocation

In this section, we propose a fault tolerant task allocation

algorithm, i.e., FTTA for independent tasks with deadline

in a heterogeneous cloud environment. The proposed

approach is shown in Algorithm 1. The main purpose of

our algorithm is to allocate tasks on available virtual

machines based on minimum execution time in cloud

computing. Literature study shows that the conventional

task allocation algorithms encounter certain limitations,

including issues with resource utilization, high number of

task rejections, extended makespan, and reduced effi-

ciency. Additionally, many of these algorithms rely on

factors like minimum execution time or arrival time to

determine task priority, which leads to a higher chance of

missing deadlines. One such algorithm, i.e., RADL [16],

presents a task allocation algorithm that focuses on load-

balancing resource utilization but does not consider task

prioritization and fault tolerance, resulting in an increased

number of rejected tasks. Our work extends the idea of

RADL for the allocation of tasks. It prioritizes the tasks

based on deadline and average execution time, which

minimizes the number of rejected tasks and improves

efficiency. The algorithm also provides fault tolerance

using preemptive migration by reallocating tasks from

available to non-available virtual machines and also uses

preemptive migration to minimize the number of rejected

tasks. The initial step of the algorithm involves sorting

tasks in the ready list based on computed priority. The

algorithm allocates maximum tasks to the available or non-

available virtual machines (VMs) at each step. The pro-

posed approach for task allocation of deadline constrained

tasks is a three-phase algorithm. The first phase is the task

prioritizing phase, which computes the priority of tasks.

After priority computation, tasks are arranged in the ready

list in a non-decreasing order of priority value. In the

second phase, the algorithm finds the available and non

available virtual machines for each task with minimum

execution time as mentioned in Algorithm 2. FTTA also

tries to adjust the incoming task in the buffer time of the

last task of a particular virtual machine. In the last phase,

after finding a suitable virtual machine with minimum

execution time, the algorithm assigns a task to that virtual

machine. The algorithm tries to find an efficient solution

for solving the deadline-constrained task allocation prob-

lem, minimizing the number of rejected tasks. Overall, the

algorithm attempts to minimize rejected tasks, makespan

and enhances efficiency. An overview of the proposed

algorithm is given using the flowchart shown in Fig. 3.

FTTA has the following characteristics:

• In instances where a task remains unallocated to any

available virtual machine during the current step of the

algorithm, it tries to migrate the task from a non-

available VM to make it available using preemptive

migration, which minimizes the makespan and number

of rejected tasks.

Cluster Computing (2024) 27:11427–11454 11435

123

• The algorithm endeavors to optimize task allocation by

accommodating tasks within the buffer time of virtual

machines, thereby minimizing task rejection.

• It tries to allocate maximum tasks to the available as

well as non-available VMs. The algorithm makes non

available VM available by adjusting the allocated task

of non available VM in order to reduce task fail-

ure.FTTA Algorithm

The following sections present key concepts essential for

understanding our proposed algorithm. The first subsection

illustrates task prioritization, while the second and the third

subsections discuss the virtual machine selection and task

allocation process in FTTA. We also provide the

Fig. 3 Flowchart of the proposed task allocation algorithm

11436 Cluster Computing (2024) 27:11427–11454

123

complexity analysis of our proposed algorithm in the fol-

lowing section. To further illustrate the functionality of

FTTA, we demonstrate the working of FTTA with an

illustrative example in the next section.

4.1 Task prioritizing phase

In this phase, we have computed the priority of a given

task. For priority calculation, first ETi for each task is

computed based on 2. In this phase, priorities of all tasks

are computed based on the difference between predefined

deadlines and the average execution time of tasks com-

puted on virtual machines, which is defined using Eq. 3.

PTi ¼ DTi � ETi; 1� i\n ð3Þ

Priority computation is done to ensure critical tasks i.e.,

tasks with shorter deadline are performed first so that fewer

tasks get rejected.

Based on computed priority, each task is assigned a

rank. In the FTTA (Fault-Tolerant Task Allocation) algo-

rithm, the rank of each task is determined in non-de-

creasing order of priority.

Table 4 shows the rank calculated for FTTA where

ðRTiÞFTTA denotes the rank calculated using FTTA and

ðRTiÞprev represents the rank of tasks computed in previous

work [27]. The priority in the previous work is computed

based on deadline. The priority of each task is arranged in a

non-decreasing order to determine the rannk i.e., ðRTiÞprev,
and ðRTiÞFTTA.

Based on two different priority computation strategies,

ranks ðRTiÞprev and ðRTiÞFTTA are computed. There is a

slight difference in the ordering of tasks in the ready list. In

table 4, T7 is selected before T4 as it has lower ðRTiÞFTTA
value whereas with ðRTiÞprev, T4 is selected first. Consid-

ering the computation cost matrix, sorting tasks based on

ðRTiÞprev increases the task rejection ratio as compared to

FTTA priority strategy ðRTiÞFTTA.Our algorithm prioritizes

tasks by evaluating the minimum difference between the

task deadline and execution time. Tasks with smaller dif-

ferences are accorded higher priority, as they are closer to

their respective deadlines and are at a greater risk of

missing them. Prioritizing tasks based on ðRTiÞFTTA ensures

efficient allocation, enhancing overall system performance

and guaranteeing improved deadline adherence by con-

sidering the time required for task completion, particularly

in scenarios involving multiple tasks with diverse deadlines

and execution times.

Table 4 Comparision of rank computation of tasks

Tasks VM1 VM2 VM3 ðRTiÞFTTA ðRTiÞprev

T0 2 4 3 1 1

T1 4 3 5 2 2

T2 12 7 8 7 8

T3 10 9 11 8 10

T4 3 2 4 4 3

T5 7 8 9 9 9

T6 2 7 3 5 5

T7 4 3 5 3 4

T8 8 12 7 6 7

T9 7 15 8 10 11

T10 5 4 6 11 6

Algorithm 1 FTTA Algorithm

Cluster Computing (2024) 27:11427–11454 11437

123

4.2 Virtual machine selection phase

The second phase is virtual machine selection, primarily

focusing on allocating an available virtual machine for

each deadline constrained task from the ready list. The

algorithm follows three basic steps to select the virtual

machine from the ready list. When the task arrives, the

algorithm first checks the availability of virtual machines.

Among available virtual machines, the algorithm selects

the virtual machine with minimum execution time to meet

the task deadline constraint. Selecting the virtual machine

with the minimum execution time by considering the

deadline constraints of the tasks, the algorithm ensures that

the tasks are completed within their specified deadlines

with minimal delay.

During the task allocation to VMs, specific tasks fail to

meet the deadline criteria. i.e., the execution time of such

tasks exceeds the deadline value; therefore, these tasks

cannot adhere to their deadlines when allocated to the

available virtual machines. In that case, the algorithm

makes a sorted list of non-available (L1) and available (L2)

virtual machines. Now, in the non-available list of virtual

machines, the algorithm tries to adjust the task within the

deadline of the last task in that virtual machine. A virtual

machine is selected when the tasks satisfy the deadline

constraint on that virtual machine, as it will also check for

the buffer time of the last task allocated on that virtual

machine. If the execution time of current task and the last

task on that virtual machine lies within the deadline value,

the algorithm selects that virtual machine for allocation.

If the task is not mapped to a non-available virtual

machine, i.e., no virtual machine is selected from L1, the

algorithm looks for the virtual machines in L2. The

algorithm tries to migrate the last lask on a non-available

virtual machine to an available virtual machine with min-

imum execution time. Then, the non-available virtual

machine is selected for the tasks. To migrate the last task, it

first checks the deadline constraints of respective tasks on

the available virtual machine. With the migration of tasks

from non-available VM to available VM, the non-available

VM is available now. If the requested task satisfies the

deadline constrained on a non-available virtual machine,

that virtual machine is selected for the current task, and last

lask is migrated using preemptive migration on the avail-

able VM. Migration of tasks is done when the virtual

machine fails to satisfy the deadline constraint on available

VMs. Migrating tasks between virtual machines ensures

efficient task allocation to suitable virtual machines, which

can help meet deadline constraints and mitigate task

failures.

4.3 Task allocation phase

After priority computation, the algorithm sorts all the tasks

in a non-decreasing order of task priority value in the ready

list. Tasks in the ready list delineate the order in which

tasks should be scheduled for allocation in the available

virtual machines. Two tasks with the same priority are

arranged chronologically in the ready list. This phase

allocates the tasks from the ready list to the selected

available virtual machines. Each task is allocated to exe-

cute on the virtual machine, ensuring its earliest comple-

tion while meeting the deadline constraints. After mapping

the tasks to a selected virtual machine, the algorithm

updates the ready list and task list of virtual machines.

11438 Cluster Computing (2024) 27:11427–11454

123

Algorithm 2 Task allocation on non-available vitual machine VMj

4.4 Complexity analysis of algorithm

This section outlines the complexity analysis of our pro-

posed algorithm. To evaluate the complexity, we consid-

ered n number of tasks in the task list and m number of

virtual machines in the cloud datacentre. It is assumed that

the number of tasks is much greater than the number of

virtual machines, i.e., n � m. Algorithm 1 presents the best

case possibility of mapping tasks to a virtual machine. To

perform the mapping, the algorithm receives a set of tasks

from the task list with their deadlines and execution times

and a list of virtual machines as input. The for loop (lines

1-4, Algo 1) repeats n several times and, computes the

average execution time on each VM and decides the pri-

ority of each task defined by Eq. 3. Both parameters have a

time complexity of O(n). After computation of priority PTi,

tasks are sorted in the ready list in non-decreasing order

(line 5). The time complexity of sorting the tasks takes

Oðn log nÞ. It iteratively schedules the task selected by a

task priority method (Line 6-7) using a while loop. The

algorithm finds the available virtual machine with mini-

mum execution time for each task in the ready list (line 8).

After finding an available virtual machine for tasks, its

execution time ET(Ti, VMj) is compared with deadline DTi

(line 9). For a set of n tasks, finding minimum execution

time on m virtual machines takes O(m) time and checking

for deadline constraints and swapping of tasks takes O(1)

time complexity each. If such a virtual machine exists, then

the task Ti is allocated on VMj (line 10) and the ready list

and VMs list are updated (lines 11-12). Therefore, the time

complexity from steps 6-15 is Oðn � mÞ. Hence, Algorithm
1 exhibits overall time complexity Oðn log nþ n � mÞ.
When no available virtual machine satisfies the deadline

constraint, Algorithm 1 calls Algorithm 2 (line 17).

When the task deadline DTi is less than the execution

time of the task on virtual machine ET(Ti, VMj) i.e., the

task is unable to find available VM, Algorithm 1 invokes

Algorithm 2. Algorithm 2 first creates two sorted lists of

non-available VMs and available VMs (lines 1-2). Finding

a sorted list of m virtual machines in Step 1-2 takes

Oðm logmÞ time complexity each. Before checking the

condition, the algorithm sets the flag value as False (line 3).

The algorithm iterates for each non-available virtual

machine from the sorted list using a for loop (line 4). Line

(5-10) shows the condition that first checks the deadline

constraint of tasks on non-available virtual machines, i.e.,

[ET(Ti, VMj) � DTi] (line 5). If the task deadline is met on

the virtual machine VMj, the algorithm checks for the

Cluster Computing (2024) 27:11427–11454 11439

123

available buffer time [DTl;j - ET(Tlj, VMj)] of the last task

Tlj on that virtual machine, so that the requested task Ti
execute within that buffer time and satisfies the deadline

constraint DTðTljÞ of last task Tlj on that virtual machine

VMj (line 5) which takes time complexity O(m). If the

condition is satisfied, the algorithm maps the requested task

Ti on the virtual machine VMj along with the last task of

that virtual machine (line 6). After mapping tasks, the

ready and virtual machine lists are updated and the flag

values are set to true (line 7-9). If the task Ti is not mapped

to non-available virtual machine VMj and the flag value is

still false, then the algorithm iterates for each available

virtual machine VMk (line 12-14). It checks the deadline

constraint of task Ti on VMj and also the deadline of the last

task of VMj on VMk (line 15). In case the condition is true,

the algorithm tries to migrate the last task Tlj of non-

available virtual machine VMj to available virtual machine

VMk with minimum execution time (line 16). After

migrating, task Ti is mapped to VMj (line 17). Step 12-17 in

Algorithm 2 are the most time consuming (referring to the

2 for loops in step 13-14), they need Oðm2Þ time for each

task in ready list. The ready list, available and non-avail-

able virtual machine lists are updated (line 18). Hence,

Algorithm 2 exhibits [Oðm logmÞ ? O(m) ? Oðm2Þ] i.e.,
Oðm2Þ time. These steps are repeated for each task in the

ready list and if any task does not satisfy the deadline

condition on the virtual machine, they are added to the

rejected list RJi (line 21). Therefore, FTTA has overall

Oðn log nþ nm2Þ time complexity.

4.5 An illustrative example

Consider a cost computation matrix consisting of 11

tasks with their respective deadlines and three virtual

machines as shown in Table 5. The proposed algorithm i.e.,

FTTA, first computes the average execution time of tasks

using Eq. 2 and then determines the priority of tasks using

Eq. 3. Tasks are allocated to the virtual machine in the

order they are arranged in a ready list. Table 6 illustrates an

example demonstrating the step-by-step allocation of tasks

in FTTA using the cost computation matrix.

The illustrative example uses 11 tasks T0, T2.......,T10
having different execution time on 3 heterogeneous virtual

machines VM1, VM2 and VM3. The execution time of each

task for corresponding virtual machine is given in the cost

computation matrix as shown in table 3. The execution

time of each task on virtual machines is calculated using

Eq. 1. Using Eq. 3, the priority of the task is calculated.

Each tasks are assigned a rank based on priority as shown

in Table 4. Based on the rank, tasks are added to the ready

list in non-decreasing order. When the tasks have the same

priority, they are sorted based on their arrival.

• Initially, all virtual machines are idle, as shown in

Fig. 4a. At first, task T0 has the topmost priority in the

ready list, which is allocated first on available VMs i.e.,

VM1,VM2 and VM3. FTTA finds the available virtual

machine with lowest execution time (ET) for task T0,

i.e., minimum value among ET(0,1), ET(0,2), ET(0,3).

Virtual machine VM1 has the minimum execution value

of 2. Then the minimum ET value is compared with the

task T0 deadline, i.e., (2 � 3) where ET value is 2 and

deadline of task T0 is 3. The ET value lies within the

deadline of task T0. Therefore, T0 is assigned to VM1 as

shown in Fig. 4b

• Subsequently, the algorithm follows the same step for

the next priority task, T1. The ET of task T1 on available

VMs i.e., VM2, VM3 are 3 and 5 respectively. The

algorithm selects VM2 with minimum ET for task T1,

i.e., 3. As tasks satisfies the deadline constraint, T1 is

mapped to VM2 as shown in Fig. 4c

• Similarly, the next priority task in the ready list is T7.

Virtual machine VM2 have the minimum ET value, but

the algorithm selects the available virtual machine with

earliest ready time which also satisfy deadline con-

straint of task T7. Therefore, T7 is mapped to VM3

which has earliest ready time as shown in Fig. 4d.

• Next priority task is T4. The algorithm follows the same

step shown in Fig. 4a. The ET value for T4 on available

VMs i.e., VM1 is 3 and the respective deadline

constraint is satisfied. Therefore, task T4 is mapped to

VM1 as illustrated in Fig. 4e

• FTTA maps task T6 to VM1. The algorithm first finds

the ET value of T6 on available VMs i.e., VM2. It

compares the deadline of task T6 with its ET value on

VM2, i.e., (7 � 6), which is not satisfying. Therefore,

the algorithm looks for the minimum ET value of T6 on

non-available VMs (VM1,VM3). Virtual machine VM1

has the minimum ET value 2, which is compared with

Table 5 Average execution time of tasks on 3 virtual machines

Tasks VM1 VM2 VM3 Avg_ET DT

T0 2 4 3 3 3

T1 4 3 5 4 5

T2 12 7 8 9 12

T3 10 9 11 10 13

T4 3 2 4 3 5

T5 7 8 9 8 12

T6 2 7 3 4 6

T7 4 3 5 4 5

T8 8 12 7 9 11

T9 7 15 8 10 14

T10 5 4 6 5 9

11440 Cluster Computing (2024) 27:11427–11454

123

the deadline constraint of task T6 first. When the

deadline is satisfied, the algorithm finds the last task

mapped on VM1. The last task in VM1 list is T4 with ET

value and deadline as 3, 5 respectively. Afterwards, the

algorithm checks whether the requested task T6 lies

within the deadline of T4. As the condition is satisfied,

T6 is mapped to VM1 first then task T4 is mapped as

shown in Fig. 4f.

• The next task in the ready list is T8 with ET value 8, 12

and 7 on VM1, VM2, VM3 respectively. The ET value on

available VM, i.e., VM2, is 12, which is compared with

the deadline of task T8 i.e., (12 � 11) where 11 is the

deadline of T8. Following the same steps in step 4 (f),

the algorithm finds the ET of task T8 on non-available

VMs (VM1, VM3). T8 have minimum ET on virtual

machine VM3 i.e., 7. After comparing the ET value with

the deadline, the algorithm finds the last task (T7) in the

VM3 list. Task T8 does not satisfy the deadline

constraint of task T7 such that T8 does not lie within

the deadline of the last task of VM3. Therefore, it checks

for the next non-available VM, i.e., VM1 with ET value

and deadline 8 and 5 respectively. After checking the

deadline constraint, the requested task T8 does not lie

within the last task of VM1 list. Now, the algorithm tries

to migrate the last task of the non-available VM, i.e.,

VM3, to the available VM (VM2). To migrate the last

task T7 to VM2, it checks the task deadline and ET value

in the respective VM. After checking, the algorithm

checks the requested task T8 deadline constraint on

VM3, which is satisfied. Therefore, task T7 is migrated

to VM2 and task T8 is mapped to VM3 as illustrated in

Fig. 4g.

• Next priority task is T2 with ET and deadline value 7

and 12 respectively on available virtual machine VM2.

The algorithm follows the same step discussed in

Fig. 4a. After comparing the deadline of T2 with ET

value such that (7 � 12), task T2 is mapped to VM2 as

shown in Fig. 4h.

• Similarly, task T3 is mapped to available VM i.e., VM1

with minimum ET value 10 and deadline 13 i.e., (10 �
13) as shown in Fig. 4i. Also, task T5 with ET value and

deadline 9,12 respectively on available VM i.e., VM3 is

mapped to VM3 as shown in Fig. 4j.

• Now considering the next priority task T9 in the ready

list with ET value and deadline as 15 and 14 respec-

tively on available VM (VM2). Comparing deadline

constraint (15 � 14), task T9 does not satisfy the

condition as shown in step 4(f). Following the same

step in Fig. 4f, the algorithm finds the ET of task T9 on

non-available VMs (VM1, VM3). T9 have minimum ET

i.e., 7 on virtual machine VM1. After comparing ET

value with the deadline, the algorithm finds the last task

(T3) in the VM1 list. Task T9 does not satisfy the

deadline constraint of task T3 such that T9 does not lie

within the deadline of the last task of VM1. Therefore, it

checks for the next non-available VM i.e., VM3, with

ET value and deadline 8 and 13, respectively. After

checking the deadline constraints, the requested task T9
does not lie within the last task of VM3 list. Now, the

algorithm tries to migrate the last task of the non-

available VM i.e., VM1 to available VM (VM2). To

migrate the last task T3 to VM2, it checks the ET and

deadline of task in the respective VM. After checking,

the algorithm checks the requested task T9 deadline

constraint on VM3, which is satisfied. Therefore, task T3
is migrated from VM1 to VM2 and task T9 is mapped to

VM1 as illustrated in Fig. 4k. Similarly, next priority

task T10 is mapped to VM1 as shown in Fig. 4l.

• Again, the algorithm checks the ready list. The

algorithm stops when the ready list is empty.

Table 6 Step by step mapping

of tasks using FTTA
Step Ready list Task selected Execution time Deadline VM selected

VM1 VM2 VM3

1 T0, T1,T7,T4,T6,T8, T2,T3,T5,T9,T10 T0 2 4 3 3 VM1

2 T1,T7,T4,T6,T8, T2,T3,T5,T9,T10 T1 4 3 5 5 VM2

3 T7,T4,T6,T8, T2,T3,T5,T9,T10 T7 4 3 5 5 VM2

4 T4,T6,T8, T2,T3,T5,T9,T10 T4 3 2 4 5 VM1

5 T6,T8, T2,T3,T5,T9,T10 T6 2 7 3 6 VM1

6 T8, T2,T3,T5,T9,T10 T8 8 12 7 11 VM3

7 T2,T3,T5,T9,T10 T2 12 7 8 12 VM2

8 T3,T5,T9,T10 T3 10 9 11 13 VM1

9 T5,T9,T10 T5 7 8 9 12 VM3

10 T9,T10 T9 7 15 8 14 VM1

11 T10 T10 5 4 6 9 VM1

Cluster Computing (2024) 27:11427–11454 11441

123

5 Simulation results and analysis

This section outlines the experimental setup, workload

details, performance analysis, discussions of the results of

the proposed task allocation algorithm, and comparison of

its performance with the existing allocation techniques. We

analyze the simulation outcomes with the five well-known

existing algorithms in literature: First Come First Served

(FCFS) [11], Priority based algorithm [12], Shortest Job

First (SJF) [13], Dynamic Maximum Minimum (Dy max

min) algorithm [14] and RADL [16]. Comparison

parameters such as number of rejected tasks, makespan,

speedup and efficiency are analyzed for performance

evaluation. Based on these factors, we have evaluated and

compared the existing algorithms with our proposed algo-

rithm FTTA. Here, the obtained results of the algorithms

are analyzed based on average analysis, where results are

computed based on the input parameters. We performed

simulations on various sets of tasks, varying the number of

virtual machines.

Fig. 4 a All virtual machines are idle b Highest priority task T0 from
the ready list is allocated on available virtual machines VM1 c Task T1
allocated to VM2 d Task T7 allocated to VM3 e Task T4 allocated to

the next available virtual machine VM1 f Task T6 adjusted in the

buffer time of Task T4 on VM1 g Task T7 migrated to VM2 and task T8

allocated to VM3 (h) Task T2 allocated to next available virtual

machine VM2 i Task T3 allocated to VM1 j Task T5 allocated to VM3 k
Task T3 migrated to VM2 and task T9 allocated to VM1 l Task T10
allocated to the next available virtual machine VM1

11442 Cluster Computing (2024) 27:11427–11454

123

5.1 Experimental setup

To measure the performance of existing allocation algo-

rithms, simulation is conducted using Python programming

language. The implementation of the cloud environment,

VMs, and data center (DC) was achieved using the SimPy

library in Python. In our study, we utilized SimPy to create

and simulate the cloud environment, including the instan-

tiation of virtual machines, task allocation, and resource

management within the data center. Specifically, we

designed classes and functions within the SimPy frame-

work to represent the components of the cloud environ-

ment, such as VMs, tasks, and the data center

infrastructure. The primary goal of our experiments is to

assess the effectiveness of these algorithms in managing

deadline constrained task execution on a set of virtual

machines (VMs). The allocation algorithm is experimented

with using Spyder IDE version 3.9. The simulation was

conducted on a Dell Inspiron 15 machine with Windows 10

Home. The machine is equipped with 11th Gen

Intel(R) Core(TM) i5-1135G7 processor operating at a base

frequency of 2.40 GHz frequency with a memory of 8 GB.

In the experiment, three sets of independent tasks are

generated to find the performance results of FTTA on

different virtual machines, as shown in Table 7.

5.2 Performance metrics

The performance of algorithms is evaluated based on four

metrics as number of rejected tasks, makespan, speedup

and efficiency.

1. Number of rejected tasks:

A rejected task is defined as any task that could not

be scheduled within their specified deadlines. Mini-

mizing the count of rejected tasks helps maximize

virtual machine utilization and enhance overall

efficiency.

2. Makespan:

Makespan represents the time at which the last task

from the ready list completes its execution on a

particular virtual machine. The goal is to optimize the

time it takes to finish all tasks while meeting deadline

constraints.

makespan ¼ maxðACTiÞ 8i 2 f1; 2; . . .; ng ð4Þ

3. Speedup:

Speedup is expressed as the ratio between the time

required for sequential execution and that for parallel

execution. Sequential execution involves executing

tasks sequentially on a single processor. Parallel

execution, on the other hand, corresponds to the

makespan, denoting the time taken for task completion

on multiple processors.

Speedup ¼ Sequentialexecutiononthefastestprocessor

Makespan

ð5Þ

4. Efficiency:

Efficiency refers to how effectively an allocation

algorithm utilizes available virtual machines to sched-

ule tasks. It is computed as the ratio of speedup and

number of virtual machines.

Efficiency ¼ Speedup

Numberofvirtualmachines
ð6Þ

5.3 Workload generation

The benchmark dataset, i.e., GoCJ dataset [47], is used for

simulation. This benchmark dataset does not include any

information about the deadline. The deadline is included

according to the method introduced in [27] for priority task

assignment. The GoCJ dataset is taken from real-world

traces collected from Google Cluster traces [48] and logs

generated by MapReduce of M45 supercomputing cluster

[49]. The generated workload comprised of different files.

Each file consists of a length of tasks measured in Million

Instructions (MI). The GoCJ dataset consists of tasks with

different lengths from 15000 MIs to 900000 MIs and is

formed using a well-known Monte Carlo simulation

method. The number of tasks within each file is determined

by the filename itself; for example, ‘‘GoCJ_Dataset_1000’’

contains the length of 1000 tasks. For simulation, these

tasks are executed on virtual machines with different

computation capacity in MIPS. We have fixed the com-

putation capacity of the virtual machine based on [16]. The

computation power of VMs are taken from 100MIPS to

1500 MIPS as shown in Fig. 5.

This workload is categorized in the ranges from 10 tasks

to 5000 tasks. The length of a small set of tasks ranges

from 1 to 50 tasks, a medium set from 100 to 500 tasks, and

a large set from 1000 to 5000 tasks.

Table 7 Experimental environment

Workload GoCJ dataset

Number of VMs 3, 5, 7

Small Set of Tasks 10, 20, 30, 40, 50

Medium Set of Tasks 100, 200, 300, 400, 500

Large Set of Tasks 1000, 2000, 3000, 4000, 5000

Cluster Computing (2024) 27:11427–11454 11443

123

5.4 Experiment for a small set of tasks

In this section, we outline a series of simulation results

performed for a small set of tasks to evaluate the perfor-

mance of the algorithms. We conducted a comparative

analysis between FTTA and the existing algorithms, i.e.,

FCFS, SJF, Priority, Dy max min and RADL, across

varying numbers of VMs. The number of VMs is adjusted

to 3, 5, and 7 to analyze the results obtained.

5.4.1 When virtual machine count is 3

The performance for a small set of tasks when the number

of virtual machines is three, shown in Fig. 6. The results

are evaluated based on four metrics such as number of

rejected tasks, makespan, speedup and efficiency.

Figure 6a shows the comparison result of FTTA with

the FCFS, SJF, Priority, Dy max min and RADL, respec-

tively for rejected tasks count while varying the tasks.

FTTA prioritizes tasks with closer deadlines and minimum

execution time. Hence, it outperforms the compared algo-

rithms for each task count. The computation of task pri-

orities in the FTTA is based on a concept that aims to

minimize task rejection. Figure 6b shows the evaluation

result of the FTTA with the existing algorithms in terms of

makespan while changing the number of tasks. The result

shows that the makespan of FTTA is better than existing

algorithms. Overall, FTTA produces an average improve-

ment of 45%, 49%, 44%, 50%, and 37% over FCFS, SJF,

Priority, Dy max min and RADL task allocation algorithms

respectively for makespan.

Figure 6c illustrates the speedup results obtained for

task allocation algorithms with varying numbers of tasks.

For a small set of tasks, the FTTA algorithm produces

better speedup than other algorithms. Overall, the fig-

ure shows that FTTA outperforms the existing algorithms

by 36%, 46%, 39%, 47% and 33%, respectively, on aver-

age in terms of speedup. Figure 6d shows the performance

of FTTA for efficiency. Efficiency evaluates how

effectively virtual machines are used in a parallel system.

The result obtained shows that FTTA performs more effi-

ciently when compared to other existing task allocation

algorithms.

5.4.2 When virtual machine count is 5

The performance results for a small set of task allocations

when the number of VMs increases to five are illustrated in

Fig. 7. The result shows that with the increase in virtual

machines, algorithms give better results. FTTA performs

better than the existing algorithms in terms of rejected

tasks, makespan, speedup and efficiency.

Figure 7a shows that the FTTA algorithm has less

number of rejected tasks while varying the tasks count.

This is because, with the increase in the number of virtual

machines, tasks are more likely to find the suitable VM for

allocation within the deadline, which inturn, reduces

rejected tasks. The analysis of makespan results obtained

for a small set of tasks when a number of virtual machines

is illustrated in Fig. 7b. FTTA gives better results than

compared allocation algorithms with an increase in virtual

machines. Overall, FTTA improves on an average of 31%,

43%, 30%, 45%, and 25% over FCFS, SJF, Priority, Dy

max min and RADL task allocation algorithms respectively

for makespan.

Similarly, FTTA outperforms in terms of speedup and

efficiency when compared to existing algorithms. Fig-

ure 7c and d show the evaluation results of speedup and

efficiency, respectively for a small set of tasks. It shows

that FTTA improves the speedup by 29%, 46%, 30%, 45%,

and 25%, respectively on average, compared to existing

algorithms.

5.4.3 When virtual machine count is 7

The performance results for a small set of task allocations

when VM is increased to seven are shown in Fig. 8. As the

number of virtual machines increases, the FTTA algorithm

demonstrates enhanced results compared to existing algo-

rithms in terms of reduced rejected task count, decreased

makespan, enhanced speedup, and improved efficiency.

It is observed from Fig. 8a that the number of rejected

tasks decreases while allocating tasks to virtual machines

in FTTA when compared to existing algorithms. With a

further increase in the number of VMs, FTTA efficiently

allocates maximum tasks to VMs, reducing the number of

rejected tasks. The makespan analysis for a small set of

tasks when the number of virtual machines increased to 7 is

illustrated in Fig. 8b. With the increase in virtual machines,

FTTA gives better results than allocation algorithms.

Overall, FTTA improves by 34%, 50%, 38%, 51%, and

13% respectively on an average over FCFS, SJF, Priority,

Fig. 5 Computation power of VMs

11444 Cluster Computing (2024) 27:11427–11454

123

Dy max min and RADL task allocation algorithms

respectively for makespan. Figure 8c shows the analysis

results of FTTA when compared with existing task allo-

cation algorithms for speedup. The result shows that FTTA

has improved results than all existing task allocation

algorithms in terms of speedup. Overall, FTTA gives an

average improvement of 38%, 55%, 39%, 56%, and 23%

respectively, compared to FCFS, SJF, Priority, Dy max

min, and RADL task allocation algorithms.

Similarly, FTTA also outperforms existing algorithms

with respect to efficiency illustrated in Fig. 8d.

5.5 Experiment for medium set of tasks

In this section, we present the results obtained from

experiments conducted with a medium set of tasks to

evaluate all the task allocation algorithms. We conducted a

comparative analysis between FTTA and the existing

algorithms, considering different numbers of VMs. The

number of virtual machines was adjusted, specifically set to

3, 5, and 7, to analyze the results obtained for a medium set

of tasks.

5.5.1 When virtual machine count is 3

The result analysis for a medium set of tasks when VM is

set to three is illustrated in Fig. 9. The result of FTTA is

compared with existing algorithms for four metrics, i.e.,

rejected tasks, makespan, speedup and efficiency.

Fig. 9a illustrates the evaluation result of FTTA for the

number of rejected tasks with a medium set of tasks. The

result demonstrates that the FTTA algorithm allocates a

larger number of tasks to the suitable VM when compared

with existing algorithms. Figure 9b illustrates the result

analysis of all algorithms for makespan. It is observed that

FTTA has 44%, 49%, 46%, 50% and 45% improvement on

an average against FCFS, SJF, Priority, Dy max min and

RADL task allocation algorithms, respectively in terms of

makespan. The overall average improvement of the FTTA

algorithm in terms of speedup is 40%, 43%, 41%, 44% and

38% over existing task allocation algorithms as shown in

Fig. 9c. Figure 9d presents the efficiency value for FTTA

along with state-of-the-art algorithms. It is concluded that

FTTA performs better than FCFS, SJF, Priority, Dy max

min and RADL task allocation algorithms in terms of

efficiency.

Fig. 6 a Number of rejected tasks for small set of tasks when VM = 3 b Makespan for small set of tasks when VM = 3 c Speedup for small set of

tasks when VM = 3 d Efficiency for small set of tasks when VM = 3

Cluster Computing (2024) 27:11427–11454 11445

123

5.5.2 When virtual machine count is 5

The performance analysis for a medium set of tasks is

illustrated in Fig. 10 when the count of VM increased to 5.

The results show that the FTTA performs more efficiently

in terms of the number of rejected tasks, makespan,

speedup and efficiency.

Fig. 10a shows that FTTA has less number of rejected

tasks than existing algorithms. Figure 10b illustrates FTTA

performs an average improvement of 53%, 58%, 54%, 49%

and 53%, respectively against FCFS, SJF, Priority, Dy max

min and RADL task allocation algorithms respectively in

terms of makespan. Similarly, FTTA performs better than

the existing algorithms in terms of speedup and efficiency

as shown in Fig. 10c and d respectively. Overall, FTTA

gives an average improvement of 45%, 53%, 47%, 41%

and 45% respectively as compared to FCFS, SJF, Priority,

Dy max min and RADL task allocation algorithms in terms

of speedup.

5.5.3 When virtual machine count is 7

The results for a medium set of tasks when the VM count is

increased to seven are shown in Fig. 11.

Fig. 11a illustrates that the performance of FTTA is

improved than existing algorithms in terms of rejected

tasks. Overall, FTTA has an average improvement of 36%,

39%, 26%, 36%, and 24%, respectively, when compared

with FCFS, SJF, Priority, Dy max min and RADL task

allocation algorithms respectively in terms of makespan as

shown in Fig. 11b. Figure 11c shows the speedup evalua-

tion for all task allocation algorithms. Overall, FTTA

performs better by 42%, 45%, 36%, 45%, 30%, respec-

tively on average against existing algorithms. Similarly,

our proposed algorithm performs more efficiently than

other algorithms, as shown in Fig. 11d.

5.6 Experiment for a large set of tasks

In this section, we provide a series of simulation results

conducted on a large set of tasks to analyze the perfor-

mance of all the algorithms. We performed a comparative

analysis between FTTA and existing ones while varying

VMs. The virtual machines are systematically configured

to 3, 5, and 7 to evaluate the outcomes comprehensively.

Fig. 7 a Number of rejected tasks for small set of tasks when VM = 5 b Makespan for small set of tasks when VM = 5 c Speedup for small set of

tasks when VM = 5 d Efficiency for small set of tasks when VM = 5

11446 Cluster Computing (2024) 27:11427–11454

123

5.6.1 When virtual machine count is 3

The comparison results of the allocation algorithms for

performance metrics such as rejected tasks, makespan,

speedup and efficiency while varying the number of tasks

are shown in Fig. 12. The FTTA algorithm performs better

than other allocation algorithms when the number of VMs

is 3 while varying the number of tasks.

Figure 12a demonstrates that the FTTA algorithm per-

forms better than FCFS, SJF, Priority, Dy max min and

RADL task allocation algorithms regarding rejected tasks.

Figure 12b compares the makespan value of all the algo-

rithms. Overall, FTTA has an average improvement of

16%, 15%, 15%, 17% and 12%, respectively when com-

pared with existing task allocation algorithms. Figure 12c

illustrates that FTTA performs better for speedup value as

compared to existing algorithms. Overall, FTTA has an

average improvement of 12%, 12%, 12%, 13% and 11%

respectively, when compared with FCFS, SJF, Priority, Dy

max min and RADL task allocation algorithms in terms of

speedup. FTTA also performs better in terms of efficiency

as compared to existing algorithms, as shown in Fig. 12d.

5.6.2 When virtual machine count is 5

The results for large set of tasks varying from 1000 to 5000

are shown in Fig. 13, when total VM count is five.

Fig. 13a illustrates that FTTA algorithm shows

improved performance than existing allocation algorithms

for rejected tasks. Overall FTTA has an average

improvement of 62%, 62%, 61%, 62%, and 62% respec-

tively when compared with FCFS, SJF, Priority, Dy max

min and RADL task allocation algorithms respectively in

terms of makespan as shown in Fig. 13b. Figure 13c

illustrates the speedup evaluation for all task allocation

algorithms. Overall, FTTA performs better by 62%, 62%,

62%, 62%, and 57% respectively on average against

existing algorithms in terms of speedup. Similarly, our

proposed algorithm performs more efficiently than other

algorithms as shown in Fig. 13d.

5.6.3 When virtual machine count is 7

The performance evaluation for a large set of task alloca-

tion when VM count is increased to seven are shown in

Fig. 14.It is observed from the Fig. 14a that number of

rejected tasks decreases while allocating tasks to virtual

machines in FTTA when compared to existing algorithms.

Fig. 8 a Number of rejected tasks for small set of tasks when VM = 7 b Makespan for small set of tasks when VM = 7 c Speedup for small set of

tasks when VM = 7 d Efficiency for small set of tasks when VM = 7

Cluster Computing (2024) 27:11427–11454 11447

123

The makespan analysis for a set of tasks varying from

1000 to 5000 is illustrated in Fig. 14b. FTTA gives better

result than compared allocation algorithms. Overall, FTTA

produces an average improvement of 50%, 50%, 50%,

51%, and 48% respectively over FCFS, SJF, Priority, Dy

max min and RADL task allocation algorithms respectively

for makespan with increase in VM. Figure 14c shows the

speedup value analysis of FTTA when compared with

existing task allocation algorithms. The result shows that

overall, FTTA gives an average improvement of 51%,

51%, 50%, 51%, and 49% respectively, compared to FCFS,

SJF, Priority, Dy max min, and RADL task allocation

algorithms. Similarly, FTTA also outperforms existing

algorithms with respect to efficiency as shown in Fig. 14d.

5.7 Result analysis

We have performed simulation for small set of tasks,

medium set of tasks and large set of tasks while varying

number of virtual machines to 3, 5 and 7. The performance

of FTTA is analyzed and compared with FCFS, SJF, Pri-

ority, Dy max min, and RADL algorithms based on number

of rejected tasks, makespan, speedup and efficiency.

The results shown in Figs. 6a, 7a, and 8a for small set of

tasks, Figs. 9a, 10a, and 11a for medium set of tasks, and

Figs. 12a, 13a, and 14a for large set of tasks concludes that

FTTA algorithm produces fewer tasks that are rejected

after task allocation with virtual machine 3, 5 and 7

respectively. It happens because the FTTA algorithm

assigns tasks to VMs in a way that optimally utilizes

maximum tasks. It allows tasks prioritization based on the

remaining time available for the completion of a task in

order to meet the deadline of maximum tasks. FTTA also

attempts to allocate tasks within the buffer time of the last

task on a non-available virtual machine. Additionally, the

algorithm attempts to minimize task rejections by migrat-

ing tasks between available and non-available virtual

machines. This proactive tasks allocation in suitable VMs

significantly reduces the likelihood of missed deadlines.

We have compared FTTA based on average of small,

medium and large set of tasks while varying the virtual

machines. Overall, FTTA shows enhancement in average

improvement of rejected tasks with respect to FCFS, SJF,

Priority, Dy max min, and RADL algorithms while varying

tasks and virtual machines.

The performance comparision of makespan value for

FTTA with existing algorithms are illustrated in Figs. 6b,

7b, and 8b for small set of tasks, Figs. 9b, 10b, and 11b for

medium set of tasks, and Figs. 12b, 13b, and 14b for large

set of tasks. We have evaluated FTTA based on average of

Fig. 9 a Number of rejected tasks for medium set of tasks when VM = 3 b Makespan for medium set of tasks when VM = 3 c Speedup for

medium set of tasks when VM = 3 d Efficiency for medium set of tasks when VM = 3

11448 Cluster Computing (2024) 27:11427–11454

123

small, medium anf large set of tasks while varying the

virtual machines. It is concluded from the comparision

results that FTTA outperforms existing task allocation

algorithms. FTTA algorithm ensures that the tasks are

always assigned to available virtual machines. This

approach of efficient virtual machine selection allows tasks

to select virtual machine with shorter execution time that

reduces the overall time required to finish all tasks. Fur-

thermore, Overall, FTTA shows enhancement in average

improvement of makespan with respect to FCFS, SJF,

Priority, Dy max min, and RADL algorithms. over FCFS,

SJF, Priority, Dy max min and RADL algorithm while

varying tasks and virtual machines.

We also evaluated the results of proposed algorithm

over existing algorithms for speedup as shown in Figs. 6c,

7c, and 8c for small set of tasks, Figs. 9c, 10c, and 11c for

medium set of tasks, and Figs. 12c, 13c, and 14c for large

set of tasks. It is concluded from the results that FTTA

performs better. FTTA allows task allocation to available

virtual machines which reduces the amount of idle time of

VMs. These VMs process new tasks immediately on the

available VM instead of waiting. When idle VMs are

effectively utilized, tasks complete faster, minimizing the

overall time of the workload leading to improved speedup.

We have evaluated FTTA based on average of small,

medium anf large set of tasks while varying the virtual

machines. Overall, FTTA shows an average improvement

Overall, FTTA shows enhancement in average improve-

ment of speedup with respect to FCFS, SJF, Priority, Dy

max min, and RADL algorithms while varying tasks and

virtual machines.

It is concluded from the results that FTTA performs

more efficiently compared to FCFS, SJF, Priority, Dy max

min and RADL respectively as shown in Figs. 6d, 7d, and

8d for small set of tasks, Figs. 9d, 10d, and 11d for medium

set of tasks, and Figs. 12d, 13d, and 14d for large set of

tasks. We have evaluated FTTA based on average of small,

medium anf large set of tasks while varying the virtual

machines. Overall, When tasks are distributed among 3

virtual machines, FTTA shows an average efficiency

improvement when compared to FCFS, SJF, Priority, Dy

max min, and RADL algorithms while varying tasks and

virtual machines.

The results show that the proposed task allocation

algorithm has a much shorter makespan as compared to

existing algorithms for all sets of tasks while varying

number of virtual machines. The overall performance

increases, when the number of virtual machines increase

from 3 to 7, FTTA outperforms as compared to existing

algorithms.

Fig. 10 a Number of rejected tasks for medium set of tasks when VM = 5 b Makespan for medium set of tasks when VM = 5 c Speedup for

medium set of tasks when VM = 5 d Efficiency for medium set of tasks when VM = 5

Cluster Computing (2024) 27:11427–11454 11449

123

Fig. 11 a Number of rejected tasks for medium set of tasks when VM = 7 b Makespan for medium set of tasks when VM = 7 c Speedup for

medium set of tasks when VM = 7 d Efficiency for medium set of tasks when VM = 7

Fig. 12 a Number of rejected tasks for large set of tasks when VM = 3 b Makespan for large set of tasks when VM = 3 c Speedup for large set of

tasks when VM = 3 d Efficiency for large set of tasks when VM = 3

11450 Cluster Computing (2024) 27:11427–11454

123

Fig. 13 a Number of rejected tasks for large set of tasks when VM = 5 b Makespan for large set of tasks when VM = 5 c Speedup for large set of

tasks when VM = 5 d Efficiency for large set of tasks when VM = 5

Fig. 14 a Number of rejected tasks for large set of tasks when VM = 7 b Makespan for large set of tasks when VM = 7 c Speedup for large set of

tasks when VM = 7 d Efficiency for large set of tasks when VM = 7

Cluster Computing (2024) 27:11427–11454 11451

123

6 Conclusion

In this article, we have introduced a Fault-Tolerant Task

Allocation Approach (FTTA) for allocation of independent

tasks in heterogeneous cloud environment. Since the state-

of-the-art algorithms lacks fault tolerant task allocation

approach, we propose a novel fault tolerant task allocation

algorithm for deadline constrained tasks. The proposed

algorithm consists of three phases including task prioriti-

zation, virtual machine selection and task allocation phase.

The algorithm prioritizes incoming tasks based on deadline

and shorter execution time to minimize the probability of

task rejection as compared to priority decided based on

deadline. FTTA tries to improve resource efficiency by

utilizing the available buffer time of virtual machine effi-

ciently. The algorithm uses preemptive migration for mit-

igating the task failure. The performance of FTTA is

evaluated and compared with the existing task allocation

approaches such as FCFS, SJF, Priority, Dy max min, and

RADL algorithms. The algorithms are evaluated using

benchmark dataset i.e., GoCJ dataset having three sets of

tasks while varying number of virtual machine from 3, 5

and 7. The result analysis shows that FTTA performs better

than FCFS, SJF, Priority, Dy max min, and RADL algo-

rithms in terms of rejected tasks, makespan, speedup and

efficiency. In the future, the performance of proposed

algorithm can be improved by minimizing the number of

migration between the virtual machines.

References

1. Hu, B., Yang, X., Zhao, M.: Energy-minimized scheduling of

intermittent real-time tasks in a CPU-GPU cloud computing

platform. In: IEEE Transactions on Parallel and Distributed

Systems (2023)

2. Li, Z., Yu, H., Fan, G., Zhang, J.: Cost-efficient fault-tolerant

workflow scheduling for deadline-constrained microservice-

based applications in clouds. In: IEEE Transactions on Network

and Service Management (2023)

3. Zhang, L., Bai, J., Xu, J.: Optimal allocation strategy of cloud

resources with uncertain supply and demand for SAAS providers.

IEEE Access (2023). https://doi.org/10.1109/ACCESS.2023.

3300735

4. Singh, S., Chana, I., Buyya, R.: Star: SLA-aware autonomic

management of cloud resources. IEEE Trans. Cloud Comput.

8(4), 1040–1053 (2017)

5. Taheri, H., Abrishami, S., Naghibzadeh, M.: A cloud broker for

executing deadline-constrained periodic scientific workflows. In:

IEEE Transactions on Services Computing (2023)

6. Hai, T., Zhou, J., Jawawi, D., Wang, D., Oduah, U., Biamba, C.,

Jain, S.K.: Task scheduling in cloud environment: optimization,

security prioritization and processor selection schemes. J. Cloud

Comput. 12(1), 15 (2023)

7. Maurya, A.K., Modi, K., Kumar, V., Naik, N.S., Tripathi, A.K.:

Energy-aware scheduling using slack reclamation for cluster

systems. Clust. Comput. 23, 911–923 (2020)

8. Chen, X., Lu, C.-D., Pattabiraman, K.: Failure analysis of jobs in

compute clouds: a google cluster case study. In: 2014 IEEE 25th

International Symposium on Software Reliability Engineering,

pp. 167–177. IEEE (2014)

9. Liakath, J.A., Krishnadoss, P., Natesan, G.: Dccwoa: a multi-

heuristic fault tolerant scheduling technique for cloud computing

environment. In: Peer-to-Peer Networking and Applications,

pp. 1–18 (2023)

10. Kirti, M., Maurya, A.K., Yadav, R.S.: Fault-tolerance approaches

for distributed and cloud computing environments: a systematic

review, taxonomy and future directions. In: Concurrency and

Computation: Practice and Experience, p. e8081 (2024)

11. Hamid, L., Jadoon, A., Asghar, H.: Comparative analysis of task

level heuristic scheduling algorithms in cloud computing.

J. Supercomput. 78(11), 12931–12949 (2022)

12. Kumar, A.M.S., Venkatesan, M.: Task scheduling in a cloud

computing environment using HGPSO algorithm. Clust. Comput.

22(Suppl 1), 2179–2185 (2019)

13. Kaur, R., Laxmi, V., Balkrishan: Performance evaluation of task

scheduling algorithms in virtual cloud environment to minimize

Makespan. In: International Journal of Information Technology,

pp. 1–15 (2022)

14. Nabi, S., Ibrahim, M., Jimenez, J.M.: Dralba: dynamic and

resource aware load balanced scheduling approach for cloud

computing. IEEE Access 9, 61283–61297 (2021)

15. Mishra, A., Narayan Sahoo, M., Satpathy, A.: H3csa: a Makespan

aware task scheduling technique for cloud environments. Trans.

Emerg. Telecommun. Technol. 32(10), e4277 (2021)

16. Nabi, S., Aleem, M., Ahmed, M., Islam, M.A., Iqbal, M.A.:

RADL: a resource and deadline-aware dynamic load-balancer for

cloud tasks. J. Supercomput. 78(12), 14231–14265 (2022)

17. Amini Motlagh, A., Movaghar, A., Rahmani, A.M.: Task

scheduling mechanisms in cloud computing: a systematic review.

Int. J. Commun. Syst. 33(6), e4302 (2020)

18. Nayak, S.C., Parida, S., Tripathy, C., Pattnaik, P.K.: An enhanced

deadline constraint based task scheduling mechanism for cloud

environment. J. King Saud Univ. Comput. Inf. Sci. 34(2),
282–294 (2022)

19. Dubey, K., Sharma, S.C.: A novel multi-objective CR-PSO task

scheduling algorithm with deadline constraint in cloud comput-

ing. Sustain. Comput. 32, 100605 (2021)

20. Houssein, E.H., Gad, A.G., Wazery, Y.M., Suganthan, P.N.: Task

scheduling in cloud computing based on meta-heuristics: review,

taxonomy, open challenges, and future trends. Swarm Evol.

Comput. 62, 100841 (2021)

21. Arunarani, A.R., Manjula, D., Sugumaran, V.: Task scheduling

techniques in cloud computing: a literature survey. Future Gener.

Comput. Syst. 91, 407–415 (2019)

22. Zhang, P.Y., Zhou, M.C.: Dynamic cloud task scheduling based

on a two-stage strategy. IEEE Trans. Autom. Sci. Eng. 15(2),
772–783 (2017)

23. Maurya, A.K., Tripathi, A.K.: On benchmarking task scheduling

algorithms for heterogeneous computing systems. J. Supercom-

put. 74(7), 3039–3070 (2018)

24. He, X., Shen, J., Liu, F., Wang, B., Zhong, G., Jiang, J.: A two-

stage scheduling method for deadline-constrained task in cloud

computing. Clust. Comput. 25(5), 3265–3281 (2022)

25. Nabi, S., Ahmed, M.: OG-RADL: overall performance-based

resource-aware dynamic load-balancer for deadline constrained

cloud tasks. J. Supercomput. 77, 7476–7508 (2021)

26. Zhang, L., Zhou, L., Salah, A.: Efficient scientific workflow

scheduling for deadline-constrained parallel tasks in cloud com-

puting environments. Inf. Sci. 531, 31–46 (2020)

27. Kumar, M., Sharma, S.C.: Deadline constrained based dynamic

load balancing algorithm with elasticity in cloud environment.

Comput. Electr. Eng. 69, 395–411 (2018)

11452 Cluster Computing (2024) 27:11427–11454

123

https://doi.org/10.1109/ACCESS.2023.3300735
https://doi.org/10.1109/ACCESS.2023.3300735

28. Alworafi, M.A., Mallappa, S.: A collaboration of deadline and

budget constraints for task scheduling in cloud computing. Clust.

Comput. 23(2), 1073–1083 (2020)

29. Nabi, S., Ahmed, M.: PSO-RDAL: particle swarm optimization-

based resource-and deadline-aware dynamic load balancer for

deadline constrained cloud tasks. J. Supercomput. (2022). https://

doi.org/10.1007/s11227-021-04062-2

30. Maurya, A.K., Tripathi, A.K.: Deadline-constrained algorithms

for scheduling of bag-of-tasks and workflows in cloud computing

environments. In: Proceedings of the 2nd International Confer-

ence on High Performance Compilation, Computing and Com-

munications, pp. 6–10 (2018)

31. Sahoo, S., Sahoo, B., Turuk, A.K.: A learning automata-based

scheduling for deadline sensitive task in the cloud. IEEE Trans.

Serv. Comput. 14(6), 1662–1674 (2019)

32. Tarafdar, A., Debnath, M., Khatua, S., Das, R.K.: Energy and

Makespan aware scheduling of deadline sensitive tasks in the

cloud environment. J. Grid Comput. 19, 1–25 (2021)

33. Yan, H., Zhu, X., Chen, H., Guo, H., Zhou, W., Bao, W.: Deft:

dynamic fault-tolerant elastic scheduling for tasks with uncertain

runtime in cloud. Inf. Sci. 477, 30–46 (2019)

34. Kanwal, S., Iqbal, Z., Al-Turjman, F., Irtaza, A., Khan, M.A.:

Multiphase fault tolerance genetic algorithm for VM and task

scheduling in datacenter. Inf. Process. Manag. 58(5), 102676

(2021)

35. Malik, M.K., Singh, A., Swaroop, A.: A planned scheduling

process of cloud computing by an effective job allocation and

fault-tolerant mechanism. J. Ambient Intell. Hum. Comput. 13,
1–19 (2022)

36. Heyang, X., Sen, X., Wei, W., Guo, N.: Fault tolerance and

quality of service aware virtual machine scheduling algorithm in

cloud data centers. J. Supercomput. 79(3), 2603–2625 (2023)

37. Marahatta, A., Xin, Q., Chi, C., Zhang, F., Liu, Z.: PEFS: AI-

driven prediction based energy-aware fault-tolerant scheduling

scheme for cloud data center. IEEE Trans. Sustain. Comput. 6(4),
655–666 (2020)

38. Chen, J., Han, P., Liu, Y., Xiaoyan, D.: Scheduling independent

tasks in cloud environment based on modified differential evo-

lution. Concurr. Comput. 35(13), e6256 (2023)

39. Indhumathi, R., Amuthabala, K., Kiruthiga, G., Yuvaraj, N.,

Pandey, A.: Design of task scheduling and fault tolerance

mechanism based on GWO algorithm for attaining better QoS in

cloud system. Wirel. Personal Commun. 128(4), 2811–2829

(2023)

40. Nanjappan, M., Natesan, G., Krishnadoss, P.: HFTO: hybrid

firebug tunicate optimizer for fault tolerance and dynamic task

scheduling in cloud computing. Wirel. Personal. Commun.

129(1), 323–344 (2023)

41. Tamilvizhi, T., Parvathavarthini, B.: A novel method for adaptive

fault tolerance during load balancing in cloud computing. Clust.

Comput. 22(Suppl 5), 10425–10438 (2019)

42. Sheikh, S., Nagaraju, A., Shahid, M.: A fault-tolerant hybrid

resource allocation model for dynamic computational grid.

J. Comput. Sci. 48, 101268 (2021)

43. Chinnathambi, S., Santhanam, A., Rajarathinam, J., Senthilku-

mar, M.: Scheduling and checkpointing optimization algorithm

for byzantine fault tolerance in cloud clusters. Clust. Comput. 22,
14637–14650 (2019)

44. Saidi, K., Bardou, D.: Task scheduling and VM placement to

resource allocation in cloud computing: challenges and oppor-

tunities. Clust. Comput. 26(5), 3069–3087 (2023)

45. Haidri, R.A., Alam, M., Shahid, M., Prakash, S., Sajid, M.: A

deadline aware load balancing strategy for cloud computing.

Concurr. Comput. 34(1), e6496 (2022)

46. Yao, G., Ren, Q., Li, X., Zhao, S., Ruiz, R.: A hybrid fault-

tolerant scheduling for deadline-constrained tasks in cloud sys-

tems. IEEE Trans. Serv. Comput. 15(3), 1371–1384 (2020)

47. Hussain, A., Aleem, M.: GOCJ: Google cloud jobs dataset for

distributed and cloud computing infrastructures. Data 3(4), 38
(2018)

48. Reiss, C., Wilkes, J., Hellerstein, J.L.: Google cluster-usage tra-

ces: format? schema. Google Inc. White Pap. 1, 1–14 (2011)

49. Kavulya, S., Tan, J., Gandhi, R., Narasimhan, P.: An analysis of

traces from a production Mapreduce cluster. In: 2010 10th IEEE/

ACM International Conference on Cluster, Cloud and Grid

Computing, pp. 94–103. IEEE (2010)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Medha Kirti is presently pursu-

ing Ph.D. degree from Motilal

Nehru National Institute of

Technology Allahabad, Praya-

graj, India. She has completed

her B.Tech. degree in Computer

Science and Engineering from

Banasthali University, Rajas-

than, India and M.Tech. degree

in Computer Science and Engi-

neering from National Institute

of Technology Patna, India. Her

research area is Distributed

Computing and Cloud Comput-

ing. She is currently working in

the area of Fault Tolerance in Distributed Computing.

Ashish Kumar Maurya has com-

pleted his M.Tech. degree in

Computer Science & Engineer-

ing from Indian Institute of

Technology Roorkee, India, and

Ph.D. from Department of

Computer Science & Engineer-

ing, Indian Institute of Tech-

nology (B.H.U.) Varanasi,

India. He is currently working

as an assistant professor in the

Department of Computer Sci-

ence & Engineering at Motilal

Nehru National Institute of

Technology Allahabad, Praya-

graj, India. He has been engaged in teaching and research for more

than seventeen years. He has published many research papers in

various conferences and peer-reviewed journals including IEEE

Transactions, Elsevier, Springer, and Wiley. He has served in several

program committees of national and international conferences, jour-

nals and workshops. He has chaired technical sessions in many

International Conferences and delivered expert lectures at various

Institutes and Universities in India. He is a Senior Member of IEEE,

Member of ACM, and a Life Member of the Computer Society of

India. His research interests include Analysis of Algorithms, Parallel

& Distributed Computing, and Cloud and Fog Computing.

Cluster Computing (2024) 27:11427–11454 11453

123

https://doi.org/10.1007/s11227-021-04062-2
https://doi.org/10.1007/s11227-021-04062-2

Rama Shankar Yadav is cur-

rently working as a Professor in

the Department of Computer

Science & Engineering at

Motilal Nehru National Institute

of Technology Allahabad,

Prayagraj, India. He received

Ph.D. degree from IIT Roorkee,

M.S. degree from BITS Pilani

and B.Tech. degree from I.E.T.,

Lucknow. He has extensive

research and academic experi-

ence. Before joining MNNIT

Allahabad, he had worked in

leading institutions such as

GBPEC, Pauri Garhwal, BITS, Pilani. He has authored more than 80

research papers in National/International conference and referred

Journals/Book chapters. His areas of interest are Real-Time System,

Embedded System, Fault Tolerant System, Energy Aware Scheduling,

Computer Architecture, Distributed Computing and Cryptography.

11454 Cluster Computing (2024) 27:11427–11454

123

	Fault-tolerant allocation of deadline-constrained tasks through preemptive migration in heterogeneous cloud environments
	Abstract
	Introduction
	Related work
	System model and problem definition
	Cloud computing model
	Application model
	Problem formulation

	Proposed approach for task allocation
	Task prioritizing phase
	Virtual machine selection phase
	Task allocation phase
	Complexity analysis of algorithm
	An illustrative example

	Simulation results and analysis
	Experimental setup
	Performance metrics
	Workload generation
	Experiment for a small set of tasks
	When virtual machine count is 3
	When virtual machine count is 5
	When virtual machine count is 7

	Experiment for medium set of tasks
	When virtual machine count is 3
	When virtual machine count is 5
	When virtual machine count is 7

	Experiment for a large set of tasks
	When virtual machine count is 3
	When virtual machine count is 5
	When virtual machine count is 7

	Result analysis

	Conclusion
	References

