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Abstract
Order-revealing encryption (ORE) allows secure range query processing over encrypted databases through a publicly

accessible comparison function, while keeping other details concealed. Since parameter-hiding ORE (ASIACRYPT 2018)

demonstrated improved privacy preservation at the cost of Oðn2Þ comparison operations, where n is the bit length of

plaintexts, Lv et al. (ESORICS 2021) introduced an efficient ORE scheme that reduced the comparison operations to OðnÞ,
all while accommodating multiple clients. In this paper, we identify a vulnerability in Lv et al.’s ORE scheme, which we

refer to as ‘‘Query Reusability.’’ Exploiting this vulnerability, we develop an optimal query recovery attack. According to

our experiment on the real-world datasets, our attack can recover a 64-bit plaintext query within a mere 83ms. We then

propose msq-ORE, a multi-client secure range query ORE scheme that effectively mitigates the vulnerability while

maintaining computational costs comparable to the state-of-the-art ORE scheme. Lastly, our performance analysis results

show that the proposed scheme achieves efficacy.

Keywords Order-revealing encryption � Property-preserving hash � Secure query � Multi-client searchable encryption

1 Introduction

The concept of cloud computing offers numerous benefits

to users, industries, and companies by enabling the storage

and management of vast amounts of data in the cloud,

which is accessible from anywhere in the world. While this

outsourcing approach provides many advantages, it also

raises concerns about data confidentiality [20, 23, 25]. With

data breaches on the rise, such as the healthcare data

breaches in the US, which affected over 40 million victims

in 2022 and saw a 50% increase in 2023 [10], it is

imperative to develop secure methods for managing data in

the cloud, such as secure key management [21, 24] and

more importantly encrypting data [20, 22, 23, 25]. Local

encryption can help mitigate the risks associated with data

breaches, albeit at the cost of certain functionalities, such

as searching within encrypted data. Therefore, extensive

research is being conducted to develop encryption methods

that preserve the functionality of searching within

encrypted databases [16]. One of solution is Order-

Revealing encryption (ORE) which is a scheme that reveals

nothing except messages’ ordering by a public comparison

function. ORE is a generalization of Order-Preserving

encryption (OPE) which utilizes simple integer comparison

as a comparison algorithm. While OPE does offer a lower

computational cost compared to ORE, it relies on a

deterministic encryption algorithm that is susceptible to

various interference attacks, potentially revealing portions

of the plaintext [17].

Currently, a number of ORE notations have been con-

structed. Boneh et al. [5] proposed an ideal ORE

scheme based on multilinear maps that takes two cipher-

texts and only discloses the order of two corresponding

plaintexts and no additional information. However, multi-

linear maps are not practical for implementation in the real

world. To overcome this drawback, Chenette et al. [8]

designed a practical ORE from a symmetric encryption

scheme which reveals the most significant different bit

(msdb). Thereafter, Lewi et al. [13] suggested a notation

that leaks the most significant different block. Cash et al.

[6] constructed a parameter-hiding ORE based on property-
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preserving hash (PPH). This scheme leaks the least amount

of plaintext information out of all existing schemes, called

equality pattern. However, the comparison time of it is

inefficient, and it only provides a single-user environment.

To solve these problems, Lv et al. [15] introduced an

efficient and multi-user support ORE scheme (m-ORE). It

reduced computational cost from O(n2) pairings in [6] to

O(n) pairings for the comparison stage while supporting

multi-user scenarios.

In this paper, we reexamine m-ORE [15] and conducts a

comprehensive analysis of its security vulnerabilities. Our

investigation focuses on the vulnerability that arises in

multi-user query scenarios. Specifically, we have identified

a flaw in m-ORE where a malicious client, who has

obtained a secret key shared among all clients from a data

owner, can execute a query recovery attack on other cli-

ents’ queries without requiring cooperation from the server.

To formally capture such an issue, we introduce the con-

cept of Query Reusability, which refers to the scheme’s

ability to expand a Query Comparator for generating the

remaining queries. Further details regarding these vulner-

abilities are presented in Sect. 5.

Furthermore, we introduce the two query recovery

attack methods and launch our attacks against m-ORE [15],

the state-of-the-art ORE construction. According to our

experiment, it takes an average of 83ms to recover 64-bit

plaintexts by our bit-by-bit brute force algorithm. Then we

propose msq-ORE, a multi-client range query scheme that

is secure against the Query Reusability.

Contribution We make the following main

contributions:

– We first propose the vulnerability of m-ORE, Query

Reusability, and the optimal attack technique, bit-by-bit

brute force algorithm, in multi-client scenarios if the

malicious client has the shared secret key from the data

owner. This attack method can recover one query from

another client within approximately 83ms.

– We propose the msq-ORE scheme, in which an

adversary who has a shared secret key can not recover

other clients’ queries. In our msq-ORE scheme, the data

owner generates the test key tk which can effectively

deter the Query Reusability property in [15].

– The computational costs and data size of the proposed

msq-ORE scheme are about the same as those of

m-ORE [15], while achieving a higher level of security.

We prove our claims through both theoretical and

experimental results.

The rest of the paper is organized as follows. In Sect. 2, we

provide related works. We then describe preliminaries in

Sect. 3, followed by the description of property-preserving

hash in Section 4. We examine the vulnerability of prior

work in Sect. 5 and propose a security-wise enhanced ORE

scheme in Section 6. We evaluate the performance of the

proposed scheme in Sect. 7 and conclude the paper in

Sect. 8.

2 Related Work

The notation of OPE was first designed by Agrawal et al.

[2]. And then, Boldyreva et al. [4] proposed the‘‘best

possible’’security, called indistinguishability under ordered

chosen-plaintext attack (IND-OCPA). It means that two

ciphertexts do not reveal any information about plaintexts

except for their order. However, Boldyreva also suggested

that this ideal security cannot be achievable if the OPE

scheme is stateless and immutable. Popa et al. [18] pre-

sented the first IND-OCPA OPE notation which adopts

stateful and interactive techniques by using the B-tree

structure. Furthermore, Kerschbaum et al. [12] proposed

the Frequency-hiding OPE (FH-OPE) which can hide the

frequency about plaintexts to resist a number of inference

attacks [7, 14, 17]. However, it cannot completely prevent

the attacks and causes a lot of data overhead.

To overcome these problems and achieve better security

without an interactive and stateful method, many ORE

notations have been suggested. As opposed to OPE, ORE

ciphertexts do not preserve the numerical value of plain-

text. Instead, ORE adopts a publicly comparison function

that uses two ciphertexts and returns the order based on the

plaintexts. Boneh et al. [5] first proposed the notion of

ORE. It was implemented by using multilinear maps [19].

However, currently, it is an inefficient primitive. To

enhance the efficiency, Chenette et al. [8] designed the

practical ORE notation that relied on the pseudorandom

function. It showed a dramatic increase for practical, but it

leaks the most significant different bit (msdb). Therefore, it

does not have enough security guarantees. Thereafter, Lewi

et al. [13] suggested the improved ORE notation that leaks

only the most significant different block. However, both

schemes [8, 13] have a deterministic property that always

generates the same ciphertext, whenever they encrypt the

same plaintext. Cash et al. [6] introduced the parameter-

hiding ORE with probabilistic characteristics for the sin-

gle-user scenario to overcome this. It only leaks the

equality pattern of msdb. Subsequently, Lv et al. [15]

suggested the m-ORE which reduces the computational

overhead from O(n2) pairings in [6] to O(n) pairings for the

comparison stage, and it supports multi-user environments.

However, in this paper, we show the vulnerability of

m-ORE where the attacker can recover the query from a

client by having shared secret key of another client within

83ms. Then, to overcome this problem, we purpose msq-

ORE notation. Lastly, Lv et al. further extended m-ORE by
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proposing a new data representation method that employs

not only bit-wise representation of plaintexts but also the

bit-length for comparison [16], while employing m-ORE as

is. Since m-ORE and [16] are essentially equivalent, we

omit [16] in our experiment.

3 Preliminaries

In this section, we begin by explaining the notations and

parameters utilized in this work. Following that, we present

some fundamental definitions and the complexity

assumptions applied in this study. We provide notations

and its description in Table 1.

3.1 Bilinear Maps

A bilinear maps e: G1 � G2 ! GT , where G1,G2 and GT

are cyclic multiplicative groups with prime order p, satis-

fies the following properties:

1. Bilinearity

– eðPa;QbÞ ¼ eðP;QÞab for all P 2 G1 and Q 2 G2

and all a; b 2 Zp.

2. Non-degeneracy

– eðg1; g2Þ 6¼ 1 if g1 and g2 are generators of G1 and

G2, respectively.

3. Computability

– e(P, Q) can be efficiently computed for any P 2 G1

and Q 2 G2.

A pairing is called Type-3 if it is asymmetric without an

efficiently computable isomorphism between G1 and G2.

We use this bilinear map in our msq-ORE scheme because

it is the most efficient type [19].

3.2 Complexity Assumption

We say the symmetric external Diffie-Hellman (SXDH)

assumption holds with respect to these groups and pairing

if all polynomial-time adversary A has the negligible

advantage � ¼ f�a; �bg for p,q,r,s 2 Zp and T1, T2 2 GT ,

where

�a ¼ jPr½Aðg1; gp1; g
q
1; g

pq
1 Þ� � Pr½Aðg1; gp1; g

q
1; T1Þ�j

�b ¼ jPr½Aðg2; gr2; gs2; grs2 Þ� � Pr½Aðg2; gr2; gs2; T2Þ�j:

4 Property Preserving Hash

In this section, we first recollect the definitions of Property

Preserving Hash (PPH) [6, 15]. Then, we suggest a con-

crete PPH from Bilinear Maps for m-ORE and our msq-

ORE.

Definition 2. A property-preserving hash (PPH) has

three algorithms C=(PPH:K, PPH:H, PPH:T ):

– PPH:Kð1kÞ : The key generation algorithm takes a

security parameter k as an input, and returns

(pp,hk,tk) as outputs that represents the public

parameter, hash key and test key, respectively. These

implicitly define a domain D and range R for the hash.

– PPH:Hðhk; xÞ :The hash evaluation algorithm takes

the hash key and x 2 D as inputs, and returns a single

output h 2 R that we refer to as the hash of x.

– PPH:T ðtk; h1; h2Þ :The test algorithm takes the test key

and two hashes h1, h2 as inputs and returns a bit

b 2 f0; 1g.
Correctness. Let P be a predicate. We assume that PPH C
is computationally correct with respect to P if

Pr½INDP
CðAÞ� is a negligible function of k for all efficient

adversary A, where the game INDP
CðAÞ is defined as fol-

lows: It first generates pp, hk and tk by running

PPH:Kð1kÞ and sends tk toA. Then,A gives x and y to the

game. Finally, the game computes h PPH:Hðhk; xÞ,

Table 1 Notations

k Security parameter

b1; b2; � � � ; bn A binary form of integer m, where b1 is the most significant bit and bn is the least significant bit

x||y Concatenation of string x and y

PPT Probabilistic polynomial time

x $Zp A group element x which is randomly and uniformly sampled from group Zp of prime number p

PRF A pseudorandom function

[n] A set of integers f1; 2; � � � ; ng
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h0  PPH:Hðhk; yÞ and returns 1 if

PPH:T ðtk; h; h0Þ 6¼ Pðx; yÞ.
Security. we recall the PPH security game [15] that is

more restricted than the method defined in [6]. Let P be

some predicate and C ¼ ðPPH:K;PPH:H;PPH:T Þ be a

PPH scheme with respect to P. For an adversary A, we

define the game INDP
CðAÞ and its restricted-chosen-input

advantage as AdvP;AC ðkÞ ¼ 2Pr½INDP
CðAÞ ¼ 1� � 1. If

AdvP;AC ðkÞ is negligible for all adversary A, we say that

PPH C is restricted-chosen-input secure.

Game INDP
CðAÞ :

ðpp;hk; tkÞ  PPH:Kð1kÞ; x0  AðtkÞ
h0  PPH:Hðhk; x0Þ; h1  $ R; b  $ f0; 1g; b0  
AHash(tk; x0; hb)

Return (b¼? b0)
Hash(x) :

If Pðx; x0Þ = 1 or x ¼ x0, then h  ?, Else h  PPH:Hðhk; xÞ
Return(h)

4.1 PPH for m-ORE from Bilinear Maps

We introduce a concrete PPH scheme for m-ORE [15]. Let

Pðx; yÞ ¼ 1 be the predicate if and only if x ¼ y� 1, and let

H: f0; 1gk � f0; 1gk be a secure PRF. Let C = (PPH:K,

PPH:H, PPH:T ) be a PPH scheme with respect to P as

follows:

– PPH:Kð1kÞ : It takes a security parameter k as an input

and selects k1; k2;1; k2;2  Zp and sets the hash key

hk ¼ ðk1; ðk2;1; k2;2ÞÞ. It samples groups G1, G2 and GT

with prime order p and a related bilinear map

e : G1 � G2 ! GT . Subsequently, it randomly picks

generators g1 2 G1 and g2 2 G2. Following that, it sets

the test key tk ¼ ðgk2;11 ; g
k2;2
2 Þ and pp = ðG1;G2;GT ; eÞ.

Finally, it returns (pp; hk; tk).

– PPH:Hðhk; xÞ : It takes the hash key hk and a message

x as inputs, then returns the follow hash value:

h~¼ ðh1; h2; h3Þ

¼ ðgHðk1;xÞ�k2;11 ; g
Hðk1;xþ1Þ�k2;2
2 ; g

Hðk1;x�1Þ�k2;2
2 Þ:

– PPH:T ðtk; h~; h0~Þ : It takes the test key tk and two hash

values h~; h0~ as inputs and computes eðh1; gk2;22 Þ,
eðgk2;11 ; h02Þ and eðgk2;11 ; h03Þ. Then, it outputs 1 if

eðh1; gk2;22 Þ ¼ eðgk2;11 ; h02Þ or eðh1; g
k2;2
2 Þ ¼ eðgk2;11 ; h03Þ:

It returns 0 otherwise.

4.2 PPH for msq-ORE from Bilinear Maps

In this section, we propose the PPH notation for msq-ORE.

– PPH:Kð1kÞ : It takes a security parameter k as an input

and randomly picks k1; ka; kb; ks  Zp and computes

ka;s  ka � ks, kb;s  kb � ks. Following that, it sets the

hash key hk = ðk1; ðkb; kb;sÞÞ. It samples groups G1, G2

and GT with prime order p and randomly selects

generators g1 2 G1 and g2 2 G2, an associated bilinear

map e : G1 � G2 ! GT . After that, it sets pp =

ðG1;G2;GT ; eÞ and the test key tk = ðgka1 ; g
ka;s
2 Þ. Finally,

it outputs (pp; hk; tk).

– PPH:Hðhk; xÞ : It takes the hash key hk and a message

x as inputs, then returns the follow hash value:

h~¼ ðh1; h2; h3Þ

¼ ðgHðk1;xÞ�kb1 ; g
Hðk1;xþ1Þ�kb;s
2 ; g

Hðk1;x�1Þ�kb;s
2 Þ:

– PPH:T ðtk; h~; h0~Þ : It takes the test key tk and two hash

values h~; h0~ as inputs and computes eðh1; gka;s2 Þ,
eðgka1 ; h02Þ and eðgka1 ; h03Þ. Then it outputs 1 if

eðh1; gka;s2 Þ ¼ eðgka1 ; h02Þ or eðh1; g
ka;s
2 Þ ¼ eðgka1 ; h03Þ:

It returns 0 otherwise.

Correctness: The correctness relies on whether the fol-

lowing equation holds:

Hðk1; xÞ ¼ Hðk1; y� 1Þ:

If x ¼ y� 1, the correctness always holds. Otherwise, we

can easily show that finding x, y satisfying this property

with non-negligible probability will induce an adversary

who can dispute the assumption that H is a PRF.

Remark 1. The msq-ORE PPH is quiet similar to that of

[6] and [15]. The major difference is that msq-ORE and m-

ORE scheme [15] are deterministic, but that of [6] is

probabilistic. Because the PPH notation in [6] always

chooses random non-zero r1; r2 2 Zp and computes these

whenever PPH scheme encrypts a message by using the

hash algorithm.

4.3 Security Analysis

Theorem 1 We prove that PPH C is restricted-chosen-

input secure, assuming that H is a PRF, and SXDH

assumption holds.

Proof The proof is really similar to that of [6]. We proved

the theorem via below security games. We started with a

real game and ends with a game that perfectly hides the

random bit b. Then, we showed that any two adjacent
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games could not be distinguished and represent the prob-

ability that the Game Ji outputs 1 as Pr½Ji ¼ 1�. h

– Game J�1: This game is precisely the real game. The

challenger generates the test key tk and the hash values

(h1,h2,h3) 2 G1 � G2
2 for the challenge.

– Game J0: J0 is precisely the same as J�1 except for that
a real random function H�ð�Þ is replaced by the pseudo-

random function Hðk1; �Þ.
– Game J1: J1 is precisely the same as J0 except for that

we replace the challenge hash values with (s; h2; h3),

where s  $ G1.

– Game J2: J2 is precisely the same as J1 except for that

we adapt the challenge hash values to (s; �s; h3), where �s

 $ G2.

– Game J3: J3 is exactly the same as J2 except for that we

modify the challenge hash values to (s; �s; s�), where s�

 $ G2.

In the end of the game, we obtain

AdvP;AC ðkÞ ¼ jPr½J�1 ¼ 1� � Pr½J3 ¼ 1�j

by the definition of PPH.

Firstly, we can easily obtain that the game J�1 and J0 are
computational indistinguishable based on the PRF security.

Secondly, we show that J0 is indistinguishable from J1 by

the lemma below.

Lemma 1 J0 � J1 assuming that the SXDH assumption is

maintained.

Proof We assume that an adversary A can distinguish

between game J0 and J1 with the advantage

� ¼ jPr½J0 ¼ 1� � Pr½J1 ¼ 1�j:

Then, we can induce that an another adversary B can also

prove the problem of SXDH with the same advantage �.

The following steps take (g1; g2; L;Y) and the challenge

term C as inputs. The adversary B executes the stages as

follows:

1. B randomly selects ka; ks  $ Zp and sets the test key

tk = ðgka1 ; g
ka;s
2 Þ. Following that, B sends it to A. After

that, A chooses �x and sends it to B. B implicitly sets

H�ð�xÞ ¼ l, the discrete logarithm of L, by using the

random function H�. Then, it computes

ðh1 ¼ C; h2 ¼ g
H�ð�xþ1Þ�kb;s
2 ; h3 ¼ g

H�ð�x�1Þ�kb;s
2 Þ

and sends these hash values to A. Note that y and Y are

kb and gy1, respectively.

2. To answer a query which satisfies x 6¼ �x and x� 1 6¼ �x
from A, B calculates:

ðh1; h2; h3Þ ¼

ðYH�ðxÞ; g
H�ðxþ1Þ�kb;s
2 ; g

H�ðx�1Þ�kb;s
2 Þ:

3. Finally, The output of B is always the same as that of

A.

We denote that B accurately simulates without querying

Að�x� 1Þ and Að�xÞ. If B uses gyl1 as the challenge term C, it

simulates J0, and if C 2 G1, B simulates J1. Therefore, B

has the same advantage � with A to break the SXDH

assumption.

Likewise, we also have the following lemmas: h

Lemma 2 J1 � J2 assuming that the SXDH assumption is

maintained.

Lemma 3 J2 � J3 assuming that the SXDH assumption is

maintained.

For both lemmas, the proofs are similar to that of

Lemma 1. Therefore, we omit details for these. Finally, we

complete the proof of Theorem 1 by gathering all of the

above lemmas.

5 Vulnerability of m-ORE

In this section, we propose the vulnerability of query in

[15]. Firstly, we introduce the recapitulation of m-ORE

[15]. Following that, we suggest a Query Reusability, a

simple attack method, and an optimal attack method, bit-

by-bit brute force algorithm, for m-ORE. Finally, we show

the experimental evaluation for two attack methods.

5.1 Efficient Multi-client Order-Revealing
Encryption.

In this section, we show m-ORE [15] in detail.

5.1.1 m-ORE Algorithms.

We introduce m-ORE scheme based on PPH. m-ORE

consists of four algorithms: m-ORE.K, m-ORE.E, m-

ORE.T, m-ORE.C. Let F: [n] � f0; 1gn ! f0; 1gk be a

secure PRF. The details of m-ORE algorithms are as

follows:

– ðmsk; qkÞ  m�ORE:Kð1kÞ: This algorithm takes a

security parameter k as an input and outputs qk and

msk. It obtains the public parameter

pp ¼ ðG1;G2;GT ; eÞ, the hash key hk ¼
ðk1; ðk2;1; k2;2ÞÞ and the test key tk ¼ ðgk2;11 ; g

k2;2
2 Þ from

PPH:K. Following that, it sets qk ¼ ðk1; gk2;22 Þ and

msk ¼ hk:
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– c m�ORE:Eðmsk;mÞ: This algorithm takes msk

and a message m as inputs and outputs a ciphertext c.

Firstly, it expresses the message m in binary and picks r

 Zp. Then, it computes c0 ¼ g
k2;1�r
1 and sets k2;1  

k2;1 � r and hk = ðk1; ðk2;1; k2;2ÞÞ. For i ¼ 1; � � � ; n, this
algorithm uses a practical ORE notation [8] and the

hash function of m-ORE PPH.

ui ¼ Fði; b1b2 � � � bi�1jj0n�iþ1Þ þ bi mod 2k;

vi ¼ h1  PPH:Hðhk; uiÞ

Finally, it selects a random permutation p: ½n� ! ½n�
and sets ci ¼ vpðiÞ, and returns the ciphertext c =

ðc0; c1; � � � ; cnÞ:
– t m�ORE:Tðqk;mÞ: This algorithm takes msk

and m as inputs and outputs a query of m. Firstly, it

expresses the message m in binary and picks r�  Zp.

After that, it computes t0 ¼ g
k2;2�r�
2 and sets k2;2  k2;2 �

r�: For i ¼ 1; � � � ; n, it computes

ui ¼ Fði; b1b2 � � � bi�1jj0n�iþ1Þ þ bi mod 2k;

t1;i ¼ g
k2;2�Hðk1;uiþ1Þ
2 ; t2;i ¼ g

k2;2�Hðk1;ui�1Þ
2

Finally, it chooses a random permutation p: ½n� ! ½n�
and sets ti ¼ ðtpð1;iÞ; tpð2;iÞÞ and returns the query t =

ðt0; ðt1;1; t2;1Þ; � � � ; ðt1;n; t2;nÞÞ: Here, We define t0 as a

Query Comparator.

– b m�ORE:Cðc; tÞ: This algorithm takes a cipher-

text c and a query t and outputs a bit b. Firstly, it sets

tk ¼ ðc0; t0Þ ¼ ðgk2;11 ; g
k2;2
2 Þ and computes

PPH:T ðtk; ci; t1;jÞ and PPH:T ðtk; ci; t2;jÞ for every

i; j 2 ½n�. If there exists a pair (i�; j�) which satisfies

PPH:T ðtk; ci� ; t1;j� Þ, it outputs 1 and stops. It means

that m[m; else if there exists a pair (i�; j�) which

satisfies PPH:T ðtk; ci� ; t2;j� Þ, it outputs 0 and stops. It

means that m\m; otherwise it outputs ? which means

that m ¼ m.

5.2 Query Reusability

In this section, we suggest the vulnerability of m-ORE’s

query [15]. We define Query Reusability as simply multi-

plying Query Comparator by an exponential to create the

rest of the query. For example, in [15], t1;i and t2;i

(g
k2;2�Hðk1;uiþ1Þ
2 , g

k2;2�Hðk1;ui�1Þ
2 ) are created by multiplying

Query Comparator (t0 = g
k2;2
2 ) by an exponential factor.

5.2.1 Assumption.

Our attack follows the below assumptions.

– An adversary is a client who is authorized by a data

owner. Therefore, he receives a pseudorandom key

from the data owner.

– The adversary does not collaborate with the server and

other clients.

– The adversary can eavesdrop on a channel between a

victim client and server.

– The adversary can not get any information about

dataset.

Algorithm 1 Query plus algorithm

Input : m
Output : query plus value
query plus value ←⊥

for i ← 1, · · · , n do
ui = F (i, b1b2 · · · bi−1||0n−i+1) + bi mod 2λ

query plus value.append(H(k1, ui + 1))
end

return query plus value

Algorithm 2 Simple brute-force algorithm

Input : query comparator, victim query
Output : victim number

for i ← 0, · · · , 2n − 1 do
count ←⊥, i(2) ← i(10)
attack query ← Qeury plus(i)

for j ← 0, · · · , n do
for l ← 0, · · · , n do

if
(query comparator)attack query[j] ==
victim query[l] then

count = count + 1
break

end
end
if count == n then

victim number = i
return victim number
end

end
end
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5.3 Attack Methods

In this section, we introduce the two attack methods.

Firstly, we propose a simple brute force attack, then we

suggest an optimal attack method, bit-by-bit brute force

algorithm. We only use t1;i for query recovery attacks with

Query comparator because the pseudorandom function F

and H are unique. Therefore, we do not need t2;i in the

attack scenario. We call t1;i as a query plus value. Fur-

thermore, we assume that the length of the victim number

and message m is n�bit in binary form.

5.3.1 Simple brute-force algorithm

This algorithm is a simple brute-force algorithm. In

Algorithm 2, it takes a query comparator and

victim query as inputs and returns a victim number. The

victim query is a victim client’s token without query

comparator. Then, a count is a parameter that counts how

many queries the number i is equal to the victim query

value in total. Firstly, it converts the i value from decimal

to binary and computes an attack query for i by using the

Query plus algorithm which generates query plus value

for the input binary number in Algorithm 1. Following

that, the count counts how many queries the number i is

duplicated with the victim query value. If it is equal to the

length of the number of the victim number n, this algorithm

returns the victim number because it means that all pseu-

dorandom values are equal to the victim number.

5.3.2 Bit-by-bit brute-force algorithm.

Algorithm 2 is inefficient because an adversary is required

to scan the plaintext space in its entirety in launching the

attack. In this subsection, we provide an optimal attack

method that boosts the attack efficiency significantly.

Specifically, in Algorithm 3, it takes a query comparator

and victim query as inputs and returns a value called attack

success num. This uses the property that the number of

binary numbers consists of only‘‘0’’and‘‘1’’. The reason

why this attack is possible is that Lv et al.’s ORE

scheme [15] is based on Chenette et al.’s ORE [8] which

works in bits. This method is an attack approach that

recovers queries bit by bit using the Query Reusability

property. It selects either‘‘0’’or‘‘1’’, and for each bit, it uses

a query comparator to predict the expected value of the

query. If the predicted value exists in the value of the query

being attacked, it adds the selected value, otherwise it adds

the other value. For example, if‘‘0’’is selected, the expected

value corresponding to‘‘0’’is obtained for each bit, and if

the computed value matches a value in the victim quer-

y,‘‘0’’is added, otherwise ‘‘1’’is added. An

attack success num is a parameter that stores

‘‘0’’or‘‘1’’that has the same query value in victim query and

a condition is a value that indicates whether the value

computed using the query comparator has succeeded or

failed in the attack. A try num refers to the value that will

be stored for each bit in attack success num. The process

of this algorithm is similar to that of Simple brtue-force

algorithm. We randomly set the value of‘‘0’’to be per-

formed first because the malicious user cannot know which

number (‘‘0’’or‘‘1’’) is used more in the plaintext under the

assumptions. We can expect that the more the num-

ber‘‘1’’appears, the longer the attack cost takes. Because if

there is no match for the value in‘‘0’’, it has to compare it

with all query values.

5.4 Experimental Evaluation

5.4.1 Setup

We implement the m-ORE scheme and two attack methods

in Python. For a pseudorandom function that maps a given

numerical data to a group element, we utilized AES-GCM

in our experiment, that takes a secret key and input data as

parameters. We use the Bplib library [11] to implement

bilinear pairing. We set a 32-bit security parameter k. To
achieve environmentally independent results, we perform

our experiments in the Google colaboratory environment

[3]. Furthermore, we use three different datasets, the Cal-

ifornia public employee payroll data [1], Gowalla [9], and

Foursquare [26]. Specifically, the California public

employee payroll data is a dataset of California’s public

Input : query comparator, victim query
Output : attack success num
attack success num ←⊥

for i ← 1, · · · , n do
condition = Ture

try num = 0
ui = F (i, attack success num||0n−i+1) +
try num mod 2λ

for j ← 1, · · · , n do
if victim query[j] ==

(query comparator)H(k1,ui+1) then
attack success num.append(try num)

condition = False
break
end

end
if condition == True then

try num = 1
attack success num.append(try num)
end
end

return attack success num

Algorithm 3 Bit-by-bit brute force algorithm
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pay and pension, where 30,012,803 employee records can

be found. Gowalla is a location-based social networking

website dataset where users share their locations by

checking-in. The dataset consists of 6,442,890 checkins in

a numerical format. Lastly, Foursquare also is a location

based social networks dataset, where 27,149 checking-in

numerical data are stored.

5.4.2 Evaluation.

We show the result of the simple brute-force algorithm

attack method in Fig 1a. We assume that there is no neg-

ative integer in the attack simulation and conduct this

experiment from 0 to victim number m sequentially

because the malicious user can not obtain any features from

the dataset by the assumption. The x-axis is the victim

number m that adversary wants to recover plaintext value

and the y-axis is the attack time in seconds. It requires

approximately 3874 s if the adversary wants to recover the

query of 105. We can calculate the average attack cost for

one query by using all attack times. On average, 35.2ms

per number is required for attacks. If we want to attack the

largest value (166,539,600) in the Foursquare dataset, it

needs approximately 68 days.

In Fig. 1b, Fig. 1c and Fig. 1d, we show the results of

the bit-by-bit brute-force algorithm. We performed simu-

lations 1,000 times each. In Fig. 1b, as we expected, the

more plaintexts have the number of‘‘1’’, the more the

attack costs are required. In the worst case that all bits

are‘‘1’’ in 64-bit plaintext, the time it takes to attack is only

83ms. Before we show the results of the cost for the

optimal attack method for the three datasets, we suggest the

number of zeros of plaintexts for three datasets. In Fig 1c,

the number of‘‘0’’is large in the order of Gowalla, Cali-

fornia payroll and Foursquare. Therefore, we can predict

that the order of computational costs also follows the order

of that. In Fig 1d, we show that the costs are small in the

order of Gowalla, California payroll and Foursquare and

located within the values of Fig 1b. For example, in

Gowalla, there are 56.525 instances of the number‘‘1’’and

(a) Attack time for simple brute-force (b) Attack time for the number of zeros

(c) The number of zeros for dataset (d) Attack time for dataset

Fig. 1 Evaluation for two attack methods
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the attack cost is 39.7ms in 64-bit. Its cost falls within a

range of 37.8ms to 49.9ms in Fig. 1b. Then, the number

of‘‘1’’s when representing 166,539,600 as binary in 64-bit

is 13, and we can expect that it needs approximately 48ms.

This result shows a substantial difference from that of the

simple brute force algorithm (68 days).

As a result, we showed that the bit-by-bit brute-force

algorithm is more efficient than simple brute-force algo-

rithm via experiments and that the client who has a shared

pseudorandom key can recover any query within 83ms by

using our optimal attack algorithm without any dataset

information and cooperation.

6 Multi-client Secure Range Query Order-
Revealing Encryption (msq-ORE)

6.1 Definition of multi-client ORE

Definition 3. For a multi-client scheme, say Pmsq, it con-

sists of (msq-ORE.K, msq-ORE.E, msq-ORE.T, msq-

ORE.C).

– msq-ORE.K(1k): On input the security parameter k,
this key generation algorithm returns the data owner

key dk and the query key qk.

– msq-ORE.E(dk, m): On input the data owner key dk

and a message m, this encryption algorithm returns a

ciphertext c.

– msq-ORE.T(qk, m�): On input the query key qk and a

message m� for a query, this token generation algorithm
returns a token t.

– msq-ORE.C(c, t): On input a ciphertext c and a token

t, this comparion algorithm returns a bit b 2 f0; 1g:
Correctness: We say that Pmsq is computationally correct

if the probability Pr[msq-ORE.T(c,t) 6¼ 1(m1 [ m2)] is

negligible of k with dk, qk msq-ORE.K(1k), c msq-

ORE.E(dk, m1) and t  msq-ORE.T(qk, m2).

Security: Our msq-ORE scheme is non-adaptively

simulation secure, similar to Cash et al. [6] and Lv et al

[15]. Formal definition is as follows:

Definition 4. For an msq-ORE scheme Pmsq = (msq-

ORE.K, msq-ORE.E, msq-ORE.T, msq-ORE.C), a PPT

adversary A, a simulator S and leakage function Lð�Þ, we
define the two games, Real

msq�ore
A ðkÞ and Sim

msq�ore
A;L;S ðkÞ as

shown in Fig. 2.

Following that, we say that Pmsq is a secure msq-ORE

scheme with leakage function Lð�Þ if for every PPT

adversary A there exists an effective polynomial-size

simulator S such that the outputs of the Real
msq�ore
A ð1kÞ and

Sim
msq�ore
A;L;S ð1kÞ are indistinguishable.

6.2 msq-ORE scheme from PPH

The technical intuition of msq-ORE, in terms of enhanced

security on top of m-ORE, is splitting a single query key

(i.e., k2;2) in m-ORE into two part (i.e., ka;s; kb;s) in msq-

ORE. While an adversary is able to efficiently recover

plaintext queries by abusing k2;2 in m-ORE, he can no

longer launch the same attack twice in msq-ORE because

the key separation.

Let k be the security parameter. Let P(x, y) = 1 if x ¼
y� 1 be the predicate and we define our msq-ORE

scheme Pmsq = (msq�ORE:K; msq�ORE:E,

msq�ORE:T, msq�ORE:C) as follows:

– msq�ORE:Kð1kÞ: It takes k as an input and returns

dk and qk. It obtains pp = ðG1;G2;GT ; eÞ, hk =

ðk1; ðkb; kb;sÞÞ and tk = ðgka1 ; g
ka;s
2 Þ by using PPH:Kð1kÞ.

Then, it sets the data owner key dk = ðk1; ðgka1 ; kbÞÞ and
the query key qk ¼ ðk1; ðgka;s2 ; g

kb;s
2 ÞÞ. Finally, it returns

ðdk; qkÞ.
– msq�ORE:E(dk, m): It takes dk and m as inputs. It

selects rd  $ Zp and computes the binary form

(b1; b2; � � � ; bn) of message m. Then, it sets qce = gka1 and

hk = ðk1; ðkb; kb;sÞÞ, ka  rd � ka, kb  rd � kb. For

i ¼ 1; 2; � � � ; n, it computes:

ui ¼ Fði; b1b2 � � � bi�1jj0n�iþ1Þ þ bi mod 2k;

vi ¼ h1  PPH:Hðhk; uiÞ:

Realmsq−ore
A (λ): Simmsq−ore

A (λ):

dk, qk ← msq-ORE.K(1λ) stS ← S(λ)
(m1, · · · , mq) ← A(λ) (m1, · · · , mq) ← A(λ)
for 1≤ i ≤ q ((: c1, · · · , cq), (t1, · · · , tq)) ← S(stS , L(m1, · · · , mq))

ci ← msq-ORE.E(dk, mi) return (c1, · · · , cq) and (t1, · · · , tq)
ti ← msq-ORE.T(qk, mi)

return (c1, · · · , cq) and (t1, · · · , tq)

Fig. 2 The real and ideal execution
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Finally, it picks a random permutation p : ½n� ! ½n�
and computes ci ¼ vpðiÞ, and returns the ciphertext c =

ðqce; c1; � � � ; cnÞ.
– msq�ORE:T(qk, m�): It takes qk and m� as inputs

and outputs a token t. It picks rt  $ Zp and computes

the binary form (b�1; b
�
2; � � � ; b�n) of message b� and qct =

g
ka;s�rt
2 . Following that, for i ¼ 1; 2; � � � ; n, it computes

ui ¼ Fði; b�1b�2 � � � b�i�1jj0n�iþ1Þ þ b�i mod 2k;

ti;1 ¼ g
kb;s�rt �Hðk1;uiþ1Þ
2 ; ti;2 ¼ g

kb;s�rt �Hðk1;ui�1Þ
2 :

Finally, it sets a random permutation p: ½n� ! ½n� and
computes ti ¼ ðtpði;1Þ; tpði;2ÞÞ and returns the token t =

ðqct; ðt1;1; t1;2Þ; � � � ; ðtn;1; tn;2ÞÞ. This token is self-gen-

erated value without PPH:H. From this, it only uses

the query key qk rather than the hash key hk and the

token is available to the PPH:T .

– msq�ORE:C(c, t): It takes a ciphertext c of m and a

token t of m� as inputs. Firstly, it sets tk = ðqce; qctÞ =
ðgka1 ; g

ka;s�rt
2 Þ as the test key and performs

PPH:T ðtk; ci; tj;1Þ; PPH:T ðtk; ci; tj;2Þ

for every i, j 2 [n]. If there exists a pair (i�; j�) such that
PPH:T ðtk; ci� ; tj�;1Þ, it outputs 1, and stops. It means

that m[m�; else if there exists a pair (i�; j�) such that

PPH:T ðtk; ci� ; tj�;2Þ, it outputs 0, and stops. It means

that m\m�; otherwise it outputs ?, meaning m ¼ m�.

Correctness: For two binary form (b1; � � � ; bn) and

(b�1; � � � ; b�n) of two messages m and m�, if m[m�, there

must exist a proper index i 2 [n] such that ui ¼ u0
i
þ 1.

Therefore the correctness of Pmsq is followed by correct-

ness of PPH. For both cases where m\m� and m ¼ m�, we
can use the same argument.

Remark 2. Note that the token of our msq-ORE does not

use a query comparator when it makes rest of the query.

For example, the following

ðti;1; ti;2Þ ¼ ðgkb;s�rt �Hðk1;uiþ1Þ2 ; g
kb;s�rt �Hðk1;ui�1Þ
2 Þ

are not based on qct = g
ka;s�rt
2 . Therefore, our msq-ORE

scheme is secure against Query Reusability property.

The leakage, i.e., Lðm1; � � � ;mqÞ, of our msq-ORE

scheme is equivalent to that of [6] and [15] as follows:

ð81	 i; j; k	 q; 1ðmsdbðmi;mjÞ ¼ msdbðmi;mkÞÞÞ:

This means that the leakage of msdbðmi;mjÞ is identical to
msdbðmi;mkÞ for any three messages mi;mj, mk regardless

of the order of plaintexts.

Theorem 2 Assuming that H is a secure PRF and PPH C
is restricted-chosen-input secure, our msq�ORE Pmsq is

Lf -non-adaptively-simulation secure.

Proof We define a consecutive games to show the security

of our msq-ORE as follows:

– Game J�1: This game is the real game Real
msq�ore
A ðkÞ.

– Game J0: This is identical to J�1 except the pseudo-

random function H has been substituted with a truely

random function H�.

– Game Ji�qþj: These games are identical to J0 except u
j
i is

replaced by a random string relies on a predicate

Switch.

– Game Jqnþ1: Simulation Sim
msq�ore
A;L;S ðkÞ.

We show that any successive games are indistinguishable,

and then we construct an efficient simulator S such that the

output of Jqn and Sim
msq�ore
A;L;S ðkÞ are statistically indistin-

guishable. We follow the idea of [6] and [15] to define the

predicate Switch. We say that Switchi;j = 1 if 8 b 2 [q],

msdbðmj;mbÞ 6¼ i, it means that it is possible to substitute

the i-th bit of mj with a random string. If Switch = 0, there

exists uji = ubi ± 1, this condition which can be identified by

the PPH:T algorithm therefore the i-th bit of mj can not be

replaced by a random string.

Lemma 4 Assuming PPH scheme C is restricted chosen

input secure, we have Jk�1 � Jk for any k 2 [1, qn].

Proof For any k 2 ½1; qn�, we argue that it is suitable to

show Jk�1 � Jk under the condition Switchi�;j� = 1 for

k ¼ i� � qþ j� where i� 2 ½0; n� 1�; j� 2 ½1; q� to prove. If

Switchi�;j� = 0, it means that Jk�1 = Jk. We demonstrate that

if there exists an adversary A that distinguish Jk from Jk�1
with significant advantage �, then we can create a simulator

B that wins the restricted-chosen-input game with same

advantage with A. B executes the stage as follows:

1. Firstly, INDP
C is executed by it. Then, it sends the test

key tk to A. Upon receiving a list of plaintext

m1; � � � ;mq, it sets uj
�

i� = F�ði�; bj
�

1 b
j�

2 � � � b
j�

i��1
jj0n�i�þ1Þ þ bj

�

i� mod wk as the challenge ciphertext bit

by using the truely random function F� (The binary

form bj
�

i� is the i�-th bit of mj�).

2. Following that, the challenge bit uj
�

i� is sent to the

INDP
C’s challenger by B and after receiving T as the

challenge term, it assigns tj
�

i� = T.

3. B executes the following steps for simulating the other

bit.

4. If for all ciphertext bits uj
0

i0 that come after uj
�

i� (i.e.

i0qþ j0[ i�qþ j�), initially, for every j 2 ½1; q�, B

chooses q elements r1; � � � ; rq  Zp and executes:
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uj
0

i0 ¼ F�ði0; bj
0

1b
j0

2 � � � b
j0

i0�1jj0n�i
0þ1Þ þ bj

0

i0 mod 2k

cj
0

i0 ¼ h1  PPH:Hðhk; uj
0

i0 Þ:

If for all ciphertext bits uj
0

i0 that come before uj
�

i� under

the condition Switchi0;j0 ¼ 0 (i.e.,

ði0qþ j0Þ\ði�qþ j�Þ \ Switchi0;j0 ¼ 0), then as descri-

bed earlier, Switchi0;j0 ¼ 1, uj
0

i0  f0:1g
k
;

cj
0

i0 ¼ h1  PPH:Hðhk; uj
0

i0 Þ:
5. For all j� 2 [q], after simulating all the ciphertext bits,

it sets a random permutation pj� and outputs ctj� =

(cj
�

pj� ð1Þ; c
j�

pj� ð2Þ; � � � ; c
j�

pj� ðnÞ; g
rj�
1 ) toA. Finally, B produces

a bit value that depends on the output of A.

Algorithm 4 FillMatrix

Input : i, j, k, M
Output : MF

if j = k then
∀i′ ∈ [i, n], MF [j][i′] = r, where r ← {0, 1}λ;
return 0;
end
else
a ← msdb(mj , mj∗);
b ← msdb(mj , mk);
search for the smallest j∗ s.t. a = b;
r′ ← {0, 1}λ;
∀j′ ∈ [j, j∗ − 1], set MF [j′][i] = r′;
∀j′ ∈ [j∗, k], set MF [j′][i] = r′ − 1;
run FillMatrix(i + 1, j, j∗ − 1, M);
run FillMatrix(i + 1, j∗, k, M);
end

return MF

We argue that the encryption oracle is correctly simu-

lated by B because F� is a random function and, for all

i0qþ j0 6¼ i�qþ j�, the probability Pr½uj
�

i� ¼ uj
0

i0 � 1� is neg-

ligible, which means that B fails to simulate the encryption

oracle with only negligible probability. Furthermore, When

T = h1  PPH:Hðhk; uj
0

i0 Þ, B precisely simulates Jk�1 and

if T is random, B simulates properly, owing to the security

of PRF. Hence, if A can distinguish between Gk and Gk�1
with a noticeable advantage, then the advantage of B is also

noticeable in the INDP
C game. Considering that we have

previously shown the advantage of an adversary in INDP
C

game is negligible, for any k 2 ½1; qn�, we have Jk�1 � Jk:

Since the prove of Jk�1 � Jk with respect to the token is

quite similar to that of ciphertexts, we skip it.

Lemma 5 There exists a simulator S that can efficiently

generate outputs from both Jqn and Jqnþ1 that are

indistinguishable.

Proof When Switchi;j = 1 for any i-th of mj, we set u
j
i as a

random string because it does not influence leakage profile.

Therefore, we only simulate the bit that Switchi;j = 0.

We present a recursive algorithm FillMatrixði; j; k;MÞ
in Algorithm 4, before we explain the simulator S. It takes

a set of message M = fm1; � � � ;mqg without of loss of

generality and the set of tuples (i, j, k) where i 2 ½n�,
j	 k 2 ½q�, here, n represents the bit-length of every mes-

sage and q represents the total number of messages as

inputs and outputs a matrix MF .

Firstly, to obtain Mq�n
F , the simulator S runs the

FillMatrixð1; 1; q;MÞ. After that, S runs PPH:K and

obtains hk and tk. Subsequently, 8j 2 ½1; q�, it selects q

random permutation p1; � � � ; pq and q elements r1; � � � ; rq
 Zp. And then, it sets qce = g

ka�rj
1 , ka  ka � rj, kb  kb � rj

and hk = (k1, ðkb; kb;sÞ). Following that, 8i 2 ½n�, 8j 2 ½q�, it
computes c j

i = h1  PPH:Hðhk;MF½j�½i�Þ: Finally,

8j 2 ½q�, it returns a ciphertext set ðct1; � � � ; ctqÞ,
ctj ¼ ðqce; cjpjð1Þ; � � � ; c

j
pjðnÞÞ:

The simulator S also produces the tokens to simulate

msq�ORE:T through the following process. After the

simulation of the ciphertext is complete, 8j 2 ½1; q�, S

selects new q components r01; � � � ; r0q  Zp and new q

random permutations p01; � � � ; p0q. Then, 8i 2 ½n�, 8j 2 ½q�,it

sets qct = g
ka;s�rj
2 , tji;1 ¼ g

kb;s�rj�Hðk1;MF ½j�½i�þ1Þ
2 and

tji;2 ¼ g
kb;s�rj�Hðk1;MF ½j�½i��1Þ
2 . Finally, 8j 2 ½q�, it returns a

token set ðt1; � � � ; tqÞ, where

tj ¼ ðqct; ðtjpjð1;1Þ; t
j
pjð1;2ÞÞ; � � � ; ðt

j
pjðn;1Þ; t

j
pjðn;2ÞÞÞ:

We show that S accurately simulates the games as follows:

Firstly, the simulator S identifies how many leaked bits for

the messages ðm1; � � � ;mqÞ. Note that, if a set of messages

ðm1; � � � ;mqÞ share the same prefix of length ðl� 1Þ-th bit

and if there exists the first mj such that

msdbðm1;mjÞ ¼ msdbðm1;mqÞ, we can deduce that mes-

sages fm1; � � � ;mj�1g have ‘‘1’’on their l-th bit and the

messages fmj; � � � ;mqg have‘‘0’’on their l-th bit. This

means that the l-th bit of messages are leaked. Subse-

quently, the FillMatrix algorithm continues to operate

recursively to identify other leaked bits and determine the

total number of bits that have been leaked. This informa-

tion will also be identified in the game Jqn. Note that both S

and the Jqn game do not only determine the total number of

leaked bits but also the specific position of the leaked bits,

as the messages are ordered. Therefore, the output of the

ciphertext set leaks the msdb between any two ciphertexts.

However, for both Jqn and this game, the random permu-

tation function helps to hide this leakage (index of the
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leaked bit) except the total number. Therefore, the simu-

lation is identical to Jqn, and we establish the proof for

Lemma 5.

7 Experimental Evaluation

In this section, we show an experimental evaluation of our

msq-ORE scheme. We analyze our ORE scheme by eval-

uating it in comparison with [6, 8] and [15] and implement

these schemes in Python. The experiment environment is

identical to that of Sect. 5. We show the evaluation results

with respect to ciphertext size, encryption time and com-

parison time. We randomly select 1,000 data on each from

three datasets (California payroll [1], Gowalla [9], Four-

square [26]) and show average value for performance test

in Fig. 3. Finally, a theoretical analysis is given in Table 2.

7.1 Evaluation

In Fig. 3a, we show the experimental result for the

ciphertext size of ORE schemes. It shows that Chenette

et al. [8]’s scheme needs the smallest ciphertext size and

that of [6] is the biggest. This is because the other three

ORE schemes are based on Chenette et al. [8]’s ORE. The

proposed msq-ORE and Lv et al. [15]’s scheme have an

identical size, because both use modular operations, there

is no change in size even if the calculated value is added to

the exponential value. In Fig. 3b, we show the result of the

encryption time for four schemes with three datsets. Our

scheme’s encryption speed is almost identical with Lv et al.

[15]’s scheme. Because when our msq-ORE scheme en-

crypts the message ui (e.g. h1  g
Hðk1;uiÞ�kb�rd
1 ), it adds rd �

Hðk1; uiÞ from kb, which is the same as that m-ORE

computes the message ui (e.g. h1 g
Hðk1;uiÞ�k2;1�r
1 ) by adding

r � Hðk1; uiÞ from k2;1 in the encryption algorithm. In

Fig. 3c, we introduce the computational costs for the

comparison algorithm. The results of the comparison time

are almost identical, because our msq-ORE and m-ORE

processes are identical in the comparison algorithm.

We show that our msq-ORE requires almost identical

computational cost with m-ORE [15] by using three data-

sets. Therefore, our msq-ORE scheme is not only guaran-

tees stronger security in multi-client environments than

m-ORE scheme [15], but also needs the similar computa-

tional cost.

8 Conclusion

Order-Revealing Encryption (ORE) marks a significant

advancement in secure range query processing over

encrypted databases. While earlier schemes promised

improved privacy preservation, they often came with pro-

hibitive computational costs. In response to these chal-

lenges, this paper introduces msq-ORE, a multi-client

secure range query ORE scheme that effectively mitigates

vulnerabilities while maintaining computational efficiency

comparable to the state-of-the-art. The practical signifi-

cance of this work lies in its ability to provide secure and

efficient range query processing over encrypted databases,

without compromising on computational performance.

This not only enhances privacy preservation in real-world

applications but also paves the way for broader adoption of

secure computing techniques across various domains.

(a) Ciphertext size (b) Encryption time (c) Comparison time

Fig. 3 Performance comparison

Table 2 Comparison of parameter-hiding ORE schemes. E1;E2, and

P refer to the exponentiation operation in G1 and G2, and the pairing

operation, respectively

Scheme Encrypt Query Comparison

Cash et al. [6] 2nðE1 þ E2Þ – 4n2P

m-ORE [15] ðnþ 1ÞE1 ð2nþ 1ÞE2 3nP

msq-ORE ðnþ 1ÞE1 ð2nþ 1ÞE2 3nP
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Looking ahead, future research directions may include

further refinement and analysis of msq-ORE, extending its

applicability to more complex query types and larger

datasets, and exploring optimizations to improve perfor-

mance. Additionally, continued research into vulnerabili-

ties and attack vectors will be crucial for maintaining the

efficacy of encryption schemes in safeguarding sensitive

data in an evolving threat landscape.
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