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Abstract
This research unveils an improved indoor positioning method by utilizing inbuilt Inertial Measuring Unit (IMU) and

pressure sensor of smartphone and enhancing accuracy in Global Positioning System (GPS)-challenged environments.

Initially, Ground Truth (GT) trajectories in 3 cases were obtained by measuring different points with measuring-tape. Each

GT trajectory represents actual Positional Data (PD) which is compared with the calculated PD trajectories generated from

PD 1, 2, 3, 4, and 5 obtained with 5 different methods. Applying Rotational Transformation (RT), it amalgamates

accelerometer and gyroscope data to derive earth linear accelerations (ELA) for PD 1. Applying a Fast Fourier Transform

(FFT)-based High Pass Filter (HPF) enhances ELA, refining it into PD 2. Incorporating the magnetic field through the

Kalman Filter produces PD 3. Linear Regression (LR) models on IMU and pressure sensor data generate PD 4. Through

LR model training with past Positional Data 3, IMU, pressure sensor data, and Positional Data 1, the algorithm achieves

superior accuracy in PD 5. Demonstrating a substantial 19.49–78.57% improvement over existing literature data, PD 5

exhibits the least average Root Mean Square Error of 0.51 m.

Keywords Fast Fourier Transform (FFT) � Ground truth (GT) � High pass filter (HPF) � Indoor position �
Inertial measuring unit (IMU) � Kalman Filter (KF) � Linear regression (LR) � Root mean square error (RMSE) �
Sensor fusion

1 Introduction

Global Positioning System (GPS) is currently used in

smartphones to navigate in outdoor regions. However, it

cannot accurately do so in indoor environments [1]. To

estimate positions in GPS-denied areas like underground

zone, tunnel-regions, and indoor environments, it is the

need of an hour to have a navigator which can estimate

indoor position accurately. Currently, different types of

Indoor Positioning Systems (IPSs) like ranging and local-

isation [2], camera [3], ultra-wideband (UWB) [4], Radio

Frequency Identification (RFID) [5], and WiFi [6], based

systems exist.

Indoor positioning refers to the technology that enables

the determination of location of objects or people within a

confined space, such as buildings, shopping malls, or air-

ports. Indoor positioning systems encompass a variety of

technologies tailored for locating objects or individuals

within enclosed environments [7]. These systems can be

classified into several categories based on the underlying

technology they employ. Wi-Fi-based positioning relies on

the triangulation of Wi-Fi signals and access points to

determine location. Bluetooth-based systems utilize Blue-

tooth beacons or Low Energy (BLE) devices for proximity

detection and triangulation. Inertial-based systems make

use of sensors like accelerometers and gyroscopes to track

movement. RFID-based systems employ Radio-Frequency

Identification for tracking objects or individuals. Ultra-

sound-based positioning relies on ultrasound signals and
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sensors for distance measurement. Magnetic-based posi-

tioning utilizes Earth’s magnetic field for location deter-

mination. Visual-based systems leverage cameras and

computer vision algorithms for recognizing visual land-

marks and determining position. These different approa-

ches offer varying levels of accuracy, cost-effectiveness,

and suitability for specific indoor environments. To explore

further research and citations on indoor-positioning, one

can delve into academic databases using keywords such as

Indoor Positioning Systems, Wi-Fi-based Indoor Position-

ing, Bluetooth-based Indoor Localization, Inertial Sensors

for Indoor-Tracking, RFID in Indoor Positioning, Ultra-

sound-based Location Systems, Magnetic-Field-Position-

ing, and Visual-based Indoor Localization.

The need for accurate indoor positioning has grown with

the increasing reliance on location-based services and

applications. Several technologies and methods have been

explored to address the challenges of indoor positioning.

However, they require complex infrastructure and due to

reception of unstable radio frequency (RF) signals due to

fading, there is degradation in their accuracy and reliability

[8].

Research background and related work in indoor posi-

tioning systems [9–11] have witnessed significant

advancements driven by the increasing demand for loca-

tion-aware services in indoor environments. One

notable area of exploration has been the development of

Wi-Fi-based positioning systems, leveraging the ubiquity

of Wi-Fi infrastructure for indoor localization. Researchers

have investigated techniques such as fingerprinting, trilat-

eration, and machine learning algorithms to enhance the

accuracy and reliability of Wi-Fi-based indoor positioning.

Additionally, Bluetooth Low Energy (BLE) beacons have

emerged as another promising technology for indoor

localization, offering precise ranging capabilities and low

power consumption. Alongside these infrastructure-based

approaches, sensor fusion techniques combining data from

multiple sensors such as accelerometers, gyroscopes, and

magnetometers have been explored to improve positioning

accuracy and robustness, particularly in scenarios where

GPS signals are unavailable or unreliable. Moreover,

advancements in ultra-wideband (UWB) technology have

enabled high-precision indoor positioning, with applica-

tions ranging from asset tracking to indoor-navigation.

Despite these advancements, challenges such as multipath

interference, signal attenuation, and privacy concerns per-

sist, motivating ongoing research efforts to develop more

efficient and reliable indoor positioning solutions.

Foot-mounted IMUs are cutting-edge devices designed

to accurately track individuals’ movements indoors using

sensors like accelerometers and gyroscopes. By attaching

them to the feet, they provide precise positioning even

where GPS signals are unreliable. These IMUs use dead

reckoning to estimate position changes based on past

movements, overcoming challenges like error accumula-

tion with advanced algorithms. Beyond indoor navigation,

they find applications in virtual reality, healthcare, and

sports analysis, offering versatile solutions for various

industries. In essence, foot-mounted IMUs represent a

promising technology for accurate indoor tracking where

traditional methods falter [12].

Indoor positioning systems encounter a host of chal-

lenges [13], ranging from signal attenuation and multipath

interference to limited GPS accuracy within buildings.

Diverse building structures, device variations, dynamic

environments, privacy concerns, power consumption, and

integration issues further complicate the landscape. Over-

coming these obstacles demands innovative solutions,

emphasizing the need for robust algorithms and adapt-

able technologies. Researchers underscore the importance

of addressing practical hurdles and continuously advancing

positioning systems to meet evolving needs. This multi-

faceted endeavour requires a thorough understanding of the

challenges at hand and ongoing efforts to develop effective

solutions.

Smartphone sensor-based indoor positioning addresses

the navigational hurdles encountered in buildings with

weak GPS signals. By harnessing data from accelerome-

ters, gyroscopes, and magnetometers, algorithms can be

developed to achieve precise indoor location tracking. This

advancement enhances user experience and facilitates the

deployment of applications such as indoor navigation and

location-based services [14].

Smart Phone’s built-in Inertial Measuring Unit (IMU)

and pressure sensors-based IPS are comparatively prefer-

able because they are easily accessible. Sensor noise is

often affected by time in the sense that noise can accu-

mulate over time due to various factors such as drift,

temperature variations, and electronic noise. The longer a

sensor operates, the more opportunity there is for noise to

affect measurements. The accuracy of inertial-sensors-

measurements like position estimates can degrade over

distance due to factors like integration errors, drift, and

environmental changes [15, 16]. Hence, there is a

requirement of an algorithm to reduce the impact of noise

and drift for efficiently processing the measured data for

the accurate estimation of indoor position. Figure 1 illus-

trates the required algorithm for noise reduction to obtain

the processed positional data.

This paper presents the indoor position estimation

algorithm, which uses inbuilt smartphone sensor data to

estimate the indoor position. Proposed algorithm utilizes

the combination of sensor fusion using Rotational Trans-

formation (RT) and Kalman Filter (KF), filtering with Fast

Fourier Transform (FFT), and Linear Regression (LR)

based model for training and validation techniques to
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process sensors data with improvement in indoor position

accuracy. In this work proposed approach for obtaining

proposed-positional data is based on inbuilt IMU and

Pressure Sensor data of smart phone which is processed by

the hybrid approach i.e. the combination of processed as-

well-as the unprocessed data. In most of the existing

methods sensor fusion and different AI approaches are used

in different-manners. Approach used in this work is dif-

ferent as it uses both processed and unprocessed data to

train the model to predict positions with comparatively

higher accuracy.

The organization of the remaining paper is in such a way

that Sect. 2 describes the related work, and an illustration

of the methodology to implement the proposed method is

in Sect. 3, the experimental work: details about the col-

lected data, model performance, and results are in Sect. 4.

Finally, this work concluded along with future work in

Sect. 5.

2 Related work

Indoor positioning has become quite essential for enormous

applications that include location-based services in indoor

environments, locating lost items in private homes, indoor

mobile-robot-based positioning [17], precise-positioning

for robotic surgeries in medical and health care, guiding

blind or impaired people to navigate, inspection of civil

infrastructure, underground pipes and area, improves

logistics and workflow efficiency by monitoring the

movement of goods and personnel for manufacturing etc.

[18]. Precise positioning is required to accomplish them.

Smartphone-based indoor positioning emerges as a

favourable solution, taking into account factors such as

scalability, simplicity, cost-effectiveness, and widespread

availability [19].

Researchers have reported many ideas for improvement

of accuracies in position. Inbuilt inertial measuring unit

(IMU): accelerometer, magnetometer, and gyroscope sen-

sors data of smart-phone have been used for indoor posi-

tion estimation using Kalman Filter (KF) based sensor-

fusion approach with average positional error of 1.4 m for

three different paths [20]. By utilization of Magnetic

positioning and fusion of IMU sensors data via Extended

Kalman Filter (EKF) for indoor positioning resulted in root

mean square error (RMSE) of 1.53 m [21]. For a multi-

floor building, to accomplish 3D localization, received

signal strength (RSS) is enhanced by integrating it with

sensor fusion of barometer, magnetometer, and inertial

sensor’s data via Extended Kalman Filter (EKF) with

average RMSE of 1.5 m [22]. For improvement in accuracy

for the indoor environments, the smart-phones IMU sensor

data fused using KF, and then feed-forward back propa-

gation neural network (FFBPNN) based Artificial Neural

Network (ANN) has been applied which resulted in RMSE

of 2.38 m [23]. To the drift in smart-phones built-in micro-

electro-mechanical-system (MEMS) sensors, drift bias, and

KF-based approach has been implemented with less than

Fig. 1 Reduction of noise by FFT based HPF and Kalman Filter applied on sensor data for training linear regression based model to obtain

positional data
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1.607 m positioning error [24]. Still, there is a broad scope

to improve accuracy for various scenarios, environments,

methods to obtain ground truth data, and trajectories.

3 Proposed method

In this work, the initial phase involves gathering marked

ground-truth positional data (GTPD) for three cases. Sub-

sequently, five updated methods are employed to generate

five sets of experimental positional data for each of these

three cases. To collect GTPD, coordinates are assigned to

each point within the University Institute of Engineering

and Technology (UIET) Block II building at Panjab

University. The trajectories of three cases are delineated,

with two cases maintaining the same altitude, while the

third exhibits varying heights. Trajectories for Cases 1 and

2 occur on the first floor, while the trajectory for Case 3

commences from the middle of the first and second-floor

stairs and ascends to the next (second) floor, as illustrated

in Fig. 2. Ground truth trajectories for all three cases are

depicted graphically in Fig. 3.

Ground truth data has been collected using physical

measurements with the help of distance measuring tape. In

the corridor of the 1st floor of the building, point A is

marked with the help of a marker. This is a starting point. 3

coordinates (x, y, z) of point A are taken as (0, 0, 0). East to

West horizontal distance is taken as x-coordinate, North to

South horizontal distance is taken as y-coordinate, and

bottom to top vertical distance is taken as z-coordinate.

Then next point B is marked with coordinates (0, 1.16, 0)

in meters. Similarly, C (0, 2.32, 0), D (�1.16, 2.32, 0), and

so on... up to point T (�27.67, 4.9, 0) are marked. Like this

through different points from A to T, a trajectory is made

by joining all Points. Now voice enabled screen recorder

and MultiSenses App (for collecting smart-phone’s in-built

sensors data) are switched ON. Then a person holding a

Pixel 6A smart-phone is allowed to stand at point A, then

with the constant speed, a person moves from point A to

point T in a marked trajectory. At every point a person

pronounces the letter like A, B, C, and so on. Then after

reaching point T, MultiSenses and screen recorder app are

switched OFF. So, this experimental data was collected for

one of the trajectories. Similarly data for other 2 trajecto-

ries have been collected. Time of travelling from point A to

T is noted from generated voice enabled screen recorded

video for that particular trajectory. Hence each point has its

own time value. From this data ground truth trajectories are

drawn as shown in Fig. 3a, c.

To meet the large sample size requirement for training a

linear regression (LR)-based Artificial Intelligence (AI)

model, the necessary number of intercepts from ground

truth trajectories at specified time intervals are systemati-

cally collected. This effort results in the successful acqui-

sition of the needed samples of ground truth data, with a

consistent starting point set at zero for all three cases. For

data collection from smartphone sensors, the MultiSenses

app was developed https://github.com/Shivash9226/Multi

Senses.git. Inertial Measuring Unit (IMU) and pressure

sensor data for each trajectory are collected by the Pixel 6A

Fig. 2 Path of ground truth

trajectories of Block II
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smartphone using the MultiSenses app. In this app, cali-

brated sensors’ data have been used [25]. Magnetometer

measurements are highly subject to indoor magnetic

interference. So, Android Sensor framework’s TYPE_-

MAGNETIC_FIELD has been used for calibrating mag-

netometer readings. In this sensor type unlike the

TYPE_MAGNETIC_FIELD_UNCALIBRATED, the hard

iron calibration is already applied periodically by

Android’s Sensor’s Framework [26]. Specifications for

each smartphone sensor are observed using the Multi-

Senses app, and the specifications of the required sensors

(IMU and pressure sensor) obtained from the MultiSenses

app are detailed in Table 1. Figure 4a outlines the proce-

dure for obtaining Positional Data 1 and 2. Linear accel-

erations and orientations derived from the smartphone’s

accelerometer and gyroscope are merged using rotational

transformations, as described in Eq. 1 [27].

The utilization of the Fast Fourier Transform (FFT)

followed by the Inverse FFT (IFFT) on earth linear

accelerations (ELA) yields Inverse FFT-based accelera-

tions (IFba). Thresholds applied for FFT based data using

FFT-based High-Pass-Filter (HPF)[28]:

– Attenuate noise\10 Hz in the X and Y axes by 10 dB

(or multiply signal by 0.1)

– Attenuate noise[5 Hz and\10 Hz in Z axis by 10 dB

Positional Data 1 and 2 are then derived by applying Eqs. 2

and 3 to ELA and IFba data, respectively.

x1

y1

z1

2
64

3
75 ¼

cos p1 � sin p1 0

sin p1 cos p1 0

0 0 1

2
64

3
75

cos r1 0 sin r1

0 1 0

� sin r1 0 cos r1

2
64

3
75

1 0 0

0 cos a1 � sin a1

0 sin a1 cos a1

2
64

3
75

X1

Y1

Z1

2
64

3
75

ð1Þ

In this context, p1, r1, and a1 represent pitch or azimuth,

roll, and yaw, respectively. Meanwhile, X1, Y1, and Z1

signify linear accelerations (LA), and x1, y1, and z1 denote

ELA along the x, y, and z directions.

v ¼ uþ at ð2Þ

Fig. 3 Ground truth trajectory

Table 1 Specifications of

sensors used to extract data
Sensor name Maximum range Resolution Minimum delay

LSM6DSR accelerometer 156.91 m/s2 0.0048 m/s2 5000 ls

MMC56X3X magnetometer 3198.16 lT 0.098 lT 10,000 ls

LSM6DSR gyroscope 34.91 rad/s 0.0012 rad/s 5000 ls

ICP10101 pressure sensor 1100 mbar 1.0E-4 mbar 20,000 ls

Linear acceleration sensor 156.96 m/s2 1.0E-5 m/s2 20000 ls

Orientation sensor 360 Å 1.0E-5 Å 5000 ls
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s ¼ ut þ ð1=2Þat2 ð3Þ

where, v and u represent final and initial velocity, a is the

acceleration, t is the time interval, and s is the distance.

Figure 4b delineates the procedure adopted to obtain

Positional Data 3. Within this process, IFba data, magnetic

field data (acquired from the magnetometer) and orienta-

tion data (obtained from the gyroscope) are integrated

using the Kalman Filter (KF). This integration yields KF-

based data, encompassing orientations (w), magnetic field

(m), and accelerations (fa) in the x, y, and z coordinates.

Subsequently, by applying Eqs. 2 and 3 to the fa data,

Positional Data 3 is derived. The mathematical model

guiding the data fusion through KF is explicitly detailed by

Eqs. 4 to 14 [29].

dt ¼ 0:01 ð4Þ

x ¼ ax ay az wx wy wz mx my mz½ �

F ¼

1 dt 0 0 0 0 0:5� dt2 0 0

0 1 0 0 0 0 dt 0 0

0 0 1 dt 0 0 0 0:5� dt2 0

0 0 0 1 0 0 0 dt 0

0 0 0 0 1 dt 0 0 0:5� dt2

0 0 0 0 0 1 0 0 dt

0 0 0 0 0 0 1 dt 0

0 0 0 0 0 0 0 1 dt

0 0 0 0 0 0 0 0 1

2
66666666666666664

3
77777777777777775

ð5Þ

(a) Positional Data 1 and 2 (b) Positional Data 3

(c) Positional Data 4 (d) Positional Data 5

Fig. 4 Flowchart showing procedure adopted to obtain different Positional Data
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Here, ax, ay, and az represent accelerations in the x, y, and z

axes, while wx, wy, and wz denote orientations in the x, y,

and z axes. Similarly, mx, my, and mz represent magnetic

fields in the x, y, and z axes. The state vector x has initial

values [0 0 0 0 0 0 0 0 0], and P, Q, R, H, and I are matrices

representing State Covariance, Process Noise Covariance,

Measurement Noise Covariance, Observation, and the

Identity matrix, respectively. These matrices are initialized

with values from a 9� 9 identity matrix. The State Tran-

sition matrix is denoted as F. The control input matrix (B)

is defined by Eq. 6.

B ¼

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

2
66666666666666664

3
77777777777777775

ð6Þ

U ¼ ax½ �; ay
� �

; az½ �; xx½ �; wy

� �
;

�

xz½ �; mx½ �; my

� �
; mz½ �

� ð7Þ

Considering U as the input variable.

Prediction Step: In this step, values of the next state are

predicted based on the previous state according to Eqs. 8

and 9.

x ¼ x � F þ B � U ð8Þ

P ¼ ðF � PÞ � ðFTÞ þ Q ð9Þ

Measurement Step: In this step, predicted values are

updated by referring to the respective sensor data mea-

surements according to Eqs. 10, 11, 12, 13, and 14.

y ¼ ax½ �; ay
� �

; az½ �; xx½ �; xy

� �
; xz½ �

�

½mx�; my

� �
; mz½ �

�
� H � x

ð10Þ

S ¼ ðH � PÞ � ðHTÞ þ R ð11Þ

K ¼ ðP � ðHTÞÞ � S�1 ð12Þ

x ¼ xþ R � y ð13Þ

P ¼ ½I � K � H� � P ð14Þ

In this regard, y is the Measurement vector, S is the Mea-

surement Covariance, and K is the Kalman Gain.

Figure 4c describes the method for obtaining Positional

Data 4 using the Linear Regression (LR) model, as defined

by Eq. 15 [30].

y0i ¼ f0 x0i; b0ð Þ þ e0i ð15Þ

where:

y0i ¼ dependent variable ð16Þ

f0 ¼ function ð17Þ

x0i ¼ independent variables ð18Þ

b0 ¼ unknown parameters ð19Þ

e0i ¼ error terms ð20Þ

Here, an independent variables dataset is constructed using

data from linear accelerations, ELA, magnetic fields,

atmospheric pressure, angular velocity, and orientations

obtained from the accelerometer, magnetometer, pressure

sensor, and gyroscope. This dataset is both trained and

validated using a Linear Regression (LR) model, randomly

partitioned into training and validation data. The LR model

is trained with actual positions as the dependent variable,

utilizing separate x, y, and z components for each case.

Predicted positions (x, y, and z coordinates) for each

case, generated exclusively from the independent variables

using the trained LR model, are denoted as Positional Data

4. Figure 4d illustrates the method adopted for obtaining

the proposed Positional Data 5. This involves forming an

LR model-based dataset of independent variables by

combining Inertial Measuring Unit (IMU) and Pressure

Sensor data, Positional Data 1, Kalman Filter (KF) based:

accelerations, magnetic fields, and orientations, IFba data

and the previous values of Positional Data 3. This com-

bined dataset is randomly split into training and validation

data, with actual positions serving as the dependent vari-

able during LR model training for each case.

Separate x, y, and z components are used in this LR-

based model to generate predicted positions (x, y, and z

coordinates) based solely on independent variables in each

case, referred to as Positional Data 5. The extracted 3-di-

mensional Positional Data: 1, 2, 3, 4, and 5 undergo suc-

cessive updates, culminating in the final proposed

Positional Data 5. This method, termed as the proposed

method, is detailed in Algorithm 1.

3.1 Explanation of the algorithm in the form
of mathematical derivation and formulas

In this section algorithm 1 is explained step-by-step

mathematically as:

Step 1–2. Beginning and gathering of data: In these

steps, inbuilt sensors data of smart-phone: linear acceler-

ations (LA) data from accelerometer, magnetic field (MF)

data from magnetometer, Angular velocity (AV) and ori-

entations (O) data from gyroscope, and atmospheric-pres-

sure (A) data from pressure sensor have been collected.
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Step 3. Rotational-Transformations: Rotational Trans-

formation (RT) using Eq. 1 is applied on LA and O to

obtain earth linear acceleration (ELA) data as in Eq. 21.

ELA ¼ RT � ðLA;OÞ ð21Þ

Step 4. Extract Positional-Data-1: Positional Data 1 is

extracted by applying Eq. 2 and 3 on ELA data as men-

tioned in Eq. 22.

Positional Data 1 ¼ Equation 3ðEquation 2ðELAÞÞ ð22Þ

Step 5. Apply FFT on ELA Data and then IFFT on FBA

and then obtain PD-2: Apply Fast Fourier Transform (FFT)

at frequency less than 10 Hz to suppress noise variations

[8], to obtain FFT based accelerations (FBA) data as in

Eq. 23.

FBA ¼ FFTðELAÞ ð23Þ

Inverse FFT (IFFT) is applied on FBA to convert the fre-

quency-domain based FFT acceleration data with elimi-

nated low frequency noise variations below 10 Hz back to

time domain as in Eq. 24.

IFBA ¼ Inverse FFTðFBAÞ ð24Þ

Positional Data 2 is obtained by applying Eqs. 2 and 3 on

IFBA data as in Eq. 25.

Positional Data 2 ¼ Equation 3ðEquation 2ðIFBAÞÞ
ð25Þ

Flow chart in Fig. 4a shows the details of about the steps

involved to obtain Positional Data 1 and 2 named as PD1

and PD2.

Step 6. Apply Kalman-Filtering: Kalman Filtering is

applied on O, MF, and LA data to obtain Kalman Filter

based: acceleration (KFA), magnetic field (KFMF), and

orientation (KFO) data as in Eq. 26 using Eqs. 4 to 14.

KFA;KFMF;KFO ¼ Kalman FilteringðO;MF; LAÞ
ð26Þ

Step 7. Obtain Positional-Data 3: Positional Data 3 is

obtained by applying Eqs. 2 and 3 on KFA as mentioned in

Eq. 27.

Positional Data 3 ¼ Equation 3ðEquation 2ðKFAÞÞ ð27Þ

Flow-chart in Fig. 4b shows the steps involved to obtain

Positional Data 3.

Algorithm 1 Data Collection and Processing for obtaining proposed Positional Data 5
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Step 8. Obtain previous-values of Positional-Data-3:

Previous values of Positional Data 3 (PVPD3) are obtained

by deleting the 1st row and shifting the remaining cells

upward in Positional Data 3 which is the data to be pro-

vided as one of the training-dataset used for training LR

model.

Step 9: Dataset Formation: Datasets for obtaining

Positional Data 4 and 5 are named as PD4DS and PD5DS

respectively which are shown in Fig. 4c, d explained in

Eqs. 28 and 29 respectively.

PD4DS ¼ ðLA;MF;AV ;O;ELA;AÞ ð28Þ

PD5DS ¼ ðLA;MF;AV ;O;ELA;A; IFBA;PD1;PVPD3Þ
ð29Þ

Step 10. Dataset Division: Data-set formed is divided into

training and validation. From this dataset x, y, and z

components have been used separately for both training

and testing.

Step 11. Train Linear-Regression-based AI Model:

Linear Regression (LR) models based on Eq. 15, are both

Positional Data 4 and 5 as in Eqs. 30 and 31.

LR4 ¼ TrainðTraining Dataset of Positional Data 4Þ
ð30Þ

LR5 ¼ TrainðTraining Dataset of Positional Data 5Þ
ð31Þ

where LR4 is Linear Regression Model for Positional Data

4 and LR5 is Linear Regression Model for Positional Data

5 based datasets.

Step 12. Test LR model: Testing of LR model is done

for both testing-dataset of Positional Data 4 and 5 based

datasets named as TDPD4 and TDPD5 respectively as

explained in Eq. 32 and 33.

Testing Results 4 ¼ Test LR4ðTDPD4Þ ð32Þ

Testing Results 5 ¼ Test LR5ðTDPD5Þ ð33Þ

where Testing Results 4 and 5 are the testing results

obtained by applying LR4 and LR5 models on Test Data-

sets for obtaining Positional Data 4 and 5.

Step 13. Prediction of Positions based on LR Model:

Positional Data 4 and 5 are obtained by predicting positions

from trained LR4 and LR5 model as in Eqs. 34 and 35.

PositionalData4 ¼ LR4ðPositional Data 4 data-setÞ
ð34Þ

PositionalData5 ¼ LR5ðPositional Data 5 data-setÞ
ð35Þ

Positional Data 4 and 5 are the predicted positions obtained

by applying LR4 and LR5 models on Dataset used for

Positional Data 4 and 5. Procedures for obtaining Posi-

tional Data 4 and 5 are depicted in figures Figs. 4c, d.

4 Experimentation

To evaluate the performance of position estimation meth-

ods, three distinct cases have been examined. Each case

involves a different path for data acquisition, as illustrated

in Fig. 2.

4.1 Collection of data

Experimental data were collected using the MultiSenses

app installed on a Pixel 6A smartphone. Graphs depicting

the collected data for all three cases are presented in

Figs. 5, 6, 7, 8 andd to 9. The graphs for Atmospheric

Pressure Data, obtained using the ICP10101 Pressure

Sensor, are shown in Fig. 5. Figures 6 and 7 display the

graphs for Angular Velocity and Orientation data collected

using the LSM6DSR Gyroscope. The graphs for Linear

Acceleration data are depicted in Fig. 8, while Fig. 9

illustrates the Magnetic Field data graphs obtained using

the MMC56X3X Magnetometer.

(a) Case 1 (b) Case 2 (c) Case 3

Fig. 5 Atmospheric Pressure Data
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4.2 Measurement of model performance

The performance of five different methods for all three

cases has been assessed based on the Root Mean Square

Error (RMSE), calculated using Eq. 36 [31].

RMSEðy; ŷÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN�1
i¼0 ðyi � ŷiÞ2

N

s
ð36Þ

Where yi represents the ground truth or actual positional

data, ŷi depicts the experimentally generated positions, and

N represents the number of samples.

Trajectories derived from both ground truth (GT) and

calculated positional data, incorporating five distinct

methods across all three cases, are illustrated in Figs. 10

and 11. Notably, trajectories for Positional Data 1, 2, and 3

deviate from the ground truth trajectories due to inherent

Fig. 6 Gyroscope Angular Velocity Data

(a) Case 1 (b) Case 2 (c) Case 3

Fig. 7 Orientation Data

(a) Case 1 (b) Case 2 (c) Case 3

Fig. 8 Linear Acceleration Data
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noise. Positional Data 4 aligns with the ground truth data to

a limited extent, attributed to the utilization of directly

collected sensor data, introducing noise into its Linear

Regression (LR)-based training model. In contrast, the

hybrid proposed Positional Data 5 demonstrates improved

accuracy across all three cases. Its LR-based model is

trained not only from sensor data but also incorporates

sensor fusion-based data, effectively reducing noise. Con-

sequently, the trajectory of Positional Data 5 closely

approximates the ground truth data trajectory in each case.

(a) Case 1 (b) Case 2 (c) Case 3

Fig. 9 Magnetic field Data

(a) GT and PD-1 Data for case 1 (b) GT and PD-2 Data for case 1 (c) GT and PD-3 Data for case 1

(d) GT and PD-4 Data for case 1 (e) GT and GPS Data for case 1 (f) GT and PD-5 Data for case 1

Fig. 10 Ground Truth, GPS, and Positional Data trajectories for case 1
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The notable disparities observed in the trajectories

between GPS and GT data underscore the limitations of

GPS accuracy in indoor environments. This discrepancy

arises from signal blockage caused by building walls,

highlighting the challenges of relying on GPS for precise

indoor positioning.

4.3 Experimental results

The proposed Positional-Data (PD)-5 exhibits the closest

alignment with the ground truth data trajectory in each

case. To provide a detailed perspective of this trajectory, a

comparison is conducted between its x, y, and z-axis

components as-well-as the corresponding ground truth

(GT) data in each case. The analyses for these components

can be observed in Fig. 12.

Error graphs between Positional Data 5 and the ground

truth data in the x, y, and z axes for each case are presented

in Fig. 13. The summary of Root Mean Square Error

(RMSE) values in position across all three cases, compar-

ing the Global Positioning System (GPS) and various

Positional Data (PD) against the Ground Truth (GT) data,

is presented in Table 2. This comprehensive analysis aims

to elucidate the necessity of employing multiple sensors

and progressively incorporating processed data in a step-

by-step experimental approach. The ultimate objective is to

discern the underlying reasons contributing to the notably

minimal error observed in proposed PD-5. The table re-

veals that in Case 1, the RMSE values from left to right are

26.11 m, 7.82 m, 16.64 m, 2.76 m, 0.79 m, and 36.3 m for

PD-1, PD-2, PD-3, PD-4, PD-5, and GPS Data, respec-

tively. The highest RMSE is observed in GPS Data due to

signal blockage by indoor walls, resulting in reduced

accuracy. PD-1 exhibits comparatively lower RMSE than

GPS Data, attributed to its derivation from Rotation

Transformation (RT)-based sensor fusion of orientations

(x) and linear accelerations (a) data. However, it lacks

proper direction, leading to some drift from the original

trajectory. The RMSE for PD-2 is lower than that of PD-1

because in PD-2, a Fast Fourier Transform (FFT) based

High Pass Filter (HPF) is applied to Rotational Transfor-

mation (RT) based x and a for the reduction of low-fre-

quency noise. The resulting data undergoes Inverse FFT

(IFFT), making PD-2 less noisy than PD-1. RMSE for PD-

3 is greater than PD-2 but less than PD-1 because magnetic

field (m) data has been incorporated using a Kalman Filter

(KF)-based sensor fusion approach along with x and a to

improve the direction of the resultant trajectory formed by

PD-3. However, due to magnetic drift, the RMSE value of

PD-3 is greater than that of PD-2. RMSE for PD-4 is very

small, only 2.76 m. This is attributed to PD-4 consisting of

predicted positions obtained from a Linear Regression

(LR) based model trained from mobile’s IMU, pressure

sensor’s data, as-well-as earth linear accelerations data

obtained from RT. This has minimized noise and drift to

the maximum extent,

The RMSE of the proposed PD-5 is the least at 0.79 m

because its LR model has been trained not only from

unprocessed data obtained from the mobile’s IMU and

pressure sensor’s data but also from processed data, i.e.,

PD-1, previous values of PD-3, KF-based accelerations,

magnetic field, and orientation data, ELA, and IFFT-based

acceleration data. The reduction of noise and drift from the

processed data is more extensive than that from the

unprocessed data. Increase in processed data for the gen-

eration of PD-5 leads to its least error. A similar expla-

nation can be applied to cases 2 and 3.

From Table 2, the vertical movement reveals that the

RMSE for Case 2 is notably smaller than that for Case 1 in

PD-1, PD-3, PD-5, and GPS Data. This discrepancy is

attributed to the larger trajectory length in Case 1, where

noise and drift tend to increase with trajectory length.

However, for PD-2 and PD-4 of Case 2, the RMSE exceeds

that of Case 1. This is because the FFT-based HPF filter

utilized in Case 2 to filter out low-frequency noise in PD-2

inadvertently filters out useful signal data points due to the

smaller trajectory size in this case. The RMSE for PD-4 in

Case 1 is less than that of PD-4 in Case 2 due to the

availability of larger data points in Case 1 than Case 2 for

training the LR-based model, as the length of the Case 1

trajectory is larger than that of Case 2. The RMSE of PD-3

is highest in Case 2 due to the smaller length of the tra-

jectory, leading to high magnetic drift in proper direction

estimation. GPS Data remains almost constant, and only

one or a few points get changed even after traveling along a

larger part of the trajectory. So, for the larger trajectory in

Case 1, GPS data shows a larger RMSE than that of Case 1.

In the Case 3 trajectory, vertical distance has also been

covered while climbing stairs. Among all three cases, the

RMSE of PD-1, PD-2, PD-3, PD-5, and GPS Data in Case

3 is comparatively smaller because for the Case 1 and Case

2 trajectories, which do not have any vertical distance, the

error due to drift persisting because of noise is high. As the

horizontal distance increases, sensor noise further gets

increased, resulting in enhanced drift in the negative z-di-

rection. In Case 3, the RMSE in PD-4 and PD-5 is com-

paratively less because these positional data have been

obtained from their respective LR-based models in which

Pressure Sensor’s data have also been used for training

them.
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(a) PD-1 and GT Data for case 2 (b) PD-2 and GT Data for case 2 (c) PD-3 and GT Data for case 2

(d) PD-4 and GT Data for case 2 (e) GPS and GT Data for case 2 (f) PD-5 and GT Data for case 2

(g) PD-1 and GT Data for case 3 (h) PD-2 and GT Data for case 3 (i) PD-3 and GT Data for case 3

(j) PD-4 and GT Data for case 3 (k) GPS and GT Data for case 3 (l) PD-5 and GT Data for case 3

Fig. 11 Ground Truth, GPS, and Positional Data trajectories for cases 2 and 3
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(a) Case 1 (b) Case 2 (c) Case 3

(d) Case 1 (e) Case 2 (f) Case 3

(g) Case 1 (h) Case 2 (i) Case 3

Fig. 12 Ground Truth and Positional Data 5 Trajectories in x, y, and z axis

(a) Case 1 (b) Case 2 (c) Case 3

Fig. 13 Error in Positional Data 5
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The increase in sensor count for both sensor fusion and

Linear Regression-based Artificial Intelligence (AI) model

training notably enhances accuracy. This is evident in the

superior precision of PD-4 and PD-5 compared to PD-1,

PD-2, and PD-3. A closer examination of PD-5 against PD-

4 reveals a reduced Root Mean Square Error (RMSE),

highlighting the positive impact of training with large

processed datasets on overall accuracy. This underscores

the significance of sensor count augmentation and the uti-

lization of extensive processed data, forming a compre-

hensive strategy for improving accuracy in positional data

analysis.

4.4 Results

In indoor environments, several factors can significantly

influence positioning accuracy, as identified in the litera-

ture [32]. These factors include power levels and battery

status, where low-battery-levels or fluctuating power-levels

can compromise the performance of device sensors and

positioning modules. Additionally, the quality of device-

hardware plays a crucial role, as variations in sensor pre-

cision and sensitivity, as well as overall build quality, can

affect accuracy. Environmental conditions such as

temperature, humidity, and atmospheric-conditions also

contribute to positioning inaccuracies, impacting certain

positioning-technologies differently. Furthermore, the

choice and implementation of data fusion techniques are

pivotal, as they determine how data from different sensors

and sources are integrated, ultimately influencing the

overall accuracy and reliability of the positioning system.

The validity of data is ensured through rigorous pro-

cesses. Ground truth data is obtained directly from physical

measurements using distance measuring tape, ensuring

accuracy in the reference values. Moreover, a substantial

sample size was utilized, comprising of various samples for

3-different trajectories: 5051 for 1st-trajectory, 4598 2nd-

trajectory, and 4238 samples for the 3rd-trajectory,

enhancing the reliability of findings. To assess accuracy,

Root Mean Square Error (RMSE) is computed by com-

paring the ground truth values with the calculated ones,

providing a quantitative measure of the model’s

performance.

A comparison of Root Mean Square Error (RMSE)

between the existing positional data obtained from the

literature and the proposed Positional Data 5 (PD-5), along

with the corresponding techniques, is presented in Table 3.

The table clearly illustrates the RMSE values reported by

Table 2 Root Mean Square Error (RMSE) for positional data of 3 cases

Cases Root Mean Square Error (RMSE) (m) in position

Positional Data 1 Positional Data 2 Positional Data 3 Positional Data 4 Positional Data 5 GPS Data

Case 1 26.11 7.82 16.64 2.76 0.79 36.3

Case 2 11.24 8.61 20.19 2.85 0.35 8.46

Case 3 9.66 4.75 4.65 1.09 0.39 3.01

Table 3 Comparison of RMSE for the proposed method with the existing literature

Name of

Author

Technique Root Mean Square Error

(RMSE) (m)

A. Poulose

et al. [20]

Sensor Fusion (SF) of inertial measuring unit (IMU) using Kalman Filter (KF) 1.4

M. Sun et al.

[21]

Combination of magnetic positioning and mobile’s IMU sensors fusion using Extented Kalman

Filter (EKF)

1.53

Y. Li et al.

[22]

Integration of received signal strength (RSS) and sensor fusion of barometer, magnetometer and

inertial sensors using EKF

1.5

F. Jamil et al.

[23]

Combination of KF based sensor fusion of IMU sensors data and feed forward back propagation

neural network (FFBPNN) based technique

2.38

G. Zhao et al.

[24]

Use of drift bias and KF based approach for smart phone’s in-built micro-electro-mechanical

system (MEMS) sensors

1.61

Proposed

Method

Combination of KF, RT, based SF, filtering via FFT, and LR based technique (Positional Data 5) 0.51
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different authors: 1.4 m [20], 1.53 m [21], 1.5 m [22], 2.38

m [23], and 1.61 m [24] along with their techniques. The

proposed method is based on the combination of KF, RT

based sensor fusion (SF), filtering via FFT and LR based

technique i.e. hybrid approach to obtain PD-5. The results

obtained for PD-5 can be analysed from graphs in fig-

ures 10f for case-1, 11f in 2nd-case, and 11l for case-3. The

trajectories obtained from proposed predicted PD-5 mat-

ches with ground-truth-trajectories to larger extent. The

individual comparison between x, y, and z axes of PD-5

and ground truth based positions for all 3 cases have been

indicated in graphs of figure 12.

The data derived from the innovative 3D multi-floor-

based method, PD-5, has been analysed, revealing an

average error of merely 0.51 m across three distinct cases.

This remarkably low Root Mean Square Error (RMSE)

value establishes PD-5 as a frontrunner in accuracy when

compared to the findings reported in existing literature. The

superior precision of PD-5, evident in its RMSE value

being the smallest among those documented, underscores

its potential to significantly advance the state-of-the-art in

positional data accuracy.

5 Conclusion and future work

In conclusion, this paper presents an effective method for

indoor positioning, utilizing the inherent pressure and IMU

sensors of smartphones. The stepwise generation of four

positional data types culminates in the proposed Positional

Data (PD)-5, achieved through a hybrid approach. This

method incorporates Rotational Transformation, Kalman

Filtering, FFT-based High Pass Filtering followed by

Inverse FFT, and Linear Regression models. PD-5

demonstrates minimal noise and drift, boasting high

accuracy with an average Root Mean Square Error (RMSE)

of 0.51 m across three cases. Comparisons with existing

algorithms reveal a notable 19.49%�78.57% improve-

ment. This outcome not only highlights the effectiveness of

PD-5 but also positions it as a promising and reliable

approach for achieving more precise location tracking in

various applications, surpassing the performance of previ-

ously established methods. Looking forward, future

advancements can focus on enhancing the accuracy of

initial position determination from mobile sensors data.

This can be achieved by extending the hybrid approach to

incorporate advanced sensor fusion techniques such as

Particle Filter, Extended Kalman Filtering, FFT-based

High Pass Filtering, and advanced regression-based AI

techniques like Kernelized Ridge Regression, Support

Vector Machine, Random Forest, and Neural Network

Regression. This expanded methodology aims to minimize

errors not only for specific data types but also for diverse

and larger datasets, considering non-linearity factors.
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