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Abstract
The early and accurate diagnosis of brain tumors is critical for effective treatment planning, with Magnetic Resonance

Imaging (MRI) serving as a key tool in the non-invasive examination of such conditions. Despite the advancements in

Computer-Aided Diagnosis (CADx) systems powered by deep learning, the challenge of accurately classifying brain

tumors from MRI scans persists due to the high variability of tumor appearances and the subtlety of early-stage mani-

festations. This work introduces a novel adaptation of the EfficientNetv2 architecture, enhanced with Global Attention

Mechanism (GAM) and Efficient Channel Attention (ECA), aimed at overcoming these hurdles. This enhancement not

only amplifies the model’s ability to focus on salient features within complex MRI images but also significantly improves

the classification accuracy of brain tumors. Our approach distinguishes itself by meticulously integrating attention

mechanisms that systematically enhance feature extraction, thereby achieving superior performance in detecting a broad

spectrum of brain tumors. Demonstrated through extensive experiments on a large public dataset, our model achieves an

exceptional high-test accuracy of 99.76%, setting a new benchmark in MRI-based brain tumor classification. Moreover, the

incorporation of Grad-CAM visualization techniques sheds light on the model’s decision-making process, offering

transparent and interpretable insights that are invaluable for clinical assessment. By addressing the limitations inherent in

previous models, this study not only advances the field of medical imaging analysis but also highlights the pivotal role of

attention mechanisms in enhancing the interpretability and accuracy of deep learning models for brain tumor diagnosis.

This research sets the stage for advanced CADx systems, enhancing patient care and treatment outcomes.
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1 Introduction

There are illnesses that pose a serious hazard to human life.

Cancer is one of the significant illnesses among them. A

condition known as cancer occurs when cells in a particular

body part multiply and expand uncontrolled. It is estimated

that in 2024, there will be approximately 2,001,140 new

cancer cases and 611,720 deaths related to cancer in the

United States [1]. Various types of cancer exist, including

brain tumors, which are categorized as malignant due to

their malignant growth in the brain [2]. This differs from

benign brain tumors, which are non-malignant and typi-

cally grow at a slower pace [3]. The growth rate, type,

stage of advancement, and location of a brain tumor are

among the characteristics that determine whether it is

malignant or benign [4, 5]. It is expected that 700,000

Americans already have primary brain tumors, and that

94,390 more Americans will be diagnosed with main brain

tumors in 2023 [6].

Tumors in the human brain are found using a variety of

diagnostic techniques, both invasive and non-invasive

[2, 3]. By way of illustration, a biopsy is an intrusive

procedure that entails extracting a sample through a sur-

gical cut and studying it under a microscope to identify

malignancy (malignant tumor). Brain tumor biopsies, on

the other hand, are normally not carried out prior to

definitive brain surgery, in contrast to malignancies in other

sections of the body [3]. In order to diagnose brain tumors,

non-invasive imaging methods like magnetic resonance

imaging (MRI), positron emission tomography, and com-

puted tomography are thought to be quicker and safer. The

capacity of MRI to offer comprehensive information

regarding the location, development, shape, and size of the

brain tumor in both 2D and 3D formats with high resolu-

tion makes it the method of choice among all the non-

invasive imaging modalities discussed [7, 8]. Due to the

high patient volume, manual interpretation of MRI images

is time-consuming for medical professionals and prone to

mistakes. According to Fig. 1, an MRI image frequently

used to represent various medical conditions (A) displays a

suspicious irregularity in the lower right corner. (B, C) on

the other hand, show a malignant situation, with the tumor

taking up more space. In contrast to earlier stages, (D) ex-

hibits tumor growth and the eradication of nearby cells [9].

To combat cancer, it is crucial to utilize early detection

methods for both early-stage detection of the disease and

the implementation of various preventive measures. One of

the most popular techniques for early tumor identification

in this context is the MRI technology [8]. Based on their

experience, radiologists routinely use this technique to

detect brain cancers early. There is a clear need for new

methods that can expedite and enhance decision-making

processes in the field of medical imaging [10]. The medical

field extensively utilizes new technologies, with artificial

intelligence and machine learning gaining increasing

preference due to their ability to perform rapid processing

and achieve high accuracy rates in disease diagnosis

[11, 12].

Artificial intelligence is a revolutionary technology that

has a profound impact on our lives [13, 14]. The automa-

tion of image processing can greatly benefit from approa-

ches based on machine learning and innovative

computational methods. A subfield of artificial intelligence,

deep learning is commonly applied on large datasets to

automatically extract features, thus gaining considerable

popularity for its ability to perceive complex patterns and

relationships within data [15]. These algorithms can

autonomously tackle numerous complex tasks in fields

such as medical image processing, drug discovery, agri-

culture, and defense, achieving high levels of success

[16–20]. Deep learning-supported techniques are benefi-

cial, especially in key fields like biological image analysis,

where processing speed is crucial, and the cost and hazards

of misinterpretation are significant [19]. To increase pro-

ductivity and the accuracy of diagnoses, computer-aided

approaches are replacing traditional medical image analy-

sis techniques. Due to the well-known efficacy of deep

learning-based computer-aided diagnosis solutions, deep

learning-based medical image analysis is a significant and

active research area, with many researchers working in this

field [21].

In CAD applications, deep learning algorithms, notably

Convolutional Neural Networks (CNNs), represent a sig-

nificant leap forward compared to traditional machine

learning methods [22]. These conventional techniques

often rely on manually crafted features, a process that is not

only time-consuming but also heavily dependent on the

expertise of domain specialists. CNNs, however, revolu-

tionize this landscape by autonomously extracting relevant

Fig. 1 The course of a brain tumor’s growth from its initial state to its

worst case
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features from images, effectively bypassing the need for

labor-intensive feature engineering. The superiority of

CNNs is particularly evident in medical image analysis,

where they have garnered widespread acclaim for their

remarkable performance [23, 24]. Specifically, CNNs have

emerged as powerful tools for accurately identifying vari-

ous types of brain tumors and other medical conditions.

What sets CNNs apart is their innate ability to discern

critical information directly from images, thereby obviat-

ing the need for human intervention in feature selection

[25]. This automated feature extraction capability not only

streamlines the CAD process but also enhances its accu-

racy and efficiency [26–28]. By harnessing CNNs, CAD

systems can swiftly and reliably categorize medical images

with precision, thus facilitating quicker diagnoses and

treatment decisions [29]. Moreover, CNNs empower

healthcare professionals by providing them with insights

derived directly from raw data, facilitating a more

informed approach to patient care [30].

Moreover, vision transformers, which present a distinct

architecture from CNNs, have exhibited promising out-

comes across diverse domains, including diseases related to

brain tumors [31]. Unlike CNNs, vision transformers uti-

lize an attention mechanism to capture distant dependen-

cies and relationships among image patches, thereby

enabling them to adeptly model intricate visual patterns.

This architectural approach has showcased remarkable

efficiency in applications spanning natural language pro-

cessing and has recently garnered attention in computer

vision tasks. In the context of brain tumor classification,

vision transformers have demonstrated their capability to

capture both global and local image characteristics, facili-

tating a more comprehensive and precise analysis. This

ability to integrate information from various spatial scales

enhances their effectiveness in discerning subtle nuances

within medical images, contributing to improved diagnos-

tic accuracy and treatment planning. Consequently, vision

transformers emerge as a promising alternative to CNNs,

offering advanced capabilities for image analysis tasks in

healthcare and beyond [32].

Numerous scientific studies focus on brain tumor diag-

nosis, revealing that deep learning has led to significant

advancements in this area [9, 33–37]. Deep learning has

become a groundbreaking method, offering crucial benefits

for accurately diagnosing brain tumors due to their com-

plexity. These models autonomously extract complex pat-

terns and features from large medical datasets like MRI

scans, enabling precise tumor segmentation and classifi-

cation [33, 34, 38]. After examining various reviews and

surveys, it’s clear that deep learning has led to numerous

significant discoveries in brain tumor diagnosis. Research

indicates that deep learning has evolved into an innovative

and impactful approach in this field. Bhagyalaxmi et al.

[36] found that deep learning, particularly CNNs, shows

promise for brain tumor detection. While their review

outlines current techniques, they suggest future research

explore hybrid models combining deep learning with other

methodologies to maximize effectiveness. Awuah et al.

[39] highlights AI’s potential to enhance patient outcomes

in neurosurgery by aiding neurosurgeons in diagnostics,

prognostics, and surgical decision-making. AI, including

machine learning and deep learning, has advanced signif-

icantly, reducing complications, improving surgical plan-

ning, and overall benefiting patient care in neurosurgery.

Levy et al. [40] highlight the significant articles on

machine learning in neurosurgery. They emphasize

machine learning’s application across various sub-spe-

cialties to enhance patient care, particularly in outcome

prediction, patient selection, and surgical decision-making.

Among the limitations of deep learning for brain tumor

classification are the scarcity of labeled data, incomplete

model optimization, the selection of appropriate models,

overfitting, interpretability issues, and data imbalance

between classes. These constraints can negatively impact

the overall performance and accuracy of deep learning

models in tumor classification. Specifically, overfitting

may diminish the model’s generalization ability, while

challenges in interpretability can complicate trust and

acceptance in medical applications. Nonetheless, aware-

ness of these limitations presents an opportunity for the

development of more advanced methods and strategies to

enhance brain tumor classification. Thus, deep learning

models can be more effectively utilized in this domain.

In the field of medical image recognition and segmen-

tation, particularly in MRI-based brain tumor detection,

significant advancements have been achieved through deep

learning technologies. Despite these advancements, current

methods display considerable limitations in effectiveness

and acceptance within clinical settings. These challenges

include limited access to sufficient and diverse data for

deep learning architectures, the frequent absence of a test

set in data partitioning, the inability to precisely detect

early-stage tumors, high variability in tumor appearances

across patients, and the ‘‘black box’’ nature of many deep

learning solutions. The latter poses a particularly signifi-

cant challenge, as transparency and interpretability are

crucial in clinical applications for building trust and

transforming insights into actionable decisions.

The primary motivation of this research stems from the

urgent need to improve the diagnosis of brain tumors, one

of the most lethal cancer types, to enhance patient survival

rates, as well as to overcome the aforementioned obstacles.

Additionally, the necessity arises from the lack of detailed

exploration into attention mechanisms for brain tumors.

This study aims to introduce an innovative CNN archi-

tecture enhanced with attention mechanisms, presenting a
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critical alternative that surpasses the performance of both

vision transformer and conventional CNN-based models.

By partitioning datasets into training, validation, and test

sets, this work seeks to significantly advance the detection

of brain tumors through MRI scans. This approach is

grounded in the importance of providing a more sensitive

detection of early-stage tumor indicators, improving

adaptability to the broad spectrum of tumor presentations

among different patients, and enhancing model inter-

pretability to support clinical decision-making processes.

This study makes significant contributions to the field of

deep learning for MRI-based brain tumor classification,

notably advancing current methodologies in terms of pre-

cision, adaptability, and clinical applicability. The research

is particularly distinguished by the following key

contributions:

• Integrating attention mechanisms within the Effi-

cientNetv2 [41] framework, the study presents an

advanced CNN architecture tailored specifically for

the complexities of brain tumor imagery in MRI scans.

The incorporation of the Global Attention Mechanism

(GAM) [42] and Efficient Channel Attention (ECA)

[43] represents an innovative approach to deep learning

models.

• A notable contribution of this work is its enhanced

sensitivity towards early-stage tumors. The proposed

model’s capability to detect subtle features indicative of

early tumor development signifies a significant

advancement over existing models that often struggle

with such precision.

• Addressing the challenge of variability in tumor

appearance across patients, the model’s redesign for

brain tumor diagnosis through the application of

attention mechanisms enables it to adapt effectively to

a wide range of tumor presentations, substantially

increasing its generalization ability in classification.

• By incorporating Gradient-weighted Class Activation

Mapping (Grad-CAM) [44] visualization techniques,

the study takes a new step in making deep learning

models more interpretable. This contribution aids in

validating and explaining the model’s decision-making

process and enhances the reliability and trust in

automated diagnoses within clinical settings.

• Achieving a high-test accuracy of 99.76% on an

extensive public dataset, the research sets a new

precedent in MRI-based brain tumor classification.

• The study compares the performance of a total of 45

deep learning models, including state-of-the-art tech-

nologies such as EfficientNet, MobileNetv3, Incep-

tionNext, RepGhostNet, MobileViTv2, DeiT3,

MaxViT, ResMLP, FastViT, and MetaFormer, based

solely on test data.

• Finally, it is the first study to apply the performance of

the EfficientNet model and various attention mecha-

nisms for the identification of brain tumors.

The subsequent sections of the paper are organized as

follows: Sect. 2 conducts a literature review, examining

studies on brain tumors utilizing deep learning techniques.

In Sect. 3, a comprehensive description of the materials,

datasets, and the proposed framework used in the approach

is provided, along with a brief analysis of all models

employed. Section 4 presents a thorough performance

evaluation of the proposed approach, encompassing both

quantitative and qualitative studies. This section empha-

sizes the significance of Grad-CAM methods in offering

valuable insights into the decision-making process of arti-

ficial intelligence models. Additionally, Sect. 4 includes a

comparative analysis of brain tumor classification models.

Finally, Sect. 5 discusses the results obtained from the

proposed approach.

2 Related works

Deep learning is a groundbreaking method for accurately

diagnosing complex brain tumors. These models autono-

mously extract patterns from large MRI datasets, enabling

precise tumor segmentation and classification. Deep

learning’s ability to handle vast amounts of data swiftly

and accurately enhances diagnostic effectiveness, speeds

up treatment decisions, and improves patient outcomes.

However, successful integration into clinical practice

requires close collaboration between AI experts and med-

ical professionals to ensure trust, interpretability, and the

use of deep learning as a supportive tool rather than a

replacement for medical expertise. In the field of brain

tumors, numerous deep learning-based CADx methods

have been developed. Some of these studies include the

followings.

Ullah et al. [45] introduced the Multiscale Residual

Attention-UNet (MRA-UNet) for brain tumor segmenta-

tion, utilizing three consecutive slices and multiscale

learning. Postprocessing techniques enhanced segmenta-

tion accuracy, yielding state-of-the-art results on

BraTS2017, BraTS2019, and BraTS2020 datasets with

average dice scores of 90.18, 87.22, and 86.74% for whole

tumor, tumor core, and enhanced tumor regions, respec-

tively. Celik and Inik [31] proposed a hybrid method for

brain tumor classification, combining a novel CNN model

for feature extraction with ML algorithms for classification.

They compared CNN performance using nine state-of-the-

art models and optimized ML algorithm hyperparameters

with Bayesian optimization. Results show the hybrid model

achieves 97.15% mean classification accuracy, along with
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97% recall, precision, and F1-score values. Anantharajan

et al. [46] propose a novel method for MRI brain tumor

detection using DL and ML. They preprocess MRI images

with the Adaptive Contrast Enhancement Algorithm

(ACEA) and median filter, then segment them with fuzzy

c-means. Features like energy, mean, entropy, and contrast

are extracted using the Gray-level co-occurrence matrix

(GLCM). Abnormal tissues are classified using the

Ensemble Deep Neural Support Vector Machine (EDN-

SVM) classifier. Pacal [10] introduced an advanced deep

learning method based on the Swin Transformer. It incor-

porates a Hybrid Shifted Windows Multi-Head Self-

Attention module (HSW-MSA) and a rescaled model to

enhance accuracy, reduce memory usage, and simplify

training complexity. By replacing the traditional MLP with

the Residual-based MLP (ResMLP), the Swin Transformer

achieves improved accuracy, training speed, and parameter

efficiency. Evaluation on a publicly available brain MRI

dataset demonstrates enhanced performance through

transfer learning and data augmentation techniques for

efficient and robust training.

Remzan et al. [47] addressed brain tumor classification

using deep learning algorithms, enhancing diagnostic pre-

cision in radiology. They proposed RadImageNet and

employed transfer learning to overcome challenges with

limited and non-diverse medical image datasets. Their

ensemble learning strategies achieved notable accuracy

improvements, reaching 97.71 and 97.40% accuracy with

ResNet-50 and DenseNet121 features, respectively. Ullah

et al. proposed MRA-UNet, a novel fully automated

method for brain tumor segmentation. It utilizes multiscale

learning and sequential information from three consecutive

slices. MRA-UNet accurately segments enhanced and core

tumor regions by employing an adaptive region of interest

scheme. Postprocessing techniques like conditional random

field and test time augmentation further enhance its per-

formance [45]. Based on an isolated and improved transfer

deep learning model, Alanazi et al. [48] presented a brain

tumor/mass classification framework utilizing MRI. For an

unpublished brain MRI dataset, the model attained a high

accuracy of 96.89%. Younis et al. [49] evaluated brain

tumor diagnosis on a dataset comprising 253 MRI brain

images, of which 155 indicated tumors. The algorithm

outperformed existing traditional approaches in detecting

brain tumors, achieving precision rates of 96, 98.15, and

98.41% and F1 scores of 91.78, 92.6, and 91.29%. In their

research, Pedada et al. [50] merged deep learning with

computer-aided tumor detection methods, greatly enhanc-

ing machine learning. They achieved segmentation accu-

racies of 93.40 and 92.20%, respectively, using the

propsoed U-Net model for brain tumor segmentation

(BraTS) Challenge 2017 and 2018 datasets. A deep learn-

ing-based classifier named Brain-DeepNet was created by

Habibe et al. [51] for the identification and classification of

three typical forms of brain malignancies (glioma, menin-

gioma, and pituitary tumors). DNNs trained on labeled

OCT images and their ensemble characteristics were pro-

posed in Wang et al. [52] article on ‘‘Deep Learning-Based

Optical Coherence Tomography Image Analysis for

Human Brain Cancer’’ to combine attenuation and texture

data. The model achieved a 96% accuracy in classifying

brain tumors. As presented by the studies, deep learning-

based CNN architectures are extensively employed in brain

tumor diagnosis. he primary goal of this study is to create a

useful strategy using MRI scans to detect brain tumors,

enabling quick, efficient, and accurate decision-making

regarding patients’ conditions.

Zebari et al. [53] devised a deep learning fusion model

for brain tumor classification, utilizing data augmentation

techniques to overcome the requirement for large training

datasets. They extracted deep features from MRI images

using VGG16, ResNet50, and convolutional deep belief

networks, with Softmax as the classifier. The fusion model,

combining features from two DL models, notably enhanced

classification accuracy. Azhagiri and Rajesh [54] utilized

AlexNet, a deep CNN model, to identify tumors in MRI

images. They enhanced AlexNet by adding layers and

employed data augmentation techniques to improve accu-

racy. Their Enhanced AlexNet (EAN) model achieved a

remarkable 99.32% accuracy in classifying brain tumors

from MRI images, outperforming traditional models.

Mandle et al. developed [55] an advanced deep learning

model for brain tumor detection, comprising preprocessing,

segmentation, and classification stages. They improved

image quality using a compound filter and segmented

tumors using morphological and threshold-based tech-

niques. The model achieved accurate detection through

feature extraction with the grey-level co-occurrence matrix

(GLCM) and feature selection optimized by the Whale

Social Spider-based Optimization Algorithm (WSSOA),

followed by classification using DCNN.

To sum up, these studies collectively underscore the

extensive application of CNN and vision transformer

models in brain tumor diagnosis, presenting a compre-

hensive strategy using MRI scans for the detection of brain

tumors. This approach enables rapid, efficient, and accurate

decision-making regarding patients’ conditions, showcas-

ing the potential of deep learning techniques in signifi-

cantly advancing the field of medical imaging and

diagnosis.
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3 Material and methods

The overall approach, summarized in the diagram of Fig. 2,

offers a robust framework consisting of several key com-

ponents, providing a powerful structure for the identifica-

tion of brain tumor diseases. We began in Dataset stage by

selecting an MRI brain public Dataset [56] was selected

from several public datasets and processed in the Pre-

processing stage. The images are resized, partitioned, and

subjected to basic data augmentation techniques to improve

training performance and address class imbalances. The

dataset is split into three subsets for deep learning

approaches. For small-scale and datasets with limited

diversity, data augmentation techniques like flipping,

rotation, and shifting are used to increase the diversity of

the training data. The next stage, Training models, involves

deep learning approaches, specifically utilizing cutting-

edge models with ImageNet weights and proposed model.

This approach allows for fast convergence and improved

performance, especially in small-scale datasets. The mod-

els undergo a validation process, where more than 20 deep

learning architectures and a total of 45 deep learning

models are evaluated for classification. Finally, in the

Evaluation stage, models are put to the test on the test data

and their performance is evaluated and visually analyzed

with Grad-CAM heatmaps [22].

3.1 Dataset

In this study, a large dataset consisting of 7,023 MRI

images, including both healthy and diseased samples, was

selected from publicly available datasets on Kaggle [56] to

effectively train deep learning models. The dataset com-

prises four distinct classes: Glioma-tumor, Meningioma-

tumor, Pituitary-tumor, and No-tumor, with a total of 7,023

brain images with unbalanced classes. The Glioma-tumor

class accounted for 1,621 samples, followed closely by

Meningioma-tumor with 1,645 samples. The Pituitary-tu-

mor class included 1,757 samples, while the No-tumor

class included 2,000 samples. Figure 3 presents randomly

selected images from the classes in the utilized dataset.

Gliomas are malignant tumors that occur in a part of the

central nervous system. These tumors can originate from

brain tissue or cerebrospinal fluid. The majority of brain

cancer-related deaths are caused by gliomas, the most

aggressive and deadly type of brain tumors [57]. One of the

most typical primary brain tumors are gliomas and treating

them is still quite difficult [58]. Meningiomas develop from

the cells that make up the outer membrane of the brain and

spinal cord. Protecting the brain and spinal cord as well as

assisting in the movement of the cerebrospinal fluid

between the arachnoid and pia layers are the two functions

of the meninges, also referred to as the cerebral cortex.

Pituitary tumors, according to a study [2], are tumors

that develop as a result of aberrant cell development in the

pituitary gland. Although most of these tumors are benign

(non-cancerous), they occasionally develop into malignant

Fig. 2 Proposed approach for brain tumor identification and explainability

11192 Cluster Computing (2024) 27:11187–11212

123



(cancerous) tumors. Depending on their size, location, and

hormone secretion, pituitary tumors can present with a

variety of symptoms and indications. The exact causes of

pituitary tumors are not yet fully understood, but it is

believed that certain factors can increase the risk of tumor

formation. No-tumor refers to brain images or situations in

which there are no aberrant brain growths or tumors pre-

sent. In these situations, the brain is thought to be in a

healthy and normal state without any signs of cancer or

aberrant cell growth.

3.2 Pre-processing

Preprocessing consists of a series of steps to effectively

train and evaluate deep learning algorithms. Initially, the

raw MRI image is taken and resized from 512 9 512 9 3

pixels to 224 9 224 9 3 pixels to reduce dimension cal-

culations, optimize processing time, and save computa-

tional resources. This resizing process is carried out to

ensure consistency across the dataset and to facilitate the

efficient processing of the deep learning model. The

resizing is performed using the bicubic interpolation

method. Bicubic interpolation is preferred due to its

capability to produce smoother images compared to nearest

neighbor and bilinear interpolation methods. This method

considers the closest 16 pixels (4 9 4 area) to estimate new

pixel values, which helps preserve image quality during the

resizing process. This choice is made to maintain the high

quality of MRI images because, in medical image pro-

cessing, this is crucial for accurate tumor detection and

classification. In addition, this dimension-reduction process

reduces the number of pixels in the image, thereby light-

ening the computational load and enabling faster results.

Next, the image data is shuffled. This step is important to

allow the network to work on an irregular dataset during

training. The network is prevented from focusing on a

particular subset of data by shuffling the images, which

also ensures a more representative utilization of the entire

dataset [23].

The dataset is divided into four classes that correspond

to various forms of brain tumors: glioma, meningioma,

pituitary, and no tumor. Each class has a different number

of samples, with the ‘‘No-tumor’’ class having the most

samples at 2,000. For training, validation, and testing

purposes, the dataset is divided into three subsets, as seen

in the Table 1.

The meticulous partitioning of the dataset into training,

validation, and test sets underpins our method’s reliability

and generalizability. This strategic division ensures that our

model is trained on a diverse and representative array of

Fig. 3 MRI images belonging to the brain tumor and healthy classes
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MRI scans, encompassing a wide spectrum of tumor types

and stages. By validating and testing the model on inde-

pendent data sets, we are able to rigorously assess its

generalization capabilities. This approach is crucial in the

medical diagnostics field, where the model’s ability to

accurately classify new, unseen patient data is paramount.

Such a thorough evaluation framework not only under-

scores the model’s robustness but also its readiness for

deployment in clinical settings, where it can aid in the

timely and accurate diagnosis of brain tumors, potentially

improving patient outcomes.

Moreover, using the 4,852 samples in the training set,

the deep learning model is trained on labeled data to dis-

cover patterns and features specific to each tumor class.

The model’s hyperparameters are adjusted and its gener-

alizability is checked using the validation set, which has

860 samples. With 1,311 samples, the test set provides an

objective assessment of the model’s ultimate performance

using entirely new, unseen brain MRI scans. A trustworthy

brain tumor classification model may be created with the

help of this well-organized dataset, which has a total of

7,023 samples. This could increase diagnostic precision

and make it easier for physicians to diagnose brain tumors.

Finally, data augmentation techniques are applied to

prevent overfitting and enhance the overall system

robustness. Image augmentation increases data diversity by

giving the images various transformations, including rota-

tion, flipping, and reflection. This allows the network to

work in more varied scenarios and gain a broader per-

spective on the data. Image augmentation is frequently

used to weaken the model and lessen overfitting tendencies.

Combining these steps ensures effective image data pre-

processing and prepares it for use in the proposed archi-

tecture [32].

3.3 Models training

In computer vision, deep learning models have become a

ground-breaking innovation [33] that shows considerable

potential for classifying and detecting brain tumors. When

examining the literature, it becomes evident that CNN

models are prominently featured in this context. Based on a

thorough review of relevant studies, we carefully selected a

set of well-established and widely cutting-edge deep

learning architectures for implementation in this research,

representing the most popular and up-to-date architectures

and effective deep learning structures in brain tumor

diagnosis. We selected almost all models belonging to

these architectures and also examined the impact of model

size on performance. For instance, we not only considered

ResNet50 but also included all models ranging from

ResNet18 to ResNet101. This approach allowed us to

identify successful models for each architecture.’’

We chose to use transfer learning since it allows using

information learned on previously trained models on big

datasets to improve models’ performance on new tasks

with small datasets and seeks to speed up model building

and boost performance when faced with fresh features.

This method is frequently utilized in several disciplines,

including sentiment analysis, natural language processing,

and computer vision. ImageNet pre-trained models are one

of the most used.

DenseNet is a CNN architecture to address the issue of

vanishing gradients in deep learning [59]. Each layer

within a thick block is connected to all other layers,

introducing a novel connection pattern. In addition to

making the model more compact and less prone to over-

fitting, this encourages intensive feature reuse. DenseNet is

frequently used in computer vision applications and has

demonstrated remarkable performance in a variety of

image classification tasks [37].

ResNet, which stands for ‘‘Residual Network,’’ is a

CNN design that uses skip connections to overcome the

issue of disappearing gradients [60]. These connections

enable the network to learn residual functions and facilitate

more efficient gradient flow. ResNet has achieved excep-

tional results in image classification tasks and is widely

adopted in computer vision.

EfficientNet is a deep learning architecture introduced

by Google that significantly improves image classification

performance. It uses a scaling technique called ‘‘Com-

pound Scaling’’ to optimize multiple hyperparameters

simultaneously, resulting in higher accuracy with fewer

parameters. EfficientNet is particularly suitable for image

classification on resource-constrained devices [61].

The Visual Geometry Group at Oxford University cre-

ated the VGG, a CNN model [40]. Convolutional layers,

max pooling, and fully connected layers make up its reg-

ular structure. VGG is frequently used as a starting point

for creating alternative CNN models because of its

remarkable performance on image classification bench-

marks like ImageNet [62].

Inception-v4 [63] model expands on the original

Inception model using a more CNN design. Inception

Table 1 The number of images in the train, validation, and test sets of

the public dataset

Class name (brain tumor) Train Validation Test Total

Glioma-tumor 1,122 199 300 1,621

Meningioma-tumor 1,138 201 306 1,645

Pituitary-tumor 1,237 220 300 1,757

No-tumor 1,355 240 405 2,000

Total 4,852 860 1,311 7,023
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blocks with parallel convolutional layers, factorized

reduction, and stem blocks for initial feature extraction as

well as multi-scale feature representation are all included.

The model investigates the merging of Inception blocks

with residual connections and incorporates auxiliary clas-

sifiers for better training.

MobileNetv3 Howard et al. [64] is a CNN architecture

designed for low-power devices such as mobile phones. It

uses low-dimensional filters during feature extraction to

reduce computational costs, making it appropriate for real-

time mobile apps. MobileNet performs well in tasks like

object detection, face recognition, and image classification.

Xception is a CNN architecture based on the Inception

model [65]. It increases accuracy while requiring fewer

parameters and calculations by using depthwise separable

convolutions and pointwise convolutions. Xception is

commonly used in computer vision applications and has

demonstrated excellent performance in image classification

tasks [45].

MobileViTv2 [66] stands as a cutting-edge lightweight

vision transformer model designed specifically for effec-

tive image classification and object detection on mobile

devices. Its unique attributes include the integration of

sophisticated elements like separable self-attention, pro-

viding a more computationally efficient alternative to the

conventional self-attention mechanism, thereby enhancing

accuracy. Additionally, the model improves resource effi-

ciency through layer-wise channel partitioning, which

involves the subdivision of each layer into smaller channel

groups to reduce memory usage.

InceptionNext [67] represents a CNN architecture that

seamlessly integrates the strengths of both the Inception

and ConvNeXt architectures. Notable features of Incep-

tionNext include the strategic use of Inception-style mod-

ules to decompose computationally expensive large-kernel

depthwise convolutions. This decomposition enhances

processing efficiency while upholding high accuracy stan-

dards. The model also leverages depthwise convolutions

adeptly, effectively reducing computational complexity

without compromising its feature extraction capabilities.

MaxViT [68] represents an innovative vision trans-

former model introduced by Google AI researchers in

2022, featuring a distinctive multi-axis attention mecha-

nism that sets it apart in the realm of image classification

and object detection. This mechanism operates across

multiple spatial dimensions, allowing MaxViT to capture

extensive global and contextual information within images,

ultimately contributing to superior performance.

Swin Transformer [69], a state-of-the-art vision trans-

former, excels as a general-purpose backbone for various

computer vision tasks, boasting remarkable performance in

image classification and dense prediction. Its key features

include the construction of hierarchical feature maps for

effective capture of local and global information, the use of

shifted windows to enhance computational efficiency in

self-attention, and a linear computation complexity that

enables scalability to high-resolution images.

DeiT III [70], introduced by Facebook Research in

2023, is a state-of-the-art vision transformer designed for

efficient image classification on large datasets. Building

upon its predecessors, DeiT III features a simplified train-

ing recipe based on ResNet-50, reducing complexity, and

an efficient data augmentation approach for improved

generalization. Employing layer-wise channel partitioning

addresses memory consumption, while cross-stage partial

connections enhance feature aggregation, contributing to

superior performance.

ResMLP [71] is a pioneering image classification

architecture based entirely on multi-layer perceptrons

(MLPs). ResMLP employs a residual MLP architecture,

combining linear layers for independent patch interactions

and two-layer feed-forward networks for per-patch channel

interactions. The model features an efficient ‘‘cross-token

attention’’ mechanism to capture long-range dependencies

without the computational complexity of standard self-

attention.

GhostNet [72] is a high-performing CNN designed for

efficient image classification that the key innovation is the

Ghost module, utilizing cost-effective operations like linear

transformations and cheap activation functions to enhance

feature generation while ensuring computational efficiency.

GhostNetV2 [73] represents an enhanced iteration of the

GhostNet architecture, aiming to attain superior accuracy

and efficiency that presenting advancements in cheap

operations complemented by long-range attention mecha-

nisms. RepGhostNet emerges as a novel and hardware-

efficient alternative to the Ghost module, a crucial com-

ponent in the CNN architecture. While maintaining per-

formance to GhostNet, RepGhost achieves a substantial

reduction in computational complexity and memory

footprint.

FastViT [74], introduced by Apple in 2023, is a

groundbreaking CNN-Transformer hybrid architecture

designed for efficient image classification and object

detection. Utilizing structural reparameterization, it trans-

forms Transformer self-attention into a more computa-

tionally efficient convolutional form, significantly reducing

complexity while maintaining accuracy. FastViT adopts a

hybrid approach, leveraging CNNs for early feature

extraction and Transformers for global context

aggregation.

CaFormer [75] is a submodel of ‘‘MetaFormer Baselines

for Vision’’, introduced by Weihao Yu et al. in 2023,

present a collection of lightweight and efficient transformer

architectures tailored for image classification and object

detection tasks. Key features include the utilization of
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efficient token mixers like IdentityFormer, RandFormer,

and ConvFormer, reducing computational complexity

compared to standard self-attention mechanisms. To

address memory consumption, MetaFormer Baselines

incorporate layer-wise channel partitioning, dividing layers

into smaller channel groups.

3.4 Proposed model

Recent advancements in deep learning have propelled the

field of automated brain MRI image diagnosis to new

heights. Specifically, incorporating attention mechanisms

into CNNs and vision transformer models has markedly

improved their performance and efficiency in diagnosing

brain conditions. The adoption of the EfficientNetv2

architecture as the foundation for our model is a strategic

choice, motivated by its proven efficiency and scalability

across a variety of image classification tasks. However, the

unique challenges presented by MRI-based brain tumor

classification, namely, the high variability in tumor

appearances and the subtlety of early manifestations—ne-

cessitate an enhancement to this base architecture. To this

end, we integrate GAM and ECA into EfficientNetv2,

thereby amplifying the model’s capability to discern and

prioritize salient features within complex MRI images.

This enhancement is not merely an augmentation but a

targeted modification designed to elevate the model’s

sensitivity to crucial, yet potentially subtle, tumor charac-

teristics, ensuring a significantly improved accuracy in

classification tasks. Such an approach is indicative of our

method’s robustness, particularly in detecting early-stage

tumors where traditional models may falter due to their

reliance on more conspicuous tumor features.

The core of the EfficientNetv2 model includes MBConv

and Fused-MBConv layers. Our method enriches this

architecture by substituting the SE block with GAM and

ECA blocks, in addition to applying strategic rescaling.

This refinement aims to forge a model that excels in

detecting brain tumors with heightened precision. Figure 4

showcases the model’s architecture, emphasizing the

redesigned GAM-enhanced Fused-MBConv and ECA-en-

hanced MBConv layers tailored for brain tumor identifi-

cation. This innovative strategy achieves superior

classification accuracy with a reduced parameter count

when juxtaposed with the conventional EfficientNetv2

model. To offer a thorough understanding of our approach,

the study begins with an essential overview of the Effi-

cientNetv2 architecture, then delves into the intricacies of

the attention mechanisms, and further investigates the

architecture’s scaled modifications.

In this architecture, the MBConv modules, which vary

in size and configuration throughout the network, act as

advanced convolutional layers designed to boost the

network’s ability to learn. They afford the network

enhanced flexibility in recognizing more intricate patterns,

particularly relevant to visual processing tasks. Meanwhile,

the FusedMBConv, an evolved form of the standard

MBConv module, aids in the extraction of deeper features

through network expansion. This adjustment allows for the

development of models that are both efficient and rapid,

minimizing the computational demands. In our research,

the ECA module is integrated into the MBConv module,

substituting the SE module. This enhancement boosts the

model’s feature extraction prowess, expanding its learning

capabilities while concurrently diminishing the need for

computational resources and improving the interaction of

depth-wise spatial features. Within the FusedMBConv

module, the GAM replaces the SE module. By fostering

channel-spatial interactions, GAM retains valuable infor-

mation, leading to more efficient feature extraction with a

reduced number of parameters. Consequently, this

approach elevates the model’s overall efficiency while

curtailing its computational requirements.

EfficientNetv2 architectures are celebrated for their

robust framework, enabling the crafting of scalable and

high-efficiency models. The architecture’s scalability is

derived from a unique approach that scales the network’s

width, depth, and resolution. This method allows Effi-

cientNetv2 to find an equilibrium between the intricacy of

the model and its computational demands, ensuring the

models are well-suited for both expansive and compact

datasets. In this research, we have downscaled the Effi-

cientNetv2’s smallest variant, dubbed EfficientNetv2-

Small, to better fit the demands of small-scale brain MRI

datasets. This version is characterized by a distinct

arrangement of layer repetitions, which indicates the fre-

quency of block repetitions at each network segment.

Altering the original layer repetition sequence from 2, 4, 4,

6, 9, 15 to a customized sequence of 2, 3, 3, 4, 6, 12, the

model was meticulously adapted for brain MRI data, bal-

ancing the model’s size and precision. Such modifications

lead to a decrease in the model’s complexity and the total

number of parameters, while still preserving its efficacy.

This is achieved by employing GAM-enhanced

FusedMBConv and ECA-enhanced MBConv blocks,

ensuring the model retains high efficiency with minimal

impact on accuracy.

3.4.1 EfficientNetv2 architecture

EfficientNetv2, a pioneering CNN-based architecture

developed by Tan and Le in 2021, represents a significant

advancement in the field, and specifically designed for

efficient feature extraction, addressing the shortcomings

identified in EfficientNetv1. Initially tailored for optimized

binary operations and parameter efficiency, EfficientNetv2
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employs Neural Architecture Search (NAS) to uncover an

initial architecture that achieves a better balance between

accuracy and computational load. Subsequently, the model

implements an irregular scaling strategy, progressively

adding more layers in later network stages with a desig-

nated set of scaling coefficients. Lastly, it enhances model

performance and efficiency through progressive learning

techniques that systematically increase data regularization

and augmentation in line with the growth in image size.

Unlike its previous version, EfficientNetv2 extensively

utilizes MBConv and Fused-MBConv in the initial layers,

opting for a lower MBConv expansion ratio to alleviate the

memory access burden. The integration of the FusedMB-

Conv operation, combined with meticulous optimization

efforts, positions EfficientNetv2 as a groundbreaking

solution in the domain of convolutional classification

networks.

3.4.2 Attention mechanism for EfficientNetv2 models

Neural networks can concentrate on the key components of

an input by using an attention mechanism. Specifically, it

can assist the network in differentiating between back-

ground noise and objects of interest in computer vision

applications. Utilized extensively to increase CNN models’

accuracy, the attention mechanism has been increasingly

popular in recent years. Hard and soft attention are the two

different categories of it. Spatial attention, channel atten-

tion, and mixed attention are the three main types that have

been identified under the soft attention process. To improve

its ability to grasp spatial linkages and structures, the net-

work can use spatial attention to selectively focus on spa-

tial regions within the input data. Conversely, channel

attention makes it possible for the network to tune feature

responses across many channels, making it easier to extract

pertinent features while squelching noise. By combining

channel and spatial attention, mixed attention gives the

network a complete mechanism to simultaneously capture

channel-wise and spatial information, enhancing its overall

performance in challenging visual recognition tasks.

Squeeze and Excitation Block (SE) was one of the first

noteworthy attempts to apply channel attention to CNN

models. Within the field of CNNs, attention processes have

emerged as a keystone for deep learning model develop-

ment. By emphasizing important properties in a targeted

manner, these techniques help the network perform better

and have greater discriminative ability. To recalibrate

feature responses and enable the network to capture com-

plex interdependencies between various channels, several

attention techniques have been developed, such as the

Convolutional Block Attention Module (CBAM), the

BAM, ECA module, and GAM.

ECA-Net, proposed in 2020 by Wang et al. [43], is an

efficient channel attention mechanism for deep CNNs. It

captures local cross-channel interactions using a 1D con-

volution with an adaptive kernel size, replacing traditional

fully connected layers. The process involves global average

pooling, followed by a 1D convolution and sigmoid acti-

vation to modulate the input feature map. Despite

notable performance improvements, ECA-Net maintains a

lightweight and efficient profile, minimizing model com-

plexity and computational overhead.

CBAM is a lightweight and versatile attention module

for CNNs, proposed in 2018 by Sanghyun Woo et al. [76].

It sequentially focuses on both channel and spatial

dimensions to enhance feature maps. The channel attention

Fig. 4 Proposed Model with GAM and ECA blocks
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emphasizes important channels via global average pooling

and fully connected layers, while spatial attention high-

lights significant regions through global max pooling and

similar layers. The resultant refined feature map is obtained

through element-wise multiplication of the two attention

maps and is passed to the subsequent CNN layers. The

GAM and the CBAM share the same fundamental struc-

ture, but they employ different mathematical operators for

channel attention and spatial attention modules. Figure 5

illustrates the basic structure of the GAM and CBAM

modules.

As shown in Fig. 5, the CBAM significantly boosts the

performance of CNNs through the strategic implementa-

tion of two consecutive submodules: the Channel Attention

Module (CAM) and the Spatial Attention Module (SAM).

The CBAM enhances the model’s focus on relevant fea-

tures by generating two types of attention maps: a one-

dimensional channel attention map (Mc) with dimensions

of C 9 1 9 1, and a two-dimensional spatial attention map

(Ms) with dimensions of 1 9 H 9 W. Specifically, Mc is

structured to emphasize the importance of each channel

across the entire feature map. Conversely, Ms highlights

pertinent spatial features within the image. This dual-focus

mechanism allows the model to adaptively refine feature

representations by prioritizing both channel-wise and spa-

tial information, thereby improving the model’s capability

to distinguish significant patterns within the data. Given an

intermediate feature map F with dimensions C 9 H 9 W

as input, CBAM sequentially infers a 1D channel attention

map Mc in dimensions of C 9 1 9 1, and a 2D spatial

attention map Ms in dimensions of 1 9 H 9 W, as

demonstrated in Fig. 5. The overall attention process can

be formulized in Eq. 1 and Eq. 2.

F0 ¼ Mc Fð Þ � F1 ð1Þ

F00 ¼ Ms F0ð Þ � F0 ð2Þ

where, the symbol � signifies element-wise multiplication.

While performing the multiplication, the attention values

are copied appropriately: the channel attention values are

duplicated across the spatial dimension, and vice versa. F00

represents the resulting refined output.

In CNNs that utilize attention mechanisms such as ECA,

CBAM, and GAM, F1, F0; and F00 denote different phases

in the processing of feature maps. F1 is derived from the

initial convolutional layers and represents the extracted

feature set. After undergoing refinement through attention

mechanisms, these features are represented as F0, where
specific elements crucial for tasks like identifying brain

tumors are highlighted by adjusting their significance

dynamically. F00 represents a further refinement of F0 via
additional processing or combining features, thereby

boosting the model’s precision and clarity. This enables the

model to precisely target and emphasize the most pertinent

information in the data. The foundational structure of the

CBAM architecture, comprising its two principal compo-

nents, the CAM and SAM modules, is depicted in Fig. 6.

In the CAM component of the CBAM framework, an

attention map focused on channels is generated through

leveraging relationships across channel features. This

portion of the module prioritizes identifying the key ele-

ments in the input. To achieve this, it initially applies

average and max pooling to the spatial aspects of the fea-

ture maps, producing Fc
avg and Fc

max, which correspond to

features that have been averaged and maximized across

pools, respectively. Following this, these derived values are

relayed to a dedicated neural network layer, Mc, which is

dimensioned at C 9 1 9 1 and contains one hidden layer,

where C is the count of channels. The method for calcu-

lating the attention dedicated to channels is established

through Eq. 3 and Eq. 4.

Fig. 5 Baseline structure for CBAM and GAM architectures
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McðFÞ ¼ rðMLPðAvgPoolðFÞÞ þMLPðMaxPoolðFÞÞÞ
ð3Þ

McðFÞ ¼ rðW1 W0 Fcavg

� �� �
þW1 W0 Fcmax

� �� �
; ð4Þ

In this context, r denotes the sigmoid activation func-

tion, while W0 and W1 represent the weight coefficients,

and MLP refers to the multi-layer perceptron network.

On the other hand, the SAM crafts a map pinpointing

critical spatial regions by analyzing spatial feature corre-

lations. Distinct from its counterpart focusing on channel

importance, SAM identifies the specific locations within

the input where relevant information is concentrated. For

the creation of these spatial attention maps, it conducts

average and maximum pooling across the channel dimen-

sion, yielding Fsavg 2 R1�H�W for average-pooled spatial

features, and Fsmax 2 R1�H�W for max-pooled spatial fea-

tures. These outputs are subsequently merged and pro-

cessed through a convolution layer, represented as

Ms 2 R1�H�W, facilitating the determination of spatial

attention through a specialized approach. The computation

of spatial attention unfolds in the following Eq. 5 and

Eq. 6:

MsðFÞ ¼ rðf 7�7ð½AvgPoolðFÞ;MLPðMaxPoolðFÞ�ÞÞ ð5Þ

MsðFÞ ¼ r f 7�7 Fsavg; F
s
max

h i� �� �
ð6Þ

In this description, r stands for the sigmoid activation

function, while f7 9 7 indicates a convolutional operation

using a filter with dimensions 7 9 7.

On the other hand, in the domain of brain tumor

detection, navigating the dataset’s complexity necessitates

a robust mechanism to filter out irrelevant information

while emphasizing critical features. The GAM is distin-

guished by its efficacy in minimizing unnecessary data

while accentuating crucial global and dimensional inter-

actions [42]. This superiority of GAM is evident when

juxtaposed with other attention mechanisms, primarily due

to its advanced capacity for preserving information across

the dataset’s intricate variations. GAM advances beyond

the foundation laid by the CBAM, preserving the orderly

sequence of channel and spatial attentions but with refined

submodules for enhanced processing. It employs a 3D

permutation technique within the channel attention sub-

module to maintain comprehensive information across all

dimensions. This is followed by the use of a two-layer

MLP that intensifies the interplay between channel and

spatial elements, ensuring a broad capture of dependencies.

The spatial attention component further consolidates this

approach by integrating two convolutional layers specifi-

cally designed to fuse spatial information more cohesively,

as illustrated in Fig. 7.

Operating on the input feature mapping F1, intermediate

state F2, and final output F3, as depicted in Eq. 7 and

Eq. 8, this mechanism aims to strike a balance between

global feature integration and mitigating information loss

within the network.

F2 ¼ Mc F1ð Þ � F1 ð7Þ
F3 ¼ Ms F2ð Þ � F2 ð8Þ

Fig. 6 Blocks of CBAM network
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The operational dynamics of GAM are illustrated

through equations and visual representations, underlining

its structured approach to refining input feature maps.

Initially, the channel attention map Mc is applied to the

input feature map F1, resulting in an intermediate state F2,

which then undergoes further refinement by the spatial

attention map Ms, culminating in the final output F3. This

procedural flow ensures a comprehensive enhancement of

significant features within the images, making GAM an

invaluable tool in the nuanced field of medical image

analysis and brain tumor detection.

3.5 Evaluation metrics

Different performance metrics are used in machine learn-

ing to assess the efficacy of created models or algorithms,

notably in classifying and detecting brain tumors. Accu-

racy, Precision, Recall, F1-score, Sensitivity, and Speci-

ficity are some of these measurements. The F1-score

provides a balanced measurement that takes Precision and

recall into account. Sensitivity emphasizes reducing false

negatives, while specificity assesses the accuracy of neg-

ative predictions. Accuracy measures the overall correct-

ness of predictions, while Precision focuses on the

accuracy of positive predictions, Recall evaluates the

model’s capacity to identify positive cases correctly.

Researchers can learn more about the model’s effective-

ness and capacity to correctly categorize cases of brain

tumors by using these measures and examining the

confusion matrix produced. These metrics can be computed

using the following formulas:

Accuracy ¼ Numberofcorrectpredictions

Numberoftotalpredictions
ð9Þ

Precision ¼ TruePositive

TruePositiveþ FalsePositive
ð10Þ

Recall ¼ Sensitivity ¼ TruePositive

TruePositiveþ FalseNegative

ð11Þ

F1� score ¼ 2 � Precision � Recall
Precisionþ Recall

ð12Þ

4 Discussion and results

In this section, the experimental results are meticulously

analyzed. A description of the experimental setup, eluci-

dating how the experimental process was conducted, pre-

cedes a comprehensive discussion alongside tables and

graphs presenting the outcomes of deep learning architec-

tures. Furthermore, the interpretability of CNN architec-

tures is demonstrated through the extraction of heat map

regions of brain tumor areas using Grad-CAM. Finally, a

detailed comparison with state-of-the-art (SOTA) models is

provided to evaluate the proposed method against existing

benchmarks.

Fig. 7 Blocks of GAM network
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4.1 Experimental design

The computer utilized in the experiments had the following

hardware configuration: a Linux-based operating system

called Ubuntu 21.04 was employed; an NVIDIA RTX

2080TI graphics card with 11 GB of GDDR6 RAM and

4352 CUDA cores was part of the GPU hardware; an Intel

Core i9 9900X with 10 cores, 3.50 GHz, and a 19.25 MB

Intel� Smart Cache served as the processor and 32 GB of

DDR4 RAM. Python was utilized as the programming

language, and the PyTorch deep learning library was used.

4.2 Results

This section provides a comprehensive assessment of

advanced deep learning models in the context of brain

tumor diagnosis. It discusses the performance metrics and

the outcomes depicted in the confusion matrix associated

with the proposed diagnostic model. The findings presented

in Table 2 demonstrate that, with the exception of VGG19,

all deep learning models achieve accuracy rates exceeding

99% in correctly identifying brain tumors. These results

underline the efficacy and reliability of deep learning

methodologies in aiding medical professionals in accu-

rately diagnosing brain tumors. They highlight the potential

of these models to significantly improve diagnostic accu-

racy and patient outcomes in the field of neurology.

Table 2 compares the performance of various deep

learning architectures in classifying MRI images for brain

tumor identification. It evaluates popular models like VGG,

ResNet, DenseNet, Inception, MobileNet, MobileViTv2,

FastViT, GhostNet, RepGhostNet, MaxViT, Swin, DeiT3,

ResMLP, and Caformer based on crucial performance

metrics such as accuracy, precision, sensitivity, and F1

score.

A key finding is the Proposed Model’s demonstration of

the highest performance with an accuracy of 99.77, preci-

sion of 99.76, sensitivity of 99.75, and an F1 score of

99.75%. This indicates a significant superiority of the

Proposed Model over all other deep learning models

examined for brain tumor classification, highlighting its

ability to perform more precise and effective classification

thanks to specialized attention mechanisms and model

optimizations used particularly for detecting brain tumors.

Furthermore, architectures like DenseNet-121 and

Inceptionv3 also showcase remarkable performance with

accuracy rates around 99.47%, while the VGG-19 model

shows a relatively lower performance at 98.55%. This

variance in performance indicates how the architecture of

the model and the feature extraction techniques used can

significantly affect outcomes. Notably, models such as

FastViT-s12 and RepGhostNet-200, displaying high

accuracy rates of 99.54%, underscore the potential of

transformer-based and lightweight models in visual clas-

sification tasks. These results demonstrate how various

deep learning architectures can perform differently in

specific medical imaging tasks like brain tumor diagnosis

and the importance of selecting the most appropriate

model.

Similarly, notable architectures like MaxViT-base,

Swin-base, DeiT3-base, and ResMLP-24 have shown

impressive performance in brain tumor identification tasks.

Particularly, MaxViT-base and Swin-base stand out with

accuracy rates of 99.54 and 99.47%, respectively, show-

casing their capability to effectively process complex

visual features and their significant potential in deep

learning applications for medical imaging. DeiT3-base

Table 2 Results of deep learning models

Model Accuracy Precision Recall F1-score

VGG-13 0.9924 0.9918 0.9917 0.9917

VGG-16 0.9908 0.9901 0.9901 0.9901

VGG-19 0.9855 0.9844 0.9853 0.9848

ResNet-18 0.9931 0.9929 0.9925 0.9927

ResNet-34 0.9931 0.9928 0.9925 0.9926

ResNet-50 0.9923 0.9921 0.9917 0.9919

ResNet-101 0.9924 0.9919 0.9917 0.9918

DenseNet-121 0.9947 0.9942 0.9942 0.9942

DenseNet-169 0.9931 0.9928 0.9925 0.9926

DenseNet-201 0.9946 0.9945 0.9942 0.9943

Xception 0.9924 0.9920 0.9917 0.9918

Inceptionv3 0.9947 0.9945 0.9942 0.9943

Inceptionv4 0.9939 0.9940 0.9934 0.9937

InceptionNexT-base 0.9947 0.9944 0.9942 0.9943

MobileNetv3-small 0.9947 0.9946 0.9942 0.9944

MobileNetv3-large 0.9916 0.9914 0.9909 0.9911

MobileViTv2-100 0.9939 0.9936 0.9934 0.9935

FastViT-t12 0.9931 0.9928 0.9926 0.9927

FastViT-s12 0.9954 0.9953 0.9950 0.9952

FastViT-sa36 0.9947 0.9945 0.9942 0.9943

GhostNet-100 0.9947 0.9945 0.9942 0.9943

GhostNetv2-100 0.9931 0.9928 0.9926 0.9927

RepGhostNet-100 0.9939 0.9938 0.9934 0.9936

RepGhostNet-200 0.9954 0.9953 0.9950 0.9952

MaxViT-base 0.9954 0.9950 0.9950 0.9950

Swin-base 0.9947 0.9943 0.9942 0.9942

DeiT3-base 0.9931 0.9926 0.9930 0.9928

ResMLP-24 0.9939 0.9936 0.9934 0.9935

Caformer-s18 0.9924 0.9918 0.9917 0.9917

Caformer-s36 0.9954 0.9953 0.9950 0.9951

Proposed Model 0.9977 0.9976 0.9975 0.9975
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emphasizes the strength of transformer architectures with

an accuracy of 99.31%, while ResMLP-24 validates the

efficacy of MLP architectures in this field with an accuracy

of 99.39%. In conclusion, these findings illuminate the

efficacy and potential of deep learning approaches in

medical imaging, especially in diagnosing brain tumors

using MRI. Figure 8 shows a bar graph for all models

mentioned in Table 2.

In Fig. 8, the premier performing model, referred to as

the Proposed Model, is distinguished in red, while the

subsequent top four models, namely Caformer-s36, Max-

ViT-base, RepGhostNet-200, and FastViT-s12, are pre-

sented in green. The remaining models are shaded in gray

to indicate their comparatively lower performance. Fur-

thermore, Table 3 presents a comparison of the model

performances within the EfficientNetv1 and EfficientNetv2

frameworks using brain MRI datasets. It also highlights the

influence of employing different attention mechanisms for

CNN-based architectures in conjunction with the imple-

mentation of the EfficientNetv2-small model, alongside the

outcomes achieved by the Proposed Model.

Table 3 provides a comprehensive comparison between

various EfficientNet models used for detecting brain

tumors and a proposed model. This comparison offers a

detailed analysis in terms of performance metrics such as

accuracy, precision, recall, and F1-score, while also aiming

to deeply investigate the impact of attention mechanisms.

This section presents analyses on the performance of both

the EfficientNet and EfficientNetv2 series, along with the

proposed model (GAM ? ECA), and the effects of atten-

tion mechanisms on brain tumor detection. A thorough

comparison between the EfficientNet and EfficientNetv2

series demonstrates that both series deliver excellent per-

formance metrics across various configurations, which is

illustrated in Fig. 9.

Figure 9 illustrates the achievements on the accuracy

metric achieved by EfficientNet models and EfficientNet

models with added attention mechanisms. The proposed

model demonstrates the highest achievement (highlighted

in red), while the closest 4 models are also highlighted in

green, and models and optimizations belonging to other

EfficientNet architectures are shown in gray.

Notably, the EfficientNetv2 series and its attention

mechanism-enhanced variants stand out for improving

performance significantly without increasing model com-

plexity. The efficacy of the proposed model is concretized

through the integration of different attention mechanisms

into the EfficientNetv2-Small model. This integration,

which replaces the SE modules in FusedMBConv blocks

with GAM and substitutes SE modules in MBConv blocks

with ECA mechanisms, represents a hybrid approach. This

strategy reduces the total parameter count of the model to

14.41 million while elevating the accuracy to 99.77, pre-

cision to 99.76, recall to 99.75, and F1-score to 99.75%.

Fig. 8 Bar graph for results of the Proposed Model and deep learning models
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This highlights the model’s lightweight structure and its

capability to achieve superior performance metrics while

reducing computation resources and training time require-

ments. Notably, this optimization has also resulted in sig-

nificant reductions in GPU usage and FLOPs.

The proposed model’s efficiency is evident in its

reduced parameter count and computational footprint.

Specifically, the model leverages depth-wise separable

convolutions and a scalable architecture that adjusts the

model’s width, depth, and resolution in a compound

manner, optimizing for speed and memory usage without

compromising performance. Compared to traditional CNN

architectures such as VGG and ResNet, the proposed

model demonstrates significant improvements in compu-

tational speed and memory efficiency. For instance, while

VGG-16 may require over 138 million parameters, the

Fig. 9 Bar graph for results of the Proposed Model and EfficientNet-based models with attention mechanism

Table 3 Results of whole

EfficientNet models with

different attentions alongside

proposed model

Model Accuracy Precision Recall F1-score Params (M)

EfficientNet-B0 0.9931 0.9929 0.9925 0.9927 4.02

EfficientNet-B1 0.9947 0.9945 0.9942 0.9943 6.52

EfficientNet-B2 0.9954 0.9953 0.9950 0.9952 7.71

EfficientNet-B3 0.9954 0.9953 0.9950 0.9951 10.71

EfficientNet-B4 0.9954 0.9953 0.9950 0.9952 17.56

EfficientNet-B5 0.9954 0.9953 0.9950 0.9951 28.35

EfficientNet-B6 0.9947 0.9947 0.9942 0.9944 40.75

EfficientNet-B7 0.9947 0.9944 0.9942 0.9943 63.79

EfficientNetv2-small 0.9954 0.9953 0.9950 0.9951 20.19

EfficientNetv2-medium 0.9954 0.9952 0.9950 0.9951 52.87

EfficientNetv2-large 0.9954 0.9953 0.9950 0.9952 117.24

EfficientNetv2-small ? CBAM 0.9954 0.9951 0.9950 0.9951 22.52

EfficientNetv2-small ? ECA 0.9962 0.9961 0.9959 0.9960 17.76

EfficientNetv2-small ? GAM 0.9969 0.9967 0.9967 0.9967 88.67

Proposed Model (GAM ? ECA) 0.9977 0.9976 0.9975 0.9975 14.41
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proposed EfficientNetv2-based model, even with the added

attention mechanisms, maintains a parameter count sig-

nificantly lower, contributing to faster training times and

reduced memory requirements. In terms of inference speed,

the proposed model exhibits a marked improvement over

classical models like VGG-16 and ResNet-50. Bench-

marked on the same hardware, the proposed model

achieves inference times up to 2 9 faster than VGG-16

and 1.5 9 faster than ResNet-50, facilitating real-time

analysis and classification of MRI images.

The analysis concerning parameter count and compu-

tational cost (FLOPs, GPU usage) reveals that a higher

parameter counts or computational intensity does not nec-

essarily correlate with better performance. EfficientNet-B0

and EfficientNet-B1 models, with 5.3 and 7.8 million

parameters respectively, offer accuracy rates of 99.31 and

99.47%. In contrast, EfficientNet-B3 and EfficientNet-B4

models, with respectively 12 and 19 million parameters,

maintain a similar high level of accuracy at 99.54% along

with comparable high precision, recall, and F1-scores. The

largest model in the EfficientNetv2 series, EfficientNetv2-

Large, despite having 48 million parameters, showcases

impressive performance metrics with an accuracy of 99.54,

precision of 99.53, recall of 99.50, and F1-score of 99.52%.

Investigations into the effect of attention mechanisms

show that the integration of ECA into the EfficientNetv2-

Small model reduces the parameter count from 20.19 to

17.76 million, yielding significant improvements in accu-

racy (to 99.62), precision (to 99.61), recall (to 99.59), and

F1-score (to 99.60%). The use of GAM, while increasing

the parameter count to 88.67 million, elevates the accuracy

from 99.54 to 99.69%, significantly enhancing overall

performance and yielding positive outcomes in other met-

rics. However, the integration of CBAM increases the

parameter count to 22.52 million without significant

improvements in other metrics. The proposed model

(GAM ? ECA) demonstrates not only a reduction in

parameter count and computational cost but also significant

improvements in critical performance metrics such as

accuracy, precision, recall, and F1-score when compared to

existing models. This evidences significant progress in

deep learning-based detection of brain tumors, proving the

model’s ability to strike an effective balance between

performance and efficiency. The success of the proposed

model underscores the importance of strategic integration

of attention mechanisms in developing deep learning

models. These findings lay a foundation for future research,

encouraging the development of more efficient and effec-

tive deep learning models. Figure 10 displays the confu-

sion matrix depicting the class performance of the

proposed model.

Upon reviewing Fig. 10, the detailed evaluation of the

confusion matrix confirms the classification model’s

superior performance in differentiating among four cate-

gories: Glioma, Meningioma, Pituitary, and No-tumor. The

model exhibits impeccable precision in identifying Glioma,

with 299 correct predictions, and Pituitary tumors, with

298 correct predictions, underscoring near-flawless accu-

racy. It similarly achieves outstanding accuracy in recog-

nizing Meningioma and No-tumor cases, with 306 and 405

correct predictions respectively. Discrepancies were mini-

mal, involving one Meningioma case misclassified as

Glioma, and two instances where the model incorrectly

labeled Pituitary tumors as Meningioma. These results

suggest that the model secures high metrics in precision,

recall, and F1-scores for each category, reflecting a well-

balanced and sturdy capacity to distinguish specific con-

ditions as well as general non-tumor instances. The scant

incidence of misclassifications emphasizes the model’s

adeptness at discerning between various brain tumor types

and its strong aptitude for correctly identifying non-tumor

cases, which serves to underline both its high rate of

accuracy and its robust generalization capability across

distinct tumor classes.

4.3 Visualization analysis using grad-CAM

Grad-CAM, which stands for Gradient-weighted Class

Activation Mapping, is an influential technique employed

to interpret and visualize how CNNs make decisions. Its

main objective is to pinpoint the significant regions in an

input image that greatly influence the network’s predictions

for a specific class. In the realm of brain tumor classifi-

cation, Grad-CAM serves as a pivotal tool, visually illus-

trating the specific features that CNN-based models

prioritize. This elucidation offers invaluable insights into

Fig. 10 Class-wise performance of the Proposed Model
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the rationale behind the model’s classification decisions,

thereby bolstering our understanding of its diagnostic

capabilities. Through this analysis, crucial for precise brain

tumor identification and classification within medical

imaging contexts, the model’s credibility is significantly

enhanced. Empirical evidence corroborates that the Pro-

posed Model excels in accurately classifying brain tumors,

underscoring its superiority in comparison to other models.

The integration of Grad-CAM into our model addresses a

critical need for interpretability in AI-driven medical

diagnostics. This technique illuminates the model’s deci-

sion-making process by highlighting the specific regions

within MRI scans that influence its classification decisions.

In the context of brain tumor diagnosis, where under-

standing the basis of a model’s prediction is as vital as the

prediction’s accuracy, Grad-CAM serves as an invaluable

tool. It not only aids radiologists and clinicians in vali-

dating the AI’s findings but also fosters a deeper trust in the

technology. By providing transparent and interpretable in-

sights into the model’s operational logic, Grad-CAM

enhances the collaborative potential between AI models

and medical professionals, paving the way for more

informed and effective treatment planning. Figure 11

illustrates how the integration of Grad-CAM with the

Proposed Model focuses on particular locations in brain

tumor regions.

As seen in Fig. 11, the two rows that are visible offer

important details on the interpretability of artificial intel-

ligence and the accuracy of the model for detecting brain

tumors. The radiologist-marked brain tumor locations in

the first row serve as manually positioned reference points.

The Proposed Model’s integration with Grad-CAM yields

heats map visualizations in the second row that reveal the

underlying causes of the model’s categorization choices.

The integration of the Proposed Model with Grad-CAM

clearly shows the tumor locations that the model concen-

trates on during brain tumor diagnosis. Nearly all of the

images feature heat map representations illustrating the

locations where the model focusses its attention, success-

fully identifying tumor regions. This study not only

strengthens the model’s trustworthiness but also acts as an

essential tool for pinpointing the causes of incorrect

classifications.

Additionally, the conclusions made by the model are

interpretable, which promotes confidence among radiolo-

gists and specialists and allows for improved therapeutic

decision-making. Grad-CAM, in this context, emerges as

an important tool that visually interprets the operation of

the Proposed Model and identifies tumor regions, sup-

porting the interpretability of artificial intelligence in cru-

cial areas like the classification of brain tumors. Grad-

CAM visualizations for Proposed Model with some mis-

regions and misclassifications are shown in Fig. 12.

In Fig. 12, the Grad-CAM analysis results of Proposed

Model include some misclassifications and inaccurate

focus areas. Upon examination, we can observe that the

integration of Proposed Model with Grad-CAM fails to

fully characterize misclassified brain tumors and focuses

on incorrect regions. Both the erroneous detections of

Proposed Model and Grad-CAM’s focus on areas other

than misclassified tumor regions demonstrate the compat-

ibility and effectiveness of both methods, showcasing

Fig. 11 The Grad-CAM visualizations for Proposed Model (with red ‘‘ ? ’’ signs indicating the ground truth regions marked by an expert

neurologist)
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Grad-CAM’s successful results in CNN-based deep learn-

ing techniques.

Regarding tumor-free images, models using the Grad-

CAM technique shift their focus to different areas. Despite

achieving high accuracy, it can be said that Grad-CAM

does not always provide precise localization. This high-

lights the need for developing more robust and advanced

techniques in artificial intelligence and medical image

processing to enhance interpretability beyond Grad-CAM’s

limitations.

As observed in Fig. 7 and Fig. 8, Grad-CAM can help

overcome some of the ‘‘black box’’ nature of CNN models

and make their decision mechanisms more interpretable.

As demonstrated by the Proposed Model, this method can

enhance confidence in the model’s medical diagnoses and

enable doctors to be more involved in the validation and

interpretation of the model’s diagnoses. However, it cannot

be claimed to provide complete interpretability. Never-

theless, by developing advanced techniques that address

the challenges in this regard, artificial intelligence can

achieve a higher level of interpretability in the medical

field.

4.4 Comparison with cutting-edge methods

To validate the superiority of our proposed model, we

conducted extensive experiments and benchmarked its

performance against a comprehensive suite of state-of-the-

art deep learning models. This comparative analysis is

pivotal, as it situates our model within the current land-

scape of MRI-based brain tumor classification

technologies, demonstrating its efficacy and efficiency.

Table 4 displays our proposed model’s superior perfor-

mance to other cutting-edge methods.

Considering Table 4, our Proposed Model has achieved

a significant success in MRI-based brain tumor classifica-

tion, reaching an impressive accuracy rate of 99.76%. This

accomplishment demonstrates a notable superiority over

traditional CNN architectures or hybrid approaches

(CNN ? SVM, DNN ? SVM) utilized by Celik and Inik

[31], Anantharajan et al. [46], and Deepak and Ameer [81],

which offer accuracy rates ranging from 95.60 to 97.93%.

Our model, showcasing how attention mechanisms can

enhance classification precision, surpasses these rates by a

considerable margin.

Additionally, studies employing ensemble methods and

advanced CNN frameworks, such as those by Remzan et al.

[47] and Rahman and Islam [78], have shown accuracy

rates below 98.20%. These innovative approaches have

been outperformed by the efficiency and accuracy of our

EfficientNetv2-based model integrated with attention

mechanisms. In addition, while Tabatabaei et al. [80]

proposed a model incorporating attention mechanisms and

achieved 99.30% accuracy on the Figshare dataset, our

model has further advanced this accuracy, particularly

emphasizing the effectiveness of specific attention mech-

anisms such as GAM and ECA.

The superiority of our model extends beyond a single

dataset, as it demonstrates higher accuracy rates compared

to models reported by Zebari et al. [53], Muezzinoglu et al.

[79], and others on different datasets, proving the robust-

ness and generalizability of our approach. The standout

Fig. 12 The Grad-CAM visualizations with false regions and misclassifications for Proposed Model (with red ‘‘ ? ’’ signs indicating the ground

truth regions marked by an expert neurologist)
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aspect of our model lies in the integration of attention

mechanisms such as GAM and ECA with EfficientNetv2.

This specific combination enables the model to accurately

focus on significant features in complex MRI images, thus

facilitating its superior performance.

Furthermore, The Kaggle dataset, one of the largest

datasets in brain tumor identification comparisons, intro-

duces a higher level of complexity to the task. The use of

the proposed model’s training-validation-test split (unlike

many studies which only utilize train-validation or cross-

validation) is particularly notable. This approach aligns

well with best practices for deep learning models in the

challenging field of brain tumor identification, allowing for

the generalization of these models over unseen test data.

The exceptional performance of our model, underscored by

a high-test accuracy and supported by a robust validation

framework, sets a new benchmark in the field. By rigor-

ously comparing our model against existing solutions, we

provide a clear and compelling case for its adoption in

clinical settings, where it can significantly enhance the

accuracy and efficiency of brain tumor diagnoses. This

comparative analysis not only establishes our model’s

technical excellence but also its potential to contribute

meaningfully to the advancement of medical imaging

analysis, offering a promising avenue for future research

and application.

4.5 Limitations and future directions

The proposed approach, enhancing EfficientNetv2 with

attention mechanisms, presents a promising advancement

in MRI-based brain tumor classification, spanning from

clinical diagnostics to research and development. Specifi-

cally, this model holds the potential to significantly

enhance the accuracy and efficiency of brain tumor iden-

tification in clinical diagnostics, aiding radiologists in

making faster and more reliable decisions. Its application

extends to providing personalized and effective treatment

strategies, leveraging detailed information about tumor

characteristics provided by the model. Beyond healthcare,

this approach could serve as a valuable tool in medical

education by offering a practical example of applying

advanced deep learning techniques in medical imaging

analysis.

However, despite its promising applications, the model

faces limitations that need to be addressed to fully realize

its potential. One significant constraint is the size and

diversity of the dataset, which impacts the model’s ability

to generalize across a wide range of brain tumors accu-

rately. Additionally, while the integration of Grad-CAM

enhances model interpretability, its opacity at the decision-

making process level may hinder trust and acceptance

among healthcare professionals. Computational require-

ments for processing comprehensive datasets or integrating

the model into real-time diagnostic platforms could pose

challenges, especially in resource-constrained

environments.

Looking ahead, various avenues in research and devel-

opment offer opportunities to overcome these limitations

and expand the model’s applicability. Efforts to enhance

dataset representation through large-scale data from dif-

ferent sources can reduce biases and enhance the model’s

Table 4 Proposed Model versus

cutting-edge methods (Kaggle

dataset consists of figshare,

SARTAJ dataset, Br35H)

Author & Year Dataset Method Accuracy %

Celik and Inik, 2024 [31] Kaggle CNN ? SVM 97.93

Remzan et al., 2024 [47] Kaggle Ensemble ? CNN 97.40

Anantharajan et al., 2024 [46] Kaggle DNN ? SVM 97.93

Ozkaraca et al., 2023 [77] Kaggle CNN-based 96.00

Rahman and Islam, 2023 [78] Kaggle CNN-based 98.12

Muezzinoglu et al., 2023 [79] Kaggle CNN-based 98.10

Zebari et al., 2024 [53] Figshare DBN ? CNN 98.98

Tabatabaei et al., 2023 [80] Figshare CNN ? Attention 99.30

Deepak and Ameer, 2023 [81] Figshare CNN ? SVM 95.60

Zulfiqar et al., 2023 [82] Figshare CNN-based 98.86

Ghassemi et al., 2020 [83] Figshare CNN ? GAN 95.60

Mehnatkesh et al., 2023 [84] Figshare CNN-based 98.69

Swati et al., 2019 [85] Figshare CNN-based 94.82

Sajjad et al., 2019 [86] Figshare CNN-based 90.67

Rehman et al., 2020 [87] Figshare CNN-based 98.69

Mzoughi et al., 2020 [88] BraTS CNN-based 96.49

Sharif et al., 2022 [89] BraTS CNN-based 98.80

Proposed Model Kaggle GAM ? ECA ? EfficientNetv2 99.76
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robustness. Advanced interpretability techniques beyond

Grad-CAM could make the model’s inner workings more

transparent and understandable for end-users. Optimizing

the model for computational efficiency could facilitate its

deployment across various platforms, including mobile and

edge computing devices, making advanced diagnostics

more accessible. In conclusion, while the proposed

approach represents a significant step forward in applying

deep learning to medical imaging, addressing current lim-

itations and exploring future directions are crucial for its

evolution. Progress in dataset diversity, interpretability,

computational efficiency, and integration with broader

healthcare data will unlock its full potential, paving the

way for more complex, accessible, and personalized med-

ical diagnostics and treatment planning.

5 Conclusion

This study presents an innovative adaptation of the Effi-

cientNetv2 architecture enhanced and re-scaled with Glo-

bal Attention Mechanism (GAM) and Efficient Channel

Attention (ECA) for accurate classification of MRI-based

brain tumors. Through extensive experiments, our model

has set a new benchmark in the field, achieving an

exceptional test accuracy of 99.76%. The integration of

attention mechanisms significantly enhances the model’s

focus on important features in MRI images, leading to

superior performance in detecting a wide range of brain

tumors. Moreover, the study explores the performance of

various attention mechanisms and 45 deep learning models

in brain tumor classification. Additionally, the application

of Grad-CAM visualization techniques provides valuable

interpretability into the model’s decision-making process,

offering crucial insights for clinical evaluation. This

advancement not only propels the field of medical imaging

analysis forward but also underscores the critical role of

attention mechanisms in improving the accuracy and

interpretability of deep learning models in brain tumor

diagnosis, promising to enhance patient care and treatment

outcomes.
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